
ON THE UNIFICATION OF SUBSTITUTIONS IN

TYPE-INFERENCE

BRUCE J. MCADAM ∗

Technical Report ECS–LFCS–98–384
Department of Computer Science

University of Edinburgh

March 26, 1998

Abstract

Traditional type-inference and type-checking algorithms work well with cor-
rectly typed programs, but their results when given programs containing type-errors
can be unpredictable. This leads to a problem with implementations of type-checkers:
they are often inaccurate when announcing the apparent locations of mistakes in
programs, tending to notice problems towards the end of the the program even if
the source occurs much earlier. This is a particular problem with programming lan-
guages with Hindley-Milner type-systems such as used in Standard ML.

A common technique in type-inference and type-checking isunification. Unify-
ing types creates a substitution which is applied to a type-environment. The substi-
tutions which have been applied to the type-environment can influence the detection
of type-errors in different subexpressions of the program.

This paper defines the operation ofunifying substitutionsand shows how type-
inference algorithms can be modified to use this operation to delay the application of
substitutions to the type-environment. This removes the bias to detecting errors to-
wards the end of the program. Two different type-inference algorithms for Hindley-
Milner type-inference are modified in this way and the potential for improved error
reporting is shown.

∗e-mail: bjm@dcs.ed.ac.uk, WWW: http://www.dcs.ed.ac.uk/home/bjm/

1 Introduction

Many modern programming languages are equipped with atype-systemwhich is a set of rules
for assigning types to parts of programs. The type-system is implemented in compilers and used
for several purposes. Programs which do not have types can be rejected by compilers; the user
can be informed of the types of their programs (assuring them of one aspect of correctness);
and the compiler uses type information to optimise code. The focus of this paper is the first of
these uses of type-systems: the rejection of programs without types (which, therefore, have type
errors or inconsistencies). A difficulty many programmers find in programming is that when
their program is rejected they are not given enough information to easily locate and repair the
mistakes they have made.

Many type-inference algorithms (for different type-systems) make use of aunificationoper-
ation. This takes types as parameters (usually a pair of types) and returns a substitution mapping
type-variables to types which can make two or more types equal. Substitutions are applied to
free type-variables in the type-environment before type-checking further subexpressions.

This paper deals primarily with the family ofHindley-Milnertype-systems used in functional
programming languages such as Standard ML. Though these provide polymorphic types, much
of their type-inference is concerned with the use of unification to find the types of monomorphic
parts of the program (such as function parameters and particular instances of polymorphic-
functions). The process of type-checking programs in implicitly typed languages such as Stand-
ard ML is a process oftype-inference: reconstructing the type constraints the programmer would
have been required to give in an explicitly typed language (this is the task of unification and sub-
stitution). In Section 2 we shall see that informing the user of the reason for type-checking failure
(and of possible locations where the programmer may have made a mistake) is an inherently dif-
ficult task in these systems. With Hindley-Milner type-inference, users often complain that the
‘location’ of a problem as given by the compiler (for example when it reports “cannot apply
f to x on line 3”) is only tenuously related to the location at which they actually made a mis-
take (e.g. another use off several pages ago). Section 3 examines the type-inference algorithm
and shows why the apparent location of errors can be wrong — it has a subtleleft-to-right bias
towards detecting problems late in the code and this bias is caused by the way unification and
substitutions are used.

The solution to this problem of the conventional inference algorithm is a new type-inference
algorithm designed from a pragmatic perspective. The key idea applied here is that the algorithm
should besymmetric, treating subexpressions identically so that there is no bias causing errors
to tend to be reported in one part of a program rather than another. The new algorithm rests
upon the novel concept of the unification of substitutions to allow the symmetric treatment of
subexpressions. Section 4 introduces the operation ofunifying substitutionsand discusses how it
will remove the left-to-right bias from type-inference.

Section 5 presents a variation of the classic type-inference algorithm for Hindley-Milner
type-systems and shows that the bias has been eliminated.

Programmers frequently view their programs in a slightly different way from the semantics
of languages (and from compilers). In functional programming languages programmers often
write curried applications which are a succession of applications in a row. When a programmer

1

mentally parses his program he will see the curried expression as a whole and any mistakes are
likely to be related to this structure whereas the compiler sees a hierarchy of applications and
error messages are based on this view of the code. It is desirable to make the type-checker view
the program in a similar manner to the programmer, so that error messages relate to the program-
mer’s view of the program. Section 6 shows how the new algorithm given in Section 5 can be
extended so that it treats entire curried expressions symmetrically. As functional programming
languages also use constructions such as tuples, and because the type-inference rules for these
are similar to those for applications, the algorithm can also be extended to treat components of
tuples symmetrically.

There are many other type inference algorithms which use unification and have a left-to-right
bias. Some of these are discussed in Section 7. Further extensions to this idea are discussed in
Section 8 and finally a summary of this paper’s conclusions can be found in Section 9.

2 Motivation

As mentioned in the introduction, type-systems play an important role in software development
both from the perspective of the programmer (who has simple static properties of programs
machine-checked) and the compiler (which can optimise on the basis of types). One important
aspect of type-checking is that it allows the compiler to reject badly typed programs — these are
not guaranteed to have a meaningful interpretation in the language semantics, so there may be
run-time errors.

The problem with this is that the burden of correcting the program lies in the programmer’s
hands and often there is little help the compiler can give. Compilers typically tell the programmer
at which point in the program the error was found, but generally this is not the part of the program
in which the programmer made the mistake and it is unclear why type-checking failed at this
point.

2.1 An Inherent Problem with Hindley-Milner

Two key features of Hindley-Milner type-systems are of particular interest to this paper.

Implicit typing means that the programmer need not say what type an expression or identifier
should have, the type-system (and inference algorithm) can infer most types with only a
small number of typing assertions needed.

Polymorphic typing means that types can be flexible, for example a function might take a value
of any type,α, and return a value of the same type. In this case the function can take type
α→ α for any typeα. It is not necessary for the programmer to specify that a function is
polymorphic, type-inference will discover this fact.

From the point of view of finding the location of mistakes in a program, these features are
weaknesses. The only way to detect a mistake is to find an inconsistency between two parts
of the program, whereas in explicit type-systems the inconsistency is typically between the use

2

of a name and the declaration of its type. So in Hindley-Milner based languages rather than
being able to establish that either the use of an identifier or its declaration is incorrect (and more
often than not it is the use), there are three possibilities: the first expression may be incorrect,
the second may be incorrect, or the problem may lie in the context they are in (e.g. surrounding
expressions, or the way they are connected). Because of polymorphism some program fragments
which contain errors in them will have still have a type — but not the type the programmer
expected. This can lead to a cascading effect as spurious errors are announced later.

2.2 Examples

Let us first consider a simpleλ-calculus example. The function should take a real number and
return the sum of the original number and its square root.

λa.add a (sqrt a)

The error message from the type-checker is

Cannot applysqrt : real→ real to a : int.

The programmer, seeing this message, is confused asa should be areal so the problem is
not thatsqrt is being applied toa, it is that something else causesa to appear to be anint.
The problem will become apparent if we look at the type-environment the expression is checked
inside:

add : int→ int→ int
sqrt : real→ real

The programmer’s mistake has been to use integer addition where he actually wants to add two
real numbers.

Clearly in this case the error message is inappropriate as there is equal evidence thata should
be areal as there is that it should be anint. The type-checker has incorrectly given priority to
the information derived from the leftmost subexpression — it has a left-to-right bias. It would
have been more informative in the example if the type-checker has pointed out that there was
an inconsistencybetweenthe two subexpressions, instead ofwrongly claiming that either was
internally inconsistent.

The second example is a short fragment of a Standard ML program which is intended to
create the list[1, 2, 3, 4, 5, 6, 7] by flattening a list of lists onto another list

List.foldl (op @) [[1, 2], [3, 4]] [5, 6, 7]

The error message is

Cannot apply: List.foldl (op @) [[1, 2], [3, 4]]
to: [5, 6, 7]

Required argument type: int list list list
Actual argument type: int list

3

A programmer could be perplexed by this message if they think thatList.foldl expects a
list and then a start value, i.e. that the type-environment contains

List.foldl : ((’a * ’b) -> ’b) -> ’a list -> ’b

(Both ’a and’b are intended to beint list). List.foldl in fact expects its parameters
in the other order:

List.foldl : (’a * ’b) -> ’b) -> ’b -> ’a list

This is an easy mistake to make as different libraries provide different variations of this fold
function.

The problem is caused by instantiating the type of the lists taken by@asint list list
as soon as the list of lists has been seen. The compiler then complains about the final application
instead of an inconsistency in the use of@. A better error message would tell the programmer
that the parameters are incompatible with each other when they are all put together.

A classic example used to illustrate the monomorphism of function parameters is

λI.(I3, I true)

The programmer has written a function which expects the identity function as a parameter, this
is not possible in Hindley-Milner type-systems as parameters cannot be used polymorphically.
When a compiler is faced with this expression it type-checks from left to right, first establishing
thatI must have a type of the formint→ β and then finding thatI cannot, therefore, be applied
to true : bool. The user will be given an error message of the form

Cannot applyI : int→ α to true : bool.

This message implies that there is an inconsistency insideI true, whereas there is actually an
inconsistency in the use ofI between the two subexpressions. The algorithm in this paper will
find this inconsistency in the uses ofI . Type-checking tuples is similar to type-checking curried
expressions and is discussed later.

The examples here have been selected to avoid unnecessary complexity and illustrate the key
idea that curried expressions should be treated symmetrically. In real programs this is much
more important as expressions can be extremely large and it is not so easy to detect and repair
the mistake given the error message.

The next section explains where in the type-inference algorithm these problems arise.

3 Type-Systems and the Inference Algorithm

An introductory discussion of the type-systems and the inference algorithm can be found in [Car87].
Proofs of the algorithmW ’s correctness can be found in [Dam85].

4

3.1 Types, Type-Schemes and Type-Environments

In this paper we will consider types which are built from type-variables (α, β . . .) (hence types
are polymorphic); type constants (int, real and others); and the function type constructor→.

The form of polymorphism in Hindley-Milner type-systems arises from the use oftype-
schemes. These are types with some (or all) of their type-variables universally quantified, for
example∀α.α→ β. A type, τ ′, is ageneric instanceof a type scheme,∀α1 · · ·αn.τ , if τ ′ can
be obtained fromτ by (consistently) substituting types for the type-variablesα1 · · ·αn. In this
paper, we will not be particularly concerned with type-schemes.

Type-inference starts from a type-environment,Γ, which is a map from identifiers to type-
schemes.Γ can be augmented with new terms, for example after a declaration, and can have
terms removed from it (Γx is Γ with any term forx removed).

Type-schemes are obtained from types byclosinga type under a type-environment.Γ(τ) (the
closure ofτ underΓ) is the type scheme∀α1 · · ·αn.τ whereα1 · · ·αn are the type-variables
occuring inτ but which do not occur free inΓ. In particular, closing a type under a type-
environment with no free type-variables results in every type-variable in the type being univer-
sally quantified.

Figure 1 Components of type-systems.

Component Values

Type-Variables α, β, . . .
Types τ ::= α | τ0 → τ1 | int | real | . . .

Type-Schemes σ = ∀α0 · · ·αn.τ
Type-Environments Γ = {α0 7→ σ0, · · · , αn 7→ σn}

3.2 Type-Systems

Hindley-Milner type-systems are formulated as non-deterministic transition systems. In this pa-
per, we will look at a simpleλ-with-let-calculus (as in Figure 2) and will be particularly interested
in the rule for deriving types of applications. The type-system is in Figure 3.

Figure 2 Syntax of theλ-with-let-calculus.

e ::= x

| e0e1

| λx.e

| let x = e0 in e1

5

Figure 3 Type derivation rules.

Γ(x) > τ

Γ ` x : τ

Γ ` e0 : τ ′ → τ Γ ` e1 : τ ′

Γ ` e0e1 : τ
Γx ∪ {x : τ0} ` e : τ1

Γ ` λx.e : τ0 → τ1

Γ ` e0 : τ0 Γx ∪ {x : Γ(τ0)} ` e1 : τ1

Γ ` let x = e0 in e1 : τ1

The type-inference rule fore0e1 states that if (given the type-environmentΓ) subexpression
e0 has typeτ ′ → τ (it is a function), and then similarly thate1 has typeτ ′ under the same
type-environment (it is a suitable argument for the function), then the application ofe0 to e1 has
typeτ . The non-determinism in this case arises from the function argument typeτ ′. If we are
attempting to showΓ ` e0e1 : τ , there is no way of knowing whatτ ′ to use in the sub-derivation
for each ofe0 ande1.

3.3 Substitutions

As well as types, type-schemes and type-environments, the type-inference algorithm makes ex-
tensive use ofsubstitutions. A substitution is a finite mapping from type-variables to types.
Substitutions are denoted by a set of mappings,{α1 7→ τ1, · · ·αn 7→ τn}. A substitution repres-
ents a means of refining types (and of refining our knowledge of the forms of types associated
with expressions). If we know that a certain type (containing type-variables) is associated with
an expression, and that a substitution is also associated with it then we can apply the substitution
to the type to refine it. Both Damas’s algorithm and the new algorithm in this paper work by
refining types using substitutions.

All substitutions must meet a well-formedness criteria.

Definition 1 (Well-formedness) A substitutionS is well-formed iffdom(S) ∩ FV (S) = {}.

This restriction prevents us from getting ‘infinite’ types (i.e. types which contain themselves).
Substitutions can be combined.S1S0 is the substitution which has the same effect as applying

first S0 and thenS1. S1S0 exists iff it is well formed, so as well as both conjuncts being well
formed it is necessary thatFV (S1) ∩ dom(S0) = {}.

We define an ordering on types:τ > τ ′ iff ∃S : Sτ = τ ′. A type-environment,Γ, has an
instance,Γ′, iff ∃S : SΓ = Γ′.

6

3.4 The Inference Algorithm

The inference algorithm,W , is a deterministic simulation of the derivation rules. For a partic-
ular type-environment and expression, it attempts to find a type for the expression and a sub-
stitution of types for type-variables such that the expression has the type under the substituted
type-environment. The algorithm traverses the structure of the expression building up substitu-
tions and types. This paper is concerned with the case of the algorithm which handles function
applications:

W (Γ, e0e1) = let

(S0, τ0) = W (Γ, e0)
(S1, τ1) = W (S0Γ, e1)
τ ′0 = S1τ0

V = U(τ ′0, τ1 → β) for new β

in

(V S1S0, V β)

The most significant part of this case is the use ofunification. The algorithmU returns the
most general substitution which when applied to each of its parameters will produce the same
type, for exampleU(int → α, β → real) = {α 7→ real, β 7→ int}. A survey of applications
and techniques for unification can be found in [Kni89]. Type inference fails if no unifier exists.
Inference could also fail in either of the recursive calls. When inference fails, implementations
print error messages indicating a problem with the subexpression of current interest.

The result of type-inference shown to the programmer is a polymorphic type-scheme (provid-
ing inference succeeds). IfW returns(S, τ) then the type-scheme isSΓ(τ). SinceΓ typically
does not have any free type-variables, all type-variables in the result type will normally be uni-
versally bound.

The action of the algorithm satisfies two theorems.

Theorem 1 (Soundness ofW) If W (Γ, e) succeeds with(S, τ) then there is a derivation of
SΓ ` e : τ .

Theorem 2 (Completeness ofW) Given (Γ, e) let Γ′ be an instance ofΓ and η be a type-
scheme such thatΓ′ ` e : η.
Then

1. W (Γ, e) succeeds

2. IfW (Γ, e) = (P, π) then for someR: Γ′ = RPΓ, andη is a generic instance ofRPΓ(π).

Proofs of these theorems can be found in [Dam85]. We will revisit these theorems after the
algorithm is modified later in the paper.

7

4 New Algorithm

We have already seen some examples demonstrating the left-to-right bias ofW and have seen
how the algorithm works, so we now know why the bias arises (in the case of application),
the problem is caused as the substitution from a left-hand subexpression is applied to the type-
environment before traversing the right-hand expression.

The objective of the new algorithm is to allow us to infer types and substitutions for each
subexpression independently. The new algorithmUS deals with combining substitutions, the next
section shows how to modifyW to make use of it and Section 6 shows how to further extend the
algorithm to produce better error messages (and suggestions of how to correct programs). The
algorithm can be applied to other type-inference algorithms and other type-systems as well (as
shown in Section 7).

4.1 The Idea — Unifying Substitutions

To treat the subexpressionse0 ande1 independently in a modified version ofW , the recursive
calls must beW (Γ, e0) andW (Γ, e1). This will yield two result pairs:(S0, τ0) and(S1, τ1). It is
necessary then to

• check that the two substitutions are consistent

• apply terms fromS0 to τ1 and fromS1 to τ0 so that the resulting types have no free type-
variable in the domain of either substitution, and

• return a well-formed substitution containing entries from bothS0 andS1.

The second of these operations cannot be done simply by computingS0τ1 andS1τ0 because
this could leave unwanted free type variables, likewise the third of these is not simplyS1S0 or
S0S1. The essence of these three operations can be summarised in these two requirements:

• check the substitutions are consistent, and if they are

• create a substitution which contains the effect of both.

We mustunify the two substitutions.

4.2 Examples

Before we look at the algorithm for unifying substitutions, it will be worthwhile seeing some
examples.

The simplest case is where the two substitutions are completely independent.

S0 = {α 7→ int}
S1 = {β 7→ γ}

US(S0, S1) = {α 7→ int, β 7→ γ}

8

If the domains ofS0 andS1 contain a common element, we must unify the relevant types:

S0 = {α 7→ int→ β}
S1 = {α 7→ γ → real}

US(S0, S1) = {β 7→ real, γ 7→ int}

Note that equivalent results cannot be obtained simply by composing the substitutions (S0S1 or
S1S0). That example would have occured inside the lambda termλ(f, x).(f 1) + ((f x) + 0.1).
S0 is the substitution produced fromf 1 andS1 comes from(f x) + 0.1 (α is the type-variable
related tof).

Substitution unification can fail, for example with

S0 = {β 7→ α→ real}
S1 = {β 7→ real→ real, α 7→ int}

There is an inconsistency between the instantiations ofα in this case.
Unification could also fail with anoccurserror.

S0 = {α 7→ int→ β}
S1 = {β 7→ int→ α}

Clearly the two substitutions here imply thatα andβ should be infinite types.

4.3 Formal Definition

A substitution,S ′, unifies substitutions,S0 andS1, if S ′S0 = S ′S1. In particular the most general
unifier of a pair of substitutions isS′ such that

(S ′S0 = S ′S1) ∧ (∀S ′′ : (S ′′S0 = S ′′S1)→ (∃R : S ′′ = RS ′))

i.e.S ′ unifiesS0 andS1, andS ′ can be augmented to be equivalent to any other unifying substi-
tution.

The unified substitution,S′S0, has the effect of bothS0 andS1 since(S ′S0α < S0α) and
(S ′S0α < S1α), for all α.

4.4 Algorithm US

AlgorithmUS computes the most general unifier of a pair of substitutions.
To see how the algorithm works, note that the domain of the result consists of three parts as

shown in Figure 4. The algorithm you are about to see deals with each of the three parts of the
domain separately.

9

Figure 4 The domain ofUS(S0, S1) consists of three parts. The disjoint parts of the domains of
S0 andS1, and the free variables in their ranges where their domains overlap.

S1

dom
FV

S0

The free variables in the range of the unifier are free in eitherS0 orS1 and are in the domains
of neither.

Here is the algorithm, commented in italics.

US(S0, S1) = let

First split the domains into three parts:

D0 = dom(S0) − dom(S1) T0 = {α 7→ S0α : α ∈ D0}
D1 = dom(S1) − dom(S0) T1 = {α 7→ S1α : α ∈ D1}
D∩ = dom(S0) ∩ dom(S1)
Remember:FV (T0) ∩ dom(S0) = {}, similarly forT1.

Start withT0 and add terms forD1 one at a time,

always producing well formed substitutions:

S ′0 = T0 {α1 7→ τ1 · · ·αn 7→ τn} = T0

S ′i+1 = let

Remove elements of dom(S′i) fromτi+1,

and removeαi+1 fromS ′i:

τ ′i+1 = S ′iτi+1

If αi+1 ∈ FV (τ ′i+1) terminate (occurs error)
in {αi+1 7→ τ ′i+1}S ′i

S ′n is the unifier forT0 andT1.

Now deal with items inD∩ = {β1 · · · βm}:
U0 = S ′n
Ui+1 = let

τ0 = UiS0βi+1 τ1 = UiS1βi+1

If βi+1 ∈ FV (τ0) ∪ FV (τ1) terminate (occurs error)

V = U(τ0, τi)
in V Ui

in Um

10

4.5 Verification of US
We must show thatUS does indeed compute the most general unifier of a pair of substitutions,
the propositions in this section are similar to those you will see in Section 5.1 (in both cases they
are a pair of soundness and completeness results, showing that the algorithm never gives a wrong
answer and that if an answer exists then the algorithm will give an answer).

Theorem 3 For any pair of substitutions,S0 andS1, if US(S0, S1) succeeds then it returns a
unifying substitution.

Theorem 4 If S ′′ unifiesS0 andS1 then

1. US(S0, S1) succeeds returningS ′, and

2. there is someR such thatS ′′ = RS ′.

Proofs of both these propositions can be found in Appendix A

4.6 Unifying Sets of Substitutions

US can be extended to take a set of substitutions and to return the most general unifier of the
entire set. We will writeUS{S0, S1 · · ·Sn} for the application of this extended version ofUS.

A naı̈ve implementation based on the pair-US function is shown below.

US{S0 · · · Sn} = let
Generate sequence of substitutionsS′0 · · · S ′1
S ′0 = S0

S ′i+1 = US(S ′i, Si+1)
in S ′n

This algorithm will not generally be suitable as if it fails, we are unable to say accurately which
pair of substitutions conflicted (it has a left-to-right bias which allows us only to say that some
substitution,Si, conflicts with some other substitution before it whereas we would wish to be
able to tell exactly which pair conflicted). A real implementation should be an extended version
of the pair-US function. The disjoint areas of the domains can be treated as before, while the
overlapping areas will need to be handled by a type-unification algorithm which takes a set of
types rather than a pair of types.

4.7 Implementation Note

The proofs regarding algorithmUS show that the most general unifier of a pair of substitutions
is computable. This algorithm is not, however, particularly efficient and is not suitable for the
representation of substitutions used in many compilers.

11

Rather than having explicit substitutions passed as parameters and returned from functions,
it is common to use references to implement substitutions. A type-variable is represented by a
reference, and to apply a substitution the reference is updated to point to a type. This is intended
to be more efficient than representing types as data-types and substitutions explicitly as (say)
lists. The substitution is applied to every type as soon as it is created.

There has been some discussion of whether it is worthwhile implementing substitutions using
references. The Glasgow Haskell compiler [PW93] found ‘spectacular speedups’ were attained
by using monadic arrays in the compiler, whereas Tofte [Tof89] found that for a small project
written in Standard ML the type-checker was more efficient without imperative data structures.

This representation of types and substitutions, however, represents agreedystrategy which
is incompatible with the principle being applied here. The intention of the algorithm to be in-
troduced in the next situation is to avoid applying substitutions until this is essential (in order to
check that two subexpressions are consistent with each other and to find the result type of their
application). The intention of using references on the other hand is to have substitutions applied
to every type as soon as the substitution is created.

The great advantage in representing substitutions explicitly is that the type-checker need not
apply them immediately and can choose which substitutions to apply to any type. This gives
the potential for many variations on conventional algorithms, for example a type-checker could
backtrack in order to find possible locations for mistakes. A second advantage is that a substi-
tution contains important information which could help the programmer debug their program,
explicit substitutions allow easier manipulation and analysis of this information.

Though it is not possible to represent all types and substitutions using references with the
algorithm in this paper, the techniques found in other type-checkers could be applied withinUS
to speed it up.

5 The New Version ofW

Now that we know what it means to unify two substitutions and have seen that this is possible, so
let us now look at the new algorithm,W ′. This differs fromW only in the case for applications

W ′(Γ, e0e1) = let

(S0, τ0) = W ′(Γ, e0)
(S1, τ1) = W ′(Γ, e1)
S ′ = US(S0, S1)
τ ′0 = S ′τ0 τ ′1 = S ′τ1

V = U(τ ′0, τ
′
1 → β) for new β

in

(V S ′S0, V β)

As stated earlier, the algorithm treatse0 ande1 symmetrically and featuresUS in an analogous
manner to (and in addition to)U .

12

Now that we have exploredW ′ informally and given the algorithm, we will proceed to ex-
amine it in a formal manner in the next section .

5.1 Verification ofW ′

AlgorithmW ′ should produce the same results asW . To verify this it is necessary to prove the
soundness and completeness theorems forW ′. These theorems are the same as those Damas
proved forW .

The algorithm is sound if every answer it gives is a type for the parameter expression under
the type-environment obtained from applying the substitution to the original type-environment.

Theorem 5 (Soundness ofW ′) If W ′(Γ, e) succeeds with(S, τ) then there is a derivation of
SΓ ` e : τ .

This theorem is proved in Appendix B. Now that we know the algorithm never gives unreas-
onable answers, we must show that if a type exists for an expression, the algorithm returns a type
which is at least as general as the type known to exist. This is the completeness result.

Theorem 6 (Completeness ofW ′) GivenΓ ande, let Γ′ be an instance ofΓ andη be a type-
scheme such thatΓ′ ` e : η.
Then

1. W ′(Γ, e) succeeds

2. IfW ′(Γ, e) = (P, π) then for someR: Γ′ = RPΓ, andη is a generic instance ofRPΓ(π).

The proof of this theorem can be found in Appendix B.
BecauseW ′ satisfies the same soundness and completeness theorems asW , and we know that

the solutions of these theorems are unique (from the principal type-scheme theorem of [DM82])
we know thatW ′ always produces the same results asW .

Corollary 1 (W ′ andW are equivalent) For any pair, (Γ, e), W (Γ, e) succeeds and returns
(S, τ) if and only ifW ′(Γ, e) succeeds and returns(S, τ).

6 Curried Expressions and Tuples

The intention ofW ′ is to type-check subexpressions independently so that the compiler can make
a better estimate of the source of inconsistencies. It does this at a coarse granularity, considering
only the two components of an application. This section extendsW ′ so that it examines the
program in more detail by looking at more than two subexpressions at a time.

13

6.1 Curried Expressions

Computations in functional programs are composed of curried applications with the forme0e1 · · · en,
i.e. a sequence of values to be applied in succession. Standard ML and the typedλ-calculus treat
these expressions as a hierarchy of applications(· · · (((e0e1)e2)e3) · · ·)en as shown in the first
part of Figure 5. This section extends the principle ofW ′ (looking at subexpressions independ-
ently) to curried applications with many terms. The second part of the figure shows how the user
views curried expressions, the modifiedW ′ will use this pattern for its recursive calls.

Figure 5 The language semantics (and compiler) view curried expressions differently from the
programmer. The algorithmW ′′ takes the second view of expressions.

Semantic view Pragmatic view

en

e3

e2
e1e0

e0 e1 e2 e3 en

6.2 Algorithm for Curried Expressions

Given a curried expressione0e1 · · · en, we can independently infer a substitution and type for
each subexpression. Then then substitutions can be unified, and failure at this point indicates
an inconsistency between two (or more) subexpressions. The substitutions for the applications
and the final result for the whole expression can then be evaluated. Failure at this point would
indicate that some argument is not suitable.

The first part of the algorithm is a routine to collect all the subexpression results into a list

collect(Γ, e) = append(collect(Γ, e0),W ′′(Γ, e1)) if e = e0e1

= W ′′(Γ, e) otherwise

The new algorithmW ′′ first generates a unified substitution (using the version forUS taking
sets of substitutions mentioned earlier), then checks that the application is valid and returns the
result type,

14

W ′′(Γ, e0e1) = let

(S0, τ0) · · · (Sn, τn) = collect(Γ, e0e1)
S ′ = US{S0 · · · Sn}
V = U(S ′τ0, S

′(τ1 → τ2 · · · τn → β)) newβ

in

(V S ′, V β)

6.3 Tuples and Records

Tuples are used in programming languages not only as a way of representing data structures such
as vectors but also as temporary constructions used to pass parameters to functions. For example
the Standard ML basis library provides the functionList.take which expects a pair of an
integer and a list, the pair is a transient value used only to pass two values to a function. So,
in programming languages with record and tuple types, the situation for programmers becomes
complicated and it is often necessary to remember the arrangement of parameters for many func-
tions (it is not sufficient simply to know what information a function requires, but also to know
the order of parameters and whether any of them should be together as a tuple).

The new type-inference algorithm can be extended to handle any arrangement of subexpres-
sions, such as tuples. This is a trivial matter involving changing the second part ofW ′′ so that it
collates the types into a tuple or record instead of returning the final return type.

Given the types and substitutions for subexpressions, it should be possible for an automatic
program repair system to attempt to rearrange the subexpressions to try to find a similar program
which can be typed. For exampleList.take expects a tuple of typeint * ’a list , it is
easy to see howList.take [1, 2, 3, 4] 2 can be converted by looking at the types of
subexpressions and the obvious ways to rearrange them.

6.4 Example error messages

Recall the examples from earlier. Previously the expression

λa.add a(sqrt a)

Would have complained

Cannot applysqrt : real→ real to a : int

(Recall thatadd is integer addition butsqrt is real number square-root).
A modified version ofW would respond

add a requiresa to have typeint, butsqrt a requiresa to have typereal so they
are inconsistent.

15

The expression:
λI.(I 3, I true)

Would have produced a message of the form

Cannot applyI to true sinceI has typeint→ α.

In a modified version ofW ′ (one which can deal with tuples), the message would be produced
when the substitutions fromI3 andI true fail to unify. The message would be like

I 3 is inconsistent withI true sinceI is applied to anint in the former and abool
in the latter.

7 US and Other Algorithms

US can be applied to other algorithms which make use of subsitution.

7.1 Unification usingUS
We can write a symetric unification algorithms which makes use ofUS.

U(α, β) = {α 7→ β}
U(α, τ) = {α 7→ τ}
U(τ, α) = {α 7→ τ}

U(τ0 → τ1, τ
′
0 → τ ′1) = let

S0 = U(τ0, τ
′
0) S1 = U(τ1, τ

′
1)

in

(US(S0, S1))S0

One advantage of implementingU this way is that any error information generated byU and
US is likely to be in the same format. This does, of course, also eliminate the left-to-right bias
which can occur in unification. Note also that there is no need for an occurs check inU as this is
handled by the checks inUS.

7.2 Another Type-Inference Algorithm

An alternative type-inference algorithm for Hindley-Milner type-systems isM , [LY98]. This
is a top-down algorithm which attempts to check that an expression has a type suitable for its
context. The algorithm takes type-environment,Γ, expressions,e, and target type,τ , and returns

16

substitution,S, such thatSΓ ` e : Sτ . The case of the algorithm for application expressions is
shown below

M(Γ, e0e1, τ) = let
S0 = M(Γ, e0, β → τ)
S1 = M(S0Γ, e1, S0β)

in S1S0

It is clear that this algorithm suffers from the same left-to-right bias asW but it is a simple matter
to changeM to remove the bias:

M ′(Γ, e0e1, τ) = let

S0 = M ′(Γ, e0, β → τ)
S1 = M ′(Γ, e1, β)

in (US(S1, S0))S0

If the inferenceM ′(Γ, e0, β → τ) fails, this implies thate0 is not a function, or does not have
the correct return type. The inferenceM ′(Γ, e1, β) will fail if and only if Γ ande1 are inconsistent
(there is no typing forΓ ` e1). If the unification fails then eithere1 is not a suitable argument for
e0, or there is some other inconsistency between them.

8 Future Work

The implementation ofUS is deficient in two respects. It is not clear how efficient the im-
plementation is, and whether it will be suitable for type-checking large programs. It is therefore
necessary to experiment with it and to investigate means for improving its efficiency (possibly by
implementing substitution using references). The implementation also does not gather extensive
error reporting information, so it is necessary to look into ways to gather information about parts
of programs which conflict with each other (perhaps in the style of Duggan and Bent [DB96]).

Having considered type-checking applications using two independent recursive calls, the next
logical step is to consider type-checkinglet. . . in. . . end declarations using two independent re-
cursive calls. After that, it should be possible to follow the example of curried expressions and
type-check nested declarations as if they are a special form of syntactic expression (as declara-
tions are in Standard ML).

Although this paper has concentrated on mistakes within applications (with the implicit as-
sumption that there have not been errors in earlier declarations) many of the errors programmers
make come from declarations. For example consider

let
val sum = List.foldl (op +)

in
(sum [1, 2, 3]) * (sum [4, 5, 6])

end

The programmer’s intention has been to create a local list addition function usingList.foldl ,

17

but has forgotten to put the initial value (the definition should readList.foldl (op +)
0). W would complain about the two applications ofsum even though these applications are
consistent with each other. From the programmer’s perspective it would be more constructive
to know about the conflict between the two (internally consistent) subexpressionsval sum
= List.foldl (op +) and(sum [1, 2, 3]) * (sum [4, 5, 6]) . This case is
more complex because of Hindley-Milnerlet polymorphism, usually we find constraints in the
form of substitutions which force type-variables to become more specific types, but to type-check
the use of a declared name without knowing the type of the declaration it is necessary to produce
constraints which say ‘the type must be more general thenx’ (wherex is the type, in this case
int list → int).

9 Conclusions

This paper has presented modifications of Damas and Milner’s type-checking algorithmW . The
new algorithms differ fromW in that they check subexpressions independently so that informa-
tion derived from one does not cause spurious errors in another. The algorithmW ′ relies on the
novel idea of unifying substitutions. The two algorithms each applied the same principle (unify-
ing substitutions) at different levels of granularity — simple applications or curried applications.
The principle can easily be extended to other constructions in functional programming languages
such as tuples.

The algorithm is intended to form the basis for type-checkers which provide better error
messages, messages which indicate likely areas where the programmer may have made a mistake
and which indicate how the mistake may be corrected. In order for the algorithm to be of practical
benefit in informing users of the location of errors in code, it will be necessary to look further
into deriving useful information whenUS fails. Duggan and Bent [DB96] have considered a
modification of conventional unification which tracks the origin of type-variables. It may be
possible to apply their ideas toUS . A second extension of these ideas is to look into ways
to automatically try to fit subexpressions together so that a type can be derived, for example
rearranging the parameters to a curried function so that the application is typeable.

Acknowledgements

Thanks to Ian Stark and Stephen Gilmore for commenting on early versions of this report. This
work is supported by an EPSRC research studentship.

18

References

[Car87] Luca Cardelli. Basic polymorphic type-checking.Science of Computer Programming,
8(2):147–172, 1987.

[Dam85] Luis Manuel Martins Damas.Type Assignment in Programming Languages. PhD
thesis, Department of Computer Science, The University of Edinburgh, April 1985.
CST–33–85.

[DB96] Dominic Duggan and Frederick Bent. Explaining type inference.Science of Computer
Programming, (27):37–83, 1996.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
Ninth Annual Symposium on Principles of Programming Languages, pages 207–212.
Association of Computing Machinery, 1982.

[Kni89] Kevin Knight. Unification: A multidisciplinary survey.ACM Computing Surveys,
21(1):93–124, 1989.

[LY98] Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type infer-
ence algorithm.ACM Transactions on Programming Languages and Systems, 1998.
Accepted for publication.

[PW93] S. Peyton Jones and P. Wadler. Imperative functional programming. InACM Sym-
posium on Principles of Programming Languages, number 20, pages 71–84. ACM,
ACM Press, January 1993.

[Tof89] Mads Tofte. Four lectures on Standard ML. Technical Report ECS–LFCS–89–73,
LFCS, March 1989.

19

A Proofs for US
Theorem 3 For any pair of substitutions,S0 andS1, if US(S0, S1) succeeds then it returns a
unifying substitution.

Proof

First show thatS ′n unifiesS0 andS1 over the domainD0 ∪D1.

Proposition For allS ′i, ∀α ∈ D0 ∪ {α1 · · ·αi} : S ′i is well formed (theαj terms are from
D1), andS ′iS0α = S ′iS1α.

Proof by induction oni

Base caseS ′0 = T0

Only concerned with type-variables in domain ofS0 and not in domain ofS1, so
S ′0S0α = S0α andS ′0S1α = S0α.

Induction step S ′i+1 = {αi+1 7→ S ′iτi+1}
αi+1 6∈ FV (S ′iτi+1) (as otherwise the algorithm fails with an occurs error)
So the result is well formed.
For allα in dom(S0) ∪ {α1 · · ·αi}: S ′i+1S0α = S ′iS0α = S ′iS1α (by induction
hypothesis)= S ′i+1S1α
Forαi+1: S ′i+1S1α = S ′i+1τi+1 = S ′iτi+1 andS ′i+1S0αi+1 = S ′iτi+1

Now show thatUm unifies over the domaindom(S0) ∪ dom(S1) ∪ FV (S0) ∪ FV (S1).

Proposition For all Ui, Ui is well formed, and∀α ∈ D0 ∪ D1 ∪ FV (S0) ∪ FV (S1) ∪
{β1 · · ·βi} : UiS0α = UiS1α

Proof induction oni

Base caseU0

Leaves all butD0 ∪D1 unchanged, unifies onD0 ∪D1.

Induction step Ui+1 = V Ui
Need only considerβi+1 since by induction hypothesis everything else is unified
by Ui.
SinceV unifiesS0βi+1 andS0βi+1, Ui+1 unifies over the appropriate domain.

SoUm unifiesS0 andS1 over the domaindom(S0)∪ dom(S1)∪FV (S0)∪FV (S1) and leaves
all other type variables unchanged. ThusUm unifiesS0 andS1.

�

Theorem 4 If S ′′ unifiesS0 andS1 then

1. US(S0, S1) succeeds returningS ′, and

2. there is someR such thatS ′′ = RS ′.

20

Proof

The proof follows a similar pattern to the previous result.
First show a property for the substitutionsS′0 · · ·S ′n — that they do exist (there are no
occurs errors) and how they relate toS′′.

Proposition EachS ′i exists (there are no occurs errors) and for eachS′i there is a substitu-
tionXi such that∀α ∈ D0 ∪ {α1 · · ·αi} : XiS ′iS0α = S ′′S0α

Proof by induction oni

Base CaseS ′0 = {α 7→ S0α : α ∈ D0}
Know that∀α : S ′′S0α ≥ S0α
And ∀α : S ′0S0α = S0α
SoX0 exists.

Induction Step S ′i+1 = {αi+1 7→ S ′iτi+1}S ′i
First show there is no occurs error by showingαi+1 6∈ FV (S ′iτi+1).
SinceS ′′S1 andXi exist, the occurs error cannot happen.
And thatS ′iτi+1 > S ′′S0α
Know τi+1 > S ′′S0α and terms ofS ′i only effect the limited domain (which is
⊆ dom(S ′′)). So, by I.H. this holds.
So, by I.H. result holds for appropriate domain andXi+1 exists.

Also, we can see thatdom(S ′n) = D0 ∪D1.
Now show a similar result for the sequenceU1 · · ·Um

Proposition EachUi exists (the unification succeeds and there are no occurs errors); and
for eachUi, there is aYi such that∀α ∈ D0∪D1∪{FV (S0βx)∪FV (S1βx)∪{βx} :
0 ≤ x ≤ i}.YiUiS0α = S ′′S0α

Proof Induction oni

Base CaseU0 = S ′n
This comes directly from the previous result.

Induction Step Ui+1 = V U(UiS0βi+1, UiS1βi+1)
Must show thatU succeeds. SinceS ′′S0βi+1 = S ′′S1βi+1, there must be a type
which is the unification of the two typesUiS0βi+1 andUiS1βi+1, soU succeeds.
There is no occurs error (for similar reason to those in the previous proof)
SinceU is the most general unifier,Yi+1 exists.

SoUS succeeds and,YmUmS0α = S ′′S0α for all α in the domain above. Since all other
type-variables are invariant underYmUmS0, it is trivial to provide a substitution,R′, such
thatR′YmS0 = S ′′S0. SoR exists and isR′Ym.

�

21

B Proofs for W ′

Theorem 5 (Soundness ofW ′) If W ′(Γ, e) succeeds with(S, τ) then there is a derivation of
SΓ ` e : τ .

Proof Damas [Dam85] gives a proof of this theorem forW by induction on the structure ofe.
AsW ′ differs fromW only in the case of application, it is sufficient to present this case only.

Case e = e0e1

By the induction hypothesis, we knowW (Γ, e0) = (S0, τ0) andS0A ` e0 : τ0; and
W (Γ, e1) = (S1, τ1) andS1Γ ` e1 : τ1

And sinceW (Γ, e) succeeds, thatS ′ = US(S0, S1), V = U(S ′τ0, S ′τ1 → β)
From the definition ofUS , let S = S ′S0 = S ′S1, and from that ofU we knowV S ′τ1 →
β = V S ′τ0.
And the final resultW (Γ, e) = (V S, V β).
Must show that there is a derivation ofV S ′Γ ` e0e1 : V β
The derivation will end

V SΓ ` e0 : V S ′τ1 → V β V SΓ ` e1 : V S ′τ1

V SΓ ` e0e1 : V β

We already know (from I.H. above) that derivations ofS0Γ ` e0 : τ0 andS1Γ ` e1 : τ1

exist, so by proposition 2 of [DM82] derivations ofS′S0Γ ` e0 : S ′τ0 andS ′S1Γ ` e1 :
S ′τ1 also exist.
So derivations ofV SΓ ` e0 : V S ′τ0 (the type here isV Sτ1 → V β) andV SΓ ` e1 : V S ′τ1

also exist.
So the derivation ofV SΓ ` e0e1 : V β exists.

The other cases are a simple analogue of ones which have been shown by Damas, so the theorem
holds in general. �

Theorem 6 (Completeness ofW ′) GivenΓ ande, let Γ′ be an instance ofΓ andη be a type-
scheme such thatΓ′ ` e : η.
Then

1. W ′(Γ, e) succeeds

2. IfW ′(Γ, e) = (P, π) then for someR: Γ′ = RPΓ, andη is a generic instance ofRPΓ(π).
Proof Damas provides a proof for this theorem forW on the structure of the derivation of
Γ′ ` e : η. AsW ′ differs fromW only in the case thate = e0e1, it is sufficient to present only
the inductive step for this case.

Case e = e0e1

The derivation ends
Γ′ ` e0 : τ ′ → τ Γ′ ` e1 : τ ′

Γ′ ` e0e1 : τ

22

for someτ ′.
By the induction hypothesis we know thatW ′(Γ, e0) succeeds, call the result(S0, π0)
By condition 2 of the induction hypothesis there is a substitutionR0 such thatΓ′ = R0S0Γ
andτ ′ → τ is a generic instance ofR0S0Γ(π0).
Letα1 · · ·αn be the generic type-variables inπ0 (these occur inπ0 but are not free inS0Γ).
R0 leaves allαi unchanged since it is minimal (which meansdom(R0) ⊆ FV (S0Γ)).
Sinceτ ′ → τ is a generic instance ofR0(∀α1 · · ·αn.π0) (the scheme here is the clos-
ureS0Γ(π0)), andR0 leaves allα1 · · ·αn unchanged: there are typesτ1 · · · τn such that
τ ′ → τ = (R0 + {αi 7→ τi})π0.
Likewise, fore1: R1, β1 · · · βm andτ ′1 · · · τ ′m exist, andτ ′ = (R1 + {βj 7→ τ ′j})π1.
First, show thatWS(S0, S1) succeeds. To do this exhibit a substitution which is a unifica-
tion of S0 andS1.
Note thatR0S0Γ = Γ′ = R1S1Γ, so∀α ∈ FV (Γ) : (R0S0)α = (R1S1)α.
And note thatdom(S0) ⊆ dom(Γ) ∪ new0 (wherenew0 is the set of new type variables
produced byW ′(Γ, e0).). Similarlydom(S1) ⊆ dom(Γ) ∪ new1.
Let S = {R0S0α/α : α ∈ FV (Γ)}+ {R0S0α/α : α ∈ new0}+ {R1S1α/α : α ∈ new1}.
S is a unification ofS0 andS1. Since a unified substitution exists,US(S0, S1) will termin-
ate and returns some unifying substitutionS′, and there is someS ′′ such thatS = S ′′S ′S0.
Now it is necessary to showU(S′π0, S ′π1 → β) (β is new) succeeds. To do this, exhibit a
unifying substitution.
Let U0 = {αi 7→ τi, βj 7→ τ ′j , β 7→ τ}+ S ′′.
First show thatU0 is a well formed substitution and then that it is a unifying substitution.
The type variablesα1 · · ·αn, β1 · · ·βn andβ are all distinct.β does not occur indom(S ′′).
Must also show none ofα1 · · ·αn, β1 · · · βn are indom(S ′′). dom(S ′′) ⊆ FV (Γ)∪new0∪
new1, so none of theαi, βj occur in this domain. SoU0 is a well formed substitution.
We knowτ ′ → τ = (R0 + {αi 7→ τi})π0 soτ ′ → τ = U0S ′π0. Also τ ′ = (R1 + {βj 7→
τ ′j})π1 soτ ′ → τ = U0(S ′π1 → β). SoU0 is unifying substitution forS′π0 andS ′π1 → β.
Since a unifying substitution exists,U(S′π0, S

′π1 → β) succeeds and returnsV , and there
is some substitutionV ′ such thatU0 = V ′V .
It remains to show that the resultW (Γ, e) = (V S, V β) satisfies condition 2.
Must show that there is some substitutionR such thatΓ′ = RV S′S0Γ andτ is a generic
instance ofRV S ′S0Γ(τ). It is clear that such anR can be constructed, so this condition is
satisfied.

Since the induction casee = e0e1 holds, and the other cases are a simple analogue of ones which
have been shown by Damas, the theorem holds in general. �

23

