
A Class of PEPA Models Exhibiting Product Form
Solution over Submodels

Jane Hillston

February 1998

Abstract

The advantages of the compositional structure within PEPA for model construc-
tion and simplification have already been demonstrated. In this paper we show that
for some PEPA models this structure may also be used to advantage during the
solution of the model.

Several papers offering product form solutions of stochastic Petri nets have been
published during the last ten years. In a recent paper [1], Boucherie showed that some
of these solutions were a special case of a simple exclusion mechanism for the product
process of a collection of Markov chains. The results presented in this paper take
advantage of his observation. Moreover, we show that PEPA models that generate
such processes may be readily identified and show how the product form solution may
be obtained. Although developed here in the context of PEPA the results presented
can be easily generalised to any of the other stochastic process algebra languages.

1 Introduction

The use of structured modelling paradigms for performance modelling, based on Markov
processes, has been advocated by several authors for many years, and several such ap-
proaches have been developed and exploited [2, 3, 4, 5]. Most of these approaches stress
compositionality, i.e. the system is decomposed into subsystems that are smaller and more
easily modelled. In particular, in recent years, several stochastic process algebras (SPAs)
have been presented. These include PEPA [6, 7], MTIPP [8, 9], and EMPA [10]. Initially
the benefits of the compositional structure within these languages have been investigated
for model construction and model simplification [11, 12, 13, 14]. However the real strength
of this approach will result from the exploitation of this structure to aid model solution.

A variety of decompositional or structural techniques have been proposed to aid in the solu-
tion of large Markov processes. Recently several preliminary results have been published

1

which show that, at least for some particular cases, there is a clear relationship between
these techniques and the SPA model descriptions. For example, the exploitation of the
structure inherent in SPA models for solution based on tensor algebra has been proposed
in [15, 16], whilst the application of time scale decomposition techniques to SPA models
is described in [17, 18], and investigations of structures within SPA models which give rise
to product form equilibrium distributions are reported in [19, 20, 21].

In this paper we present an alternative way to exploit the compositional structure of
stochastic process algebra models during solution. The previous work on product form SPA
models has centred on components of a particular structure which interact in a restricted
way, preserving a form of independence between the components. Here we characterise
models which represent the competition of otherwise independent processes over resources
and identify the cases in which these models exhibit a product form solution. This facilit-
ates a solution technique in which components of the model are solved in isolation, these
partial solutions subsequently being combined to give a solution of the complete model.
These results are presented in the context of the stochastic process algebra PEPA but can
easily be generalised to any of the other stochastic process algebra languages.

The models which we study belong to the class of competing Markov processes identified
by Boucherie in [1]. The advantage of characterising this class of models in PEPA is that
by “lifting” the definition from the stochastic process level to a formally defined high-level
modelling paradigm we can facilitate the automatic detection of these structures when they
occur. The models presented in [1], even those presented as stochastic Petri nets, relied
on the insight of the modeller to detect the product form structure. Moreover, in the case
of the stochastic Petri net models, a non-standard state representation had to be used in
order to eliminate the resource from the model representation. The PEPA models do not
have this disadvantage since the resource may (indeed, must) be represented explicitly and
subsequently eliminated from the state representation using formally defined procedures.

The rest of the paper is organised as follows: in the next section we present a brief overview
of PEPA (Performance Evaluation Process Algebra), a process algebra in which exponen-
tially distributed delays are associated with every action. Section 3 introduces the notion
of resource within the context of PEPA models while Section 4 explores when models
comprised of components competing for a resource are susceptible to product form solu-
tion. This solution technique is demonstrated on several examples in Section 5. Finally in
Section 6 we summarise the results of the paper and outline directions for further work.

2 PEPA

Process algebras are mathematical theories which model concurrent systems by their al-
gebra and provide apparatus for reasoning about the structure and behaviour of the model.
In classical process algebras, such as CCS [22], time is abstracted away—actions are as-

2

sumed to be instantaneous and only relative ordering is represented—and choices are gen-
erally nondeterministic. If an exponentially distributed random variable is used to specify
the duration of each action the process algebra may be used to represent a Markov process.
This is the approach taken by stochastic process algebras such as PEPA.

The basic elements of PEPA are components and activities, corresponding to states and
transitions in the underlying Markov process. Each activity has an action type (or simply
type). Activities which are private to the component in which they occur are represented
by the distinguished action type, τ . The duration of each activity is represented by the
parameter of the associated exponential distribution: the activity rate (or simply rate)
of the activity. This parameter may be any positive real number, or the distinguished
symbol > (read as unspecified). Thus each activity, a, is a pair (α, r) where α is the action
type and r is the activity rate. We assume that there is a countable set of components,
which we denote C, and a countable set, A, of all possible action types. We denote by
Act ⊆ A×IR+, the set of activities, where IR+ is the set of positive real numbers together
with the symbol >.

2.1 Syntax and Informal Semantics

PEPA provides a small set of combinators. These allow expressions, or terms, to be con-
structed defining the behaviour of components, via the activities they undertake and the
interactions between them. The combinators, together with their names and interpreta-
tions, are presented informally below.

Prefix: (α, r).P Prefix is the basic mechanism by which the behaviours of components
are constructed. The component carries out activity (α, r) and subsequently behaves as
component P .

Choice: P + Q The component represents a system which may behave either as
component P or as Q: all the current activities of both components are enabled. The first
activity to complete, determined by a race condition, distinguishes one component, the
other is discarded. The choice combinator represents competition between components.

Cooperation: P BC
L
Q The components proceed independently with any activities

whose types do not occur in the cooperation set L (individual activities). However, activit-
ies with action types in the set L require the simultaneous involvement of both components
(shared activities). These activities are only enabled in P BC

L
Q when they are enabled in

both P and Q. Thus one component may become blocked, waiting for the other component
to be ready to participate. The cooperation combinator associates to the left but brackets
may also be used to clarify the meaning. When the set L is empty, we use the more concise
notation P ‖ Q to represent P BC

∅
Q.

The published stochastic process algebras differ on how the rate of shared activities are
defined [23]. In PEPA the shared activity occurs at the rate of the slowest participant

3

(see Appendix A for details). If an activity has an unspecified rate in a component, the
component is passive with respect to that action type. This means that the component
does not influence the rate at which any shared activity occurs. A model which contains a
passive activity without a partner for cooperation is considered to be incomplete.

Hiding: P/L The component behaves as P except that any activities of types within
the set L are hidden, i.e. such an activity exhibits the unknown type τ and the activity can
be regarded as an internal delay by the component. Such an activity cannot be carried out
in cooperation with any other component: the original action type of a hidden activity is
no longer externally accessible, to an observer or to another component; the duration is
unaffected.

Constant: A
def= P Constants are components whose meaning is given by a defining

equation: A def= P gives the constant A the behaviour of the component P . This is how
we assign names to components (behaviours). There is no explicit recursion operator but
components of infinite behaviour may be readily described using sets of mutually recursive
defining equations.

The action types which the component P may next engage in are the current action types
of P , a set denoted A(P). This set is defined inductively over the syntactic constructs of
the language (see [6] for a formal definition). For example, A(P + Q) = A(P) ∪ A(Q).
The activities which the component P may next engage in are the current activities of P ,
a multiset denoted Act(P). When the system is behaving as component P these are the
activities which are enabled. Note that the dynamic behaviour of a component depends
on the number of instances of each enabled activity and therefore we consider multisets of
activities as opposed to sets of action types. For any component P , the multiset Act(P)
is defined inductively over the structure of P , as for A(P) (see [6] for a formal definition).

It will also sometimes be necessary to refer to the complete set of action types which are
used within the complete behaviour of a component C, i.e. all the possible action types
which may be witnessed as a component evolves. This set will be denoted ~A(C).

Definition 2.1 (Complete Action Type Set) The complete action type set of a com-
ponent C is

~A(C) =
⋃

C′∈ds(C)

A(C ′).

where ds(C) is the set of (syntactic) process terms witnessed in the evolution of component
C.

Definition 2.2 (Distinct Components) Two components, C1 and C2, are said to be
distinct if they have no actions in common, i.e. ~A(C1) ∩ ~A(C2) = ∅.

Example 1: Simple Processing System as Cooperating Components Consider
a simple system in which a process repeatedly carries out some task. In order to complete

4

its task the process needs the cooperation of a subsidiary process for part, but not all, of
the time. Thus the task can be regarded as being in two stages. The subsidiary process
meanwhile has only two activities, it is available for use except for a short period after
use while it is reset. We model the process and the subsidiary process as two separate
components: Process and Sub respectively. The process will undertake two activities
consecutively: use with some rate r1, in cooperation with the subsidiary process, and
task at rate r2, representing the remainder of its processing task. Similarly the subsidiary
process will engage in two activities consecutively: use, at rate r3 and reset, at rate r4.

Process def= (use, r1).Process′ Sub def= (use , r3).Sub ′

Process′ def= (task , r2).Process Sub ′ def= (reset , r4).Sub

System def= Process BC
{use}

Sub

The complete action type sets of these components are:

~A(Process) = {use, task}
~A(Sub) = {use, reset}

~A(System) = {use, task , reset}

Note that we can easily extend the model to represent a system with two primary pro-
cesses, independent of each other but competing for the use of the subsidiary process:
(Process ‖ Process) BC

{use}
Sub.

2.2 Execution Strategy

A race condition governs the dynamic behaviour of a model whenever more than one
activity is enabled. This has the effect of replacing the non-deterministic branching of
classical process algebra with probabilistic branching. The probability that a particular
activity completes is given by the ratio of the activity rate to the sum of the activity rates
of all the enabled activities. Any other activities which were simultaneously enabled will
be interrupted or aborted. The memoryless property of the exponential distribution makes
it unnecessary to record the remaining lifetime in either case.

2.3 Operational Semantics and the Underlying CTMC

The semantics of PEPA, presented in the structured operational semantics style, are given
in Appendix A. The underlying transition system also characterises the Markov process

represented by the model. PEPA is the labelled multi -transition system (C,Act , {|
(α,r)
−−−→ |

(α, r) ∈ Act |}) where C is the set of components, Act is the set of activities and the

multi-relation
(α,r)
−−−→ is given by the rules in Appendix A.

5

The derivation graph is a graph in which syntactic terms form the nodes, and arcs represent
the possible transitions between them: the operational rules define the form of this graph.

Since
(α,r)
−−−→ is a multi-relation, the graph is a multigraph. This derivation graph describes

the possible behaviour of any PEPA component and provides a useful way to reason about
a model. It is also the basis of the construction of the underlying Markov process.

Example 1: Simple Processing System – Derivation Graph

ProcessBC
{use}

Sub

Process′ BC
{use}

Sub ′

Process BC
{use}

Sub′ Process′ BC
{use}

Sub

?

(use, r1,3)

�
�

�
��	

(task , r2)
@
@
@
@@R

(reset , r4)

�
�
�
�
�
�
�
�
�
���

(reset, r4)

A
A
A
A
A
A
A
A
A
AAK

(task , r2)

r1,3 = min(r1, r3)

Definition 2.3 (Derivatives) If P
(α,r)
−−−→ P ′, then P ′ is a (one-step) derivative of P . In

general, P ′ is a derivative of P if P
(α1,r1)
−−−→ · · ·

(αn,rn)
−−−→ P ′.

These derivatives are the states of the labelled multi-transition system (and of the underly-
ing Markov process). The set of derivatives which can evolve from a component is defined
recursively.

Definition 2.4 (Derivative Set) The derivative set of a PEPA component C is denoted
ds(C) and defined as the smallest set of components such that

• if C def= C0 then C0 ∈ ds(C);

• if Ci ∈ ds(C) and there exists a ∈ Act(Ci) such that Ci
a−→ Cj then Cj ∈ ds(C).

Thus the derivative set is the set of components which capture all the reachable states of
the system. These form the nodes of the derivation graph.

Definition 2.5 (Derivation Graph) Given a PEPA component C and its derivative set
ds(C), the derivation graph D(C) is the labelled directed multigraph, whose set of nodes is
ds(C), and whose multiset of arcs, A, is defined as follows:

• The elements of A are taken from the set ds(C)× ds(C)×Act;

• 〈Ci, Cj, a〉 occurs in A with the same multiplicity as the number of distinct inference
trees which imply Ci

a−→ Cj .

6

The initial component C0, where C def= C0, forms the initial node of the graph.

It is sometimes useful to consider the relative derivative set of a component—the set of
derivatives which may be reached before a given derivative.

Definition 2.6 (Relative Derivative Set) The relative derivative set of a PEPA com-
ponent C with respect to its derivative C ′ is denoted dsC′(C) and is defined as the smallest
set of components such that

• if C def= C0 and C0 ≡/ C ′ then C0 ∈ dsC′(C);

• if Ci ∈ dsC′(C) and there exists a ∈ Act(Ci) such that Ci
a−→ Cj and Cj ≡/ C ′ then

Cj ∈ dsC′(C).

Similarly, we will sometimes wish to refer to the set of action types which may be used in
the transition sequence progressing from one component to another.

Definition 2.7 (Relative Action Set) The relative action set of a PEPA component C
with respect to its derivative C ′ is denoted ~AC′(C) and is defined as the set of action types
such that

• if Ci ∈ dsC′(C) and there exist (α, r) ∈ Act(Ci) such that Ci
(α,r)−→ Cj and Cj ≡/ C ′

then α ∈ ~AC′(C).

To form the underlying Markov process a state is associated with each node of the derivation
graph, and the transitions between states are derived from the arcs of the graph. This use
of the derivation graph is analogous to the use of the reachability graph in stochastic
extensions of Petri nets such as SPNs [24]. We assume that the model is finite so that the
number of nodes in the derivation graph is finite.

The transition rate between two components Ci and Cj, denoted q(Ci, Cj), is the sum of
the activity rates labelling arcs connecting node Ci to node Cj in the derivation graph,
i.e. q(Ci, Cj) =

∑
a∈Act(Ci|Cj)

ra where Act(Ci|Cj) = {|a ∈ Act (Ci) | Ci a−→ Cj|}. Typically

this multiset will only contain one element. If Cj is not a one-step derivative of Ci, then
q(Ci, Cj) = 0. The q(Ci, Cj), or qij, are the off-diagonal elements of the infinitesimal
generator matrix of the Markov process, Q. Diagonal elements are formed as the negative
sum of the non-diagonal elements of each row.

7

2.4 Cyclic PEPA

Unlike the earlier papers [19, 20], the aim of this paper is to consider models which exhibit a
product form solution over the components of the model, even though it may be necessary
to find the equilibrium solution of those components by numerical solution. Thus it is
important that we ensure that the components within the model, as well as the model
itself are finite and ergodic. Necessary (but not sufficient) conditions for the ergodicity of
the Markov process in terms of the structure of the PEPA model have been identified and
can be readily checked [6, 25]. These conditions imply that the model must be a cyclic
PEPA component.

Definition 2.8 (Cyclic Components) A PEPA component is cyclic, or irreducible, if
it is a derivative of all the components in its derivative set.

C ∈ ds(Ci) for all i such that Ci ∈ ds(C)

A cyclic component is one in which behaviour may always be repeated—however the model
evolves from this component it will always eventually return to this component and this set
of behaviours. In particular this means that for every choice, whichever one-step derivative
is chosen the model must eventually return to the point where the choice can be made again,
possibly with a different outcome. If we consider the layering imposed on a component by
cooperation combinators, this implies that choice combinators may only be introduced at
the lowest level of a cyclic component since syntactic terms are associated with states. In
other words, a component which involves a choice combinator may subsequently be used
in a cooperation, but a component involving a cooperation may not be subsequently used
in a choice.

This leads us to formally define the syntax of PEPA expressions in terms of sequential
components S and model components P :

P ::= S | P BC
L
P | P/L

S ::= (α, r).S | S + S | A

For the remainder of the paper we will assume that all the models which we consider are
cyclic.

As stated earlier there is a strong relationship between cyclic PEPA components and irre-
ducibility in the underlying Markov processes. This is formalised in the following theorem.

Theorem 2.1 The Markov process underlying a PEPA model is irreducible, and therefore
ergodic, if, and only if, the initial component of the model is cyclic.

As explained in the previous section the “states” of a PEPA model as it evolves are the
syntactic terms, or derivatives, which the model will go through. When a model compon-
ent is defined it consists of one or more cooperating components, and these cooperating

8

components will be apparent in every derivative of the model1. The sequential components
which are involved in the model, and the cooperation sets in operation between them, will
remain static throughout the evolution of the model. Only the particular derivatives ex-
hibited by each of the sequential components may change. This suggests a more compact
representation of any particular state.

Definition 2.9 (State Vector) Let P be a model component comprising sequential com-
ponents S1, S2, . . . SK. Then a state vector of the model component P as derivative Pi is
the vector (S1i, S2i, . . . , SKi)P where Ski , 1 ≤ k ≤ K is the current derivative of Sk in Pi.

This can be regarded as analogous to the state representation of a queueing network which
consists of a vector (n1, n2, . . . , nK), where ni denotes the number of customers currently
at queue i.

The subscript P is required since knowledge of the static structure of P must be retained
in order to reason about the model’s behaviour. However, it will be omitted when it is
clear from the context which P is intended.

Definition 2.10 (Redundancy (within the state vector representation)) A sequen-
tial component Sk is redundant within the state vector representation of a model component
P if Sk is a sequential component of P and for all derivatives Pi ∈ ds(P) given the current
derivatives of the other sequential components Sji, j 6= k, the current derivative of Sk, Ski ,
can be inferred.

If a sequential component is shown to be redundant within the state vector, a reduced state
vector may be formed in which the derivatives of this component have been eliminated.

Definition 2.11 (Redundancy (within the model)) A sequential component Sk is re-
dundant within a model component P if Sk is a sequential component of P and the Markov
process generated by P is isomorphic to the Markov process generated by P ′, where P ′ is
the model obtained by removing Sk from P .

Note that redundancy within the state vector representation is distinct from redundancy
within the model. A component which is redundant within the state vector representation
may be essential for correct behaviour of the model, imposing some form of scheduling
between the other components. In contrast a component which is redundant within the
model has no effect on the behaviour of the model at all. A component which is redundant
within a model will also be redundant within the corresponding state vector representation.

1However they will not necessarily all change with every transition of the derivation graph.

9

Example 2: A simple M/M/1/N/N queue Consider a single server queue with buffer
capacity N and customer population N . Assume that customers arrive at rate λ and
service will occur at rate µ. We can represent the queue as two interacting components:
a Server and a Line . The Server will engage in a serve activity at rate µ whenever it is
able.

Server def= (serve, µ).Server

The Line models the buffer. When the buffer is not full Line will accept a customer at
rate λ. When the buffer is non-empty a customer will be available for service at a rate
determined by the server (the activity (serve ,>)).

Line0
def= (accept, λ).Line1

Linei
def= (accept, λ).Linei+1 + (serve,>).Linei−1 1 ≤ i ≤ N − 1

LineN
def= (serve,>).LineN−1

Queue0
def= Line0 BC{serve}

Server

Figure 1: Example 2: A simple M/M/1/N/N queue

Server and Line are both sequential components. The behaviour of the queue as a whole
is determined by their cooperation.

The state vector representation of Queue j for any j, 1 ≤ j ≤ N , is (Linej, Server).
However, since the derivative of Server is the same in all derivatives of Queue , clearly
Server is redundant in the state vector representation. The reduced state vector represent-
ation of Queue j is simply (Linej). However, it should be noted that the component Line
alone does not represent the system; indeed it does not form a complete model since the
passive activity (serve ,>) has no active component to cooperate with. The component
Server is redundant only in the sense of the state representation.

Example 3: A simple multi-processor shared memory system Consider a simple
system in which two processors compete for access to a shared memory via a bus. The pro-
cessors are independent and both follow the same pattern of behaviour—a simple repetitive
cycle of actions: each will compute, acquire the bus, send the message, and then release
the bus. The bus meanwhile will be available for transmitting (waiting to be acquired) or
in use (waiting to be released). The memory is simply ready to transmit whenever access
to it is acquired.

The state vector representation of any derivative Machine ′ is

(Proci1 ,Proci2 ,Bus ′,Mem).

10

Proc def= (compute, r1).(acquire, r2).(transmit, r3).(release, r4).Proc

Bus def= (acquire,>).(release,>).Bus

Mem def= (transmit,>).Mem

Machine def=
(

(Proc ‖ Proc) BC
{acquire,
release}

Bus
)
BC

{transmit}
Mem

Figure 2: Example 3: A simple multi-processor shared memory system

The current state of the memory is always Mem and so clearly this component is redundant
in the state vector representation and can be eliminated. Similarly the current state of the
bus, Bus ′ can always be deduced from the current state of the two processors. For example
if

Proci1 ≡ Proc and Proci2 ≡ (acquire, r2).(transmit, r3).(release, r4).Proc

then it follows that Bus ′ ≡ Bus . Hence the reduced state vector representation of Machine ′

is (Proci1,Proci2). Clearly no further reduction is possible. Although the processors com-
pete for the use of the bus and therefore constrain each other’s behaviour we cannot deduce
the current state of one processor given the state of the other. Similarly, the current de-
rivatives of one processor and the bus do not contain sufficient information to be able to
deduce the current derivative of the second processor.

Note that the component Mem is redundant within the model: it does not affect the
behaviour since the necessary scheduling is already imposed by the Bus. The component
Bus, however, is essential and cannot be omitted even if the memory component is retained.

Example 4: A small railway system Consider a simple railway system with the
arrangement of tracks and stations as shown below. There are two trains: Train1 which
circulates round stations A, B and C, and Train2 which has a choice of two routes, either
round D, B, and C, or round D, E and F (see Figure 3).

The PEPA model of the system is shown in Figure 4.

In the first example the redundancy of the Server component within the state vector
representation can be attributed to the fact that it is unchanging. The redundancy of the
Mem component in the second example is similar. However note that in this second case,
unlike the first, the component Mem can be eliminated from the model without changing
the behaviour, or leaving the model incomplete. The Bus component is sufficient to ensure
the correct exclusion is maintained between the two processors. The Bus component in
the second example and the Signal component in the third, are redundant because they

11

e
A�
�
�
��3

e
B

?
e

C

Q
Q
Q

QQk

�
�
�
��3

e
D�

�
�
��3

Q
Q

Q
QQk

e
E

?
e

F

Q
Q

Q
QQk

Figure 3: Schematic representation of the small railway system

never act independently and its current derivative can always be inferred directly from the
rest of the derivatives. We will see in the following section that this form of redundancy
is closely related to the notion that a sequential component can be identified as a resource
to be used by the rest of the model. In fact we will see that Server , Bus , Mem and Signal
are all resource components in their respective model components.

3 Resource Components

When a model component is constructed from sequential components via the cooperation
combinator we can regard the model as being built up in layers or levels, each cooperation
combining just two components. As suggested by the grammar those components may be
sequential components or model components. Thus a sequential component may be within
the scope of several cooperation sets because of the way the model has been constructed.

It is sometimes important to be able to distinguish whether a given sequential component
R is a subcomponent within a model, and if so which cooperation sets will affect the
behaviour of the component. For example, in the component

X
def= (P BC

L
R)BC

K
(S BC

N
T)

the subcomponent R can act independently on any action types in the set N which do not
occur in K or L, but must have the cooperation of other subcomponents to achieve actions
in the set L ∪K, whereas the subcomponent S can act independently on any action types
in the set L \ (K ∪N), but must have the cooperation of other subcomponents to achieve
actions in the set K ∪N . In the component

Y
def= (P BC

L
R) ‖ (S BC

N
T)

R must cooperate for actions in the set L but may act independently for all actions outside
this set, and S must cooperate for actions in the set N but may act independently for all
action types outside this set.

In the following we will formalise these ideas. First, we define a partial order, ≺, over
components, which captures the notion of being a subcomponent:

12

Train1A
def= (trackAB , t1).(stopB , s1).Train1B

Train1B
def= (trackBC , t1).(stopC , s1).Train1C

Train1C
def= (trackCA, t1).(stopA, s1).Train1A

Train2D
def= (trackDB , t2).(stopB , s2).Train2B + (trackDE , t2).(stopE , s2).Train2E

Train2B
def= (trackBC , t2).(stopC , s2).Train2C

Train2C
def= (trackCD , t2).(stopD , s2).Train2D

Train2E
def= (trackEF , t2).(stopF , s2).Train2F

Train2F
def= (trackFD , t2).(stopD , s2).Train2D

Signal def= (trackAB ,>).Signal1 + (trackDB ,>).Signal2
Signal1

def= (trackCA,>).Signal

Signal2
def= (trackCD ,>).Signal

Railway def=
(

Train1A ‖ Train2D

)
BC
L

Signal

where L = {trackAB , trackCA, trackDB , trackCD}

Figure 4: Example 4: A small railway system

Definition 3.1 (Subcomponents)

1. R ≺ P if R ∈ ds(P)

2. R ≺ P +Q if R ≺ P ∨R ≺ Q
3. R ≺ P BC

L
Q if R ≺ P ∨ R ≺ Q

4. R ≺ P/L if R ≺ P
5. R ≺ A if A

def= P ∧R ≺ P

The interface of a sequential component within a component model is then defined to be
the union of all the cooperation sets whose scope includes the component R.

Definition 3.2 (Interface) For any sequential component R within a model component
C (i.e. R ≺ C) the interface of R within C, denoted I(C :: R), is the set of action types
on which R is required to cooperate. It is defined in terms of the subsidiary function I ′:
I(P :: R) = I ′(P :: R, ∅), where I ′ is defined as follows

13

1. I ′(R :: R, S) = S

2. I ′(P BC
L
Q :: R, S) = S ′ ∪ S ′′ if a) I ′(P :: R, S ∪ L) = S ′

b) I ′(Q :: R, S ∪ L) = S ′′

3. I ′(P/L :: R, S) = I ′(P :: R, S \ L)

4. I ′(A :: R, S) = I(P :: R, S) if A
def= P .

5. I ′(R′ :: R, S) = ∅ if R ≺/ R′

It is interesting to consider the case when all the possible actions of a sequential com-
ponent are constrained by its interface. In this case the component is never free to act
independently; it must cooperate with other components to complete any action. Such a
component can be viewed as being subservient to the rest of the model, and is called a
resource component.

Definition 3.3 (Resource Components) A sequential component R in a model C
(R ≺ C) is a resource component if there is only one instance of R within C and the
complete action type set of R is a subset of its interface within C, i.e.

~A(R) ⊆ I(C :: R)

To see the need to restrict to a sequential component which has only a single instantiation
within a model consider the following model:

R
def= (α, rα).(β, rβ).R

P
def= (α, rα).P

Q
def= (β, rβ).Q

System def= (RBC
{α}

P) ‖ (R BC
{β}

Q)

Here ~A(R) = {α, β} and I(System :: R) = {α, β} but it is not true to say that R
cannot act independently: one instance can act independently on α and the other can act
independently on β.

Throughout the rest of the paper we will use the term “resource component” in this
technical sense, which will not always coincide with our intuitive notion of a resource. For
example, in Example 1 the subsidiary process Sub could be regarded intuitively to be a
resource but it is not a resource in the technical sense because it performs the activity
(reset , r4) independently.

3.1 Resource Components and Redundancy

As we can see from the examples and subsequent discussion in Section 2.4, resource com-
ponents are closely related to the notion of redundancy. In general a redundant sequential

14

component within the state vector representation will be a resource component. The only
exception will be components for which all independent actions do not result in a change
of derivative. For example, consider the simple component

A
def= (action, ra).A.

This component may be placed within any model M to form Ma ≡ M ‖ A. Here A is
not a resource component within the model since it does not cooperate on any activities.
However, it is redundant since the state vector of any derivative M ′a of Ma will consist
of the corresponding derivative M ′ of M with the additional component A. We will call
such components, with only a single derivative, trivially redundant. The more general
case of components whose interface contains all state-changing derivatives are called semi-
resources. They will not be considered further in this paper.

It is not the case that all resource components within a model correspond to redundant
components within the state vector representation of the model. For example, consider the
following system:

Example 5: A simple system with a faulty resource Suppose that there is a simple
processor, P , which repeatedly carries out a two phase task: phase1 it carries out alone;
for phase2 it requires the cooperation of a resource, Res. The resource is unreliable and
will sometimes fail (with probability p), after completing phase2, needing to be repaired
before it can be used again. There is a Repairman who carries out the repair whenever
the resource has failed.

P
def= (phase1, r1).(phase2, r2).P

Res def= (phase2, (1− p) × r2).Res + (phase2, p× r2).Failed Res

Failed Res def= (repair,>).Res

Repairman def= (repair, r3).Repairman

System def= (P ‖ Repairman) BC
{phase2 ,
repair}

Res

Here both Res and Repairman are resource components, but only Repairman is a redundant
component in the state vector representation (trivially, since it only has one derivative). If
we consider the derivatives of P it is not possible to deduce the current derivative of Res
because the resource may fail transparently to the processor.

Recall that a sequential component, S ∈ S, is constructed using only prefix and choice. If
the model component is to be cyclic the sequential components must clearly contain cyclic
behaviour. In the simplest case, where only prefix is used to construct the component, be
cyclic only if it consists of a single cycle of activities repeatedly carried out in turn. Many
components take this basic form: for example, Proc and Bus in Example 3, Train1A in

15

Example 4, and P in Example 5. The derivation graph of such a component will have a
ring structure.

Definition 3.4 (Basic Components) A component S ∈ S is termed a basic component
if it is a cyclic component constructed using only prefix, and each activity in the cycle is
of a distinct type.

In general when the component is constructed also using choice, even with the restriction
to cyclic behaviour, the derivation graph can take on many complex forms.

In this paper we are interested in sequential components which consist of a single choice of
basic cyclic components constructed using only prefix: for example, Train2 D in Example 4,
Res in Example 5. The derivation graph of such a component will have a central node and
one loop corresponding to each basic cyclic component offered in the choice. We term such
sequential components simple.

Definition 3.5 (Simple Components) A sequential component R ∈ S is termed a simple
component if R ≡ S1 + S2 + · · · + Sn for some distinct basic components S1, S2, . . . Sn,
modified so that the last action of the basic component Si returns to R and not Si, for all
i, 1 ≤ i ≤ n.

If a resource component is simple it implies that it offers alternative behaviours through
its interface but once one of those behaviours is chosen (on the first action) the pattern of
behaviour is set until the chosen cycle is completed and the choice is offered again.

Proposition 3.1 If a model P has distinct resource components S1, . . . , Sn such that each
Si is basic or simple, then S1, . . . , Sn are redundant within the state vector representation
of P .

Proof We prove the proposition by induction over n.

Case 1: n = 1 Suppose, without loss of generality, that the state vector representation of
P is (P1, . . . , P`, S), where S is the resource component.

Case 1.1: S is a basic component. S consists of a single cycle of activities and
since S is a resource component it cannot act independently of P1, . . . , P`: each
activity must be carried out in cooperation with one or more of the Pi. Moreover
since S is a basic component we know that all its activities have distinct types.
Thus, given the static structure of P and the current derivatives of P1, . . . , P`,
it will be apparent which activities of S have been completed. Therefore S is
redundant in the state vector representation of P .

16

Case 1.2: S is a simple component. S consists of several competing cycles, each
of which is distinct in terms of action types. Since S is a resource it cannot act
independently of P1, . . . , P`. Thus by similar reasoning to above the current de-
rivative of S, will always be apparent from the current derivatives of P1, . . . , P`,
and S is redundant in the state vector representation of P .

Case 2: n = k, k > 1 Suppose, without loss of generality, that the state vector repres-
entation of P is (P1, . . . , P`, S1, . . . , Sk), where each Si is a distinct simple or basic
resource component, i.e. all the complete action type sets of the Si are disjoint. Then,
if Sk is a resource component in (P1, . . . , P`) it follows that Sk is a resource compon-
ent in (P1, . . . , P`, S1, . . . , Sk−1) and by the same argument as above Sk is redundant
in this state vector representation. Moreover, by the induction hypothesis, it follows
that each of the Si, 1 ≤ i < k, is redundant within (P1, . . . , P`). �

4 Product Form Solutions

Stochastic process algebras impose a formally-defined compositional structure on the un-
derlying Markov chain and the exploitation of this structure for model simplification has
already been demonstrated. In [12] it is shown that components of a model can be con-
sidered and simplified in isolation, thereby avoiding the computational effort required to
consider the model as a whole. This technique can be applied to models which exceed the
capabilities of existing techniques. Even greater advantage is gained when the composi-
tional structure can used during model solution, i.e. if the CTMCs corresponding to the
components could be solved separately and their solutions combined to obtain a solution,
exact or approximate, of the whole CTMC [19, 17, 20]. One class of CTMCs which are
susceptible to such an efficient solution technique are those which exhibit a product form
equilibrium distribution.

Consider a Markov process X(t), whose state space S is of the form S = S1 × S2, i.e.
each state s = (s1, s2) contains two pieces of information capturing different aspects of the
current state. In general, these aspects may be related in many ways. When the process
X(t) exhibits a product form solution, i.e. π(s) = π1(s1) × π2(s2), it indicates that these
different aspects of the state description are independent.

Product form distributions have been widely used in the analysis of queueing networks and,
due to their efficient solution, have contributed to the popularity of queueing networks
for performance analysis. For example, Jackson networks [26] and their generalisation
BCMP-networks [27] have been widely employed. In contrast stochastic Petri nets have
rarely been found amenable to such efficient equilibrium solution, except when some of the
expressibility of the formalism is reduced by excluding resource sharing and competition
over resources in a general form [28].

For SPN there have been contrasting approaches. Henderson and Taylor develop product

17

form over the places of the Petri net, to obtain a product form similar to that obtained for
queueing networks [28]. Lazar and Robertazzi establish a first step towards a product form
over subnets, characterising independence between subnets which compete for resources
[29]. Donatelli and Sereno show how both these approaches are related to T -semiflows in
the Petri net [30].

For stochastic process algebras two approaches to identifying models which give rise to
product form equilibrium distributions have appeared in the literature. It is clear that when
a PEPA model consists of completely independent sequential components, i.e. C def= P ‖ Q,
the equilibrium distribution over the state vector representation will have a product form:

π(Ci) =
1
B

(
πP (Pj)× πQ(Qk)

)
(4.1)

where Ci ≡ Pj ‖ Qk, πP and πQ are the steady state distributions over the derivatives of
P and Q respectively, and B is a normalising constant. In [20], an extension to this class
of product form models is found based on the notion of quasi-reversibility which underlies
product form in queueing networks. Here a weak form of interaction between components
is allowed but components are restricted to have a particular form. In [19] the application
of Henderson and Taylor’s results for SPN are explored within an SPA setting. Again
the class of components which may be used within product form models is found to be
restricted, although these restrictions are now expressed in terms of the actions of the
model and how they are distributed within the components. In [21] an investigation of
SPA models giving rise to reversible structures in the state space is presented.

In this paper we aim to identify cases when the CTMC underlying a PEPA model has a
product form equilibrium distribution and there is no restriction over the possible form
of the components which behave independently. In these cases the probability of a given
model derivative will be the product of the probabilities of the corresponding derivatives
in the lower level components, possibly subject to a normalising constant. The approach
taken is analogous to Lazar and Robertazzi’s approach with SPN, since the aim is to find
a product form in terms of submodels (subnets or components respectively). CTMCs may
still need to be solved numerically to find the equilibrium distribution of the submodels
but these Markov processes will be smaller and can be tackled separately. Unlike the
other approaches we maintain the restriction that the subcomponents we consider in the
state representation are independent of each other. However we extend from the simple
case represented in equation 4.1 above, by the introduction of one or more redundant
resources2 which impose indirect interactions between the components, but which may be
eliminated from the state vector representation.

Recently Lazar and Robertazzi’s result has been generalised by Boucherie [1]. In Section 4.1
we discuss the framework he introduced and consider its application to PEPA models in
Section 4.2.

2For the remainder of this document we will mean redundant within the state vector representation
whenever we refer to a “redundant resource” unless we explicitly state otherwise.

18

4.1 Boucherie’s Framework

In [1], Boucherie aims to generalise the result of Lazar and Robertazzi to show that it can
be regarded as a special case of a simple exclusion mechanism for the product process of a
collection of Markov processes. His framework consists of a set of Markov processes which
must compete over resources. This competition means that there are certain areas of the
state space of the product process which cannot be entered—these areas would correspond
to two processes holding a resource at the same time. He identifies circumstances in
which, despite this indirect form of interaction, the product process exhibits a product
form equilibrium distribution over the permissible states, suitably renormalised.

More formally the framework can be described as follows: Let Sk and qk be the state space
and transition rates, respectively, of the kth Markov process in a collection, 1 ≤ k ≤ K.
Let S = S1 × · · · × SK denote the state space of the product process. It is assumed that
in each transition of the product process only the state in one dimension changes, i.e. in
each transition of the product process only one of the underlying Markov processes changes
its state. The transition rates of the product process in dimension k are then given by the
transition rate of the individual process, qk. In other words, the product process consists
of K individual processes which do not directly interact in any way.

Competition between the processes over resources introduces an indirect form of interaction
between them. Let us assume that there is a set I of notional resources. For technical
reasons this set may also contain a non-resource, possession of which will indicate that a
process is working without a resource. Then the state space of each Markov process can be
partitioned into states corresponding to resource use. Only one notional resource may be
held at a time but this does not imply that only one actual resource is held since different
notional resources may correspond to a resource held individually, and a resource held in
conjunction with another. Competition over resources is then defined as follows:

Definition 4.1 (Competition) Let I be an index set. For each k, let Aki, i ∈ I, be a
set of mutually exclusive sets such that ∅ 6= Aki ⊂ Sk and

⋃
i∈I Aki = Sk, k = 1, . . . , K.

Markov process k uses resource i if the Markov process is in state nk ∈ Aki. Markov
processes k1 and k2 compete over resource i if {nk1 , nk2 : nk1 ∈ Ak1i, nk2 ∈ Ak2i}=∅.
Let Cki ⊂ {1, . . . , K} be the Markov processes that compete over resource i with Markov
process k.

For any process k, 1 ≤ k ≤ K, if the current state is in the subset Aki it signifies that the
process is presently using the resource i and no other process j, such that j ∈ Cki, can gain
access to i and enter its subset of states Aji. Thus the competition and the sets Cki define
areas of the state space of the product process which are inaccessible. The transition rates
of the product process are defined in a way which ensures this exclusion.

Definition 4.2 (Product process) The Markov process at state space S =
∏K

k=1 Sk,

19

with transition rates

q(n, n′) =
K∑
k=1

qk(nk, n′k)
K∏

`=1, 6̀=k
1(n` = n′`)1(if n` ∈ A`i then k /∈ C`i) 3

where n = (n1, . . . , nK), n′ = (n′1, . . . , n
′
K), is called the product process of the collection

of Markov processes 1, . . . , K, competing over resources I.

Observe that, as required, these transition rates imply that in each transition only one
process can change its state, and that process k cannot access resource i when it is being
used by process ` if k ∈ C`i, and vice versa. In the paper Boucherie shows that this
mechanism of pair-wise relations imposed on the individual processes of a product process
can be used to model various types of competition. Moreover he establishes the following
result:

Theorem 4.1 (Product-form distribution) The product process of the collection of
Markov processes 1, . . . K competing over resources I has equilibrium distribution π at
S, defined as

S =
K∏
k=1

Sk \
(

K∏
k=1

∏
i∈I

∏
j∈Cki

Aki ×Aji

)
given by

π(n) = B
K∏
k=1

πk(nk) n ∈ S

where B is a normalising constant, determined by the exact form of S, and πk(·) is the
equilibrium distribution of process Sk.

The result holds because each process can either operate independently of the other pro-
cesses or it is blocked. For all n ∈ S, if process ` is in state n` and ` 6= k then pro-
cess k either carries out a transition which is not in competition with ` (1(if i : n` ∈
A`i then k /∈ C`i) = 1) or process k wants to access the resource which ` occupies (1(if
i : n` ∈ A`i then k /∈ C`i) = 0). In either case process k will satisfy its own global balance
equations: these equations are trivially satisfied when the process is stopped and also true
when the process is operating independently. It appears that the exclusion principle main-
tained by the transition rates of the product process imposes a protocol on the behaviour
of the product process that ensures that the Markov processes in the collection behave as
if they are independent.

The Theorem can be generalised if we consider the case when each of the processes 1, . . . , K
is composed of several locally balanced Markov processes. Assume that the transition rates

31 is an indicator function: the value of 1(statement) is 1 if the statement is true and 0 otherwise.

20

of Markov process k can be separated into Tk parts, labelled t = 1, . . . , Tk. For nk, n′k ∈ Sk
we define the separated transition rates as qtk(nk, n

′
k), t = 1, . . . Tk, such that

qk(nk, n′k) =
Tk∑
t=1

qtk(nk, n
′
k) (4.2)

The Markov process k is said to be locally balanced with respect to this separation if the
equilibrium distribution πk satisfies∑

n′k∈Sk

{
πk(nk)qtk(nk, n

′
k) − πk(n′k)qtk(n′k, nk)

}
= 0, t = 1, . . . , Tk.

Each process (k, t), 1 ≤ k ≤ K, 1 ≤ t ≤ Tk, is a Markov process in its own right. Thus
for each k there may be several subprocesses (k, t), 1 ≤ t ≤ Tk, which all operate over the
same state space Sk. Note that they do not necessarily all use the whole state space. We
assume that for any k, subprocesses (k, ti) and (k, tj) do not compete over any resources.
However, we extend the notion of competition between processes in the natural way: for
each (k, t), let A(k,t)i be mutually exclusive sets such that A(k,t)i ⊂ Sk,

⋃
i∈I A(k,t)i ⊆ Sk and⋃Tk

t=1

⋃
i∈I A(k,t)i = Sk. Similarly, let C(k,t)i ⊆ {(k, t) : 1 ≤ k ≤ K, 1 ≤ t ≤ Tk} be the set of

Markov processes which compete with process (k, t) over resource i, i.e. if (k′, t′) ∈ C(k,t)i

then {nk ∈ A(k,t)i, n
′
k ∈ A(k′,t′)i} = ∅.

Theorem 4.2 (Product process with local balance) Assume that each Markov pro-
cess in the collection k = 1, . . . , K satisfies local balance with respect to the separation 4.2.
The Markov process at state space

S =
K∏
k=1

Sk \

 K∏
k=1

∏
i∈I

Tk∏
t=1

∏
(j,s)∈C(k,t)i

A(k,t)i × A(j,s)i

with transition rates

q(n, n′) =
K∑
k=1

Tk∑
t=1

qtk(nk, n
′
k)

K∏
`=1, 6̀=k

1(n` = n′`)
T∏̀
p=1

1
(
if n` ∈ A(`,p)i then (k, t) /∈ C(`,p)i

)
has an equilibrium distribution π at S given by

π(n) = B

K∏
k=1

πk(nk)

where B is a normalising constant.

21

4.2 PEPA Components Competing over Resources

Example 4 revisited The application of Boucherie’s framework to PEPA models with
resource components can be readily illustrated if we consider again the simple railway
system (Example 4) introduced in Section 2.4 and shown in Figure 4.

Signal is a simple resource component within the Railway—all its activities are carried
out in cooperation with one or other of the trains—and as we have already seen Signal
is redundant within the state vector representation of Railway . The reduced state vector
representation is (Train1

′,Train2
′), and these two sequential components are independent,

in the sense that there is no cooperation set in operation between them.

Let us associate Markov process S1 with the first train and Markov process S2 with the
second; then

S1 = {n11 ≡ Train1A, n12 ≡ (stopB , s1).Train1B, n13 ≡ Train1B ,

n14 ≡ (stopC , s1).Train1C , n15 ≡ Train1C , n16 ≡ (stopA, s1).Train1A}
S2 = {n21 ≡ Train2D , n22 ≡ (stopB , s2).Train2B , n23 ≡ Train2B ,

n24 ≡ (stopC , s2).Train2C , n25 ≡ Train2C , n26 ≡ (stopD , s2).Train2D

n27 ≡ (stopE , s2).Train2E , n28 ≡ Train2E , n29 ≡ (stopF , s2).Train2F ,

n210 ≡ Train2F , n211 ≡ (stopD , s2).Train2D}

In fact we can separate S2 into S(1)
2 and S(2)

2 as follows:

q
(1)
2 (n2i, n2j) = q2(n2i, n2j) if i, j ∈ {1, 2, 3, 4, 5, 6}
q(2)

2 (n2i, n2j) = q2(n2i, n2j) if i, j ∈ {1, 7, 8, 9, 10, 11}

and it is clear to see that the corresponding Markov processes S(1)
2 and S(2)

2 satisfy the
local balance property with respect to this separation.

Let the set of resources I be {0, signal}, where 0 denotes the notional resource held dur-
ing independent operation, and signal denotes working in cooperation with the resource
component. Note that the Markov processes S1 and S(2)

2 do not compete at all, whereas
S1 and S

(1)
2 compete for use of the signal (thus ensuring safety in the system). Then the

state spaces of the individual processes S1 and S2 can be partitioned as follows:

A10 = {n11} A1signal = {n12, n13, n14, n15, n16}
A(2,1)0 = {n21} A(2,1)signal = {n22, n23, n24, n25, n26}
A(2,2)0 = {n21, n27, n28, n29, n210, n211} A(2,2)signal = ∅

C10 = C(2,1)0 = C(2,2)0 = ∅; C1signal = {(2, 1)}; C(2,1)signal = {1}; C(2,2)signal = ∅.

It can be readily seen that the definition of rates of shared activities in PEPA components
imposes the correct transition rates in the product process. There is no direct interaction

22

between the two trains and so they have no shared activities, i.e. only one of them will
change state at a time. Moreover these actions either proceed unhindered (at the normal
rate) or are blocked (because the Signal is not available to synchronise with). Thus the
Markov process generated by the PEPA component Railway is exactly the product process

(S1 × S2) \ (A1signal × A(2,1)signal)

and Boucherie’s more general result (Theorem 4.2) applies. It follows that the equilibrium
probability of any derivative Railway ′ = (Train1

′,Train2
′) can be derived from the equilib-

rium probability of Train1
′ BC

L
Signal ′ and the equilibrium probability of Train2

′ BC
L

Signal ′′.
The equilibrium probability distribution of (Train1 ‖ Train2)BC

L
Signal can be derived dir-

ectly from the derivation graph and a renormalisation of the product of probabilities. Note
that Signal is a passive resource in both subsystems, and the Markov processes underlying
Traini BC

L
Signal and Traini are identical, i.e. Signal is redundant within the model when

these subsystems are considered in isolation.

Considering the trains in isolation it is straightforward to calculate that the equilibrium
distributions are:

π1(n1i) =

s1

3(s1 + t1)
if i ∈ {1, 3, 5}

s1

3(s1 + t1)

(
t1
s1

)
if i ∈ {2, 4, 6}

π2(n2j) =

s2

5s2 + 6t2
if j ∈ {1, 3, 5, 8, 10}

s2

5s2 + 6t2

(
t2
s2

)
if j ∈ {2, 4, 6, 7, 9, 11}

Thus the equilibrium probability that the railway is in state (Train1
′,Train2

′) is

Bπ1(n1i)× π2(n2j)

where B is the normalising constant and n1i and n2j are the states corresponding to
derivatives Train1

′ and Train2
′ respectively. �

In this example it is clear that the resource, Signal , enforces a Boucherie-style exclusion
over the Markov processes corresponding to the first train and the first loop of the second
train. However, in general we need to impose some more restrictions on the syntactic form
of the resource component, and its interaction with the rest of the model, in order to ensure
that the exclusion property will hold.

Definition 4.3 (Guarding Resource with respect to a Sequential Component)
Let R ≡ R1 ‖ · · · ‖ Rm, where the Rj are distinct simple components, be a redundant
resource in the model component S BC

L
R. Then R is a guarding resource with respect to

the sequential component S if, for each αi such that S ≡
∑

(αi, ri).Si there exists Rj ≺ R

such that αi ∈ A(Rj) or ~AS(Si) ∩ ~A(R) = ∅.

23

Since S is a sequential component it is constructed using only prefix and choice, which
means that in its initial state it either has one behaviour (prefix) or a set of alternative
behaviours (choice). If it has a single behaviour, R is a guarding resource if S is required
to cooperate with Rj, one of the subcomponents of R, to start its behaviour, or if the
complete behaviour of S is independent of R, i.e. there is no cooperation between them.
If S has a set of alternative behaviours represented by a choice of activities in the initial
state, then R is a guarding resource if each potential first activity requires the cooperation
of one of the subcomponents Rj or it initiates a sequence of activities which can return to
the derivative S without any cooperation with R.

Definition 4.4 (Returning Resource with respect to a Sequential Component)
Let R ≡ R1 ‖ · · · ‖ Rm, where the Rj are distinct simple components, be a redundant re-
source in the model component S BC

L
R. Then R is a returning resource with respect to the

sequential component S if for each derivative S ′ BC
L
R′ such that S ′ ≡ (α, r).S then either

R′ ≡ R1 ‖ · · · ‖ (α, s).Rj ‖ · · · ‖ Rm for some s and Rj ≺ R and α ∈ L, or R′ ≡ R and
there is a sequence of activities from S to S′ which are independent of R.

The condition on the returning resource is similar to that of the guarding resource but
acting at the end of alternative behaviours instead of the start. For each possible loop of
the sequential component, if it cooperates with the resource component at all it must do
so on the last activity of the loop. In order to ensure Boucherie’s exclusion mechanism we
need resource components which are both guarding and returning resources with respect
to the sequential components. We are now in the position to state the simplest class of
PEPA models that satisfy Boucherie’s condition.

Theorem 4.3 Let M be a model component, M ≡ (S1 ‖ S2 ‖ · · · ‖ SK)BC
L
R, where each

Si is a sequential component and R is a simple component. Assume that the cooperation
set L is such that R is a redundant resource within the state representation vector of M ,
and moreover, when we consider the model components Sk BC

L
R for all k, 1 ≤ k ≤ K, R

is a guarding and returning resource with respect to Sk. Then the equilibrium probability
of any derivative M ′ which has state vector representation (S′1, . . . , S ′K , R′) is given by the
product form

Π(S ′1, . . . , S
′
K , R

′) = B
K∏
k=1

πk(S ′k BCL R′k)

where B is the normalising constant, πk is the equilibrium probability distribution of Sk BC
L
R

and R′k is the derivative of R which can be inferred from S′k, since R is redundant in the
state vector representation of Sk BC

L
R.

Proof The proof relies on showing that the Markov process underlying the model M
satisfies Boucherie’s conditions, i.e. it consists of the product of a number of competing

24

Markov processes, such that only one competing process may change its state at a time
and that they observe the exclusion property with respect to the resource.

First, we eliminate the resource component R from the state vector representation of M .
This is possible because R is redundant within the model and so the reduced state vector
without it contains enough information to capture the current state of the model.

Then the mapping from the state representation of the PEPA model to the product process
is straightforward. We associate one Markov process with each sequential component
Si in the model; the state space of the Markov process is simply the derivative set of
the component. The PEPA semantics and the mutual independence of the sequential
components ensures that only one product process will change state in any transition.

It remains to show that the competition imposed by the PEPA semantics, over the resource
component R, does indeed provide the Boucherie exclusion. Since we are considering a
single simple resource component the resources in the model will consist of the set I = {0, r}
where I is the notional resource representing independent activity and r denotes using the
resource component R.

Suppose Sk ≡
∑Tk

t=1(αt, rt).Skt. R is a guarding and returning resource with respect to
Sk. This implies that the Skt form distinct behaviours within ds(Sk) and it follows that
the state space of the corresponding Markov process can be separated into Tk Markov
processes which satisfy the local balance property: S

(t)
k = {Sk} ∪ dsSk(Skt). The state

space of S(t)
k can be partitioned into sets A(k,t)0 and A(k,t)r, representing sets in which S(t)

k

is operating independently and states in which S(t)
k has control of R, respectively. Since R is

a guarding and returning resource with respect to Sk, if αt ∈ L∩A(R) then A(k,t)0 = {Sk}
and A(k,t)r = dsSk(Skt); otherwise, A(k,t)0 = S

(t)
k and A(k,t)r = ∅. Let C(k,t)r be the set of

behaviours within other sequential components Sj which are also guarded by R. Then the
state space of the product process generated by M when R has been eliminated from the
state vector representation is:

S =
K∏
k=1

ds(Sk) \

 K∏
k=1

Tk∏
t=1

∏
(j,s)∈C(k,t)r

A(k,t)r × A(j,s)r

Now, the Sk are mutually independent, and the semantics of the BC

L
combinator ensures

that the activities of R are shared with just one of the Sk at a time. Since R is a guarding
resource component with respect to each of the Sk, if R is used by Sk to start a cycle S(k,t)

the state of R will be changed and so the resource will be unavailable for all the competing
behaviours C(k,t)r. By the semantics of PEPA, the corresponding activities will simply
not be enabled until R returns again to its initial state. Moreover since R is a returning
resource with respect to Sk this will not happen until this component has itself returned

25

to its initial state again. Thus, the transition rates of the underlying Markov process are:

q(M ′,M ′′) =
K∑
k=1

Tk∑
t=1

qtk(S
′
k, S

′′
k)

K∏
`=1, 6̀=k

1(S ′` = S ′′`)
T∏̀
p=1

1
(
if S ′` ∈ A(`,p)r then (k, t) /∈ C(`,p)r

)
i.e. the locally balanced Markov processes, can either proceed as normal, satisfying their
usual balance equations, or are completely blocked, and Boucherie’s exclusion property is
imposed. Thus the equilibrium probability of any derivative M ′ which has reduced state
vector representation (S′1, . . . , S ′K) is given by the product form

Π(S ′1, . . . , S
′
K) = B

K∏
k=1

πk(S ′k BCL R′k)

where B is the normalising constant, πk is the equilibrium probability distribution of
Sk BC

L
R and R′k is the derivative of R which can be inferred from S′k. �

Before going on to more useful generalisations of the theorem we state the following trivial
corollary:

Corollary 4.1 Let M be a model component, M ≡ (S1 ‖ S2 ‖ · · · ‖ SK)BC
L
R, as in The-

orem 4.3, with the additional condition that R is a passive resource. Then the equilibrium
probability of any derivative M which has state vector representation (S′1, . . . , S

′
K , R

′) is
given by the product form

Π(S ′1, . . . , S
′
K , R

′) = B
K∏
k=1

πk(S ′k)

where B is the normalising constant, πk is the equilibrium probability distribution of Sk
considered in isolation.

The restriction that the resource within the system is comprised of a single simple resource
component is unnecessarily strict. It was imposed simply to improve the clarity of the
proof. It is straightforward to make the result more general by considering a set of mutually
independent resources over which the other components compete.

Corollary 4.2 Let M be a model component, M ≡ (S1 ‖ S2 ‖ · · · ‖ SK)BC
L
R, as in

Theorem 4.3, except that R ≡ R1 ‖ · · · ‖ Rm, and the Ri are distinct simple components,
i.e. ~A(Ri) ∩ ~A(Rj) = ∅ for all i, j, 1 ≤ i, j,≤ m. Then the equilibrium probability of any
derivative M which has state vector representation (S ′1, . . . , S

′
K , R

′
1, . . . , R

′
m) is given by

the product form

Π(S ′1, . . . , S
′
K , R

′
1, . . . , R

′
m) = B

K∏
k=1

πk(S ′k BCL (R′1k ‖ · · · ‖ R′mk))

where B is the normalising constant, πk is the steady state probability distribution of
Sk BC

L
R and R′jk is the derivative of Rj which can be inferred from S′k.

26

Proof As previously, we have to show that if we eliminate the redundant resource com-
ponent from the state vector representation and form the underlying Markov process based
on the reduced state vector then it is a product process satisfying the conditions of The-
orem 4.2. Since R is a guarding and returning resource with respect to each Sk, it follows
that each Ri is a guarding and returning resource with respect to each Sk. Moreover,
each simple resource component Ri corresponds to a notional resource, ri. Thus, the set
of notional resources is I = {0, r1, . . . , rm} where 0 denotes independent activity without
the cooperation of a resource and ri denotes activity with the cooperation of the resource
component Ri.

As before assume that Sk ≡
∑Tk

t=1(αt, rt).Skt and that the set {S1
k , . . . , S

Tk
k } denotes the

set of locally balanced Markov processes within Sk. The state space of each S(t)
k can be

partitioned according to the set {0, r1, . . . , rm} and the sets of competing processes C(k,t)

can be readily identified by considering the initial actions of the Sk . The PEPA semantics
ensures that the state space is

S =
K∏
k=1

ds(Sk) \

 K∏
k=1

∏
i∈I

Tk∏
t=1

∏
(j,s)∈C(k,t)i

A(k,t)i × A(j,s)i

and that the transition rates are

q(M ′,M ′′) =
K∑
k=1

Tk∑
t=1

qtk(S
′
k, S

′′
k)

K∏
`=1, 6̀=k

1(S ′` = S ′′`)
T∏̀
p=1

1(if S ′` ∈ A(`,p)i then (k, t) /∈ C(`,p)i)

Thus, by Theorem 4.2, we can conclude that the equilibrium distribution Π of M ′ is given
by

Π(S ′1, . . . , S
′
K , R

′
1, . . . , R

′
m) = B

K∏
k=1

πk(S ′k, R
′
1k, . . . , R

′
mk)

where B is a normalising constant. �
Another generalisation can be achieved if we consider models in which the competing
processes are not restricted to be sequential components but may themselves be model
components. In order to satisfy the Boucherie conditions these model components must
still be mutually independent but each model component may consist of the cooperation
of several sequential components. The definitions for guarding and returning resources
can be extended from sequential components to model components in a natural way. We
require that the resource component is a guarding (returning) resource with respect to
each sequential component considered in isolation, and moreover, that if one of a pair of
interacting sequential components requires the resource in order to start a behavioural loop
then the other must do so also.

Definition 4.5 (Guarding resource for a model component) Consider a model com-
ponent P which consists of n sequential components which cooperate over arbitrary sets of

27

action types: P ≡ S1 BC
L1
S2 BC

L2
· · · BC

Ln−1
Sn. Let R be a redundant resource in the model

P BC
L
R such that R is a guarding resource with respect to each Sk in the model Sk BC

L
R.

Without loss of generality assume each Sk has the form Sk ≡
∑Tk

t=1(αkt, rkt).Skt. Then
R is a guarding resource with respect to P if whenever, for any k and ` there exist t
and t′ such that ~ASk(Skt) ∩ ~AS`(S`t′) ∩ I(P :: Sk) ∩ I(P :: S`) 6= ∅ then αkt = α`t′ and
αkt ∈ A(R) ∩ I(P :: Sk) ∩ I(P :: S`).

Definition 4.6 (Returning resource for a model component) Consider a model com-
ponent P which consists of n sequential components which cooperate over arbitrary sets of
action types: P ≡ S1 BC

L1
S2 BC

L2
· · · BC

Ln−1
Sn. Let R be a redundant resource in the model

P BC
L
R such that R is a returning resource with respect to each Sk in the model Sk BC

L
R.

Without loss of generality assume each Sk has the form Sk ≡
∑Tk

t=1(αkt, rkt).Skt. Then R
is a returning resource with respect to P if whenever, for any k and ` there exist t and t′

such that ~ASk(Skt) ∩ ~AS`(S`t′) ∩ I(P :: Sk) ∩ I(P :: S`) 6= ∅ then there is a derivative of
Skt, S ′kt ≡ (βkt, rβk).Sk and a derivative of S`t′, S`t′ ≡ (β`t′, r`t′).S` such that βkt = β`t′ and
βkt ∈ ~A(R) ∩ I(P :: Sk) ∩ I(P :: S`).

We are now in the position to state the general theorem:

Theorem 4.4 Let M be a model component, M ≡ (P1 ‖ P2 ‖ · · · ‖ PK)BC
L
R, where R

is a parallel composition of distinct simple components. Assume that the cooperation set L
is such that each Ri is a redundant resource within the state representation vector of M ,
and moreover, when we consider the model components Pk BC

L
R for all k, 1 ≤ k ≤ K, R

is a guarding and returning resource with respect to Pk. Then the equilibrium probability
of any derivative M ′ which has state vector representation (P ′1, . . . , P

′
K , R

′) is given by the
product form

Π(P ′1, . . . , P
′
K , R

′) = B
K∏
k=1

πk(P ′k BCL R′k)

where B is the normalising constant, πk is the equilibrium probability distribution of Pk BC
L
R

and R′k is the derivative of R which can be inferred from P ′k, since R is redundant in the
state vector representation of Pk BC

L
R.

Proof As previously, we have to show that if we form the product process based on the
Pk then it satisfies the conditions of Theorem 4.2. Assume that each model component Pk
is comprised of sequential components Sk1, . . . , SkNk . If each R is a guarding and returning
resource with respect to each Pk, it follows that eachRi is a guarding and returning resource
with respect to each Skj , 1 ≤ j ≤ Nk. Each simple resource component, Ri, corresponds to
a notional resource, ri. Thus, the set of notional resources is I = {0, r1, . . . , rm} where 0

28

denotes independent activity without the cooperation of a resource and ri denotes activity
with the cooperation of the resource component Ri.

In the previous proofs, we associated each independent sequential component Sk with
one product process in the underlying Markov process and separated that process accord-
ing to the alternative behaviours of Sk which could be identified with its initial actions
αk1, . . . , αkTk . Now we wish to associate each of the model components Pk with one product
process in the underlying Markov process. The separation of each process into locally bal-
anced processes in not now so straightforward.

Assume Pk ≡ Sk1 BC
Lk1

Sk2 BC
Lk2
· · · BC

LkNk−1
SkNk where each Skj ≡

∑Tkj
t=1(αkjt, rkjt).Skjt. If we

consider Skj in isolation, since R is a guarding and returning resource with respect to Skj
the underlying Markov process can be separated into Tkj locally balanced processes. If we
consider Pk, since R is a guarding and returning resource with respect to Pk, any pair of
sequential components Skj and Ski only interact if they do so on the first activities of loops
Skjt and Skit′ say. It follows that we can separate the Markov process underlying Pk into
locally balanced Markov processes which correspond directly with the enabled activities of
Pk, Act(Pk) = {|αk1, . . . , αkm |}. Thus we can denote the set of locally balanced Markov
processes within Pk as {S(1)

Pk
, . . . , S

(m)
Pk
}.

The state space of each S
(t)
Pk

can be partitioned according to the set {0, r1, . . . , rm} and
the sets of competing processes C(k,t) can be readily identified by considering the initial
actions of the Skj . The PEPA semantics ensures that the state space is

S =
K∏
k=1

ds(Pk) \

 K∏
k=1

∏
i∈I

Tk∏
t=1

∏
(j,s)∈C(k,t)i

A(k,t)i × A(j,s)i

and that the transition rates are

q(M ′,M ′′) =
K∑
k=1

Tk∑
t=1

qtk(P
′
k, P

′′
k)

K∏
`=1, 6̀=k

1(P ′` = P ′′`)
T∏̀
p=1

1(if P ′` ∈ A(`,p)i then (k, t) /∈ C(`,p)i)

Thus, by Theorem 4.2, we can conclude that the equilibrium distribution Π of M ′ is given
by

Π(P ′1, . . . , P
′
K , R

′
1, . . . , R

′
m) = B

K∏
k=1

πk(P ′k, R
′
1k, . . . , R

′
mk)

where B is a normalising constant. �

29

5 Examples

5.1 Concurrent processing and database locking

We consider the database locking protocol modelled in Boucherie’s paper directly as a
product process of Markov processes. We show that the system can naturally be modelled
using PEPA, generating the same set of competing Markov product processes. Moreover,
this can be recognised without recourse to the state space since the PEPA model satisfies
the syntactic conditions identified in the previous section. The database locking protocol
was introduced in [31] by Mitra and Weinberger.

We assume that the database consists of N items and that each transaction is associated
with a list of items in the database—those items needed to process the transaction. Each
such list can be partitioned into two sets, with items in the leading part requiring exclusive
locks, and items in the trailing set requiring non-exclusive locks. We assume all transac-
tions exclusively lock at least one item. Transaction processing requests arrive from the
environment; on arrival, the database lock manager decides whether to grant or refuse the
request on the basis of the locks required. Let Wd and Rd be the lists of exclusively locked
and non-exclusively locked items respectively in the database at the time of arrival. Let
Wa and Ra be the lists of items required, exclusively and non-exclusively, by the arriving
request. The locks are granted and the processing request accepted if

(Wa ∩Wd) ∪ (Wa ∩Rd) ∪ (Ra ∩Wd) = ∅.

Otherwise the locks are denied and the request for transaction processing is blocked,
cleared, and discarded. If the locks are granted, and the transaction is accepted for pro-
cessing, the locks are not released until the entire processing of the transaction is complete.

There are K types of transactions, labelled k = 1, . . . , K. Assume that a transaction of
type k requires items jk ⊂ {1, . . . , N} and pk ⊂ {1, . . . , N} to be exclusively and non-
exclusively locked respectively. If transactions of type k arrive at Poisson rate λk and are
served at exponential rate µk, then the database lock protocol can be modelled as a PEPA
process. We associate one PEPA component with each transaction type and each item in
the database.

Transk
def= (arrivek, λk).(finishk, µk).Transk

Item i
def=

∑
k∈T (i)

(arrivek,>).(finishk,>).Itemi

where T (i) = {k : i ∈ jk}, is the set of transactions which require exclusive access to item i.

The complete system is

(Trans1 ‖ · · · ‖ TransK)BC
L

(Item1 ‖ · · · ‖ ItemN)

30

where L = {arrivek, finishk∀k}.

Each Itemi is a simple guarding and returning resource with respect to the components
Transk, k ∈ T (i).

Following Boucherie, we can see that the equilibrium distribution is

π(n̄) = B
K∏
k=1

(
λk
µk

)nk
where B is the normalising constant, and nk is 1 if Trans ′k ≡ (finishk, µk).Transk, 0 other-
wise.

5.2 The Taxi Rank System

In [19] a simple taxi rank system is considered. In this system there are a given number
of customers and a given number of taxis. If there is an available taxi in the taxi rank a
customer has two possibilities. He can take a taxi to the market; the taxi then waits for
the customer to complete his shopping and then returns the customer to the taxi rank,
becoming available for the next customer. Alternatively the customer can choose to walk
through the garden and then go back to the taxi rank. If there are no taxis available at
the rank the customer can only go for a walk.

A PEPA model of the customer is as follows:

C1
def= (to market , r1).C2 + (to garden, r2).C3

C2
def= (from market , r3).C1

C3
def= (from garden, r4).C1

while the taxi can be represented as:

T1
def= (to market ,>).T2

T2
def= (from market ,>).T1

A taxi rank system in which there are two customers and one taxi is modelled by

TS
def= (C1 ‖ C1) BC

{to market
from market}

T1

In this model it is trivial to see that the taxi is a simple guarding and returning resource
with respect to each of the customers. Considering a customer in isolation we find that:

πC(C1) =
r2r4

r2r4 + r1r4 + r2r3

πC(C2) =
r1r4

r2r4 + r1r4 + r2r3

πC(C3) =
r2r3

r2r4 + r1r4 + r2r3

31

Thus, we can deduce that the equilibrium distribution is:

Π(Ci, Cj, Tk) = BπC(Ci) × πC(Cj)

where B is the normalising constant and the πC(Ci) are as above.

The significance of this example is that it shows that there is an intersection between the
class of PEPA models which satisfies Sereno’s criteria for product form and those which
satisfy Boucherie’s.

5.3 Geographical Information System

Finally we consider an example in which the competing processes are not sequential com-
ponents but more complex subsystems. A navigational device consists of a pair of sensors
which maintain complementary data about geographical location. In order to keep the
sensors’ internal data structures in complementary states, they share data via a register.
Each sensor gains access to the register and locks it while it reads the current data value;
it then uses this information to adjust the equipment it controls while also recalculating a
value for the shared register based on its own internal data structures. It then updates the
value in the register and releases it. In addition, sensor 1 maintains an external monitor
and will periodically gather data from this monitor and use it to recalculate its internal
data structures.

Each sensor can be represented as a pair of sequential components: one responsible for
resetting the equipment during each cycle, and one responsible for carrying out the data
recalculation. In sensor 1, the recalculation component is assumed to be also responsible
for interaction with the monitor. Thus the PEPA model of sensor 1 is:

S110
def= (read data, r1).S111 + (gather data, r5).S113

S111
def= (recalculate , r2).S112

S112
def= (update data, r3).S110

S113
def= (recalculate , r2).S110

S120
def= (read data, r1).S121

S121
def= (reset apparatus, r4).S122

S122
def= (update data, r3).S120

Monitor def= (gather data,>).Monitor

Sensor ′10
def= (S110 BC

L
S120) BC

{gather data}
Monitor

32

where L = {read data, update data}. Inspection of the model makes it clear that the
component Monitor is redundant within the model—removing it makes no difference to
the underlying state space. Thus we can reduce the defining equation for Sensor10 to be:

Sensor 10
def= S110 BC

L
S120

The second sensor is defined similarly:

S210
def= (read data, r1).S211

S211
def= (recalculate, r6).S212

S212
def= (update data, r3).S210

S220
def= (read data, r1).S221

S221
def= (reset apparatus, r7).S222

S222
def= (update data, r3).S220

Sensor 20
def= S210 BC

L
S220

The data register is represented as a simple resource:

R
def= (read data,>).(update data,>).R

The complete system is represented as:

M
def= (Sensor 10 ‖ Sensor 20)BC

L
R

If we consider Sensor 10 BC
L
R ≡ (S110 BC

L
S120)BC

L
R it is straightforward to see that R

is a guarding and returning resource with respect to Sensor 10. Similarly for Sensor 20.
Moreover, since Sensor 10 and Sensor 20 cooperate on the action read data and Sensor 10

acts independently within the cycle starting with the action gather data, we can see that R
is also a guarding and returning resource with respect to the model component (Sensor 10 ‖
Sensor 20).

Considering the sensors in isolation we can deduce that their equilibrium probability dis-
tributions are as follows:

π1(S110, S120) = r2r3r4(r2 + r4)/G1

π1(S111, S121) = r1r2r3r4/G1

π1(S112, S121) = r1r
2
2r3/G1

π1(S111, S122) = r1r3r
2
4/G1

π1(S112, S122) = r1r2r4(r2 + r4)/G1

π1(S113, S120) = r3r4r5(r2 + r4)/G1

where G1 = (r2r4 + r2
4)(r1r2 + r1r3 + r2r3 + r3r5) + r1r

2
2r3

33

π2(S210, S220) = r3r6r7(r6 + r7)/G2

π2(S211, S221) = r1r3r6r7/G2

π2(S212, S221) = r1r3r
2
6/G22

π2(S211, S222) = r1r3r
2
7/G2

π2(S212, S222) = r1r6r7(r6 + r7)/G2

where G2 = (r6r7 + r2
7)(r1r3 + r1r6 + r3r6) + r1r3r

2
6

For the complete system, from Theorem 4.4 we can deduce that the equilibrium probability
of any state (S11i, S12j, S21k, S22l, R′) is:

π(S11i, S12j, S21k, S22l, R
′) = Bπ1(S11i, S12j)× π2(S21k, S22l)

Here we have solved a six state model and a five state model instead of a 14 state model.
However in general the ability to decompose the solution of a model in this way may mean
the difference between the model being tractable and intractable.

6 Conclusions and Further Work

We have demonstrated a class of PEPA models which satisfy Boucherie’s conditions and
so can be decomposed into submodels which are then solved separately without loss of
accuracy. Unlike the Petri net models presented in [1], the PEPA models which exhibit
product form can be detected automatically. Unlike the Markov processes presented in [1]
all elements of the system, including the resources, are explicitly and formally represented
in the model.

Furthermore, as we have seen in Section 5.2 the SPA context provides a framework for
comparing models which satisfy different product form criteria. The taxi model presented
in that section can clearly be seen to satisfy Sereno’s criteria for product form as well as
those presented in this paper. In contrast the queueing network with finite buffer capacity
which is also presented in [19] fails to satisfy our criteria. In future work we hope to use the
SPA context to investigate fully the relationship between the different classes of product
form model which have been identified.

Several issues remain to explored with respect to the class of models identified in this
report. Perhaps the most important one is to establish an efficient method for calculating
the normalising constant. We also intend to extend the class of models considered by
allowing multiple instances of resource components. The advantage of using SPA for this
work is the formality of the approach and the subsequent automation of the technique
within a modelling tool, such as the PEPA Workbench [7].

34

In order to tackle models of the size and complexity needed for the performance ana-
lysis of the next generation of computer systems, efficient techniques for the construction,
manipulation and solution of large Markov processes will be required. PEPA provides a
formal, structured, yet expressive, high-level language for specifying such processes. We
have demonstrated a class of PEPA models which satisfy Boucherie’s conditions and so can
be decomposed into submodels which are then solved separately without loss of accuracy.
Unlike the Petri net models presented in [1], the PEPA models which exhibit product form
can be detected automatically. Unlike the Markov processes presented in [1] all elements of
the system, including the resources, are explicitly and formally represented in the model.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council via
the COMPA project (G/L10215). It originated from, and benefitted greatly from, dis-
cussions with Matteo Sereno of University of Torino, made possible by funding from The
British Council, CNR (ROM/889/94/9) and the QMIPS BRA project. I would also like
to thank Stephen Gilmore and Graham Clark for helpful comments and discussions during
the preparation of this report.

References

[1] R.J. Boucherie. A Characterisation of Independence for Competing Markov Chains
with Applications to Stochastic Petri nets. In Petri Nets and Performance Models.
IEEE Computer Society Press, 1993.

[2] W.H. Sanders and J.F. Meyer. Reduced base model construction methods for
stochastic activity networks. IEEE Journal on Selected Areas in Communications,
9(1):25–36, January 1991.

[3] P. Buchholz. Hierarchical Markovian Models - Symmetries and Reduction. In R.J.
Pooley and J. Hillston, editors, Computer Performance Evaluation: Modelling Tech-
niques and Tools, volume 10 of EDITS, pages 234–246. Edinburgh University Press,
August 1993.

[4] W.J. Stewart, K. Atif, and B. Plateau. The Numerical Solution of Stochastic Auto-
mata Network. Technical Report 6, LMC-IMAG, November 1993.

[5] S. Donatelli. Superposed Generalised Stochastic Petri Nets: Definition and Efficient
Solution. In M. Silva, editor, Proc. of 15th Int. Conference on Application and Theory
of Petri Nets, 1994.

35

[6] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis, De-
partment of Computer Science, University of Edinburgh, April 1994. CST-107-94.

[7] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Appro ach to Performance Modelling. In G. Haring and G. Kotsis,
editors, Proceedings of the Seventh International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation, volume 794 of LNCS, pages 353–368.
Springer-Verlag, 1994.

[8] N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and Distributed System
Design: The Integration of Functional Specification and Performance Analysis using
Stochastic Process Algebras. In Performance’93, 1993.

[9] H. Hermanns and M.L. Rettelbach. Syntax, Semantics, Equivalences and Axioms for
MTIPP. In U. Herzog and M. Rettelbach, editors, Proc. of 2nd Process Algebra and
Performance Modelling Workshop, 1994.

[10] M. Bernardo, L. Donatiello, and R. Gorrieri. Modelling and Analyzing Concurrent
Systems with MPA. In U. Herzog and M. Rettelbach, editors, Proc. of 2nd Process
Algebra and Performance Modelling Workshop, 1994.

[11] S. Gilmore, J. Hillston, R. Holton, and M. Rettelbach. Specifications in Stochastic
Process Algebra for a Robot Control Problem. International Journal of Production
Research, December 1995.

[12] J. Hillston. Compositional Markovian Modelling Using a Process Algebra. In W.J.
Stewart, editor, Numerical Solution of Markov Chains. Kluwer, 1995.

[13] D.R.W. Holton. A PEPA Specification of and Industrial Production Cell. The Com-
puter Journal, 38(6), 1995. Special Issue: Proc. of 3rd Process Algebra and Perform-
ance Modelling Workshop.

[14] M. Ribaudo. On the Aggregation Techniques in Stochastic Petri Nets and Stochastic
Process Algebras. The Computer Journal, 38(6), 1995. Special Issue: Proc. of 3rd
Process Algebra and Performance Modelling Workshop.

[15] P. Buchholz. Compositional Analysis of a Markovian Process Algebra. In U. Herzog
and M. Rettelbach, editors, Proc. of 2nd Process Algebra and Performance Modelling
Workshop, 1994.

[16] M.L. Rettelbach and M. Siegle. Compositional Minimal Semantics for the Stochastic
Process Algebra TIPP. In U. Herzog and M. Rettelbach, editors, Proc. of 2nd Process
Algebra and Performance Modelling Workshop, 1994.

[17] J. Hillston and V. Mertsiotakis. A Simple Time Scale Decomposition Technique for
Stochastic Process Algebras. The Computer Journal, 38(6), 1995. Special Issue: Proc.
of 3rd Process Algebra and Performance Modelling Workshop.

36

[18] V. Mertsiotakis. Time Scale Decomposition of Stochastic Process Algebra Models. In
Proc. of the 5th Process Algebra and Performance Modelling Workshop. University of
Twente, 1997.

[19] M. Sereno. Towards a Product Form Solution of Stochastic Process Algebras. The
Computer Journal, 38(6), 1995. Special Issue: Proc. of 3rd Process Algebra and
Performance Modelling Workshop.

[20] P. Harrison and J. Hillston. Exploiting Quasi-reversible Structures in Markovian Pro-
cess Algebra Models. The Computer Journal, 38(6), 1995. Special Issue: Proc. of 3rd
Process Algebra and Performance Modelling Workshop.

[21] M. Bhabuta, P.G. Harrison, and K.Kanani. Detecting Reversibility in Markovian
Process Algebras. In Proc. of the 11th UK Performance Engineering Workshop for
Computer and Telecommunication Systems. Springer, 1995.

[22] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[23] J. Hillston. The Nature of Synchronisation. In U. Herzog and M. Rettelbach, editors,
Proc. of 2nd Process Algebra and Performance Modelling Workshop, 1994.

[24] M.K. Molloy. Performance analysis using stochastic petri nets. IEEE Transactions
on Computers, 31(9):913–917, September 1982.

[25] S. Gilmore, J. Hillston, and L. Recalde. Elementary Structural Analysis for PEPA.
Technical Report ECS-LFCS-97-377, Laboratory of Foundations of Computer Science,
University of Edinburgh, December 1997.

[26] J.R. Jackson. Jobshop-like Queueing Systems. Management Science, 10:131–142,
1963.

[27] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open, Closed and Mixed
Networks of Queues with Different Classes of Customers. Journal of the ACM,
22(2):248–260, April 1975.

[28] W. Henderson and P.G. Taylor. Embedded Processes in Stochastic Petri Nets. IEEE
Transactions on Software Engineering, 17(2), 1991.

[29] A.A. Lazar and T.G. Robertazzi. Markovian Petri Net Protocols with Product Form
Solution. Performance Evaluation, 12(1):67–77, January 1991.

[30] S. Donatelli and M. Sereno. On the Product Form Solution for Stochastic Petri Nets.
In Application and Theory of Petri Nets, pages 154–172. Springer Verlag, 1992.

[31] B. Mitra and P.J. Weinberger. Probabilistic models of database locking: solutions,
computational algorithms, and asymptotics. Journal of the ACM, 31:855–878, 1984.

37

A Structured Operational Semantics for PEPA

Before we state the inference rules which define PEPA we introduce the notion of apparent
rate, which is needed to define the rate of a shared activity. The apparent rate at which
an action type occurs within a component is of importance when comparing components
or when defining how they interact. We assume that the apparent rate of an action type
represents the totally capacity of a component to carry out activities of that type when it
is in its current state.

Definition A.1 (Apparent Rate) The apparent rate of action of type α in a component
P , denoted rα(P), is the sum of the rates of all activities of type α in Act (P).

1. rα((β, r).P) =
{
r if β = α
0 if β 6= α

2. rα(P +Q) = rα(P) + rα(Q)

3. rα(P/L) =
{
rα(P) if α /∈ L
0 if α ∈ L

4. rα(P BC
L
Q) =

{
min(rα(P), rα(Q)) if α ∈ L
rα(P) + rα(Q) if α /∈ L

Note that an apparent rate may be unspecified: if P is defined as,

P
def= (α,w1>).P1 + (α,w2>).P2

then the apparent rate of α in component P is rα(P) = (w1 + w2)>.

The apparent rate will be undefined for component expressions containing unguarded vari-
ables, i.e. variables which are not prefixed by an activity. Consequently we do not allow a
component to be defined by such an expression.

Note that in cases of cooperation, the apparent rate of the shared activity will be the
minimum of the apparent rates of the components involved, where min(>, r) = r for all
r ∈ IR+. Thus we make an assumption that, in general, shared activities proceed at the
rate of the slower of the two participating components. This is based on a notion that in
general both components contribute some work to the shared activity. For a discussion
of alternative assumptions see [23]. In the case of a passive action it is assumed that the
corresponding component does not contribute at all to the work required to complete the
shared activity.

The semantic rules, in the structured operational style of Plotkin, are presented here
without comment; the interested reader is referred to [6] for more details. The rules are
read as follows: if the transition(s) above the inference line can be inferred, then we can
infer the transition below the line.

38

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Cooperation

E
(α,r)
−−−→ E′

E BC
L
F

(α,r)
−−−→ E′ BC

L
F

(α /∈ L)
F

(α,r)
−−−→ F ′

E BC
L
F

(α,r)
−−−→ E BC

L
F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E BC
L
F

(α,R)
−−−→ E′ BC

L
F ′

(α ∈ L), R =
r1

rα(E)
r2

rα(F)
min(rα(E), rα(F))

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A def= E)

Figure 5: Operational Semantics of PEPA

39

