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Abstract: Jobs from a single Poisson input stream receive K independent stages of
service, one at each stage in the pipeline. At stage i jobs are routed through one of
the Ni available nodes, modelled as M/M/1 queues. These nodes are subject to ran-
dom failure and repairs which leave their corresponding queues intact, but may affect
the routeing of jobs arriving at that stage during the subsequent repair period. Two
possible approximate solutions for the marginal queue size distributions are obtained
using Marie’s method and spectral expansion. Approximations are compared with
solutions obtained by simulation techniques. Two routeing strategies are considered,
fixed and selective, and the relative accuracy of the approximate solutions and pre-
dicted optimal routeing vectors are discussed. This method is obviously applicable
to other, more general, network models and it is therefore interesting to observe
the accuracy of the approximations and predictions of an optimal routeing vector.
Models such as this have traditionally been studied through simulation. However,
an exceedingly long runtime is needed to obtain steady state results, especially when
failures are rare and repairs are slow. The method presented here gives a very rapid
response and as such is clearly of great practical benefit, especially when optimising
the routing of jobs.
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1 Introduction

The analysis of the performance of queueing systems which are subject to breakdowns has
a long and interesting history. However very little work has been done involving more
than one queue, notable exceptions being Mitrani [5], Mikou [3] and Idrissi-Kacemi et al
[4]. Mitrani and Wright [8] analysed a system of nodes in parallel which suffered failures
that caused all jobs to be lost, incoming jobs were then routed away from failed nodes,
this resulted in an interesting trade off in performance between response time and job loss.
Thomas and Mitrani [10] started with this basic model, but changed the nature of the
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failure so that queues were preserved during repair periods. Furthermore it was assumed
that jobs could continue to join a queue even when the corresponding node was broken and
that no jobs were lost. This gave rise to a number of possible routeing strategies which
were contrasted and compared.

The structure of our model is such that jobs arrive at the start of the pipeline in a
single Poisson stream and progress along the pipeline such that jobs departing from one
stage constitute the input stream at the next stage. On arrival at stage i, jobs are directed
to one of Ni alternative nodes, each of which has an associated independent unbounded
queue. The service, repair and failure processes are independent of each other and, in
general, possess differing parameters. When a node breaks down the queue is unaffected
and may even continue to accept new jobs, although it may be desirable to redirect new
jobs elsewhere, depending on the routeing strategy in operation. The choice of where to
send a job on arrival at a stage is strictly Bernoulli, based purely on the operational states
of the nodes at this stage and on the routeing strategy in operation, but independent of
any past history and of the number of jobs present in each queue. No jobs are lost. The
model and its parameters are specified in Section 2.

In order to determine the marginal queue size distribution for a given node at a given
stage, it is necessary to consider the operational state of all the nodes in this and any
preceding stages in the pipeline. Clearly this gives rise to a very complicated model for
any non-trivial pipeline and so it is necessary to consider simplifications to the model in
order to make it a more manageable size. Two such approximations are given in Section 4:
one which treats each stage in isolation from its predecessors, and another which also takes
into account the states of those nodes at the immediately preceding stage. Determining
the exact solution of the relevant performance measures is achieved by simulation, thus
providing the means to compare the accuracy of the two approximations (Section 6).

The solution method presented here is an example of Marie’s method [2] combined with
the matrix solution technique known as spectral expansion [6, 7]. However our method is
more than simply a combination of these earlier results. Usually Marie’s method is used
to simplify a model to give a product form result. In this case the result of applying the
approximation does not generally lead to product form (except in the trivial case where
there is no rerouteing of jobs). Instead the approximation gives rise to expressions for the
approximated marginal queue size distributions. These marginal probabilities are not, in
general, independent and therefore do not give rise to expressions for the joint probability
distribution. However, it is easily seen that average number of jobs in the system is the sum
of the average number of jobs in each queue, hence many performance measures of interest
can be derived. It is clear that this method is being applied in a situation where previously
few, if any, interesting performance measures have been derived and so is obviously a
significant contribution to the literature.

The motivation for studying this system comes from the field of manufacturing. The
pipeline of parallel service centres relates to a production line. At each stage of the pipeline
therefore a different process is undertaken. Each stage of production has to be completed
before the next part of the manufacture can proceed. These processes are performed in
a strict order and the result of the completion of all the processes is a finished manufac-
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tured product. In this interpretation the different nodes at a stage will represent different
workshops offering the same process. Workshops suffer periodic mechanical disruption
(breakdowns) and are unavailable for varying lengths of time. It is assumed that jobs al-
ready sent to a workshop will not be directed elsewhere if a failure occurs, but new arrivals
may be rerouted. This naturally raises the question of how to set the routeing probabilities.
Therefore an additional purpose of this study, as well as determining the accuracy of the
approximations, is to determine how the optimal routeing probabilities differ between the
approximations and the simulation for given parameter sets.

2 The Model

Jobs arrive into the system in a Poisson stream with rate λ. There are K stages in series and
in stage i there are Ni nodes in parallel, each with an associated unbounded queue, to which
incoming jobs may be directed. Server j at stage i goes through alternating independent
operative and inoperative periods, distributed exponentially with means 1/ξi,j and 1/ηi,j
respectively. While it is operative, the jobs in its queue receive service of an exponentially
distributed duration with mean 1/µi,j , and leave the stage upon completion to proceed to
the next (if any) stage of service. When a node becomes inoperative (breaks down), the
corresponding queue, including the job in service (if any), remains in place. Services that
are interrupted in this way are eventually resumed from the point of interruption. The
system model is illustrated in Figure 1.
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Figure 1: A single source to a pipeline of K stages, split between the nodes in each stage
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The arrival rate at stage i is given in Figure 1 as λi, but since no jobs are lost the overall
arrival rate at all stages will be the same as the external Poisson arrival rate λ. However,
since the arrivals at stage i depend on the departures from stage i−1 then the arrival stream
will, in general, cease to be Poisson. The system configuration at any moment is specified by
the subset, σ, of nodes that are currently operative (that subset may be empty, or it may be
the set of all nodes): σ ⊂ ΩN , where ΩN = {(1, 1), (1, 2), . . . , (1, N1), (2, 1), . . . , (K,NK)},
where the pair {i, j} represents node j at stage i. There are of course 2N possible system
configurations, where N =

∑K
i=1 Ni. In general it is more convenient to consider the subset

σi whose elements are those nodes at stage i which are operative. The set of all nodes at
stage i is denoted by ΩNi. Clearly σi ⊂ ΩNi ⊂ ΩN and σi ⊂ σ. The steady-state marginal
probability, pσi , of configuration σi at stage i is given by

pσi =
∏
j∈σi

ηi,j
ξi,j + ηi,j

∏
j∈σi

ξi,j
ξi,j + ηi,j

, σi ⊂ ΩNi , (1)

And the steady-state marginal probability, pσ, of configuration σ is given by

pσ =
∏
i,j∈σ

ηi,j
ξi,j + ηi,j

∏
i,j∈σ

ξi,j
ξi,j + ηi,j

, σ ⊂ ΩN , (2)

where σi is the complement of σi with respect to ΩNi, σ is the complement of σ with respect
to ΩN and an empty product is by definition equal to 1. These expressions follow from the
fact that nodes break down and are repaired independently of each other.

If, at the time of arrival at stage i, a new job finds the stage in configuration σi, then
it is directed to node j with probability qi,j(σi). These decisions are independent of each
other, of past history, of the sizes of the various queues and of the state of any other stage
in the pipeline. Thus, a routeing policy at stage i is defined by specifying 2Ni vectors,

qi(σi) = [qi,1(σi), qi,2(σi), . . . , qi,Ni(σi)] , σi ⊂ ΩNi , (3)

such that for every σi,

Ni∑
j=1

qi,j(σi) = 1 .

The system state at time t is specified by the pair [I(t),J(t)], where I(t) indicates the
current configuration (the configurations can be numbered, so that I(t) is an integer in
the range 0, 1, . . . , 2N − 1), and J(t) is an integer vector whose k ’th element, Jk(t), is the
number of jobs in queue k (k = 1, 2, . . . , N). The integer k is used here instead of the pair
i, j for simplicity, the relationship between k and i, j is a simple 1 to 1 mapping such that

j +
i−1∑
x=1

Nx = k
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Under the assumptions that have been made, X = {[I(t),J(t)] , t ≥ 0} is an irreducible
Markov process. The condition for ergodicity of X is that, for every queue i, j, the overall
arrival rate is lower than the overall service capacity:∑

∀σi
λipσiqi,j(σi) < µi,j

ηi,j
ξi,j + ηi,j

, i = 1, 2 . . . , K, j = 1, 2, . . . , Ni . (4)

When the routeing probabilities at each stage depend on the system configuration, the
process X is not separable (i.e., it does not have a product-form solution). Consequently,
the problem of determining its equilibrium distribution is intractable in general. On the
other hand, the quantities of principal interest are expressed in terms of averages only;
they are the steady-state mean queue sizes, Lk, and the overall average response time, W ,
given by

W =
1
λ

K∑
i=1

Ni∑
j=1

Li,j . (5)

To determine those performance measures, it is not necessary to know the joint dis-
tribution of all queue sizes; the marginal distributions of the N queues in isolation are
sufficient. Unfortunately, the isolated queue processes, {Jk(t) , t ≥ 0} (k = 1, 2, . . . , N),
are not Markov. As mentioned earlier the arrival stream at stage i (i ≥ 2) is not Poisson
since it depends on the activity of all the previous stages, this makes an exact solution of
the marginal queue size distributions almost as intractable a problem as solving the joint
distribution of all queue sizes. However, it is possible to obtain good approximate solutions
for the marginal queue size distributions by assuming the arrival stream at stage i to be
Markov-Modulated Poisson. Some discussion as to how best to form the approximated
arrival streams is presented later.

Consider the stochastic processes Yi,j,

Yi,j = {[I∗(t), Ji,j(t)] , t ≥ 0} , i = 1, 2, . . . , K , j = 1, 2, . . . , Ni

which model the joint behaviour of the configuration and the size of an individual queue
i, j, where I∗(t) indicates the current approximated system configuration. In general each
possible approximated system configuration, I∗(t), will represent a set of one or more of
the exact system configurations, σ. The number of approximated system configurations
considered, from now on referred to as Imax, will, in general, determine the accuracy of
the solution and the amount of computation required. The value of Imax will therefore
be limited at the upper bound by the amount of computational power available and the
desired rapidity of the solution and at the lower bound by the desired accuracy of the
solution.

The state space of Yi,j is infinite in one dimension only, which simplifies the solution
considerably and makes it tractable for reasonably large values of Imax. The important
observation here is that, with the assumption of a Markov-Modulated arrival process,
Yi,j is an irreducible Markov process, for every i, j. This is because the arrivals into,
and departures from queue i, j during a small interval (t , t + ∆t) depend only on the
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approximated system configuration and the size of queue i, j at time t, and not on the
sizes of the other queues. As mentioned earlier, without the approximation of the arrival
stream to a Markov-Modulated arrival process, this statement would not be true, since a
job only arrives at stage i + 1 after successfully completing service at stage i, therefore
making the queue size at any stage dependent on all previous stages of service.

The next task, therefore, is to find the equilibrium distribution of Yi,j :

pi,j(x, y) = lim
t→∞

P [I∗(t) = x , Ji,j(t) = y] , x = 0, 1, . . . , Imax − 1 , y = 0, 1, . . . (6)

Given the probabilities pi,j(x, y), the average size of queue i, j is obtained from

Li,j =
∞∑
y=1

y
Imax−1∑
x=0

pi,j(x, y) (7)

3 Marginal queue size distributions

The process Yi,j is of the block tri-diagonal , or Quasi-Birth-and-Death type. Its possible
transitions are:

(a) from state (I∗, J) to state (I ′, J), where I ′ is an approximated configuration with
either one more, or one fewer operative node in the relevant stage(s);

(b) from state (I∗, J) to state (I∗, J + 1), if the average routeing probability to queue i, j
in approximated configuration I∗, qi,j(I∗), is non-zero;

(c) from state (I∗, J) to state (I∗, J − 1), if J > 0 and node i, j is operative in approxi-
mated configuration I∗.

Thus, more simply, (a) represents failures and repairs, (b) represents arrivals and (c)
represents services. The balance equations for Yi,j are best written in vector and matrix
form. Define the (row) vector of equilibrium probabilities of all states with J jobs in queue
i, j :

vi,j(J) = [pi,j(0, J), pi,j(1, J), . . . , pi,j(Imax − 1, J)] , J = 0, 1, . . . . (8)

It is assumed that approximated system configurations will be chosen such that node
i, j will be either operative or inoperative in any approximated configuration, but not both.
Let A = (aI∗,I′) (I∗, I ′ = 0, 1, . . . , Imax − 1) be the matrix of instantaneous transition rates
corresponding to transitions (a). If in approximated configuration I∗ the subset of operative
nodes can be σ, and in I ′ it can be σ+{`}, for some node `, then aI∗,I′ =

∑
∀` η` ; similarly,

if in I ′ the approximated configuration can be σ−{`}, for some node `, then aI∗,I′ =
∑
∀` ξ` .

It is also useful to introduce the diagonal matrix, DA, whose I∗ ’th diagonal element is the
I∗ ’th row sum of A (I∗ = 0, 1, . . . , Imax).

Let Bi,j be the diagonal matrix whose I∗ ’th diagonal element is equal to λi,j(I∗) ; these
elements are the instantaneous transition rates corresponding to transitions (b), where
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λi,j(I∗) is the average arrival rate at queue j in stage i when the approximated configuration
is I∗. Also, let Ci,j be the diagonal matrix whose I∗ ’th diagonal element is equal to µi,j
if node i, j is operative in approximated configuration I∗, and 0 otherwise; these are the
instantaneous transition rates corresponding to transitions (c).

When J > 0, the vectors (8) satisfy the balance equations

vi,j(J)(DA +Bi,j + Ci,j) = vi,j(J)A+ vi,j(J − 1)Bi,j + vi,j(J + 1)Ci,j

, , J = 1, 2, . . . (9)

For J = 0, the equation is slightly different:

vi,j(0)(DA +Bi,j) = vi,j(0)A+ vi,j(1)Ci,j . (10)

In addition, all probabilities must sum up to 1:
∞∑
J=0

vi,j(J)e = 1 , (11)

where e is a column vector with Imax elements, all of which are equal to 1.
The above equations can be solved by several methods. Evidence presented in [6]

suggests that the best approach for models such as this is to use spectral expansion (see [7]
and [1]), in the same way as [10].

Rewrite (9) in the form

vi,j(J)Qi,j,0 + vi,j(J + 1)Qi,j,1 + vi,j(J + 2)Qi,j,2 = 0 ,

J = 0, 1, . . . , (12)

where Qi,j,0 = Bi,j, Qi,j,1 = A−DA −Bi,j − Ci,j and Qi,j,2 = Ci,j. This is a homogeneous
vector difference equation of order 2, with constant coefficients. Associated with it is the
characteristic matrix polynomial, Qi,j(z), defined as

Qi,j(z) = Qi,j,0 +Qi,j,1z +Qi,j,2z
2 . (13)

Denote by zi,j,` and ψi;j;` the generalised eigenvalues and left eigenvectors of Qi,j(z).
These quantities satisfy

ψi;j;`Qi,j(zi,j,`) = 0 , ` = 1, 2, . . . , d , (14)

where d = degree{det[Qi,j(z)]}.
The eigenvalues do not have to be simple, but it is assumed that if zi,j,` has multiplicity

r, then it has r linearly independent left eigenvectors. This is invariably observed to be
the case in practice. Under that assumption, any solution of (12) is of the form

vi,j(J) =
d∑
`=1

xi,j,`ψi;j;`z
J
i,j,` , J = 0, 1, . . . , (15)
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where xi,j,` (` = 1, 2, . . . , d), are arbitrary (complex) constants.
Moreover, since only solutions which can be normalised are acceptable, if |zi,j,`| ≥ 1 for

some `, then the corresponding coefficient xi,j,` must be set to 0. Numbering the eigenvalues
of Qi,j(z) in increasing order of modulus, the spectral expansion solution of equation (12)
can be written as

vi,j(J) =
c∑
`=1

xi,j,`ψi;j;`z
J
i,j,` , J = 0, 1, . . . , (16)

where c is the number of eigenvalues strictly inside the unit disk (each counted according
to its multiplicity).

In the numerical experiments carried out with this model, the eigenvalues and eigen-
vectors of Qi,j(z) have always been observed to be simple, real and positive.

Substituting (16), for J = 0 and J = 1, into (10), yields a set of homogeneous linear
equations for the unknown coefficients xi,j,`. There are Imax − 1 independent equations in
this set (rather than Imax) because the generator matrix of the Markov process is singular.
A further, non-homogeneous equation is provided by (11), which now becomes

Imax∑
`=1

xi,j,`ψi;j;`e
1− zi,j,`

= 1 .

These equations can be solved uniquely for the coefficients xi,j,`, if c = Imax. This turns
out to be the case when (4) is satisfied. Indeed, the ergodicity condition is equivalent to
the requirement that Qi,j(z) has exactly Imax eigenvalues strictly inside the unit disk.

Having determined the coefficients xi,j,`, the average number of jobs in queue i, j is
obtained by substituting (16) into (7):

Li,j =
Imax∑
`=1

xi,j,`zi,j,`ψi;j;`e
(1− zi,j,`)2 . (17)

4 Approximated system configurations

In this model there are 2N possible system configurations, which is clearly too large a
number to solve for in any practical situation, hence the need for a reduced solution. In
general, the arrivals at node i are dependent on all the preceding stages of service (or node
configurations). However it is obvious that the nature of the arrivals at each node are most
strongly linked to the configuration at the immediately preceding node. Thus one possible
reduced solution method is clear, namely,

1. perform the solution described in Section 3 on the first node - this will be an exact
solution since there are no preceding nodes to affect arrivals

2. extract from that solution the appropriate performance measures and the probabil-
ities p1,j(σ1), j = 0..N1, where pi,j(σi) is the probability that queue j (at node i) is
non-empty given that the configuration of node i is σi.
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3. perform the solution described above with the approximated system configurations
merely the configuration of this node and that immediately preceding it, thus Imax =
2Ni+Ni−1 and the arrival rate at node j (assumed Poisson) in configuration I∗ is given
by

qj(σi)
Ni−1∑
k=0

(pi−1,k(σi−1)µi−1,k)

where σi−1 and σi represent the configurations at node i− 1 and node i respectively
at given approximated system configuration I∗.

4. extract from this solution the appropriate performance measures and the probabilities
pi,j(σi), j = 0..Ni

5. repeat steps 3 and 4 for the next node until all nodes have been solved.

Clearly this solution is only possible when Ni is relatively small for all i (if Ni+Ni−1 ≥ 8
then the matrices become very large) and so an alternative needs to be found. The simplest
idea is to ignore all previous nodes in the solution of node i and take the arrival rate at
that node to be Poisson rate λ, i.e. the same as the external arrival stream. This allows
the solution of much larger parallel nodes, but at the expense of all consideration of the
staged nature of service. A much better alternative would be for some halfway measure,
allowing reasonably large systems to be solved with some knowledge of the preceding
stage taken into account. In [9] and [10] some approximate methods for the solution of
a single stage parallel system were presented, the best approximate solution being when
the most significant arrival periods were treated independently and the remainder were
amalgamated into logical groups. Applying the same technique here, one approach would
be to have approximated system configurations based on the current server (i, j) either
working or broken, with 0,1, or up to Ni − 1 other servers at stage i working, and 0,1, or
up to Ni−1 servers working at the previous stage, giving a total of 2Ni(Ni−1 + 1) possible
configurations. Another possibility is to consider all the possible configurations of stage
i together with those arising from having 0,1 or up to Ni−1 servers operative at stage
i − 1. These are just two examples, the best set of approximated system configurations
will be determined by the server characteristics and the available computational resources.
It is assumed that approximated system configurations will be chosen such that node i, j,
the node whose queue is being evaluated, will be either operative or inoperative in any
approximated configuration, but not both. This might appear in the first instance to be a
restrictive assumption, however the effect of breakdowns on the performance of the system
is the primary interest of this model. The behaviour of a node is significantly different
when it is broken compared with when it is operative therefore this should be a major
feature of any approximation.

The process Yi,j is of the block tri-diagonal , or Quasi-Birth-and-Death type: it can
therefore be solved by spectral expansion to find the probabilities pi,j(x, y).
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5 Scheduling strategies

As in [10] which considered a single stage parallel system, here strategies based on a
single routeing vector, q = (q1, q2, . . . , qN), are evaluated and compared. In each case, the
optimisation problem is to choose the elements of that vector so as to minimise the average
response time.

1. The fixed strategy.
The most straightforward way of splitting the incoming stream at stage i is to send

each job to queue j with probability qj, regardless of the system configuration. In this
simple case in the single stage model a simple equation could be used to determine the
performance measures. However, with the introduction of several stages this is no longer
true, as the arrival process at a given stage is affected by node failures at earlier stages.

2. The selective strategy.
Intuitively, it seems better not to send jobs to nodes where the server is inoperative,

unless that is unavoidable. This suggests the following strategy: If the subset of operative
nodes at stage i in the current system configuration is σi, and that subset is non-empty,
send jobs to queue j only if j ∈ σi, with probability proportional to qj :

qj(σi) =
qj∑
`∈σ q`

, j ∈ σ .

If σ is empty (i.e. all nodes are broken), send jobs to queue j with probability qj (j =
1, 2, . . . , Ni).

Note that neither of these strategies take account of the states of nodes at other stages
in the system. However the existence of other stages may have an effect on the optimal
routeing vector for a given strategy. In [10] two further scheduling strategies were consid-
ered. These strategies restricted the behaviour of some of the queues in a stage such that
they could only accept jobs if the server was active; the remaining queues operated a fixed
or selective strategy. Whilst these strategies provided interesting intermediate behaviours
to the fixed and selective strategies they did not give an improved performance. Obviously
many further strategies are possible, but these would either be difficult to compare numer-
ically, difficult to implement or not give any improvement over the two cases considered. It
would, however, be worth considering the case where jobs are routed differently for every
operational state of the stage, whilst maintaining the ‘no loss’ condition. Such a study
would be a large undertaking.

6 Numerical results

Numerical experiments were carried out in order to determine both the accuracy of the
approximations suggested and the characteristics of the behaviour of the pipeline system.
In most practical situations it is normal to find nodes with a high degree of reliability,
however, as is the case with most models involving node breakdowns, systems of such
nodes may behave much like nodes without breakdowns. It has been necessary, therefore,
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to consider here nodes with somewhat extreme characteristics in order to highlight the
strengths and weaknesses of the approximations and to show the limiting behaviour of
such a system of nodes. However, it is also true to say that even nodes with a high degree
of reliability may suffer rare, but prolonged, breakdowns which can have a significant effect
on performance measures.

If few arrivals occur during a period of breakdown (i.e. η ∼ λ) then the effect of
a failure on the sizes of the queues at a stage will be minimal, assuming the node is
reasonably reliable, just as for the single stage parallel node models considered previously.
Also if the service rate is of a similar order (µ ≈ λ) then the departures will not be unduly
interrupted by failures, so the arrivals at the following stage may be assumed to be nearly
Poisson, hence the single stage approximation will work well for either routeing strategy.

However, if the repair rate is small compared to the arrival rate, then many arrivals will
occur during a breakdown period. Under the selective routeing strategy this will cause the
other nodes at that stage to be more heavily loaded, causing the queues at those nodes to
grow. With the fixed routeing strategy the queue of a broken node will grow larger during
a period of breakdown, leading to a large backlog of jobs if the load is sufficiently high.
The solution of the model for the stage where this behaviour occurs is still exact, but the
arrivals at the next stage are now distinctly ’bursty’, rather than nearly Poisson and so
the accuracy of the approximations is in question.

If Ni is large then the effect of an individual failure at stage i will be reduced, since
one node failing out of Ni identical nodes will mean a reduction of at most 1/Ni in the
overall service at stage i. In fact the reduction could be considerably less than 1/Ni if the
load at stage i is not excessively high and the selective routeing strategy is used, since the
remaining nodes will be less likely to be idle. Since the arrivals at stage i+ 1 are in fact
the departures from stage i then any reduction in the effect of failures at stage i will result
in an improvement in the approximation of the arrivals at stage i+ 1 as a Poisson stream.
Thus, although the 2-stage approximation becomes too costly to use when Ni is large, the
accuracy of the simple approximation can be seen to improve in general (assuming the
repair rates are sufficiently great).

Figures 2 and 3 show the average response time of a 2 stage pipeline where there are 2
nodes at each stage and all the nodes are identical. In Figure 2 the routeing strategy is fixed
and in Figure 3 it is selective, in both cases the routeing vectors are simple and identical
for each node, i.e. (1

2 ,
1
2). Results are given for the simple (Poisson) approximation, the

2-stage (full Markov modulated) approximation and simulation.
In both figures as the arrival rate increases the response time increases as expected and

the average response time is higher under the fixed strategy. When the load is light all
three methods give very similar results (for both strategies), but as the load increases the
simple approximation becomes somewhat less accurate than the 2-stage approximation. In
Figure 4 the differences between the two approximate methods are highlighted further.

Here the structure of the pipeline is the same, but the nodes are not reliable. As
mentioned earlier the simple approximation becomes much less accurate when the duration
of the periods of inoperation is increased. This is shown in Figure 5, where once again there
are 4 identical nodes in a 2 stage pipeline, showing results for the selective strategy. The
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Figure 2: Average response time as a function of arrival rate for a 2 stage service
where each stage has 2 identical servers and a fixed routeing strategy
K = 2, Ni = 2, µi,j = 10, ξi,j = 0.01, ηi,j = 0.1, i = 1, 2, j = 1, 2
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Figure 3: Average response time as a function of arrival rate for a 2 stage service
where each stage has 2 identical servers and a selective routeing strategy

K = 2, Ni = 2, µi,j = 10, ξi,j = 0.01, ηi,j = 0.1, i = 1, 2, j = 1, 2

overall reliability of the nodes (η/(η+ξ)) remains constant, but the durations of the periods
of operation and in-operation are increased exponentially. When the failure and repair rates
are relatively large the effect of failures is minimal and so both approximations work well,
however as the repair and failure rates decrease the simple approximation become highly
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inaccurate as the arrivals become more and more ’bursty’.

100

120

140

160

180

200

220

240

260

280

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
λ

W

simple approximation

2 stage approximation

simulation

Figure 4: Average response time as a function of arrival rate for a 2 stage service
where each stage has 2 identical servers and a fixed routeing strategy
K = 2, Ni = 2, µi,j = 10, ξi,j = 0.01, ηi,j = 0.01, i = 1, 2, j = 1, 2
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Figure 5: Average response time as a function of repair rate for a 2 stage service
where the proportion of time operative is a constant

K = 2, Ni = 2, µi,j = 10, ξi,j = ηi,j/10, λ = 2, i = 1, 2, j = 1, 2

The 2-stage approximation does not always give such accurate results as those shown
above. With the fixed routeing strategy in particular a large backlog of jobs may build
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up during a period of failure, thus the probability of the queue being non-empty may be
significantly less for sometime immediately following a failure than after a long period of
operation. However, such node characteristics would be somewhat extreme: the average
number of jobs in the queue would have to be small during operation, but large during
inoperation, thus λ would have to be significantly less than µ (λ = µ/2, say) and the period
of inoperation would have to be very long (η � λ, η < λ/104, say). A simulation of such
a pipeline would take an exceedingly long time to produce an accurate result.

In general the optimal routeing weights are not greatly affected by the presence of
preceding stages, but an unbalanced system will perform significantly worse as a result of
increased ’burstiness’. This is illustrated in the following 4 graphs, each of which shows the
performance at the final stage of a pipeline only. Figure 6 shows the average response time
at a single stage of 2 nodes as a function of the proportion of jobs sent to node 1 when both
are available (q), thus this is a selective routeing strategy with routeing vector (q, 1− q).
The 2-stage approximation takes account of the behaviour at a preceding stage which has
long periods of inoperation whereas the simple approximation considers the same stage in
isolation; the arrival rate is identical in both cases.

Figure 7 shows the same system operating the fixed routeing strategy. Clearly in this
(extreme) case the optimal routeing vector is slightly altered by considering a preceding
stage, but perhaps more significant is the much greater steepness exhibited by the curve
of the 2-stage approximation. Thus a routeing vector which gives a near optimal average
response time when the stage is considered in isolation could give a very poor response
time when the preceding stage is taken into account.
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Figure 6: Average response time as a function of job share q
at the 2nd stage of a 2 stage pipeline with a selective routeing strategy

K = 2, Ni = 2, λ = 17, µ1,j = 10, µ2,1 = 14, µ2,2 = 9,
ξ1,j = 0.0001, η1,j = 0.001, ξ2,j = 0.01, η2,1 = 0.1, η2,2 = 0.07, i = 1, 2, j = 1, 2
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Figure 7: Average response time as a function of job share q
at the 2nd stage of a 2 stage pipeline with a fixed routeing strategy
K = 2, Ni = 2, λ = 17, µ1,j = 10, µ2,1 = 14, µ2,2 = 9, ξ1,j = 0.0001,
η1,j = 0.001, ξ2,j = 0.01, η2,1 = 0.1, η2,2 = 0.07, i = 1, 2, j = 1, 2

In Figure 8 a 3-stage pipeline is illustrated. The performance measure displayed is the
average time a job spends at the final stage of the pipeline. Results obtained by simulation
are compared with the simple (stage in isolation) approximation and two versions of the two
stage approximation, isolated and progressive: the first where the approximation is applied
to the final 2 stages of the pipeline in isolation (referred to as 2-stage approximation); and
the second where the approximation is applied to each stage of the pipeline in turn (as
described above, referred to as 3-stage approximation). In addition results obtained by
simulation are shown for the time spent at the final stage of a 2 stage pipeline with identical
parameters for comparison. It is interesting to note that there is a significant increase in
average response time calculated by simulation for the 3rd stage of a 3-stage pipeline as
opposed to the 2nd stage of a 2-stage pipeline with the same parameters. Unfortunately
the same cannot be said for calculations made by approximation where there is only a
slight difference between the 2 and 3 stage results. Clearly therefore the earlier assertion
that the performance of one stage of a pipeline is heavily dominated by its preceding stage
is not an altogether accurate one. All the approximations accurately ape the curve of the
simulations, albeit with some displacement. There is some deviation from this as one moves
away from the optimum routeing vector, although this is much more marked in the simple
approximation. Again there is a slight difference in the optimal routeing vector between
the approximations, but the 2-stage approximations are fairly accurate when compared to
the optimal routeing vector found by simulation. As would be expected in this case the
progressive 2-stage approximation gives a much more accurate fit to the simulated models
than does the simple approximation, although there is still an appreciable error.
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Figure 8: Average response time as a function of job share q
at the final stage of a pipeline with a selective routeing strategy
Ni = 2, λ = 15, ξi,j = 0.01, µ1,j = 10, η1,j = 0.2, i = 1..3, j = 1, 2

2-stage pipeline: µ2,1 = 12, µ2,2 = 8, η2,1 = 0.2, η2,2 = 0.1
3-stage pipeline: µ2,j = 10, µ3,1 = 12, µ3,2 = 8, η2,j = 0.2, η3,1 = 0.2, η3,2 = 0.1

7 Conclusions

Under many common practical situations a fairly good approximation to this pipeline
model can be made by considering each of the stages in isolation. This is particularly
true when the nodes are highly reliable, periods of in-operation are relatively short and
the number of nodes at a stage is relatively large. When these conditions do not apply it
is necessary to use a more involved Markov-modulated approximation such as the 2-stage
approximation suggested here. In certain circumstances it may be advantageous to look for
alternative approximations, more detailed than the simple approximation, but less costly
than the 2-stage approximation. The exact choice of what approximation to consider will
depend on many variables (the node characteristics, available computational power, desired
accuracy, etc) which are out of the scope of this paper, but are worthwhile directions of
research none the less. Also it may be worth considering other heuristics to predict the
optimal routeing vectors in light of the increased penalties to an unbalanced system when
previous stages of service are involved.

For models with characteristics like some of those illustrated here, i.e. Ni small and
fairly long periods of inoperation, simulations need to be run for a very long time before
producing a steady-state result. Typically simulations were run overnight, but in several
cases run times in excess of 24 hours were necessary. In contrast the analytical results
were much faster to obtain. In the worst case it took around 3 minutes to obtain a single
result running on the same platform, typically it took less than 1 minute. Admittedly
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our simulation program did not employ any optimisation for rare events and the hardware
on which it ran could have been substantially faster. However these are still excessively
long run times and the analytical method is far superior in that respect. This in itself is
clear justification for attempting to find suitable approximations for these models. The
inaccuracy in the predictions will, in most circumstances, be sufficiently small for the
speed of the calculation to be a definite bonus. In every case the approximation has been
observed to underestimate the average response time of the pipeline. This is due to the
smoothing out of bursty behaviour. As such, the approximation may be viewed as being
an estimation of lower bound of the average response time, although this has only been
shown numerically and not proved.

It was stated in the introduction that the method presented here enables interesting
performance measures to be derived for a class of models for which this was previously
not possible. This method is also obviously applicable to other, more general, network
models and it is therefore interesting to observe the accuracy of the approximations and
predictions of an optimal routeing vector. In particular it would be interesting to apply
this method to models where the progressive condition is relaxed, thus a job completing
service at stage i may proceed to any stage j such that j > i. A further consideration
would be to allow jobs to feedback in the network so that a a job completing service at
stage i may proceed to any stage in the network (including i). In order to solve such a
model it would be necessary to iterate the method many times until stability is reached.
It would be a major task to find convergence conditions for such an iterative method.

This paper serves as a good introduction to this problem area as well as presenting and
evaluating an important application of approximation theory.
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