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Abstract
The programming language Standard ML is an amalgam of two, largely ortho-
gonal, languages. The Core language expresses details of algorithms and data
structures. The Modules language expresses the modular architecture of a soft-
ware system. Both languages are statically typed, with their static and dynamic
semantics specified by a formal definition.

Over the past decade, Standard ML Modules has been the source of inspira-
tion for much research into the type-theoretic foundations of modules languages.
Despite these efforts, a proper type-theoretic understanding of its static semantics
has remained elusive. In this thesis, we use Type Theory as a guideline to re-
formulate the unconventional static semantics of Modules, providing a basis for
useful extensions to the Modules language.

Our starting point is a stylised presentation of the existing static semantics of
Modules, parameterised by an arbitrary Core language. We claim that the type-
theoretic concepts underlying Modules are type parameterisation, type quantific-
ation and subtyping. We substantiate this claim by giving a provably equivalent
semantics with an alternative, more type-theoretic presentation. In particular,
we show that the notion of type generativity corresponds to existential quantific-
ation over types. In contrast to previous accounts, our analysis does not involve
first-order dependent types.

Our first extension generalises Modules to higher-order, allowing modules to
take parameterised modules as arguments, and return them as results. We go
beyond previous proposals for higher-order Modules by supporting a notion of
type generativity. We give a sound and complete algorithm for type-checking
higher-order Modules. Our second extension permits modules to be treated as
first-class citizens of an ML-like Core language, greatly extending the range of
computations on modules. Each extension arises from a natural generalisation of
our type-theoretic semantics.

This thesis also addresses two pragmatic concerns. First, we propose a simple
approach to the separate compilation of Modules, which is adequate in practice
but has theoretical limitations. We suggest a modified syntax and semantics that
alleviates these limitations. Second, we study the type inference problem posed by
uniting our extensions to higher-order and first-class modules with an implicitly-
typed, ML-like Core language. We present a hybrid type inference algorithm
that integrates the classical algorithm for ML with the type-checking algorithm
for Modules.
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Chapter 1

Introduction

Standard ML is a very high level programming language that is suited for the
construction of both small and large programs. It is actually an amalgam of
two, to a large extent orthogonal, programming languages. “Programming in the
small” is captured by the Core language. “Programming in the large” is captured
by the Modules language, which provides constructs for organising related Core
language definitions into self-contained modules with descriptive interfaces. While
the Core is used to express details of algorithms and data structures, Modules is
used to express the overall architecture of a software system.

Modules allows definitions of identifiers denoting Core language types and
terms to be packaged together into possibly nested structures. Access to structure
components is by the dot notation and provides good control of the name space in
a large program development. Structures are transparent : by default, the identity
of a type component within a structure is evident from outside the structure. This
provides good support for the incremental construction of large programs.

Signatures are used to specify the interfaces, or types, of structures, by spe-
cifying their individual components. A type component may be specified loosely,
permitting a variety of realisations, or concretely, by equating it with a particular
definition. The latter form supports the specification of sharing between type
components defined in different structures. A structure matches a signature if
it provides an implementation for all of the specified components, and possibly
more. A signature may be used to curtail a matching structure. This restricts
access to only those components specified in the signature, while preserving the
actual realisations of loosely specified types. A signature may also be used to
abstract a matching structure, restricting access to components but also gener-
ating new, and thus abstract, types for loosely specified type components. This
provides support for the informal notion of data abstraction.

Finally, Modules allows the definition of parameterised structures called func-
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tors. A functor is a first-order mapping from structures to structures. A functor
is created by specifying a signature for its formal argument, and supplying a
structure body defined with respect to this argument. A functor may be applied
to any structure that matches its argument’s signature, resulting in a concrete
implementation of the functor body. The actual realisations of the argument’s
type components are propagated to the result. Any abstract types defined in the
functor body are generated afresh each time the functor is applied. Functors may
be used to express design abstractions and allow flexible code re-use.

The Modules and Core languages are stratified in the sense that modules, i.e.
functors and structures, may not be manipulated as ordinary values of the Core.
This is a limitation, since it means that the architecture of a software system
cannot be reconfigured according to run-time demands.

Standard ML is distinguished from most other programming languages by
the existence of a formal definition of both its syntax and semantics. It is a
strongly typed language with static type checking of programs performed prior to
program execution. These two phases are defined, respectively, by separate static
and dynamic semantics. Type checking ensures the absence of certain run-time
type errors, such as accessing an undefined component of a structure, or using a
Core value component at a type incompatible with its definition. In this sense,
Standard ML is similar to the formal languages studied in Type Theory. This field
of logic has close connections to Computer Science and provides a rational basis for
the design of programming languages. Indeed, the type-theoretic underpinnings
of the Core language are well-understood.

In recent years, largely inspired by the success of Standard ML Modules,
the study of the type-theoretic foundations of module languages has become an
active topic of research. Nevertheless, despite numerous attempts, a proper type-
theoretic understanding of Standard ML Modules, and its static semantics in
particular, has remained elusive. The benefits of a type-theoretic understanding
are twofold. Type Theory provides us with a framework for analysing existing
features of the language and for synthesising new features by generalisation.

1.1 Objectives and Approach

This thesis has two main objectives. The first is to provide a better, more type-
theoretic formulation of the static semantics of Modules. The second is to use
this formulation as the rational basis for designing proper extensions of the static
semantics.
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We stress that the primary concern of this thesis is the static semantics of
Modules. Our justification for deliberately omitting the dynamic semantics of
Modules is that it is already well-understood; moreover, adapting the dynamic
semantics to support our static extensions is straightforward.

Our approach is to use concepts from Type Theory as a guideline for refor-
mulating the existing semantics of Modules, resulting in a provably equivalent,
but hopefully more declarative, accessible and generalisable presentation. The
benefit of this approach is that our subsequent extensions to the language can be
readily integrated with the existing definition and implementations of Standard
ML.

This approach is rather different from those of other researchers in the area.
Reductionist approaches aimed at providing type-theoretic semantics of Modules
by a translation into existing type theories have either failed to capture significant
features and properties of the language, or imposed severe limitations inherited
from the chosen model. Others approaches have relied on introducing new, and
often badly behaved, type-theoretic constructs.

We therefore see no distinct advantage in abandoning the existing formalism.
Instead, we adhere to the existing semantics as much as possible, deviating from
the original presentation only when this serves to simplify or clarify it.

1.2 Thesis Outline

In Chapter 2 we give a brief overview of Standard ML, an introduction to relevant
concepts from Type Theory, and a survey of related work.

In Chapter 3 we set the scene for the remainder of this thesis by presenting
the static semantics of a Modules and Core language in the style of the definition
of Standard ML [43, 44]. The two languages are presented separately. We first
present the Modules language. It models the main features of Standard ML’s
Modules language. Modules makes relatively few assumptions on the structure
of the Core: our definition is parameterised by an arbitrary Core language. For
concreteness, we also present a particular instance of the Core language: Core-
ML. Although much simpler than Standard ML’s Core, it nevertheless captures
those features of the language that are relevant to the definition of Modules.
Finally, we define Mini-SML as the language obtained by combining the defin-
itions of Modules and Core-ML. We then proceed with an informal analysis of
the type-theoretic underpinnings of Mini-SML. In particular, we find no evid-
ence to support the often-made claim that a type-theoretic model of Modules
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requires first-order dependent types. Apart from the feature of type generativity,
that lends the static semantics a procedural flavour by requiring it to manage
a state of generated type variables during type checking, the type structure of
Modules is easily explained in terms of the simpler, second-order notions of type
parameterisation, universal quantification over types, and subtyping.

In Chapter 4 we present a new, declarative static semantics for Modules. It is
intended as a more type-theoretic alternative to the semantics given in Chapter 3.
Our main objective is to first explain and then eliminate the state of generative
type variables maintained by the static semantics of Chapter 3. In particular,
we reveal that type generativity is no more than a particularly procedural im-
plementation of existential quantification over types. We prove that the two
static semantics are equivalent. We claim that the new presentation is more
type-theoretic in style, and easier to understand. In subsequent chapters, we sub-
stantiate this claim by using this semantics as the basis for significant extensions
to the language.

In Chapter 5, we extend the Modules language of Chapter 3 to higher-order.
Functors are given the same status currently enjoyed by structures: they may be
bound as components of structures, specified as functor arguments and returned
as functor results. We give a sound and complete algorithm for signature matching
that forms the basis of a type checking algorithm for Higher-Order Modules. This
chapter builds on the alternative semantics of generativity given in Chapter 4 and
on previous work by Biswas [3] that extends a skeletal fragment of Modules to
higher-order. We reformulate, generalise and clarify his definitions, and use them
to prove analogous results. Our work furthers his by capturing a notion of type
generativity, and by catering for more realistic Core languages, e.g. languages
supporting polymorphic values and parameterised types.

In Chapter 6 we briefly discuss the foundations of a separate compilation
system for Modules. One of the main criticisms of Standard ML Modules is its
perceived lack of support for separate compilation. We review the simple approach
to separate compilation in traditional programming languages and explain why
previous attempts to adopt this approach in Standard ML have failed. Unlike
other researchers, we place the blame for this failure on an inappropriate choice
of compilation unit, not on the semantics of Modules. Instead, we identify an
alternative notion of compilation unit that satisfies the requirements of separate
compilation. Although acceptable in practice, from a theoretical perspective this
solution is only partial. After analysing the problem, we suggest appropriate
modifications to the semantics, which are formalised for a skeletal higher-order
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modules calculus. The adequacy of these modifications is expressed by a theorem,
whose proof is sketched.

In Chapter 7 we turn our attention to the particular Core language presented
in Chapter 3, Core-ML, and consider relaxing the stratification between Core
and Modules. We obtain a language with first-class modules: modules may be
passed as arguments to Core-ML functions, returned as results of arbitrary com-
putations, selected using conditional expressions, stored in data structures and
so on. Our approach is novel in maintaining the distinction between Core and
Modules. Instead of amalgamating the features of both in a single language,
we provide constructs for packing and unpacking module terms as Core values,
allowing programs to alternate between Core and Modules level computation.

In Chapter 8 we consider the type inference problem posed by Core-ML in
the presence of both Higher-Order and First-Class Modules. We first review
the classical, unification-based type inference algorithm for ML, the language on
which Core-ML is based. We then discuss why the naive combination of the
type checker for Modules with the traditional type inference algorithm for ML is
inadequate. We design a suitably generalised unification algorithm, and present
a derived, hybrid typing algorithm that combines type checking of Modules with
type inference for Core-ML. We state correctness properties of these algorithms
but leave their verification to future work. The algorithms have been tested in a
prototype implementation.

Chapter 9 concludes this thesis with a summary of our achievements, a com-
parison with related work, and directions for future research.

1.3 Implementation

A prototype interpreter for higher-order and first-class Modules, using Core-ML
as a Core language, is available electronically [52]. It implements the static se-
mantics of Chapters 5 and 7 using a literal implementation of the type inference
algorithms in Chapter 8. It also implements a straightforward dynamic semantics,
allowing programs to be executed. The Core is enriched with recursion and a
smattering of base types to support simple programming examples. In addi-
tion, the Modules language supports the definition of signature identifiers, and
allows signatures (and functor signatures) to be refined by imposing equational
constraints on loosely specified type components. The implementation has been
used to check all of the examples in Chapters 5 and 7.
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Chapter 2

Background

In this chapter, we give a brief overview of Standard ML (Section 2.1), an in-
troduction to relevant concepts from Type Theory (Section 2.2), and a survey of
related work (Section 2.3).

2.1 An Overview of Standard ML

The aim of this section is to briefly review the main features of the programming
language Standard ML. A terse and completely formal semantics of Standard ML
appears in [43]; [42] is an extensive commentary on this definition, sketching some
of its meta-theory. A revised definition, with the two-fold aim of simplifying the
semantics and meeting some user requests, appears in [44]. Numerous research
reports and textbooks provide more tutorial introductions to programming in
Standard ML. We recommend the textbook by Paulson [48] and the report by
Tofte [56]. Our overview is intentionally informal — the syntax and static se-
mantics of the language will be formalised in Chapter 3. Note that the syntax
of our examples, although consistent with the rest of this thesis, deviates slightly
from Standard ML. The motivation for this departure is to clearly demarcate
the grammar of the Core from the grammar of Modules, facilitating the work in
subsequent chapters.

2.1.1 The Standard ML Core language

Standard ML’s Core is a strongly typed language. Core terms, or programs, are
required to obey the typing rules of the Core before being evaluated (executed).
The typing rules are sound in the sense that evaluation of any well-typed term
is guaranteed to produce no run-time type errors. Rather than present Standard
ML’s Core, we will sketch a simpler language which shares enough of its features
to enable us to present interesting examples of Modules.
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Our Core comes with a number of built-in types and terms for creating and
manipulating values of those types. For instance, the type int supports an infinite
set of constants . . . -2, -1, 0, 1, 2 . . . of type int. The term ifzero i e e’

tests whether the term i, which must have type int, evaluates to zero. If it does,
e is evaluated, otherwise e’ is evaluated. The terms e and e’ must have the same
type.

The Core is a functional language. For example, the built-in function + has
type int→(int→int). When applied to two integer arguments, e.g. + 1 2, it
returns their sum, e.g. 3. We can define our own functions using parameterised
terms. The term λx. + x 1 defines the successor function on integers. The
variable x is the formal argument or parameter of the function. The type of the
successor function is int→int, denoting the function space on integers. Even
though the Core is strongly typed, we do not have to specify the type of the
parameter x. Instead, its type is inferred from the way in which it is used; in this
case, x is used as an integer argument of +. Core functions can be higher-order,
in the sense that they may take functions as arguments and return functions as
results.

Core terms can be polymorphic. For instance, the identity function λx.x

can be given the type u→u, for any type u. The Core uses type variables ’a,
’b, . . . to represent indeterminate types. By universally quantifying over inde-
terminates in the type of a term, we obtain a schematic description, called a
type scheme, of all of a term’s possible types. For instance, the possible types
for the identity are captured by the type scheme ∀’a.’a→’a, read “for any
type ’a, ’a→’a”. A specific instance of a polymorphic type is obtained by
substituting actual types for its quantified variables. For example, ∀’a.’a→’a

has instances int→int, bool→bool and (int→int)→(int→int), obtained
by substituting int, bool, and (int→int) for ’a. A polymorphic term may
be used at any type that is an instance of its type scheme. Some type schemes
are more general than others. For example, the identity can also be given the
type scheme ∀’a ’b.(’a→’b)→(’a→’b). However, ∀’a.’a→’a is more gen-
eral than ∀’a ’b.(’a→’b)→(’a→’b) since it has all the instances that ∀’a
’b.(’a→’b)→(’a→’b) has, plus some more.

In the Core, we can define recursive functions using a fix-point combinator fix
with type scheme ∀’a ’b.((’a→’b)→(’a→’b))→(’a→’b). Intuitively, fix
f x evaluates to f (fix f) x. For example, consider the higher-order function:

λb. λf. fix (λiterbf. λx. ifzero x b (f (iterbf (+ x (- 1)))))

When applied to actual arguments b, f and x, it returns the result of the
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x-fold application of the function f to the base case b. Of course, x must be a
positive integer, otherwise the function diverges. The most general type scheme
of this function is:

∀’a.’a→(’a→’a)→(int→’a).

In Modules, we can define a value identifier by binding it to the value of a
Core term. The identifier can then be used in subsequent phrases. In particular,
we can exploit the definition’s polymorphism by using the identifier at different
types.

The Core supports parameterised types. For instance, the type list u is the
type of lists of elements of type u. We can construct lists using the polymorphic
term constants nil, of type ∀’a.list ’a, and cons, of type ∀’a.’a→(list

’a)→(list ’a). The phrase list, on its own, is not a type, but a phrase
which, when applied to a type argument, yields a type: list is a parameterised
type. Since list expects a single type argument, we say that its arity or kind is
1.

We can express our own parameterised types by using type phrases of the form
Λ(’a1 · · · ’ak).u. The prefix Λ declares the variables ’a1 through ’ak as para-
meters of the type u. We say that the parameterised type has arity or kind k,
since it expects k type arguments. For instance, we can use the parameterised
type Λ(’a,’b,’c).(’b→’c)→(’a→’b)→(’a→’c) as a uniform description of
a family of types: when applied to any three type arguments, it returns the type
of a function that takes two functions and returns another.

Given that Core terms are implicitly typed, the ability to express paramet-
erised types does not seem very useful. However, Modules is explicitly typed
and requires some syntax in order to specify Core type and value components.
Fortunately, in Modules we can define a type identifier by binding it to a paramet-
erised type. The identifier can then be used as a proper abbreviation, either in the
definition of another type identifier, or in the specification of a value component’s
type.

Standard ML’s Core has a number of other features not illustrated here. In-
deed, it comes with a rich collection of basic types, supports the definition of
mutually recursive types and functions, has first-class, dynamically allocated ref-
erences (typed pointers), exceptions and pattern-matching. Most of these features
have little or no interaction with Modules, and we shall not consider them any
further in this thesis.
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Figure 2.1 A sequence of Core type and term definitions.

type nat = int;
val zero = 0;
val succ = λx.+ x 1;
val iter = λb.λf.

fix (λiterbf.λx.ifzero x b (f (iterbf (x + (- 1)))));
...
val even = λn.iter true not n

Figure 2.2 An implementation of the natural numbers represented as integers.

structure IntNat =
struct type nat = int;

val zero = 0;
val succ = λx.+ x 1;
val iter = λb.λf.

fix (λiterbf.λx.ifzero x b (f (iterbf (+ x (- 1)))))
end

2.1.2 The Standard ML Modules Language

At the most basic level, Modules extends the Core language with a facility for
defining type identifiers denoting parameterised types, and value identifiers de-
noting the values of Core terms. Subsequent definitions may refer to previously
defined identifiers. The reason we view definitions as part of Modules and not
the Core is that they also give rise to module components, as we shall see shortly.

For instance, the sequence of definitions in Figure 2.1 defines the type identifier
nat (with no parameters), and the value identifiers zero, succ (the successor
function) and iter (an iterator). The definition of even uses iter to give a
simple-minded test for whether a (positive) integer is even.

Writing a large program as a long sequence of mostly unrelated definitions
quickly becomes unmanageable. In Modules, we can encapsulate a body of Core
definitions into a unit called a structure, by surrounding it with the keywords
struct and end. We can then bind this anonymous structure to a structure iden-
tifier. In Figure 2.2, the identifier IntNat refers to the collection of components
in its definition. Intuitively, IntNat defines an implementation of the natural
numbers as a subset of the integers.

The components of a structure identifier can be accessed by using the dot
notation. For instance, the type IntNat.nat refers to the type component nat

of IntNat and denotes the type int. The term IntNat.zero refers to the value
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Figure 2.3 A structure with a substructure.

structure IntNatAdd =
struct structure Nat = IntNat;

val add = λn.λm.(Nat.iter) n (Nat.succ) m
end

Figure 2.4 The signature of a structure implementing naturals using the integers.

sig type nat = int;
val zero : nat;
val succ : nat→nat;
val iter : ∀’a.’a → (’a → ’a) → (nat →’a)

end

component zero of IntNat. It evaluates to 0, and has type int.

Structure bodies may themselves contain definitions of (sub)structures. We
can use this to express the architecture of a system as a hierarchy of compon-
ents. Figure 2.3 defines a structure IntNatAdd with one substructure Nat and
an addition function derived from Nat. Component structures are also accessed
via the dot notation, e.g. IntNatAdd.Nat. By iterating the dot notation, we can
refer to type, term and structure components defined at arbitrary depths. Com-
ponent identifiers must be uniquely defined within a structure body, but may
be reused within different substructures, providing a good mechanism for name
space control.

Signature expressions are used to specify the types of structures, by listing
the specifications of their components. A signature expression consists of a body
of component specifications, encapsulated by the key words sig and end. Sub-
sequent specifications may refer to previously defined and specified identifiers.
The signature in Figure 2.4 specifies the type of a structure implementing nat-
urals using the given definition int for the type component nat. The signature

Figure 2.5 The signature of a structure implementing naturals using an arbitrary
type.

sig type nat : 0;
val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) → (nat →’a)

end
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Figure 2.6 A curtailed view of IntNat.

structure ResIntNat =
IntNat � sig type nat : 0;

val succ : nat → nat;
val iter : nat → (nat → nat) → (nat → nat)

end

in Figure 2.5, on the other hand, specifies the type of a structure implementing
naturals using some definition of kind 0 for the type component nat. Observe
that a type component may be specified in one of two ways, either by specifying
its actual definition, or, more flexibly, by only specifying its kind, permitting a
variety of actual definitions.

Roughly speaking, a structure expression matches a signature if it implements
all of the components specified in the signature. In particular, the structure must
realise all of the type components that are merely specified but not defined in
the signature. Moreover, the structure must enrich the signature subject to this
realisation: every specified type must be implemented by an equivalent type;
every specified value must be implemented by a value whose type is at least as
general as its specification; finally, every specified structure must be implemented
by a structure that enriches its specification. The order in which components of
the structure are actually defined is irrelevant. Furthermore, the structure is free
to define more components than specified in the signature.

Signatures play a number of different roles.

In Figure 2.6 we define a new structure ResIntNat corresponding to a re-
stricted view of IntNat. The infix operator � means that the signature, which
is matched by IntNat, is used to curtail its implementation by hiding its zero

component and restricting the polymorphism of its iter component. However,
the actual realisation of the type component ResIntNat.nat by the type int

remains transparent, even though its definition is not specified in the signature.
For instance the application ResIntNat.succ (-3) is still well-typed, because -3
has type int. Note, however, that -3 does not correspond to the representation
of a natural number.

In Figure 2.7 we define a new structure AbsNat corresponding to an abstract
view of IntNat. The infix operator \ means that the signature, which is matched
by IntNat, is used to abstract its implementation by generating a new type for
the specified type nat. The realisation of the type component nat by the type int
is effectively forgotten. In this way, AbsNat defines an abstract datatype of natural
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Figure 2.7 An abstract view of IntNat.

structure AbsNat =
IntNat \ sig type nat : 0;

val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) → (nat → ’a)

end

Figure 2.8 A functor and its application.

functor AddFun(N:sig type nat : 0;
val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) → (nat → ’a)

end) =
struct structure Nat = N;

val add = λn.λm. (Nat.iter) n (Nat.succ) m
end

in

...

structure IntNatAdd = AddFun IntNat;
structure AbsNatAdd = AddFun AbsNat

numbers. For instance the application AbsNat.succ (-3) is no longer well-typed,
since -3 has type int but AbsNat.succ expects a value of the abstract type
AbsNat.nat, e.g. AbsNat.zero. In general, abstractions also have a curtailment
effect, although this is not illustrated in this example.

Finally, Standard ML supports the definition of parameterised structures
called functors. Intuitively, a functor is a function mapping structures to struc-
tures. Figure 2.8 defines a functor called AddFun with formal parameter N, which
is assumed to match the specified signature. The structure expression to the right
of the = sign is the body of the functor and refers to the formal argument. The
body may assume no more information about N than is specified in its signature.
This provides another form of abstraction: the functor AddFun can be defined
before any structure implementing the naturals has been written.

A functor is used to create a structure by applying it to an actual argument.
The actual argument must match the formal argument’s signature. Figure 2.8
shows two different applications of AddFun. The definition of IntNatAdd evaluates
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Figure 2.9 A generative functor.

functor GenFun(N:sig type nat : 0;
val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) → (nat → ’a)

end) =
N \ sig type nat : 0;

val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) → (nat → ’a)

end
in
structure X = GenFun IntNat;
structure Y = GenFun IntNat

to the same implementation as IntNatAdd in Figure 2.3. Observe that AddFun is
applied twice, to arguments that actually differ in the implementation of their type
component nat (recall that AbsNat.nat is an abstract type distinct from int).
Moreover, each application propagates the actual realisation of the specified type
component. Thus we can exploit the fact that IntNatAdd.Nat.nat is actually
int, and that AbsNatAdd.Nat.nat is the same as the abstract type AbsNat.nat.

The functor GenFun in Figure 2.9 illustrates a different property of functors.
GenFun almost defines an identity function on natural number structures, except
that it returns the result of abstracting its argument by its signature. In par-
ticular, each application GenFun generates a new abstract type: we call this the
generative property of functor application. For example, the types X.nat and
Y.nat are incompatible, even though GenFun is applied to the same argument in
each case.

In general, functors allow us to decompose a large programming task into
separate subtasks which may be implemented in isolation. The propagation of
type realisations means that we can use functors to extend existing types with
operations compatible with those types. The generative property of functors en-
sures that conceptually distinct applications of the same functor return distinct
abstract types. In Standard ML, a functor may only be defined at the outermost
or top-level of a program. In particular, a functor may not be defined as a com-
ponent of a structure, applied to a functor, or return another functor as a result.
These restrictions mean that functors are first-order mappings on structures.

Functors are commonly used to combine structures. Frequently, these struc-
tures need to interact via values of a shared type. Consider the example in Figure
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Figure 2.10 A functor that fails to type-check due to inadequate sharing.

functor SQ(X:sig structure AddNat :
sig structure Nat :

sig type nat : 0
end;

val add: Nat.nat → Nat.nat → Nat.nat
end;

structure MultNat :
sig structure Nat :

sig type nat : 0
end;

val mult: Nat.nat → Nat.nat → Nat.nat
end

end) =
struct val sumsquare =

λn.λm. X.AddNat.add (X.MultNat.mult n n)
(X.MultNat.mult m m)

end;

Figure 2.11 A functor that type-checks thanks to specified sharing.

functor SQ(X:sig structure AddNat :
sig structure Nat :

sig type nat : 0
end;

val add: Nat.nat → Nat.nat → Nat.nat
end;

structure MultNat :
sig structure Nat :

sig type nat = AddNat.Nat.nat
end;

val mult: Nat.nat → Nat.nat → Nat.nat
end

end) =
struct val sumsquare =

λn.λm. X.AddNat.add (X.MultNat.mult n n)
(X.MultNat.mult m m)

end;
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2.10. The functor SQ is a first attempt to implement a sum-of-squares function
using the addition and multiplication functions provided by its argument’s sub-
structures, AddNat and MultNat. Unfortunately, it fails to type-check because
the argument’s signature does not specify that these substructures must share
the same representation of natural numbers. In the original version of Standard
ML [43], we could specify the required sharing by inserting a type sharing con-
straint sharing type AddNat.Nat.nat = MultNat.Nat.nat at the end of the
argument’s signature. Another way of achieving this, adopted in the revision of
Standard ML [44], and illustrated in Figure 2.11, is to specify the sharing directly
at the specification of MultNat.Nat.nat by using the concrete specification type

nat = AddNat.Nat.nat.

Remark 2.1.1. Originally, Standard ML [43] also supported an additional, stronger
notion of sharing, called structure sharing. Encapsulating a body of declarations
within struct and end generated a new internal structure name, or stamp, for the
expression, similar to the generation of a fresh abstract type. However, the name
identified the entire structure, not just individual types. In signatures, structure
sharing constraints could be used to specify structure components with shared
names. This made it possible to specify sharing not only of types, but also of
values, since any two structures which shared the same name must have origin-
ated from a common ancestor. This interesting but little used feature has been
abandoned in the revised definition of Standard ML [44]. The move simplifies the
semantics, benefitting both the working programmer and language implementor.

2.1.3 Summary

At first glance, the Modules language appears to be nothing more than a small,
explicitly typed functional language. On closer inspection, however, this analogy
breaks down because Modules has many interesting features that are not accoun-
ted for in conventional functional programming languages. The ability to define
structures, containing definitions of both types and values, is novel, and raises
the question of what it means to project a type component from a structure: in
particular, do we need to evaluate the structure at run-time to determine the
meaning of the type component, or is it sufficient to know the compile-time type
of the structure. The syntax of Modules seems to suggest that signatures are
the types of structures, but this cannot really be the case, because signatures
can contain loosely specified type components. For instance, the signature of a
functor’s formal argument may not fully determine the functor’s domain, while
the declared type of a function’s formal argument typically does determine the
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function’s domain. Indeed, a functor can be applied to any argument that both
realises and enriches its argument signature. This is much more flexible than the
usual notion of function application, that requires the domain of the function and
the type of its actual argument to be equal. Finally, the fact that curtailing a
structure by a signature does not hide the actual realisation of the signature’s
type components means that the curtailment phrase cannot simply be regarded
as the analog of a type constraint in a functional language. The analogy does not
hold for the abstraction phrase either, because it can generate new types.

2.2 An Introduction to Type Theory

Although the published definition of Standard ML [43, 42, 44] formally defines
the Modules language, it makes few concessions to help the reader understand its
features. It particular, no attempt is made to relate these features to well-known
concepts developed in the theory of programming languages. This has presented
an obstacle not only to the understanding of the language, but also to its further
development.

Type Theory provides a framework for discussing issues of programming lan-
guage semantics. Mitchell’s textbook [45] is a good introduction to the use of
Type Theory as a foundation for programming language analysis and design. In
this thesis, we use Type Theory as a guideline to both clarify and generalise the
static semantics of Modules. Our first step will be to recast the static semantics
of Modules using well-known concepts from Type Theory. The purpose of this
section is to provide a gentle introduction to these concepts. We shall illustrate
the ideas with examples that deliberately evoke the examples used to present
Standard ML in Section 2.1.

In its most general sense, a type theory is a formal language based on a con-
ceptual organisation of phrases in the language. A type is a phrase that describes
a collection of phrases with a common property: the type of natural numbers,
the type of pairs, the type of functions, and so on. It is typically possible to dis-
tinguish between, on the one hand, the syntactic class of term phrases exhibiting
properties, and, on the other hand, the syntactic class of type phrases describing
these properties. The basic statements, or judgements, we make in type theory are
concerned with the classification of term phrases (e.g. does a term have a type)
and the equivalence of two well-typed term phrases (e.g. are two terms equivalent
at a type). In more complicated type theories, we may even distinguish between
different kinds of type phrases, and make similar statements regarding the clas-
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sification and equivalence of type phrases. Typically, each judgement is captured
by a relation, whose definition is specified by a set of inference rules.

Type Theory has its origins in logic. Indeed, many type theories exhibit a close
correspondence with particular systems of constructive logic. For such theories,
types correspond to propositions of some logic and the rules defining the well-
typedness of terms can be put in one-to-one relation with the inference rules of the
logic. Such a correspondence is known as a Curry-Howard isomorphism, and gives
rise to the interpretation of “propositions as types” [15, 24]. Each proposition
is identified with a type, and each proof of the proposition with a term of that
type. The correspondence goes deeper than this because the notions of equivalent
proofs and equivalent terms also coincide. Thompson’s textbook [54] gives a nice
introduction to the logical interpretation of Type Theory.

There is another interpretation of Type Theory that is more closely related
to Computer Science. In this interpretation, terms are programs, and types are
their specifications. The equational judgements between terms capture program
equivalences that may be directed to yield a notion of program execution. In the
special case where the type theory corresponds to a constructive logic, we can
think of the terms of the theory as programs for constructing canonical proofs of
their types.

For typed, general-purpose programming languages, that is languages with
state, non-termination, exceptions and other features, the connections with lo-
gic are more tenuous. Nevertheless, the notion of type remains useful as it can
be viewed as a partial specification of a program’s behaviour. Typically, the
well-typedness of a program will guarantee the absence of certain run-time errors
corresponding to type violations such as using a natural number as a function, or
accessing an undefined field of a record. In an untyped programming language,
these run-time errors are either ignored at one’s peril, or must be detected and
trapped at run-time, incurring an additional overhead. Still, a program’s type
may tell us nothing at all about the program’s other properties such as termin-
ation, effect on the store or exceptional behaviour. It is in this sense that types
are merely partial specifications.

The following sections give a whistle-stop tour of some basic type theoretic
constructs. We will focus on the kinds of programs these theories allow us to
express. The notation we use is inspired by the logical origins of each construct,
to which we shall allude whenever appropriate. We will start with the simply
typed λ-calculus, and then consider a sequence of orthogonal but compatible
extensions to it.
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Figure 2.12 Grammar of the simply typed λ-calculus.
κ ∈ Kind ::= ? types classifying terms

τ ∈ Type ::= α type variable
| τ → τ ′ function space

e ∈ Term ::= x term variable
| λx:τ.e function
| e e′ application

C ∈ Context ::= εC empty context
| C,x:τ term declaration
| C,α:κ type declaration

2.2.1 The Simply Typed λ-Calculus

Figure 2.12 defines the phrase classes and grammar of the simply typed λ-calculus
(with type variables). Kind phrases κ ∈ Kind are used to classify type phrases
τ ∈ Type. The meta-variable α ranges over an infinite set of type variables. Type
phrases of kind ? (read “type”) are used to classify term phrases e ∈ Term. The
set of terms defines a language of explicitly typed functions. The meta-variable
x ranges over an infinite set of term variables. A context C ∈ Context is a finite
sequence of declarations (or assumptions) relating term variables to their types
and type variables to their kinds. Since there is only a single kind ? ∈ Kind,
the set of kinds is superfluous in this theory; it is included here because we shall
generalise it in later sections.

The judgements defining the theory of the simply typed λ-calculus are defined
as the least relations closed under the inference rules in Figure 2.13. Because
type and term phrases can contain free variables, our judgements are relative to
a context of assumptions concerning the classifications of free variables.

The judgement ` C valid defines the set of valid contexts. The notation
Dom(C) is used to denote the set of variables declared in the context C. A
context is valid provided each variable in its domain is uniquely declared, and
the classification of each variable is well-formed with respect to the preceding
declarations in the context. The other judgments are formulated in a way that
ensures that contexts are valid. Note that a term variable’s type must have kind
?.

The judgement C ` κ kind, read “in context C, κ is a kind”, defines the set
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Figure 2.13 Judgements of the simply typed λ-calculus.

Valid Contexts ` C valid

` εC valid

C ` κ kind α 6∈ Dom(C)
` C, α : κ valid

C ` τ : ? x 6∈ Dom(C)
` C, x : τ valid

Valid Kinds C ` κ kind

` C valid
C ` ? kind

Type Classification C ` τ : κ

` C, α : κ,C′ valid
C, α : κ,C′ ` α : κ

C ` τ : ? C ` τ ′ : ?
C ` τ → τ ′ : ?

Term Classification C ` e : τ

` C, x : τ,C′ valid
C, x : τ,C′ ` x : τ

C, x : τ ` e : τ ′

C ` λx:τ.e : τ → τ ′

C ` e : τ ′ → τ C ` e′ : τ ′
C ` e e′ : τ

Term Equivalence C ` e = e′ : τ

C ` λx:τ ′.e : τ ′ → τ C ` e′ : τ ′
C ` (λx:τ ′.e) e′ = [e′/x] (e) : τ (β)

(rules for congruence, symmetry, reflexivity and transitivity omitted)
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of valid kinds. In this system, the judgement happens to be trivial because we
only have the single kind ?.

The judgement C ` τ : κ, read “in context C, type τ has kind κ”, classifies
a type by its kind. A type variable α has a kind provided it is declared with
that kind in the context. The function space τ → τ ′, classifying the collection of
functions with domain τ and range τ ′, has kind ? provided the domain and range
have kind ?.

The judgement C ` e : κ, read “in context C, term e has type τ”, classifies
a term by its type. A term variable x has a type provided it is declared with
that type in the context. A function λx:τ.e has type τ → τ ′ provided its body
e has the type τ ′ under the additional assumption that the parameter x has the
declared type τ . An application e e′ has type τ , provided e is a function with
domain τ ′ and range τ , and e′ has type τ ′.

The final judgement C ` e = e′ : τ , read “in context C, term e is equivalent
to term e′ at type τ” defines the notion of equivalence between terms of the same
type. We have only presented the key rule, Rule (β), that equates a function
application with the term obtained by substituting the actual argument for the
formal parameter of the function. By ordering this equation from left-to-right we
obtain a notion of typed reduction, which can be used to evaluate terms to their
normal form (the intuitive notion of a term’s value). The resulting reduction
relation is typed because it still mentions premises requiring the well-typedness
of terms. By erasing these premises, we obtain a much more efficient notion of
untyped reduction. It is a meta-theorem of the theory that untyped reduction
from well-typed terms respects the equational judgements.

Example 2.2.1 (Typical Examples of Well-typed terms). The simplest ex-
ample of a function is the identity on terms of type α:

α : ? ` λx:α.x : α→ α.

A more involved example is the higher-order function that composes two functions
f and g:

α : ?, β : ?, γ : ? ` λf:β → γ.λg:α→ β.λx:α.f (g x)

: (β → γ)→ (α→ β)→ (α→ γ)

Remark 2.2.1 (The Logical Interpretation). By ignoring term phrases, read-
ing type variables as atomic propositions, and the function space as logical im-
plication ( ⊃ ), it is easy to see that the term classification rules correspond to
the inference rules of minimal intuitionistic propositional logic.
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Remark 2.2.2 (The Phase Distinction). A typed programming language is
said to obey a phase distinction [7] if the type of any term in the language can
be checked without evaluating arbitrary terms. This allows the semantics of the
language to be split into a static semantics of type checking, that is performed at
compile-time, and a dynamic semantics of evaluation, that is performed at run-
time. The phase distinction is important because it ensures that the tractability
of type checking is independent of term evaluation, which, in typical program-
ming languages, may fail to terminate. Viewing a type theory as a programming
language, we can regard its classification judgements as defining the type-checking
phase, and its term equivalence judgement as defining the evaluation phase. It
is easy to see that the simply typed λ-calculus obeys a natural phase distinction
because the classification rules for both terms and types are defined independently
of the term equivalence judgement.

As a programming language, the simply typed λ-calculus is not very interest-
ing. However, it is very easy to extend the calculus by adding new phrases and
inference rules. For instance, to define the type of integers we can add the type
constant int, numeric constants ī for each integer i ∈ {. . . ,−2,−1, 0, 1, 2, . . . },
addition +, negation −, and a family of zero tests ifzeroτ , together with the
classification rules:

` C valid
C ` int : ?

` C valid i ∈ {. . . ,−2,−1, 0, 1, 2, . . . }
C ` ī : int
` C valid

C ` − : int→ int
` C valid

C ` + : int→ int→ int
C ` τ : ?

C ` ifzeroτ : int→ τ → τ → τ

and the equational rules:

C ` + ī j̄ : int
C ` + ī j̄ = i+ j : int

C ` − ī : int
C ` − ī = −i : int

C ` ifzeroτ 0̄ e e′ : τ
C ` ifzeroτ 0̄ e e′ = e : τ

C ` ifzeroτ ī e e′ : τ ī 6≡ 0̄
C ` ifzeroτ ī e e′ = e′ : τ

where ī ≡ j̄ if, and only if, the numeric constants ī and j̄ are syntactically equal.
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It is also possible to axiomatise structured types such as pairs, variants, and
lists. For instance, we can extend the calculus with labeled records of terms by
assuming some infinite set of labels l ∈ Label, and adding record type phrases
{l0 : τ0, . . . , lk−1 : τk−1} (for k ≥ 0). The term phrase {l0 = e0, . . . , lk−1 = ek−1}
(for k ≥ 0) introduces a record type. The term phrase e.l eliminates a record
type by projecting on a field. We implicitly identify record types that differ only
in the ordering of fields. The rules will ensure that all the fields of a record have
distinct labels. Let [k] denote the set of indices {i | 0 ≥ i < k} for k ≥ 0, and let
l ≡ l′ hold if, and only if, the labels l and l′ are syntactically equal. We extend
our judgements with the following rules:

∀i ∈ [k].C ` τi : ? ∀j ∈ [i− 1].li 6≡ lj
C ` {l0 : τ0, . . . , lk−1 : τk−1} : ?

∀i ∈ [k].C ` ei : τi ∀j ∈ [i− 1].li 6≡ lj
C ` {l0 = e0, . . . , lk−1 = ek−1} : {l0 : τ0, . . . , lk−1 : τk−1}

C ` e : {l0 : τ0, . . . , li : τi, . . . , lk−1 : τk−1} i ∈ [k]
C ` e.li : τi

For brevity, we omit the equational rules for records.
More importantly, it is easy to extend the computational power of the calcu-

lus. For instance, by introducing fix-point operators, we obtain a language with
unbounded recursion. We simply add the term constant fixτ , one for each type
τ , and the rule schemes:

C ` τ : ?
C ` fixτ : (τ → τ )→ τ

C ` fixτ e : τ
C ` fixτ e = e (fixτ e) : τ

This turns the calculus into a general-purpose programming language. Of
course, adding fix-points makes the term equivalence judgement undecidable.
However, because of the phase distinction, the decidability of the classification
judgements is preserved.

Example 2.2.2 (Programming Examples). Using λ-abstraction, we can define
the successor function on integers as:

succ ≡ λx:int.+ x 1̄.
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It is easy to derive:

` succ : int→ int.

We can group zero with the successor function to form a record whose com-
ponents may be used to generate the natural numbers:

` {z = 0̄, s = succ} : {z : int, s : int→ int}.

For a given type τ , we can define a function for iterating functions over τ as
follows:

` λb:τ.λf:τ → τ .fixint→τ (λI:int→ τ .λi:int.ifzeroτ i b (f (I (+ i (− 1̄)))))

: τ → (τ → τ )→ (int→ τ ).

Unfortunately, we have to redefine this function for each choice of τ . This is
because we need to appeal to different incarnations of the fix point operator and
zero test whenever we need a different result type τ .

2.2.2 Quantification over Types of a Kind

From a logical perspective, a natural generalisation of propositional logic is to
allow universal and existential quantification over propositional variables, lead-
ing to second-order propositional logic. Figure 2.14 summarises the additional
phrases and rules.

Let us first consider the addition of universally quantified types ∀α:κ.τ . In
the simply-typed λ-calculus, we could parameterise a term by a term, and apply
a parameterised term to a term argument. In this extension, we can parameterise
a term by a type, and apply a type-parametric term to a type argument. If e
has type τ , then the parameterised term Λα:κ.e has type ∀α:κ.τ , introducing a
universal quantifier. If e has type ∀α:κ.τ ′ then the application e [τ ] has type
[τ/α] (τ ′), eliminating a universal quantifier. We adopt the standard notational
convention of using Λ to bind type parameters, to distinguish it from λ that
binds term parameters; we also enclose type arguments in square brackets ([ ]) to
distinguish them from term arguments.

Example 2.2.3 (Typical Examples of Well-typed terms). A simple example
is the function that, for any type argument, returns the identity function on that
type:

` Λα:?.λx:α.x : ∀α:?.α→ α
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Figure 2.14 Adding Second-Order Quantification.
τ ∈ Type ::= . . .

| ∀α:κ.τ universal quantification
| ∃α:κ.τ existential quantification

e ∈ Term ::= . . .
| Λα:κ.e type parameterisation
| e [τ ] type application
| pack τ e as ∃α:κ.τ ′ type abstraction
| open e as α:κ, x:τ in e′ accessing an abstraction

Type Classification C ` τ : κ

C, α : κ ` τ : ?
C ` ∀α:κ.τ : ?

C, α : κ ` τ : ?
C ` ∃α:κ.τ : ?

Term Classification C ` e : τ

C, α : κ ` e : τ
C ` Λα:κ.e : ∀α:κ.τ

C ` e : ∀α:κ.τ ′ C ` τ : κ
C ` e [τ ] : [τ/α] (τ ′)

C ` ∃α:κ.τ ′ : ? C ` τ : κ C ` e : [τ/α] (τ ′)
C ` pack τ e as ∃α:κ.τ ′ : ∃α:κ.τ ′

C ` ∃α:κ.τ : ?
C ` e : ∃α:κ.τ
C, α : κ, x : τ ` e′ : τ ′

C ` τ ′ : ?
C ` open e as α:κ, x:τ in e′ : τ ′

Term Equivalence C ` e = e′ : τ

C ` Λα:κ.e : ∀α:κ.τ ′ C ` τ : κ
C ` (Λα:κ.e) [τ ] = [τ/α] (e) : [τ/α] (τ ′)

C ` open (pack τ e as ∃α:κ.τ ′) as α:κ, x:τ ′ in e′ : τ ′′

C ` open (pack τ e as ∃α:κ.τ ′) as α:κ, x:τ ′ in e′ = [e/x] ([τ/α] (e′)) : τ ′′
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By applying this function, call it id , to different type arguments, we obtain dif-
ferent instances of the identity function. Thus, assuming int and bool are types
we have:

` id [int] : int→ int,

and

` id [bool] : bool→ bool.

Similarly, we can define a function that, when applied to three type arguments,
returns a composition function for functions on those types:

` Λα:?.Λβ:?.Λγ:?.λf:β → γ.λg:α→ β.λx:α.f (g x) :
∀α:?.∀β:?.∀γ:?.(β → γ)→ (α→ β)→ (α→ γ)

From a programming language perspective, adding universal quantification al-
lows us to express polymorphic programs. A polymorphic program is a program
whose operation is generic in a type. The operation of appending two lists is a
good example of a polymorphic operation, since it is independent of the type of
elements stored in the list. With simple types, we have to define a new, but es-
sentially identical, append operation for each type of list element. Polymorphism
allows us to get away with a single definition, leading to substantial savings in
code and maintenance.

Example 2.2.4 (Programming Examples). With the ability to declare univer-
sally quantified types we can replace the infinite sets of constants ifzeroτ and fixτ
by two polymorphic constants ifzero and fix:

` C valid
C ` ifzero : ∀α:?.int→ α→ α→ α

C ` ifzero [τ ] 0̄ e e′ : τ
C ` ifzero [τ ] 0̄ e e′ = e : τ

C ` ifzero [τ ] ī e e′ : τ i 6≡ 0
C ` ifzero [τ ] ī e e′ = e′ : τ

` C valid
C ` fix : ∀α:?.(α→ α)→ α

C ` fix [τ ] e : τ
C ` fix [τ ] e = e (fix [τ ] e) : τ
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Moreover, we can exploit the polymorphism of fix and ifzero to give a poly-
morphic definition of iteration:

iter ≡
Λα:?.λb:α.λf:α→ α.

fix [int→ α] (λI:int→ α.λi:int.ifzero [α] i b (f (I (+ i (− 1̄)))))

It is easy to derive:

` iter : ∀α:?.α→ (α→ α)→ (int→ α)

We can now group the definition of zero, successor and polymorphic iteration
into a record providing an implementation of the natural numbers:

IntNat ≡ {z = 0̄, s = succ, i = iter}.

If we define the syntactic abbreviation:

NAT (τ ) ≡ {z : τ, s : τ → τ, i : ∀α:?.α→ (α→ α)→ (τ → α)},

then we can show that:
` IntNat : NAT (int).

Finally, we can define something like a functor on records of type NAT (α),
for any α:

AddFun ≡ Λα:?.λX:NAT (α).{N = X, add = λn:α.λm:α.X.i [α] n X.s m}.

For AddFun, we have:

` AddFun : ∀α:?.NAT (α)→ {N : NAT (α), add : α→ α→ α}.

We stress that NAT (τ ) is a meta-level type abbreviation: it is not part of the
syntax of the calculus.

Existential quantification, on the other hand, allows us to make the type of a
term abstract by hiding some of the structure of its type. The term
pack τ e as ∃α:κ.τ ′ pairs the type τ with the term e and introduces an ex-
istential quantifier. Its type is derived from e’s type, by hiding occurrences of the
specified type τ according to the template ∃α:κ.τ ′. The template is necessary to
indicate which occurrences of τ (i.e. those marked by α) are to be hidden, and
which are to remain visible. We can think of τ as the witness to the existentially
quantified type variable, and e as the term component of the compound term.
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The term open e as α:κ, x:τ in e′ eliminates an existential quantifier. Assume
e has the existential type ∃α:κ.τ . Opening e provides the term e′ with access to
the witness and term component of e. The type τ ′ of the entire phrase is the
type of e′. To ensure the witness remains hidden, e′ may assume no more about
it than that it is simply some type α of kind κ, and that the term component
is a term x of type τ (mentioning α): the witness is hypothetical. The premise
C ` τ ′ : ? ensures that the hypothetical witness does not escape its scope by
appearing in the result type τ ′: this guarantees that the type of the complete
phrase is independent of the actual witness to α.

As a programming construct, existential types correspond to abstract data
types [46]. Informally, an abstract data type consists of a set with a hidden
representation and one or more operations over that representation, packaged up
in a way that limits access to the representation according to some interface.
Similarly, a term e of type ∃α:κ.τ defines some type (the witness of α) with an
operation (the term component of e) over this type. The type τ describes the
interface of the abstract type to any client of e. Access to the abstract type is
provided by opening e in the scope of the client. The operation e may, of course,
be a record containing several operations, with its interface τ taking the form of
a record type.

Example 2.2.5 (Programming Example). For instance, if we define:

AbsNat ≡ pack int IntNat as ∃β:?.NAT (β)

then, having quantified over all occurrences of int in the type of IntNat , we
obtain:

` AbsNat : ∃β:?.NAT (β).

To use this term as an abstract implementation of the natural numbers, we
first have to open it:

open AbsNat as β:?,X:NAT (β) in

pack β AddFun [β] X as ∃γ:?.{N : NAT (γ), add : γ → γ → γ}

This term evaluates to an abstract implementation of the naturals with addition.
Since β is an ordinary type variable, denoting the witness of AbsNat, the fact
that this witness is actually int is hidden from the client:

pack β AddFun [β] X as ∃γ:?.{N : NAT (γ), add : γ → γ → γ}.

Indeed, we can replace AbsNat by another abstract data type that uses a different
representation of the naturals, without affecting the type of the complete program.
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In fact, we can replace AbsNat by any term of type ∃β:?.NAT (β) allowing the
choice of representation to vary with the run-time value of that term.

Remark 2.2.3 (Impredicativity). In this system, quantified types are just or-
dinary types of kind ?. This means that we can write programs which, at run-time,
choose between different implementations of an abstract data type or polymorphic
function.

Type theories such as this, in which quantifying over some element of a uni-
verse (in this instance, the universe of types of kind ?) results in an element of
the same universe, are called impredicative. This terminology distinguishes them
from predicative theories in which quantification results in an element of a higher
universe to which typically fewer operations apply.

2.2.3 Parameterisation over Types of a Kind

In Section 2.2.2, adding polymorphism meant extending the grammar of term
phrases with terms parameterised by types, and terms applied to types. A rather
different, in fact orthogonal, extension of the simply typed λ-calculus is to gen-
eralise the class of type phrases to allow types parameterised by types, Λα:κ.τ ,
and applications of types to types, τ [τ ′].

An intuitive example of a parameterised type is the generic type constant list

that, when applied to an actual type argument τ , constructs the type list [τ ].
Intuitively, this type classifies terms that evaluate to lists of terms of type τ . This
raises the question of what kind of type list is. The type constant list is a type
phrase, but is not itself of kind ?, since it doesn’t directly classify terms. Instead,
we should think of list as a function on types: supplied with an argument τ of
kind ?, it constructs a type of kind ?. To formalise this intuition, we extend the
grammar of kinds with the function space κ→ κ′. We can then express the kind
of list as the function space ?→ ?.

Figure 2.15 summarises the additional phrases and rules needed to extend the
simply typed λ-calculus with parameterised types. Intuitively, these additions
amount to turning the syntax of types into a simply typed λ-calculus, with types
playing the role of “terms”, and kinds playing the role of “types”. The calculus at
this level is a little simpler than the one in Section 2.2.1 since we only have a single
“type” constant, the kind ?, and no “type” variables, but the ideas are the same.
Since the equivalence of type phrases is no longer syntactic, but must take into
account the notion of β-equivalence at the level of types, we also introduce the
new equational judgement C ` τ = τ ′ : κ that formalises the equivalence between
type phrases of the same kind. To make use of this equivalence, we require an
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Figure 2.15 Adding Type Parameterisation.
κ ∈ Kind ::= . . .

| κ→ κ′ function space
τ ∈ Type ::= . . .

| Λα:κ.τ type parameterisation
| τ [τ ′] type application

Type Classification C ` τ : κ

C, α : κ ` τ : κ′

C ` Λα:κ.τ : κ→ κ′

C ` τ : κ′ → κ C ` τ ′ : κ′
C ` τ [τ ′] : κ

Type Equivalence C ` τ = τ ′ : κ

C, α : κ′ ` τ : κ C ` τ ′ : κ′

C ` (Λα:κ′.τ ) [τ ′] = [τ ′/α] (τ ) : κ

(rules for congruence, symmetry, reflexivity and transitivity omitted)

Term Classification C ` e : τ

C ` e : τ C ` τ = τ ′ : ?
C ` e : τ ′
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additional term classification rule that allows us to view a term at syntactically
different, but equivalent, types.

Remark 2.2.4 (The Logical Interpretation). From a logical perspective, this
extension alone is not particularly meaningful. However, if we combine it with the
extension to quantified types, we obtain a system that corresponds to higher-order
propositional logic. That is, we can now quantify not only over propositions, but
also over functions from propositions to propositions and so on.

Example 2.2.6 (Programming Examples). Assuming the presence of quanti-
fied types, we can extend the calculus with parametric lists by adding the type
constant list and the polymorphic term constants nil, succ and listcase with
the following axioms.

` C valid
C ` list : ?→ ?

` C valid
C ` nil : ∀α:?.list [α]

` C valid
C ` cons : ∀α:?.α→ (list [α])→ (list [α])

` C valid
C ` listcase : ∀α:?.∀β:?.(list [α])→ β → (α→ (list [α])→ β)→ β

C ` listcase [τ ] [τ ′] (nil [τ ]) e e′ : τ ′

C ` listcase [τ ] [τ ′] (nil [τ ]) e e′ = e : τ ′

C ` listcase [τ ] [τ ′] (cons [τ ] a l) e e′ : τ ′

C ` listcase [τ ] [τ ′] (cons [τ ] a l) e e′ = e′ a l : τ ′

In Example 2.2.4, we defined the shorthand NAT (τ ) as an informal syntactic
abbreviation at the meta-level; now we can express the equivalent parameterised
type within the language:

NAT ≡ Λα:?.{z : α, s : α→ α, i : ∀β:?.β → (β → β)→ (α→ β)}.

and use it as object-level syntax. It is easy to show that ` NAT : ?→ ?.
Similarly, since we can parameterise over higher kinds (i.e. functional kinds),

we can give an analogous specification of a package for polymorphic stacks, para-
meterised by the type constructor α implementing stacks:

Stack ≡ Λα:?→ ?.

{empty : ∀β:?.α [β],push : ∀β:?.β → (α [β])→ (α [β]), . . . }.
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It is easy to show that ` Stack : (?→ ?)→ ?. For instance, we can show that
the naive implementation of stacks in terms of the list constructor has the type
Stack [list]:

` {empty = nil,push = cons, . . .} : Stack [list].

Remark 2.2.5 (The Effect on the Phase Distinction). This extension does
not affect the phase distinction, since none of the additional classification rules
mention the term equivalence judgement. Although a type checker must do some
non-trivial equational reasoning on types, the reasoning is still independent of the
run-time equivalence of terms.

2.2.4 Subtypes

In the previous section, we extended the calculus with an equational theory on
types, and added a rule allowing us to treat a term as having different, but equi-
valent types. Intuitively, equivalent type phrases classify equivalent collections
of terms. A generalisation of this idea is to impose, not an equivalence relation,
but a pre-order on types. Intuitively, if the pre-order C ` τ ⊆ τ ′ : ? holds (in
context C), then the collection of terms classified by τ is a sub-collection of the
terms classified by τ ′. We say that τ is a subtype of τ ′. To make use of subtyping,
we need to add a new term classification rule, called the subsumption rule, that
allows any term e of type τ to be used at type τ ′. For subtyping to make sense,
it must be the case that every operation on terms of type τ ′ is also defined on
terms of the type τ . A more permissive interpretation of subtyping is to allow
C ` τ ⊆ τ ′ : ? provided each term e in the collection τ can be coerced to a term
in the collection τ ′ in some coherent manner1. This corresponds to allowing a
non-trivial injection from τ into τ ′ rather than a simple inclusion of τ in τ ′.

In theories with subtyping and functions, one typically adopts the following
subtyping rule for function spaces. We say that τ1 → τ2 is a subtype of τ ′1 → τ ′2 if,
and only if, the domain τ ′1 is a subtype of τ1, and the range τ2 is a subtype of τ ′2.
Observe that this definition is monotonic in the ranges, but anti-monotonic in the
domains of the function spaces, which is why it is often called the contravariant
rule. It is easy to motivate the contravariant rule if we view types as collections
of terms. If every term in τ ′1 also belongs to τ1, then any function on terms in
τ1 is, less generally, a function on terms in τ ′1. Similarly, if every term in τ2 also
belongs to τ ′2, then any function returning terms in τ2 is, less generally, a function

1Roughly speaking, coherence means that the coercions resulting from different derivations
of the same classification judgement are semantically equivalent.
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Figure 2.16 Adding Subtyping.

SubTyping C ` τ ⊆ τ ′ : κ

C ` α : ?
C ` α ⊆ α : κ

C ` τ1 → τ2 : ? C ` τ ′1 → τ ′2 : ?
C ` τ ′1 ⊆ τ1 : ? C ` τ2 ⊆ τ ′2 : ?

C ` τ1 → τ2 ⊆ τ ′1 → τ ′2 : ?

Term Classification C ` e : τ

C ` e : τ C ` τ ⊆ τ ′ : ?
C ` e : τ ′

returning terms in τ ′2. Combining these ideas, we can say that the collection of
functions with domain τ1 and range τ2 is a subcollection of the functions with
domain τ ′1 and range τ ′2.

Figure 2.16 shows the addition of subtyping to the simply typed λ-calculus,
employing contravariant subtyping of function spaces and reflexive subtyping of
type variables. Of course, this definition is trivial unless we add some specific
subtyping judgements to get things started.

Remark 2.2.6 (The Logical Interpretation). If τ and τ ′ represent proposi-
tions in the context C, then the judgement C ` τ ⊆ τ ′ : ? means that every
proof of τ is also a proof of τ ′.

Example 2.2.7 (Record Subtyping). A very natural idea is to construct a sub-
typing relation based on the structure of records. The intention is to allow the
language to treat any record of type τ ≡ {l0 : τ0, . . . , lm−1 : τm−1} as a record
of type τ ′ ≡ {l0 : τ0, . . . , ln−1 : τn−1}, provided m ≥ n, i.e. every field of τ ′ is
declared with the same type in τ . Intuitively, this makes sense because a record
of the wider type τ already supports all the field projections required of a re-
cord of the narrower type τ ′ (and then some). Informally, we can view τ as a
subcollection of τ ′ if we interpret the record type {l0 : τ0, . . . , ln−1 : τn−1} as the
collection of record terms containing at least the named components l0 through
ln−1 of the appropriate type. To axiomatise subtyping on records, we add record
types as before together with the subtyping rule:
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C ` {l0 : τ0, . . . , lm−1 : τm−1} : ? C ` {l0 : τ ′0, . . . , ln−1 : τ ′n−1} : ?
∀i ∈ [n].C ` τi ⊆ τ ′i : ? m ≥ n

C ` {l0 : τ0, . . . , lm−1 : τm−1} ⊆ {l0 : τ ′0, . . . , ln−1 : τ ′n−1} : ?

This rule is slightly more general than we let on: it merely requires that the
types of corresponding fields are in the subtype relation, without requiring them
to be equivalent. Note also that the equivalence on record types means that the
ordering of fields is arbitrary, so there is no requirement that the fields actually
occur in the order we chose to present the rule.

Example 2.2.8 (Programming Examples). Suppose we adopt record subtyp-
ing and extend subtyping to quantified types by adding the covariant rule:

C ` ∀α:κ.τ : ? C ` ∀α:κ.τ ′ : ? C, α : κ ` τ ⊆ τ ′ : ?
C ` ∀α:κ.τ ⊆ ∀α:κ.τ ′ : ?

and an analogous rule for the existential quantifier.
Then, continuing with our previous examples, consider the record IntNat ′:

IntNat ′ ≡ {z = 0̄, s = succ, i = iter ,p = λx:int.ifzero [int] x 0̄ (+ x (− 1̄))}

It generalises IntNat by declaring an additional field p containing the predecessor
function. Without appealing to subtyping we have:

` IntNat ′ :
{ z : int, s : int→ int, i : ∀α:?.α→ (α→ α)→ (int→ α), p : int→ int }.

Unfortunately, the application AddFun [int] IntNat ′ is ill-typed, since the func-
tion AddFun [int] does not expect an argument with a p-component.

However, with record subtyping, we have:

` {z : int, s : int→ int, i : ∀α:?.α→ (α→ α)→ (int→ α),p : int→ int}
⊆ {z : int, s : int→ int, i : ∀α:?.α→ (α→ α)→ (int→ α)} : ?

Hence we can derive:

` IntNat ′ : {z : int, s : int→ int, i : ∀α:?.α→ (α→ α)→ (int→ α)}

and effectively ignore the existence of the additional p-component. It follows that
the application AddFun [int] IntNat ′ is well-typed.

In fact, arguing rather differently, we can preserve the original type of IntNat ′

but employ the contravariant subtyping rule for function spaces. The idea is to
reason that AddFun [int] also has the type of a function with the richer domain:

{z : int, s : int→ int, i : ∀α:?.α→ (α→ α)→ (int→ α),p : int→ int},

and then use this judgement to show that the application is well-typed.
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Figure 2.17 Adding First-Order Quantification.
κ ∈ Kind ::= . . .

| τ → κ function space
τ ∈ Type ::= . . .

| τ e type application
| ∀x:τ.τ ′ universal quantification
| ∃x:τ.τ ′ existential quantification

e ∈ Term ::= . . .
| 〈e, e′〉 as ∃x:τ.τ ′ pairing
| fst e first projection
| snd e second projection

Valid Kinds C ` κ kind

C ` τ : ? C ` κ kind
C ` τ → κ kind

Type Classification C ` τ : κ

C ` τ : τ ′ → κ C ` e : τ ′
C ` τ e : κ

C, x : τ ` τ ′ : ?
C ` ∀x:τ.τ ′ : ?

C, x : τ ` τ ′ : ?
C ` ∃x:τ.τ ′ : ?

Remark 2.2.7 (The Effect on the Phase Distinction). Adding subtypes does
not affect the phase distinction. Although a type checker must do some non-trivial
reasoning about subtypes, this reasoning is still independent of the run-time equa-
tional theory of terms.

2.2.5 First-Order Quantification

From a logical perspective, a natural generalisation of propositional logic is to
extend the grammar of propositions with predicates on terms, and to permit
the formation of new propositions by first-order universal and existential quan-
tification over terms. This leads to first-order predicate logic. Figures 2.17 and
2.18 summarise the additions to the simply typed λ-calculus needed for a type-
theoretic interpretation of predicates and first-order quantifiers. Types with first-
order dependencies on terms are often called dependent types in the literature.
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Figure 2.18 Adding First-Order Quantification (cont.)

Type Equivalence C ` τ = τ ′ : κ

C ` τ : τ ′ → κ C ` e = e′ : τ ′
C ` τ e = τ e′ : κ (=)

(other rules for congruence, symmetry, reflexivity and transitivity omitted)

Term Classification C ` e : τ

C, x : τ ` e : τ ′

C ` λx:τ.e : ∀x:τ.τ ′

C ` e : ∀x:τ ′.τ C ` e′ : τ ′
C ` e e′ : [e′/x] (τ )

C ` ∃x:τ.τ ′ : ? C ` e : τ C ` e′ : [e/x] (τ ′)
C ` 〈e, e′〉 as ∃x:τ.τ ′ : ∃x:τ.τ ′

C ` e : ∃x:τ.τ ′
C ` fst e : τ

C ` e : ∃x:τ.τ ′
C ` snd e : [fst e/x] (τ ′)

C ` e : τ ′ C ` τ ′ = τ : ?
C ` e : τ

Term Equivalence C ` e = e′ : τ

C ` λx:τ ′.e : ∀x:τ ′.τ C ` e′ : τ ′
C ` (λx:τ ′.e) e′ = [e′/x] (e) : [e′/x] (τ )

C ` fst (〈e, e′〉 as ∃x:τ.τ ′) : τ
C ` fst (〈e, e′〉 as ∃x:τ.τ ′) = e : τ

C ` snd (〈e, e′〉 as ∃x:τ.τ ′) : τ ′′

C ` snd (〈e, e′〉 as ∃x:τ.τ ′) = e′ : τ ′′
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The idea is to view a predicate as a type phrase, that, when applied to some
terms, yields a proposition. To do this, we generalise the grammar of type phrases
with applications, τ e, of types to terms. To classify this new form of application,
we also extend the structure of kinds with the function space τ → κ that classifies
type phrases mapping terms of type τ to types of kind κ.

For instance, if we view the type variable α as a collection of terms, then
the kind α → ? classifies the collection of unary predicates on α. Similarly, the
kind α → α→ ? classifies the collections of binary predicates on α. If Φ is a
predicate of kind α→ ?, and a is a term of type α, then the application, Φ a, is
the proposition that Φ holds for a.

In order to classify functions from term to terms, we need to extend the
notion of simple function space τ → τ ′ to the dependent function space ∀x:τ.τ ′.
Consider the parameterised term λx:τ.e. Observe that, because types may contain
terms, the actual type τ ′ of the body e may depend on the term parameter
x. Universally quantifying over x in the type ∀x:τ.τ ′ of λx:τ.e captures this
dependency. Intuitively, the type ∀x:τ.τ ′ describes a collection of functions f that,
when applied to an argument a in the collection τ , return a term in the collection
[a/x] (τ ′). Correspondingly, the type of an application is obtained by substituting
the actual argument in the body of the function’s type. Of course, the choice
of the notation is not accidental: a function f of type ∀x:α.Φ x corresponds to a
proof of the proposition ∀x:α.Φ x. Whenever we apply f to a term a of type α, it
returns a proof of the proposition Φ a. We can view the non-dependent function
space τ → τ ′ as a degenerate case of universal quantification if we adopt the
notational abbreviation τ → τ ′ for ∀x:τ.τ ′ whenever x does not occur free in τ ′,
i.e. whenever the dependency is vacuous. In this sense, the rules for classifying a
function λx:τ.e and an application e e′ of Figure 2.17 generalise the corresponding
rules of Figure 2.13, which may now be removed.

We can also add the first-order existential quantifier ∃x:τ.τ ′. It helps to con-
sider the special case where the proposition τ ′ is an applied predicate Φ x. In-
tuitively, a (constructive) proof of the proposition ∃x:τ.Φ x is a dependent pair
〈a, e〉 as ∃x:τ.Φ x, consisting of a witnessing term a of type τ , together with a
proof e of the proposition Φ a. The template ∃x:τ.Φ x is needed to indicate which
occurrences of a in the type of e (i.e. those marked by x) are to be quantified.
Access to the components of a pair is provided by the two term projections fst e
and snd e. In the classification rule for snd e, the dependency of the second
component’s type on the quantified variable x is eliminated by substituting the
first projection fst e for x. We can view the non-dependent cross product τ × τ ′
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as a degenerate case of existential quantification if we adopt the notational ab-
breviation τ × τ ′ for ∃x:τ.τ ′, whenever x does not occur free in τ ′, i.e. whenever
the dependency is vacuous.

Example 2.2.9 (from Logic). Consider the judgement:

α : ?,Φ : α→ ?, x : α ` λf:∀y:τ.Φ y.〈x, f x〉 as ∃z:τ.Φ z :

(∀y:τ.Φ y)→ ∃z:τ.Φ z

It corresponds to a proof of the proposition “if, for every y in α, Φ y is provable,
then, for some z in α, Φ z is provable — provided α is a set, Φ is a predicate on
α, and α is inhabited by x.”

From a programming perspective, an intuitive example of a type depending on
terms is the type of lists of length n, where n is a natural number. We could try to
axiomatise such a type by adding constants listτ : nat→ ?, nilτ : listτ zero and
consτ : ∀n:nat.τ → listτ n→ listτ (succ n), for some fixed type of list elements
τ . However, we will not bother to do this because it is easy to see that adding
dependent types to a general-purpose programming language means that we have
to abandon the compile-time/run-time phase distinction [7, 21].

Remark 2.2.8 (The Effect on the Phase Distinction). First, observe that
adopting dependent types introduces a syntactic dependency of types on terms,
in the sense that the grammar of type phrases is defined in terms of the grammar
of term phrases. The dependency of types and terms is deeper than mere syntax,
however. From the perspective of logic, we need to equate propositions that are
equal up to the equivalence of their subterms. In particular, the type equivalence
judgement must include the congruence rule (Rule (=) of Figure 2.18):

C ` τ : τ ′ → κ C ` e = e′ : τ ′
C ` τ e = τ e′ : κ

This rule equates two different applications of the same predicate τ provided their
term arguments are equivalent.

Altering the equivalence on types to remove the dependency on term equi-
valence leads to a queer logic. On the one hand, removing the dependency by
abandoning Rule (=) altogether means distinguishing between the intuitively
equivalent propositions Even 2̄ and Even (+ 1̄ 1̄). On the other hand, modifying
the Rule (=) to ignore term equivalence, for instance, by weakening the second
premise:

C ` τ : τ ′ → κ C ` e : τ ′ C ` e′ : τ ′
C ` τ e = τ e′ : κ
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means that the intuitively distinct propositions Even 2̄ and Even 1̄ are identified.
In a system with true dependent types, the notion of type equivalence must
depend on the notion of term equivalence.

In first-order predicate logic, we typically require that every term denotes. In
Type Theory, this corresponds to having an equational theory on terms that is
strongly normalising. In strongly normalising theories, every well-typed term has
a unique normal form. This property is important because it means that the
equivalence of two terms can be decided by comparing their normal forms. In a
theory with dependent types, if we abandon strongly normalisation of terms then,
because of the dependency of type equivalence on term equivalence, not only do we
sacrifice the decidability of term equivalence, but we also lose the decidability of
type checking. This rules out the use of dependent types in any general-purpose,
i.e. non-terminating, programming language, unless we also forego decidable type
checking. In short, dependent types violate the phase distinction.

2.2.6 Strong Higher-Order Existentials

The elimination rule for the higher-order existential quantifier ∃α:κ.τ of Section
2.2.2 merely allows us to assume the existence of a hypothetical witness for the
quantified type component. By contrast, the first-order existential quantifier of
Section 2.2.5 is equipped with a stronger elimination form: we can project the
actual witness of the existential using the first projection fst e. It is possible
to design a similar construct for the higher-order case. The idea is to replace
the, so-called, weak existential type ∃α:κ.τ by the strong existential type Σα:κ.τ ,
supporting the type projection Fst e and the term projection Snd e.2 Figure
2.19 summarises the additional phrases and rules. The practical motivation for
doing this is that strong existentials allow us to pair a type with a term depending
on this type, without hiding the identity of the type component. As with weak
existentials, the identity of the witness remains hidden in the type of a pair;
however, it can always be recovered by projecting the pair’s first component.

Example 2.2.10 (A Programming Example). For instance, using the strong
existential we can define:

StrongNat ≡ 〈int, IntNat〉 as Σβ:?.NAT (β)

2Actually, it is perfectly possible to have both the weak and the strong existential type in
the same type theory [34].
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Figure 2.19 Adding Strong Higher-Order Existentials
τ ∈ Type ::= . . .

| Σα:κ.τ existential quantification
| Fst e type projection

e ∈ Term ::= . . .
| 〈τ, e′〉 as Σα:κ.τ ′ pairing
| Snd e term projection

Type Classification C ` τ : κ

C, α : κ ` τ : ?
C ` Σα:κ.τ : ?

C ` e : Σα:κ.τ
C ` Fst e : κ

Type Equivalence C ` τ = τ ′ : κ

C ` Fst (〈τ, e〉 as Σα:κ.τ ′) : κ
C ` Fst (〈τ, e〉 as Σα:κ.τ ′) = τ : κ

(rules for congruence, symmetry, reflexivity and transitivity omitted)

Term Classification C ` e : τ

C ` Σα:κ.τ ′ : ? C ` τ : κ C ` e : [τ/α] (τ ′)
C ` 〈τ, e〉 as Σα:κ.τ ′ : Σα:κ.τ ′

C ` e : Σα:κ.τ
C ` Snd e : [Fst e/α] (τ )

C ` e : τ C ` τ = τ ′ : ?
C ` e : τ ′

Term Equivalence C ` e = e′ : τ

C ` Snd (〈τ, e〉 as Σα:κ.τ ) : τ ′

C ` Snd (〈τ, e〉 as Σα:κ.τ ) = e : τ ′
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then, having quantified over all occurrences of int in the type of IntNat , we
obtain:

` StrongNat : Σβ:?.NAT (β).

Notice that the witness to β is not apparent from the type of StrongNat .
However, by projecting the term component of StrongNat we obtain:

` Snd StrongNat : NAT (Fst StrongNat),

which, by reducing the type projection Fst StrongNat , is equivalent to:

` Snd StrongNat : NAT (int).

Unlike the definition of AbsNat using the weak existential, the actual im-
plementation of β in terms of the type int is transparent as soon as we ac-
cess the term component of StrongNat . However, in order to establish that
` NAT (Fst StrongNat) = NAT (int) : ? we have to first equate the term

StrongNat with a pair: only then can we access the type component int, us-
ing the rule for type equivalence in Figure 2.19. In this case, this involves only
trivial equational reasoning on terms since the term StrongNat is already in the
form of a pair; in general, however, the term that we are projecting from may be
arbitrary, requiring non-trivial computation to bring it into the form of a pair.
If the term merely reduces to a variable, then the first-order dependency of the
type on this variable cannot be removed.

Because of its transparency, the strong existential fails to provide the secure
data abstraction associated with weak existentials. What it does provide is a
mechanism for pairing related types and terms.

From a logical perspective, adding strong higher-order existentials requires
extreme care. For instance, combining strong existentials with impredicative
polymorphism leads to an inconsistent theory. Roughly speaking, using the first
projection, it is possible to show that the type Σα:?.triv, where triv is some
trivial inhabited type, is isomorphic to the collection of all types, i.e. the collection
?. Moreover, since our formulation of the strong existential is impredicative, we
also have ` (Σα:?.triv) : ?. Thus we essentially have a type of all types. Much as
admitting a set of all set leads to an inconsistent set theory, admitting a type of all
types leads to an inconsistent type theory [23, 20]. In this case, the inconsistency
follows from the existence of well-typed, but non-normalising, terms. By the
same token, the term equivalence judgement is undecidable. Because we have
types depending on terms (i.e. the type phrase Fst e), this means that type
checking is undecidable too.
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It is possible to formulate a consistent version of strong higher-order existen-
tials if we adopt a predicative notion of quantification. Recall that, in set theory,
we can avoid the paradoxes resulting from admitting a set of all sets by intro-
ducing a new form of collection called a class, and distinguishing between small
collections, i.e. sets, and large collections, e.g. the class of all sets. Similarly, in
type theory, we can avoid the above inconsistency by introducing a distinction
between the universe of small types, i.e. types of kind ?, and a second universe
of large types, inhabited by strong existentials. This is the approach adopted, for
instance, in Luo’s Extended Calculus of Constructions [34].

However, from a programming perspective, introducing a universe distinction
means that dependent pairs may no longer be manipulated as ordinary terms.
If we use dependent pairs to model modules with transparent type components,
predicativity rules out the possibility of having first-class modules. Moreover,
adopting a predicative theory does not alter the fact that strong existentials
violate the phase distinction because the dependency of type equivalence on term
term equivalence remains.

2.2.7 Summary

In this section, we introduced a number of type-theoretic constructs that, in
combination, allowed us to emulate many of the examples we used to present
Modules. In this thesis, we shall argue that a structure corresponds to a record;
that functors correspond to polymorphic functions; that abstracting a structure
by a signature corresponds to introducing an existentially quantified type; that
the generation of new types corresponds to a weak form of existential elimination;
that signatures correspond to parameterised types; and finally, that structure en-
richment corresponds to a form of record subtyping. One of the distinguishing
features of our analogy is that we do not resort to the use of first-order dependent
types, nor do we resort to the use of strong higher-order existentials. This means
that we avoid the problems and limitations both these features pose when integ-
rated with a general-purpose programming language. Indeed, the only reason for
presenting these last two concepts is that they figure prominently in the existing
type-theoretic accounts of Standard ML Modules and its recent rivals.

2.3 Related Work

Research related to this thesis can be divided naturally into three categories:
type-theoretic approaches to modular programming, type-theoretic accounts of
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Standard ML Modules, and type-theoretic alternatives to Standard ML Modules.
We shall discuss each of these in turn and finish with a section on miscellaneous
related work. In Chapter 9 we will revisit some of this work to compare it with
the results of this thesis.

2.3.1 Type-Theoretic Approaches to Modular Program-
ming

2.3.1.1 Mitchell and Plotkin’s SOL

In their seminal paper [46], Mitchell and Plotkin make the original connection
between the informal notion of abstract data type and existential quantification
over types. They recognise that specifications of abstract data types correspond
to existential types, the creation of an abstract data type to existential intro-
duction, and the use of an abstract data type to existential elimination. SOL,
the type theory they use to illustrate their ideas, is the simply-typed λ-calculus
extended with second-order quantification over types. (The name SOL is an ab-
breviation for the second-order logic that results from the combination of the
features we discussed in Sections 2.2.1 and 2.2.2). Mitchell and Plotkin observe
that the impredicativity of SOL means that abstract datatypes are first-class val-
ues, allowing the run-time construction and selection of different implementations
of the same abstract datatype. The paper focuses on the issue of data abstrac-
tion, and does not directly address other desirable features of modules languages,
notably mechanisms for name space control and subtyping on module interfaces.

2.3.1.2 Cardelli’s Quest

Cardelli’s language Quest [6, 8, 11, 9] is an early type-theoretic programming
language designed explicitly for the construction of modular programs. Quest is
equipped with a form of dependent record, which allows sequences of related type
and term definitions to be treated collectively. Dependent records are essentially a
generalisation of SOL’s existential types with a novel elimination form: type and
term components of named records are accessed by a restricted form of the dot
notation rather than the more unwieldy open phrase. This use of the dot notation
to eliminate existentials is studied further in Cardelli and Leroy’s paper [10].

Quest is rather different from Standard ML. Although Quest’s record terms
are similar to structure bodies, type components of Quest records are invariably
abstract. As a result, interpreting a structure as a Quest record fails to account
for the transparency of the structure’s type components. Similarly, interpreting a
functor as a Quest function on dependent records does not capture the behaviour
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that an application of the functor will propagate the realisation of type compon-
ents from the functor’s actual argument to its result. Like SOL, Quest supports
first-class modules and avoids Standard ML’s stratification between Core and
Modules.

2.3.1.3 MacQueen’s DL

In an influential position paper, MacQueen [35] criticises module languages in
which the only facility for grouping related definitions of types and terms is
provided by existential types. MacQueen’s argument is that existential types
do not give adequate support for modular programming because the abstraction
afforded by existential quantification is too strong:

1. Opening the same existential term twice yields two unrelated hypothetical
type witnesses.

2. When building interrelated modules communicating via types of a common
submodule, the submodule must be opened in a scope encompassing all
of its uses, conflicting with the conceptually hierarchical structure of the
system.

As an alternative, MacQueen advocates the use of dependent types as a basis
for modular programming, drawing inspiration from the novel adoption of de-
pendent types in Burstall and Lampson’s experimental modules language Pebble
[4, 5]. MacQueen sketches the language DL, which is presented as a “de-sugared”
version of the Standard ML Modules language originally proposed by him in
[19]. DL exploits a combination of strong higher-order existentials and first-order
quantified types and, similar to Standard ML, exhibits a stratification between
the core and modules languages. In MacQueen’s interpretation, a signature spe-
cifying a type component corresponds to a strong higher-order existential type.
The definition of a core type component within a structure is modeled by pairing
a type with a term modeling the remainder of the structure. The ability to pro-
ject the actual type component from such a term is intended to reflect Standard
ML’s notion of transparent type definitions in structures. A signature specifying a
value or submodule is captured by a first-order existentially quantified type. The
definition of a core value or module component within a structure is modeled by
pairing a term with a term modeling the remainder of the structure. A functor
mapping structures to structures is modeled as a dependent function from de-
pendent pairs to dependent pairs. The apparent dependency of a functor’s result
type on its actual argument is captured by first-order universal quantification
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of the formal argument over the function space’s range. The standard elimina-
tion rule for dependent functions roughly accords with Standard ML’s ability to
propagate type realisations from the actual argument to the result of a functor
application.

Despite these similarities, DL fails to model most of the other important
features of Modules. It is impossible to specify type definitions in signatures,
preventing the expression of shared type components. Components are accessed
not by identifier but by positional notation. DL has no notion of subtyping
(corresponding to signature matching), making it impossible to treat a structure
as if it had a type declaring fewer components, a type differing in the order of the
structure’s components, or a type differing in the degree of abstraction. Finally,
DL fails to account for generative type definitions: every type component is
transparent and there is no primitive support for type abstraction.

2.3.2 Type-Theoretic Accounts of Standard ML Modules

2.3.2.1 Harper and Mitchell’s XML

Harper and Mitchell’s calculus XML [20] is an attempt to apply MacQueen’s
ideas [35] to provide a type-theoretic semantics of Standard ML. Surprisingly,
they make no effort to relate their calculus to the published semantics of Stand-
ard ML [43]. As a model of Standard ML Modules, XML exhibits essentially
the same successes and shortcomings of DL. The use of weak existential types
to account for Standard ML’s notion of type generativity is sketched, but not
incorporated in the definition of XML. Furthermore, the meta-theoretical implic-
ations of using strong higher-order existential types lead Harper and Mitchell to
conclude that the stratification of XML into a modules language and a core lan-
guage is necessary, unless we choose to admit (i) divergent terms in the absence of
explicit recursion, and (ii) undecidable type-checking. Transferring the properties
of their model to Standard ML, they conclude that Standard ML’s stratification
between Core and Modules is a theoretical requirement, not an historical acci-
dent. They consequently rule out the possibility of extending Standard ML with
first-class modules. However, the validity of this conclusion depends crucially on
the adequacy of their model.

2.3.2.2 Harper, Mitchell and Moggi’s HML

Harper, Mitchell and Moggi’s calculus HML [21] is presented as a further re-
finement of the calculus XML. A serious failing of DL and XML (already ac-
knowledged in [20]) is the absence of a phase distinction between compile-time
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type checking and run-time execution. As explained in Sections 2.2.5 and 2.2.6,
the standard formulation of dependent types and strong existentials, on which
DL and XML are based, implies that type checking involves the testing of term
equivalence. Real programming languages generally have undecidable theories of
term equivalence, rendering type-checking of realistic extensions of DL and XML
undecidable. Standard ML, on the other hand, does obey a phase distinction.

Harper, Mitchell and Moggi [21] refine their model accordingly: every de-
pendently typed term of XML is interpreted in HML as a “mixed-phase” entity
consisting of a compile-time and a run-time part. Thus, a higher-order dependent
pair is interpreted as a pair of a compile-time type component and a run-time
term component, in the usual way. However, a first-order dependent pair of two
subterms is interpreted non-standardly as a pair of a compile-time type, pairing
the subterms’ type components, and a run-time term, pairing the subterms’ term
components. Similarly, a dependent function is interpreted non-standardly as a
pair of a compile-time type component, consisting of a parameterised type that
constructs the type component of the function’s result as a function of the type
component of the argument; and a run-time term component, consisting of a
term that computes the term component of the function result as a polymorphic
function of both the type and the term component of the argument. This split
interpretation of dependent types yields a natural phase distinction. However, it
is achieved by adopting a non-standard equational theory for dependent terms
and types.

In HML, Standard ML Modules can still be modeled using dependent types
following the ideas of DL and XML, but without sacrificing the phase distinc-
tion. Nevertheless, HML retains the other shortcomings of DL and XML: there
is no account of the ability to specify type sharing in signatures, the ability to ac-
cess structure components by name rather than position, the notion of structure
enrichment, and type generativity.

Although elegant and interesting in its own right as the foundation of a prac-
tical modules system, HML is only indirectly related to Standard ML. Again,
no attempt is made to formally relate the existing semantics of Standard ML to
HML .
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2.3.3 Type-Theoretic Alternatives to Standard ML Mod-
ules

2.3.3.1 Harper & Lillibridge’s Translucent Sums

Harper and Lillibridge [18] present a type-theoretic alternative to Standard ML.
They introduce a new type-theoretic construct called a translucent sum. Translu-
cent sum terms are similar to the structures of Standard ML and the dependent
records of Cardelli’s Quest. Components of sum terms are named and are ac-
cessed by the dot-notation. For soundness reasons, type projections may only
be applied to a subset of sum terms called values. Values are canonical, or fully
evaluated, sum terms.

Akin to signatures, in a translucent sum type a type component may be spe-
cified in one of two ways: either opaquely, by specifying its name and kind, or
transparently, by specifying its name and concrete definition. The term translu-
cent refers to the possibility of having both opaque and transparent declarations
in the same sum type. The benefit of this approach is that it supports transpar-
ency, without sacrificing the phase distinction: provided a given type component
of a sum term is declared transparently in the sum’s type, then the implementa-
tion of that type component can be determined, not by reduction of the sum, as
in DL and XML, but by simple inspection of the sum’s type. Any type compon-
ent declared opaquely in the sum’s type is treated as abstract, yielding the same
degree of abstraction as SOL’s weak existential types. Values of sum type are
special, in the sense that a value may always be given a fully transparent type by
a special typing rule. This rule replaces every opaque declaration in the value’s
type by a transparent declaration that is defined as a projection from the value
itself.

The calculus employs a subtyping relation on sum types that, in particu-
lar, treats transparent type components as subtypes of opaque components, but
also incorporates a structural subtyping relation similar to record subtyping. In
Standard ML terms, the former aspect of this relation allows one to view any
realisation of a signature (modeled as a more transparent sum type) as a subtype
of the original signature (modeled as a more opaque sum type); the latter allows
one to view any enrichment of the signature (modeled as a wider sum type) as a
subtype of that signature (modeled as a narrower sum type).

Functors are modeled by functions on elements of sum types. In general, the
type of a function’s body may mention, and thus propagate, type components
projected from the function’s argument. If any of these components is opaque,
the dependency of the result type on the formal argument cannot be eliminated,
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and the type of the function must be expressed using first-order universal quan-
tification.

However, to avoid substituting terms in types, the usual elimination rule for
dependent functions is abandoned. Instead, a dependently typed function may
only be applied to an actual argument if it can first be given a non-dependent
supertype ( using a covariant subtyping rule). If the argument is a term of sum
type, this is only possible provided the implementation of every type component,
that is defined in the argument and propagated by the function, is transparent.
Unless the actual argument belongs to the restricted set of values, this may not
be the case. As a result, the calculus has the rather unnatural behaviour that
certain function applications fail to type check, even though the argument is in
the function’s domain.

Although the calculus has a phase distinction, because the subtyping relation
is undecidable, type-checking is undecidable too.

The translucent sum calculus supports a natural notion of higher-order func-
tor, albeit without the “fully transparent” behaviour desired by MacQueen and
Tofte [36]. Roughly speaking, a higher-order functor is fully transparent if it can
propagate any incidental argument-result type dependency inherent in an actual
argument (itself a functor), even if this dependency is left unspecified (i.e. ab-
stract) in the range of the formal argument. Forcing the programmer to specify a
particular argument-result dependency to achieve transparency is not satisfactory,
since it decreases the generality of the higher-order functor.

Harper and Lillibridge’s proposal is ambitious in avoiding a distinction between
core and modules. The aim is to obtain a uniform language with first-class mod-
ules. The intention is that the need for a separate core language is subsumed
by enriching the modules language directly with computational mechanisms nor-
mally associated with the core. This is made more explicit in follow-on work
by Harper and Stone [53, 22], that describes an interpretation of Standard ML
into a variant of the translucent sum calculus, extended directly with state and
exceptions. These papers give an involved syntactic translation, which, in this
author’s opinion, do little to clarify the semantics of Standard ML presented in
[43, 44]. Furthermore, there is currently no proof3 that this translation is faithful
to the original semantics. The thesis of Lillibridge [33] develops the meta-theory
of a drastically simplified type theory that is presented as a kernel version of the
translucent sum calculi underlying [18, 53, 22].

3Given the size of both the source and target languages, there probably never will be.
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2.3.3.2 Leroy’s Modules

Historically, the goal of designing a simple separate compilation scheme for Stand-
ard ML Modules, akin to Modula-2’s mechanism [59], has remained elusive. In
particular, the naive scheme that identifies implementations of compilation units
with curtailed structures, and interfaces of these units with their curtailing signa-
tures, is unsatisfactory. This approach fails because a curtailing signature rarely
captures its implementation’s full typing properties. Since type-checking of com-
pilation units is meant to proceed by relying solely on declared interfaces, the
discrepancy between a unit’s signature and its implementation’s actual typing
properties means that it is possible to give examples of well-formed monolithic
programs that no longer type-check when decomposed into separate compilation
units.

As we shall see in Chapter 3, Standard ML distinguishes between syntactic
type phrases (e.g. signatures), and the semantic objects, or types, actually used
to type-check phrases of the language. In particular, the semantic object assigned
to a curtailed structure typically reveals additional type information, beyond that
contained in its curtailing signature.

Arguing that the discrepancy between syntactic and semantic types is the root
obstacle to separate compilation, Leroy proposes an alternative to the semantics
of Modules in [28]. His approach is to eliminate the discrepancy by formulating
a type theory that relies solely on syntactic type information, thus removing the
need for semantic objects. Syntactically, his language is very similar to Modules,
apart from three significant departures. First, to simplify the theory he removes
structure sharing constraints, allowing him to ignore the interesting but rarely
exploited notion of structure sharing present in the original version of Standard
ML [43]. Second, to cater for structures with transparent type components, he
enriches the syntax of signatures to allow manifest type definitions as well as
abstract specifications. These subsume the functionality of Standard ML’s less
expressive type sharing constraints, and enable him to give more precise syn-
tactic descriptions of structure types. Finally, in Leroy’s calculus it is impossible
to merely curtail a structure by a signature: only abstractions are supported.
The separate compilation problem is solved by identifying the implementation of
a compilation unit with an abstracted structure, and the interface of this unit
with its abstracting signature. The typing rules of the calculus ensure that the
signature fully captures the typing properties of the abstracted structure.

Leroy independently arrives at a theory that is in many ways similar to that
of Harper and Lillibridge [18]. His enriched notion of signature is analogous to

53



a translucent sum type, since a signature may contain a mixture of abstract (cf.
opaque), and manifest (cf. transparent) type components. Signatures are used
directly as the types of structures. Standard ML’s notions of realisation and en-
richment are combined in a single subtyping relation on signatures. Structure
components are accessed by the dot-notation. However, the dot-notation is re-
stricted and only applies to structures that are named by paths: a path is either
a module identifier or the projection of a module identifier from a path. (The
restriction to projections from paths is similar to, but stronger than, Harper and
Lillibridge’s restriction to projection from values.) The notion of path is signi-
ficant, because a path can always be given a fully transparent signature by an
operation called strengthening. Strengthening a path’s signature redeclares any
abstract type component in the signature as a manifest definition, expressed as a
projection from the path itself.

Functors are modeled as functions taking structures to structures. As in
[18], first-order universal quantification must be used to describe the type of a
functor whose result type mentions an abstract type component of its argument.
Similarly, the calculus employs a non-standard elimination rule for dependent
functions. The formulation of this rule varies slightly from one presentation of
Leroy’s calculus to another. To preserve the syntactic invariant of restricting
projections to paths, in both [28] and [29], a dependent functor may only be
applied if its argument is a path; if its argument is not a path, the functor must
first be given a suitable non-dependent supertype (by using a covariant subtyping
rule). Similar to Harper and Lillibridge’s calculus [18], the calculi of both these
papers have the rather unnatural behaviour that certain functor applications fail
to type check, even though the type of the actual argument matches the signature
of the functor’s domain. Moreover, there appears to be no principled way of
choosing between different non-dependent subtypes of a functor: as a result,
these calculi fail to enjoy the principal (i.e. minimal) typing property. Another
variant of these calculi, presented in [31], adopts a restricted grammar that only
allows applications of functors to paths. Although this restriction seems to avoid
the problem with principal types, it fails to capture Standard ML’s ability to
apply functors to anonymous arguments.

In [31], Leroy proves an equivalence between his notion of type abstraction,
relying on syntactic signatures, and Standard ML’s notion of type generativity.
The equivalence result only holds for a restricted grammar of Standard ML pro-
grams. To circumvent this restriction, Leroy specifies a rewriting relation that
transforms arbitrary well-typed Standard ML programs into well-typed programs
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belonging to this reduced grammar. However, the cost of this translation is to
provide access to structures (though not type identities) that were anonymous,
and thus inaccessible, in the original Standard ML source. In the same paper,
Leroy gives a proof showing that his modified syntax for signatures elegantly
subsumes the functionality of the type sharing constraints used in the original
version of Standard ML [43]. This is a significant result, since Leroy’s syntax
dispenses with the complicated, unification based mechanism needed to resolve
sharing constraints. The syntax is compatible with Standard ML’s elaboration
to semantic objects, and has essentially been adopted in the revised definition of
Standard ML [44]. We also adopt it in this thesis.

Although Leroy’s calculi in [28, 31] support a natural notion of higher-order
functor, like Harper and Lillibridge’s system, they fail to have the “fully trans-
parent” behaviour of higher-order functors desired by MacQueen and Tofte [36].
Building on his previous work, Leroy [29] offers a partial solution to the full
transparency problem. It relies on extending the syntax of paths to include the
application of a (functor) path to an (argument) path, allowing type compon-
ents to be projected directly from functor applications, not merely from named
structures. In this way, the type component resulting from the application of a
functor to an argument can be expressed syntactically, provided both the functor
and the argument are paths. The extension of paths is significant, because it
allows a functor path to be given a fully transparent type by an extension of the
strengthening operation. Strengthening a functor path’s type redeclares any ab-
stract type component in the functor’s range as a manifest definition, expressed
in terms of an application of the functor path to the bound argument of the
functor’s type. In combination, these extensions enable Leroy to approximate
the fully transparent behaviour, provided programs adhere to the convention of
only expressing functor applications involving paths. These extensions also yield
a slightly different behaviour for functor application. Functor application is no
longer generative but applicative, in the sense that two distinct applications of
the same functor path to the same argument path result not in different, but
equivalent, abstract types. The applicative behaviour actually provides better
support for higher-order functors. In particular, it allows the programmer to
specify sharing between abstract types returned by distinct occurrences of con-
ceptually equivalent functor applications.

All of Leroy’s calculi are defined with respect to an arbitrary core language.
Like Standard ML, but unlike Harper and Lillibridge’s system, Leroy’s calculi
maintain the rigid stratification between the core and modules. He only briefly
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mentions the possibility of first-class modules, and observes that removing the dis-
tinction between the core and modules is incompatible with applicative functors.
Similar observations apply to Harper, Lillibridge and Stone’s [18, 33, 53, 22] pro-
posals: in these systems, the amalgamation of the core and modules languages
means that the invariants needed to support applicative functors are violated.
Leroy’s stratification between core and modules ensures that both the subtyping
relation on module types and typing relation on modules is decidable. Leroy’s
systems obey a phase distinction, and give a largely satisfactory, if somewhat
restricted, treatment of most of Standard ML’s features, bar one: in keeping with
the syntactic treatment of module types, Leroy cannot account for the effect of
merely curtailing, rather than abstracting, a structure by a signature.

Leroy’s proposals have been implemented in an industrial-strength, widely-
used compiler for a language very similar to Standard ML, Objective Caml [32].
An accessible and almost literal implementation of Leroy’s type system may be
found in his tutorial introduction [30]. Pottier [49] describes a prototype, full-
scale implementation of Leroy’s earliest calculus [28] with higher-order, but non-
transparent, functors. This work is interesting because it employs the “stamp-
based” techniques of Standard ML, relying on the distinction between syntactic
and semantic objects, to implement Leroy’s calculus.

Despite their practical success, Leroy’s proposals do have some theoretical
weaknesses. The syntactic restrictions on paths, which are not closed under sub-
stitution of module terms for module identifiers, means that it is difficult to give
a substitution-based dynamic semantics for his calculi. Courant [14] studies the
failure of subject reduction for Leroy’s module terms and proposes a variant calcu-
lus that admits a simple definition of module reduction. Courant’s modifications
allow him to state and prove a subject reduction theorem. His proposal, however,
introduces a dependency of type checking on an equational theory of module
terms. Although this approach blurs the phase distinction between compile-time
and run-time, Courant carefully avoids using equational reasoning on core terms,
preserving the decidability of type checking. Courant has managed to adapt
his ideas to more general core languages including dependently typed logics[13].
However, the need to perform even limited compile-time equational reasoning on
module terms is a distinct departure from the rigid phase-distinction enjoyed by
Standard ML.

56



2.3.4 Miscellaneous Related Work

The second part of Tofte’s thesis [55] investigates a skeletal, first-order mod-
ules language. The language supports signatures, structures and functors but no
core types or values. This is a kernel system for a forerunner of Standard ML’s
Modules. Tofte focuses on the meaning of structure identity and the problem
of elaborating signatures containing structure sharing constraints to principal se-
mantic objects. Aponté [1] suggests a more modern, alternative treatment of the
notion of structure identity and sharing actually adopted in Standard ML. In
[57, 58], Tofte describes preliminary work towards a direct extension of Standard
ML with higher-order functors. In particular, he proves the existence of principal
semantic objects for signatures that contain functor specifications. The research
of Tofte and Aponté mainly concerns structure sharing, and is now obsolete due
to the recent revision of Standard ML [44], where this feature has been removed.

MacQueen and Tofte propose a “fully transparent” static semantics for higher-
order functors in [36]. The behaviour of this static semantics is reflected in an
early implementation of higher-order functors in the Standard ML of New Jersey
compiler [2]. The static semantics is very complicated and departs radically from
the existing first-order semantics of Standard ML. In particular, it relies on the
compile-time execution of a non-trivial language of identity stamps to account for
full transparency. (On the other hand, the dynamic semantics for this proposal
admits a straightforward formalisation that is studied by Maharaj and Gunter
[37].)

Taking a different tack, Biswas [3] proposes an alternative static semantics
for higher-order functors that is also fully transparent. This semantics is based
on a direct generalisation of a fragment of the existing Standard ML semantics.
His ideas, which we believe have not received the attention they deserve, will be
discussed in detail, reworked and extended to the full language in Chapter 5.

For a more radical but conceptually simpler approach to modules, based on
interpreting some, but not all, of the features of Standard ML Modules directly in
an extension of the Core language, see Jones [26]. The companion paper by Nick-
lish and Peyton Jones [47] offers an informal comparison of the two approaches.

2.3.5 Summary

One characteristic feature of Standard ML Modules is the ability to define struc-
tures containing both type and term components. Although the second-order ex-
istential types underlying SOL [46] and Quest [9] provide a similar facility, they
cannot be used to model Standard ML structures: the realisation of a structure’s

57



type components is transparent, not abstract.

The primary motivation for the work on DL [35] and XML [20] is to account
for the transparency of type components by employing a familiar type-theoretic
construct, the strong higher-order existential type. A necessary consequence of
this decision, that introduces a dependency of types on terms, is the adoption
of first-order existential types, to account for nested structures, and first-order
universal types, to account for functors. The syntax of these constructs echoes the
convenient syntax of Standard ML that allows type components to be expressed
as projections from structure identifiers, and the type of a functor’s body to refer
to the functor’s argument. DL and XML give an alternative account of structure
transparency and the propagation of realisations across functor boundaries, while
incorporating a natural notion of higher-order functor. Unfortunately, the reliance
on strong existential types means that type equalities are established using term
reduction, which runs foul of the phase-distinction. The fact that XML type
checking becomes undecidable in the presence of impredicative strong existential
types leads Harper and Mitchell to conclude that the extension of Standard ML
with first-class modules is incompatible with decidable type checking. HML [21],
a further refinement of XML, is a predicative theory that preserves the phase
distinction by adopting a non-standard formulation of dependent types.

Harper and Lillibridge [18] abandon the use of strong higher-order existentials
altogether by proposing a new type-theoretic construct, the translucent sum, that
models structures containing a mixture of opaque and transparent type com-
ponents. The resulting modules calculus exploits first-order dependent types,
but adopts non-standard elimination rules that ensure the phase distinction by
propagating type equalities using subtyping instead of term reduction. The cal-
culus fails to have the principal typing property because of the novel elimination
rule for dependent functions. The calculus is impredicative, supporting first-class
modules by removing the distinction, and thus the stratification, between core
and modules language. Although equipped with higher-order modules, the iden-
tification of core and modules level computation means that neither applicative
nor fully transparent functors can be accommodated without violating soundness.
The decision not to distinguish between core and modules level types renders the
subtyping relation, and thus typechecking, undecidable.

Leroy’s calculi share many of the features of the translucent sum calculus.
They do not enjoy the principal typing property due to a similar failing with the
elimination rule for dependent functions. Leroy’s proposals are more conservat-
ive in preserving the stratification between the core and modules languages. The
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stratification prohibits the use of first-class modules but has the advantage of
maintaining a distinction between core and modules. By distinguishing between
core and modules computation, Leroy can soundly accommodate an applicat-
ive and fully transparent semantics for higher-order functors, but this behaviour
only applies to functor applications involving paths. Leroy’s distinction between
core and modules types ensures that the subtyping relation on module types is
decidable.

One of the characteristics of Standard ML is that the static semantics of the
language is defined, not in terms of the type syntax of the language, but with
respect to an intermediate language of static semantic objects. During classific-
ation, type phrases are elaborated to semantic objects, and the classification of
term phrases is done in terms of these semantic objects. This style of semantics
can be criticised for two reasons. From a software engineering perspective, the
classification of terms using semantic objects means that the type of a term can-
not be reported to the programmer in the syntax of the language. In particular,
this makes it more difficult to relate type errors to the source text of the pro-
gram. It also raises the possibility that some terms have semantic objects that
are not expressible in the syntax of the language, impeding simple approaches to
separate compilation. From a proof engineering perspective, the classification of
terms using semantic objects makes it difficult, and perhaps impossible, to prove
the type soundness property of the language in terms of its type syntax. These
properties are at odds with the syntactic nature of types and soundness proofs in
type theory.

There are essentially two approaches to addressing this failing of Standard
ML. The first is to reject the use of semantic objects to focus on the design of
a modules language with a purely syntactic theory of types derived from the
type syntax of Standard ML. Because of the inherent dependency of ML’s type
syntax on its term syntax, this leads naturally to type theories with dependent
types, whose introduction and elimination rules must then be refined in order to
obtain a phase distinction. The work discussed above is representative of this
approach and has been successful in formulating concise, syntactic type systems
whose meta-theories can be investigated using syntactic techniques adapted from
type theory. The most recent proposals not only provide alternative treatments of
Standard ML’s features but also greatly extend them. Unfortunately, the meta-
theoretic properties of the languages are less pleasing: we mention the absence of
principal types for the calculi of Harper, Lillibridge and Leroy, and the need to
blur the phase distinction of Leroy’s calculus in order to prove subject reduction
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[14].
The second approach, the one taken in this thesis, is to retain the use of

semantic objects, but to palliate their deficiencies by placing them on a more
type-theoretic footing. This is particularly important because the current choice
of semantic objects in Standard ML appears ad hoc and the definition of the
static semantics too operational. The programmer’s burden of understanding se-
mantic objects can be eased, but not completely removed, by improving on the
presentation of the static semantics, making type errors easier to report and un-
derstand. From the proof engineering perspective, it is still possible to prove a
type soundness property for the language, but the property and its proof must be
formulated with respect to semantic objects not syntactic types. Although less
satisfactory than obtaining a purely syntactic description of the static semantics,
we believe our approach to be acceptable because it offers other advantages. As
we shall see, the use of semantic objects removes the necessity of dealing directly
with first-order dependent types, by replacing first-order dependencies of types
on terms by simpler, second- and higher-order dependencies of types on types.
This makes the phase distinction clear from the outset and also avoids the syn-
tactic restrictions that appear in the dependently typed systems (the restriction
to projections from values in Harper and Lillibridges calculus, and the restric-
tion to projections from paths in Leroy’s). The use of semantic objects allows us
to assign principal types to all terms, including those functor applications that
lack principal types in the dependently typed theories of Harper, Lillibridge and
Leroy. The semantics also scales naturally to higher-order functors that are both
fully transparent and applicative in all cases, not just those involving applications
between paths. Moreover, this semantics can be extended to include first-class
modules without compromising the transparent and applicative behaviour of func-
tors or, we believe, the decidability of modules subtyping. The latter result relies
less on the fact that we employ semantics objects, and more on our decision to
maintain the distinction between Core and Module, but drop the stratification,
thus choosing the middle route between Leroy’s stratified calculi and Harper and
Lillibridge’s amalgamation of the core and modules languages.
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Chapter 3

The Static Semantics of
Mini-SML

In this chapter, we set the scene for the remainder of this thesis by presenting
the static semantics of a Modules and Core language in the style of Standard ML
[43, 44]. The two languages are presented separately. In Section 3.1, we present
the Modules language. It models the main features of Standard ML’s Modules
language. Modules makes relatively few assumptions on the structure of the Core:
our definition is parameterised by an arbitrary Core language. For concreteness,
Section 3.2 presents a particular instance of the Core language: Core-ML. Al-
though much simpler than Standard ML’s Core, it nevertheless captures those
features of the language that are relevant to the definition of Modules. In Section
3.3, we first define Mini-SML as the language obtained by combining the defin-
itions of Modules and Core-ML. We then proceed with an informal analysis of
the type-theoretic underpinnings of Mini-SML. Section 3.4 concludes the chapter
with a brief summary.

3.1 Modules

In this section, we define the Modules language. Given a Core language support-
ing a notion of definable types and terms, Modules provides a typed calculus for
manipulating collections of Core type and term definitions. Although the choice
of Core language is largely arbitrary, we do need to make some assumptions on
its structure. These are stated as hypotheses. They are sufficiently weak to
accommodate a wide variety of Core languages.
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Figure 3.1 Core Phrase Classes

k ∈ DefKind kinds
d ∈ DefTyp definable types
v ∈ ValTyp value types

(a) Type Syntax

e ∈ ValExp value expressions

(b) Term Syntax

3.1.1 Phrase Classes

We can present the syntax of Modules as a collection of phrase classes defined
by a grammar. Modules is an explicitly typed language. For this reason, it is
convenient to group the phrase classes of both Modules and the Core according to
whether they belong to the syntax of types or the syntax of terms. The concrete
grammar of Core definable types and terms depends on the Core language in
question:

Hypothesis 3.1 (Core Phrase Classes).
We assume that the Core language defines a grammar for the four Core phrase

classes shown in Figure 3.1.

• Phrases k ∈ DefKind are the kinds used to specify Core definable types.

• Phrases d ∈ DefTyp are the definable types used to define the meaning of
type identifiers.

• Phrase v ∈ ValTyp are the value types used to specify value identifiers.

• Phrases e ∈ ValExp are the value expressions used to define the meaning of
value identifiers.

To motivate Hypothesis 3.1 we can take a quick peek at Core-ML to see how
it fits this generic description.

Example 3.1.1 (Core-ML). In Core-ML, a definable type is a parameterised
simple type describing a family of simple types. The kind of a definable type
is the number of type parameters it expects. A value type, on the other hand,
is a universally quantified simple type, reflecting the polymorphism of Core-ML
value expressions. Finally, a value expression is either a function, a function para-
meter, a function application, or an occurrence of a Core-ML value defined within
a Module.
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Figure 3.2 Modules Phrase Classes

t ∈ TypId type identifiers
x ∈ ValId value identifiers
X ∈ StrId structure identifiers
F ∈ FunId functor identifiers

(a) Identifiers

B ∈ SigBod signature bodies
S ∈ SigExp signature expressions

do ∈ TypOcc type occurrences

(b) Type Syntax

sp ∈ StrPath structure paths
b ∈ StrBod structure bodies
s ∈ StrExp structure expressions

vo ∈ ValOcc value occurrences

(c) Term Syntax

Remark 3.1.1. We distinguish between the phrase classes DefTyp and ValTyp
specifically to accommodate languages like Core-ML. The two notions may coin-
cide in less complicated Core languages such as the simply typed λ-calculus.

We can now define the syntax of Modules. Figure 3.2 presents its phrase
classes while Figure 3.3 defines their grammar.

We introduce type identifiers t ∈ TypId to name Core definable types, and
value identifiers x ∈ ValId to name Core values. Identifiers X ∈ StrId name
structures and F ∈ FunId functors. We shall assume TypId, ValId, StrId and
FunId are pair-wise disjoint sets.

The type phrases of Modules are signature bodies and signatures. They spe-
cify the components of a structure by listing its component identifiers and their
specifications.

The term phrases of the Modules language are structure paths, structure bod-
ies and structure expressions. Structure paths provide access to structure identifi-
ers and their sub-structures. Structure bodies are sequences of definitions binding
type identifiers to Core definable types, value identifiers to Core values and struc-
ture identifiers to sub-structures. A functor definition introduces a named functor
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Figure 3.3 Modules Grammar

TypId def= {t,u, . . . } type identifiers
ValId def= {x,y, . . . } value identifiers
StrId def= {X,Y, . . . } structure identifiers
FunId def= {F,G, . . . } functor identifiers

B ::= type t = d; B type definition
| type t : k; B type specification
| val x : v; B value specification
| structure X : S; B structure specification
| εB empty body

S ::= sig B end structure signature

do ::= t type identifier
| sp.t type path

sp ::= X structure identifier
| sp.X substructure projection

b ::= type t = d; b type definition
| val x = e; b value definition
| structure X = s;b structure definition
| local X = s in b local structure definition
| functor F (X : S) = s in b functor definition
| εb empty body

s ::= sp structure path
| struct b end structure body
| F s functor application
| s � S signature curtailment
| s \ S signature abstraction

vo ::= x value identifier
| sp.x value path
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taking structures to structures. Structure expressions are phrases that evaluate
to structures. They include paths, structure bodies, and functor applications as
well as expressions that are curtailed or abstracted by a signature.

Let us examine the grammar of phrases to give an intuition of their semantics.

Signature expressions S ∈ SigExp are encapsulated signature bodies. A
signature body B ∈ SigBod is a possibly empty sequence of type, value and
structure specifications. Type specifications come in two forms. The phrase
type t : k; B specifies a type component named t of kind k, without placing any
further constraints on its actual realisation (i.e. its implementation). The phrase
type t = d; B, on the other hand, calls for t to be present and equal to the
definable type d. The phrase val x : v; B specifies a value component named x of
value type v. Finally, structure X : S; B specifies a structure component named
X, matching (see below) the signature S. Subsequent phrases within a signature
body may refer to previously specified identifiers.

A structure path sp ∈ StrPath is a dot-separated, non-empty sequence of
structure identifiers. The trivial path X accesses the structure bound to X in the
current context. The phrase sp.X projects the structure component X from the
enclosing structure sp.

A structure body b ∈ StrBod is a possibly empty sequence of definitions. Each
definition binds an appropriate identifier to a Core definable type, Core value,
Modules structure or Modules functor. Subsequent phrases in the remainder of
the body may refer to previously bound identifiers. Types, values and substruc-
tures introduced by phrases type t = d; b, val x = e; b, and structure X = s;b
become components of the encapsulating structure expression and can be accessed
by the dot-notation. The phrase local X = s in b, on the other hand, merely
defines X for local use within b. Finally, the phrase functor F (X : S) = s in b
defines a functor F as a function on structures. X is the formal argument struc-
ture of F. The signature S specifies its type. The scope of the argument is the
functor body s. The functor may be applied to any structure that matches the
argument’s signature S. Although the scope of the functor F is the remaining
definitions in b, the functor itself does not become a component of the enclosing
structure.

Structure expressions s ∈ StrExp are phrases that evaluate to structures. They
include structure paths as the means of referring to structures and substructures
declared in the current context. The phrase struct b end encapsulates a struc-
ture body to form a structure. F s is the application of the functor F to an
actual structure s. The phrase s � S matches the structure s against the sig-
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nature S and curtails it accordingly: components of s not specified in S are no
longer accessible from the curtailed structure. Nevertheless, those type compon-
ents merely specified in S by type t : k phrases retain their actual realisation in
s. The abstraction s \ S is similar to the curtailment s � S. However, the actual
realisation of type components that are merely specified, but not defined, in S is
hidden outside the abstraction, by generating new types for these components.

Informally, a structure expression matches a signature if it implements all
of the components specified in the signature. In particular, the structure must
realise all of the type components that are merely specified but not defined in
the signature. Moreover, the structure must enrich the signature subject to this
realisation: every specified type must be implemented by an equivalent type;
every specified value must be implemented by a value whose type is at least as
general as its specification; finally, every specified structure must be implemented
by a structure that enriches its specification. The order in which components of
the structure are actually defined is irrelevant. Furthermore, the structure is free
to define more components than are specified in the signature.

We must, of course, equip the grammar of the Core language with a means
of referring to the definitions of Core definable types and values introduced by
Modules. There is little point in defining Modules otherwise. The phrase classes
of type occurrences TypOcc and value occurrences ValOcc provide the syntactic
interface that Modules presents to the Core.

Type occurrences are phrases that denote Core definable types. Conceptually,
they belong to the syntax of types and are presumed to occur in the Core’s type
syntax. A type occurrence do ∈ TypOcc is either a reference t to the definition
of t in the current context, or the projection sp.t of the type component t from
the structure path sp.

Value occurrences are phrases that evaluate to Core values. They belong to
the syntax of terms, and are assumed to occur in the Core’s term syntax. A value
occurrence vo ∈ ValOcc is either a reference x to the definition of x in the current
context, or the projection sp.x of the value component x from the structure path
sp.

Remark 3.1.2. In Standard ML, the phrase classes StrPath, TypOcc and ValOcc
are called “long identifiers”, since they boil down to dot-separated sequences of
identifiers. In Chapter 5 we will do away with structure paths and generalise the
dot-notation to apply to any Modules expression that evaluates to a structure. For
this reason, we prefer the more neutral terminology of type and value occurrences.

Remark 3.1.3. In Standard ML, functors may only be defined in a separate phrase
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Figure 3.4 Core Semantic Objects
dk ∈ DefTypk definable types

v ∈ ValTyp value types
C ∈ CoreContext Core contexts

class of “top level” definitions. To avoid introducing a further phrase class, we
instead allow strictly local definitions of functors in structure bodies. In this way,
outermost structure bodies can play the role of Standard ML’s top-level. We
stress that Modules remains first-order: functors may neither take functors as
arguments nor return them as results.

3.1.2 Semantic Objects

Following Standard ML [43, 44], the static semantics of Modules distinguishes
between the type phrases of the language and the semantic objects they denote.
As we shall see in Section 3.1.3, a type phrase is well-formed provided it denotes
some semantic object, according to a denotation judgement. Similarly, a term
phrase is well-typed provided it can be classified by some semantic object, accord-
ing to a classification judgement. In this section, we define the semantic objects
of Modules.

Notation. We will often re-use the same names for phrase classes and the semantic
objects they denote. However, they are different. To avoid confusion, we will use
roman font for a syntactic object o ∈ Object and math italic for its semantic
counterpart o ∈ Object .

Hypothesis 3.2 (Semantic Objects of the Core).

We assume that the Core language defines the following sets of semantic ob-
jects (summarised in Figure 3.4):

• For each Core kind k ∈ DefKind, a set DefTypk of semantic definable types
of kind k. We let dk range over elements of the set DefTypk. Semantic
definable types are the denotations of well-formed type phrases d ∈ DefTyp.

• A set ValTyp of semantic value types, ranged over by v. Semantic value
types are the denotations of well-formed value type phrases v ∈ ValTyp.
We also assume that they are the types used to classify value expressions
e ∈ ValExp.

• A set CoreContext of Core contexts recording assumptions on Core-specific
identifiers, as required to determine the denotations and classifications of
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Figure 3.5 Semantic Objects of Modules
κ ∈ Kind kinds classifying types

ακ ∈ TypVarκ type variables
M , N , P , Q , R∈ TypVarSet variable sets

νκ ∈ TypNamκ type names
τκ ∈ Typκ types

S ∈ Str structures
L ∈ Sig signatures

F ∈ Fun functors

C ∈ Context contexts

Core phrases. We assume that Core contexts are finite maps whose domains
are disjoint from the sets of type, value, structure and functor identifiers
(TypId, ValId, StrId and FunId). The range of these finite maps is irrelev-
ant to Modules and may vary according to the choice of Core language.

Figures 3.5 and 3.6 summarise the static semantic objects assigned to module
expressions. They serve the role of types in the type system of Modules. For
convenience, whenever it aids the discussion, or helps to unambiguously abbrevi-
ate a number of related properties, we will use generic meta-variables o and O to
range over more than one collection of semantic objects.

Definition 3.3 (Finite Sets and Maps). For sets A and B, Fin(A) denotes
the set of finite subsets of A, and A

fin→ B denotes the set of finite maps (partial
functions with finite domain) from A to B. A finite map will often be written
explicitly as a set in the form {a1 7→ b1, · · · , ak 7→ bk}, for k ≥ 0. Let f and g be
finite maps. Dom(f) and Rng(f) denote the domain of definition and range of
f . The finite map f + g has domain Dom(f) ∪ Dom(g) and values (f + g)(a) def=
if a ∈ Dom(g) then g(a) else f(a). If Rng(g) ⊆ Dom(f) then f ◦ g is the finite
map with domain Dom(g) and values (f ◦g)(a) def= f(g(a)). For A ⊆ Dom(f), the
restriction f ↓ A is the finite map with domain A and values (f ↓ A)(a) def= f(a).
Provided Dom(f) ∩Dom(g) = ∅ then the parallel map f | g is the finite map
f | g def= f ∪ g (viewing f and g as sets) with domain Dom(f) ∪ Dom(g).

Notation (Enumerated Sets). We will occasionally need to enumerate the ele-
ments of a finite set. For k a natural number, we define [k] to denote the finite set
of indices [k] def= {i | 0 ≤ i < k}. Then [0] = ∅, the empty set of indices, and, for
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Figure 3.6 Semantic Objects of Modules (cont. )
κ ∈ Kind ::= k Core kind
ακ ∈ TypVarκ def= {ακ, βκ, δκ, γκ, . . .} an infinite,

denumerable set
α ∈ TypVar def=

⊎
κ∈Kind TypVarκ

P ,Q ∈ TypVarSet def= Fin(TypVar )
νκ ∈ TypNamκ ::= ακ type variable
τκ ∈ Typκ ::= νκ type name

| dk definable type
(where κ ≡ k)

τ ∈ Typ def=
⊎
κ∈Kind Typκ

S ∈ Str ::= t = τ k,S ′ type component
(provided t 6∈ Dom(S ′))

| x : v ,S ′ value component
(provided x 6∈ Dom(S ′))

| X : S ′,S ′′ structure component
(provided X 6∈ Dom(S ′′))

| εS empty structure

L ∈ Sig ::= (P)S signature

F ∈ Fun ::= (P)(S, (Q)S ′) functor

C ∈ Context def=


C ∪ Ct ∪ Cx ∪ CX ∪ CF

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C ∈ CoreContext ,
Ct ∈ TypId fin→ Typ,
Cx ∈ ValId fin→ ValTyp,
CX ∈ StrId fin→ Str ,
CF ∈ FunId fin→ Fun
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k > 0, [k] = {0, 1, . . . , k − 1}. We will often write {a0, . . . , ak−1} to enumerate
the elements of a finite set of k ≥ 0 elements, and use the notation ai, for i ∈ [k],
to index the i-th element of this set.

As we shall see in Section 3.1.3, the effect of the definition type t = d is to
extend the context with a declaration stating that the type identifier t has the
denotation d ∈ DefTyp of the phrase d ∈ DefTyp. A type specification type t : k,
however, merely specifies an arbitrary realisation of the type identifier. Intuitively,
the type denoted by t should represent an indeterminate definable type of kind
k. Following Standard ML, we use type names ν ∈ TypNam to represent such
indeterminates. In this chapter, a type name is just a kinded, second-order type
variable α ∈ TypVar , that ranges over semantic definable types of the appropriate
kind. In order to record the denotation of a type identifier, allowing both the
possibility that its denotation is a definable type, and the possibility that its
denotation is just a type name, we also introduce an additional set of semantic
objects: a type τ ∈ Typ is either a definable type or a type name. In this way,
the possible denotations of a type identifier can be recorded uniformly as types.
For instance, the declaration type t = d is recorded as t = τ , where τ ≡ d , while
the specification type t : k is recorded as t = τ , where τ ≡ α. Type variables,
type names and types will be distinguished by their kind κ ∈ Kind , where the
set Kind is constructed from the set of Core kinds DefKind. Formally, we define:

Definition 3.4 (Kinds, Type Variables, Type Names and Types).

Every kind κ ∈ Kind is equivalent to some Core kind k ∈ DefKind used to
specify definable types1.

Kinds are used to index sets of kind-equivalent type variables, type names and
types. For each kind κ ∈ Kind we have:

• An infinite, denumerable set of type variables, TypVarκ. A type variable
ακ ∈ TypVarκ ranges over types in Typκ.

• A set of type names, TypNamκ. A type name νκ ∈ TypNamκ is just a type
variable of kind κ.2

• A set of types, Typκ. A type τκ ∈ Typκ is either a type name or a Core
definable type of the appropriate kind.

1The distinction between DefKind and Kind , though vacuous here, will be exploited in
Chapter 5, where we generalise the set Kind , keeping DefKind fixed.

2Again, the distinction between sets TypNamκ and TypVarκ, though vacuous here, will be
exploited in Chapter 5, in which we generalise the sets TypNamκ to include constructs other
than type variables.
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Hypothesis 3.5 (η-expansion of Type Names).

We assume that the Core provides a kind-preserving, injective function:

η( ) ∈ ∪k∈DefKindTypNamk → DefTypk

allowing any type name ν to be viewed as an equivalent definable type η(ν) (of
the same kind).

Example 3.1.2 (Core-ML’s η). In Core-ML, the type name α2 is a variable for
a definable type expecting two arguments. The Core-ML operation η(α2) returns
its η-expansion Λ(′a, ′b).α2(′a, ′b).

The Core operation η, defined on type names, is extended to types:

Definition 3.6 (η̂-expansion of Types). We define the operation η̂ on types
as follows:

η̂( ) ∈ ∪k∈DefKindTypk → DefTypk

η̂(ν) def= η(ν)

η̂(d ) def= d

The operation η̂ is used to define our notion of type equivalence:

Definition 3.7 (Equivalence of Types). We implicitly identify types with their
η̂-expansions. In particular, a type consisting of a type name is identified with the
type consisting of the η-expansion of that name: we consider ν = η̂(ν). Moreover,
we only consider as valid those equations between pairs of type variables, type
names and definable types that compare objects of the same kind.

Example 3.1.3 (Core-ML’s Equivalence of Types). Continuing Example 3.1.2,
for Core-ML, we consider that α2 = Λ(′a, ′b).α2(′a, ′b), since the type on the right
is an η̂-expansion of the type on the left.

Definition 3.8 (Structures). A semantic structure S ∈ Str is a nested associ-
ation list, associating identifiers with types, value types and semantic structures.
Informally, semantic structures are the types assigned to structure bodies and
structure expressions. They record the denotations of type components, and the
types of value and structure components.
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The domain of S, written Dom(S), is the set of its components’ identifiers:

Dom( ) ∈ Str → Fin(TypId∪ValId∪ StrId)

Dom(εS)
def= ∅

Dom(t = τ ,S) def= {t} ∪Dom(S)

Dom(x : v ,S) def= {x} ∪Dom(S)

Dom(X : S,S ′) def= {X} ∪ Dom(S ′)

The provisos on structures in Figure 3.6 ensure that components are uniquely
identified, allowing one to view a semantic structure as a triple of finite maps
with corresponding (partial) retrieval functions:

( ) ∈ (Str × TypId) ⇀ Typ

εS(t)
def= undefined

(t′ = τ ,S)(t) def=
{
τ if t = t′

S(t) otherwise.

(x : v ,S)(t) def= S(t)

(X : S,S ′)(t) def= S ′(t)

The retrieval functions for value and structure bindings are defined similarly.

Remark 3.1.4 (Relating Semantic Structures to Record Types).
Semantic structures are very similar to record types (cf. Section 2.2.1). Like
record types, they list the types of term components. Unlike record types, they
also list the denotations of type components.

Notice that component identifiers are not variables, they are neither free nor
bound but serve merely as tags, akin to the field names of record types. Contrast
this with the nature of syntactic signatures that allow dependencies between
successive components.

In fact, in Standard ML [43, 44], semantic structures are defined as finite
maps on identifiers: we prefer to use an inductive definition to make it easier
to prove properties about them. The difference is not significant. In particular,
our retrieval functions and the soon to be defined enrichment relation (Definition
3.17), are immune to the order in which components appear, as in Standard ML.

Definition 3.9 (Signatures). Signature expressions denote semantic signatures
L ∈ Sig . Every signature has the form L ≡ (P)S, where P is a set of type vari-
ables, and S is a semantic structure. Type variables in P are bound in S, in the
usual sense of free and bound variables.
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Definition 3.10 (Functors). Semantic functors F ∈ Fun are the types as-
signed to functor identifiers. Every semantic functor has the form F ≡ (P)(S, (Q)S ′).
Type variables in P are bound simultaneously in the functor domain S and the
functor range (Q)S ′. Type variables in Q are bound in S ′.

Assume F is a functor of type (P)(S, (Q)S ′). Informally, variables in P cap-
ture the type components of the domain S on which F is parametric; their possible
occurrence in the range (Q)S ′ caters for the propagation of types from the func-
tor’s actual argument. Q is the set of generative or “new” type variables returned
by an application of F. S ′ is the semantic structure of the result of the application.

Definition 3.11 (Contexts). A (Modules) context C ∈ Context is a finite map
assigning semantic objects to identifiers. Note that, by our definition of contexts,
every context determines a (possibly empty) Core context from which Core bind-
ings can be retrieved. Moreover, adding a Core context binding to a Modules
context result in a valid Modules context. In addition to Core level bindings,
type, value, structure and functor identifiers are mapped to (semantic) types,
value types, structures and functors respectively.

Contexts record the type information needed to type-check Modules and Core
phrases and may be regarded as finite sets of assumptions: type identifiers are re-
lated to the types they denote; value, structure and functor identifiers are related
to the types they inhabit. To stress the view of contexts as sets of assumptions,
we define the following four operations for updating the context with either new
or revised assumptions on identifiers:

[ = ] ∈ (Context × TypId× Typ)→ Context

C[t = τ ] def= C + {t 7→ τ }

[ : ] ∈ (Context × ValId× ValTyp)→ Context

C[x : v ] def= C + {x 7→ v}

[ : ] ∈ (Context × StrId× Str )→ Context

C[X : S] def= C + {X 7→ S}

[ : ] ∈ (Context × FunId× Fun)→ Context

C[F : F ] def= C + {F 7→ F}

Unlike semantic structures, contexts support re-bindings to identifiers. The
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definition of + ensures that subsequent bindings take precedence over previous
ones.

Definition 3.12 (Free and Bound Type Variables). We let FV(O) denote
the set of type variables occurring free in O, where the notions of free and bound
are defined as usual.

We implicitly identify semantic objects (i.e. signatures (P)S and functors
(P)(S, (Q)S ′)) that are equivalent up to capture-avoiding, kind-preserving changes
of bound type variables.

Definition 3.13 (Realisations).

A realisation:

ϕ ∈ Real def= {f ∈ TypVar fin→ Typ | ∀κ.∀ακ ∈ Dom(f).f(ακ) ∈ Typκ},

defines a kind-preserving, finite substitution of types for type variables.

Note that realisations are finite maps and we will often treat them as such.

For ϕ a realisation, we use the notation Reg(ϕ) to denote its region, i.e. the
set of type variables occurring free in its range:

Reg( ) ∈ Real → Fin(TypVar )

Reg(ϕ) def=
⋃

τ∈Rng(ϕ)

FV(τ )

=
⋃

α∈Dom(ϕ)

FV(ϕ (α)).

Hypothesis 3.14 (Realisation of Core Definable Types and Value Types).

We assume that the Core language is equipped with the following operations:

( ) ∈ (Real × DefTypk)→ DefTypk (for each k ∈ DefKind)

( ) ∈ (Real × ValTyp)→ ValTyp

for applying realisations of type variables to definable types and value types.

Definition 3.15 (Realisation of Type Names and Types).

Realisation of type names and types is defined as follows:

( ) ∈ (Real ×TypNamκ)→ Typκ (for each κ ∈ Kind )

ϕ (α) def=
{
ϕ(α) if α ∈ Dom(ϕ)
α otherwise
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and:3

( ) ∈ (Real × Typκ)→ Typκ (for each κ ∈ Kind )

ϕ (d ) def= ϕ (d )

ϕ (ν) def= ϕ (ν)

We extend realisations to structures, signatures and functors, avoiding capture
of free variables by binding constructs (signatures (P)S and functors (P)(S, (Q)S ′))
in the usual way.

Modules defines a subtyping relation on semantic structures. If S is a subtype
of S ′ then every phrase of type S may be used as a phrase of type S ′. Following
Standard ML, the subtype relation is actually expressed as a subsumption rela-
tion, called enrichment. Thus S is a subtype of S ′ if, and only if, S enriches S ′.
It is the presence of subtyping that, on the one hand, allow us to apply a functor
to an argument with a type that is richer than required; and, on the other hand,
allows us to coerce the actual type of a structure expression to one that is less
rich.

The definition of enrichment between structures extends a Core-dependent
subtyping relation on value types:

Hypothesis 3.16 (Enrichment between Value Types).

We assume that the Core language is equipped with an enrichment relation on
value types:

� ∈ ValTyp × ValTyp.

The relation is intended to capture a subtyping relation: provided v � v ′, read v
enriches v ′, then any Core value of type v may also be regarded as a value of type
v ′.

We require that � is a pre-order, i.e. that it is a reflexive and transitive
relation.

We also require that � is closed under realisation: that is, whenever v � v ′

then, for any realisation ϕ, we also have ϕ (v) � ϕ (v ′).

We can now introduce the enrichment relation on structures. Informally, S
enriches S ′, written S � S ′, if and only if:

• S has at least the components of S ′;
3The following definition looks circular, but it’s not: the key is to read the left-hand side

as a case analysis on the outer form of the semantic type, and to read the right-hand side as
applying the realisation to the uncovered subterm.
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Figure 3.7 Enrichment

Structure Enrichment S � S ′

Dom(S) ⊇ Dom(S ′)
∀t ∈ Dom(S ′).S(t) = S ′(t)
∀x ∈ Dom(S ′).S(x) � S ′(x)
∀X ∈ Dom(S ′).S(X) � S ′(X)

S � S ′

• the type components common to both structures are equivalent;

• the type of every term component of S is at least as rich as the type of any
corresponding component of S ′.

Formally, we define:

Definition 3.17 (Enrichment between Structures). The enrichment rela-
tion between structures is defined as the least relation:

� ∈ Str × Str

closed under the rule in Figure 3.7.
Note that the equalities in the second premise of this rule implicitly require

that common type components have the same kind (recall Definition 3.7). Also,
observe that the order in which components appear within S and S ′ is irrelevant
to the definition of S � S ′.

Given Hypothesis 3.16, it is easy to show that � is a pre-order that is
closed under realisation.

Finally, matching a structure against a signature is a combination of realisa-
tion and enrichment:

Definition 3.18 (Signature Matching). A structure S matches a signature
L ≡ (P)S ′ if, and only if, there exists a realisation ϕ with Dom(ϕ) = P such that
S � ϕ (S ′).

3.1.3 Static Semantics

In this section we define the judgements of the static (or type-checking) semantics
of Modules. There are essentially two kinds of judgement. A denotation judge-
ment has the form C ` p . p. It relates a type phrase p to the semantic
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Figure 3.8 Core Judgements

C ` d . d
In context C, definable type d denotes definable type d .

C ` v . v
In context C, value type v denotes value type v .

(a) Denotation Judgements

C ` e : v
In context C, value expression e has value type v .

(b) Classification Judgements

Figure 3.9 Modules Judgements

C ` B . L
In context C, signature body B denotes signature L.

C ` S . L
In context C, signature expression S denotes signature L.

C ` do . d
In context C, type occurrence do denotes definable type d .

(a) Denotation Judgements

C ` sp : S
In context C, path sp has structure S.

C ` vo : v
In context C, value occurrence vo has value type v .

(b) Classification Judgements

C,N ` b : S ⇒M
In context C and state N , structure body b has structure S, generating fresh

types M .
C,N ` s : S ⇒M

In context C and state N , structure expression s has structure S, generating
fresh types M .

(c) Generative Classification Judgements
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object p that it denotes in the context C. A classification judgement has the form
C ` p : o. It relates a term phrase p to the semantic object o that it inhabits in
the context C. We can think of o as the type of p.

Hypothesis 3.19 (Core Judgements).

We assume the static semantic of the Core provides inference rules defining
the judgements in Figure 3.8. Each judgement is accompanied by its English
reading.

Remark 3.1.5. For Modules to be useful, we must allow Core type phrases to
contain type occurrences do ∈ TypOcc accessing type components of struc-
tures. Similarly, we must permit Core term phrases to contain value occurrences
vo ∈ ValOcc accessing value components. In particular, we shall allow the rules
defining Core judgements to refer to the Modules judgements C ` do . d and
C ` vo : v defined below. Since the denotations and types of these phrases must
be determined in a Modules context C ∈ Context , the Core judgements must also
be defined with respect to Modules contexts. Recall that Context generalises the
set CoreContext of Core-specific contexts.

The static semantics of Modules is defined by the judgements in Figure 3.9.
Each judgement is accompanied by its English reading. In Figure 3.9, we en-
counter a third form of judgement: the generative classification judgement C,N `
p : o ⇒ M . Like an ordinary classification judgement, it relates a term phrase
p to the semantic object o that it inhabits. However, the classification of the
phrase is allowed to generate new type variables. N records the set of type vari-
ables existing prior to the classification of the phrase. M records the set of new
type variables generated during the classification of the phrase.

The judgements of Modules are defined by the following inference rules.

3.1.3.1 Denotation Rules

Signature Bodies C ` B . L

A signature body B denotes a semantic signature L ≡ (P)S. The bound vari-
ables of the signature arise from type specifications type t : k appearing within
the body and its sub-signatures (see Rule E-2 below). P is the set of types spe-
cified by B. Essentially, each component of B gives rise to a component of the
structure S, by replacing the components’ specification by its denotation in the
current context. The specification of a component is added to the context before
determining the denotations of subsequent specifications. The side-conditions on
bound type variables merely prevent capture of free variables. They can always
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be satisfied by suitable renamings. The remaining side-conditions ensure that
components are uniquely identified.

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` B . (P)S t 6∈ Dom(S)
C ` type t = d; B . (P)t = d ,S (E-1)

C[t = αk] ` B . (P)S αk 6∈ FV(C) ∪ P t 6∈ Dom(S)
C ` type t : k; B . ({αk} ∪ P)t = αk,S (E-2)

C ` v . v P ∩ FV(v) = ∅
C[x : v ] ` B . (P)S x 6∈ Dom(S)
C ` val x : v; B . (P)x : v ,S (E-3)

C ` S . (P)S
C[X : S] ` B . (Q)S ′ P ∩ FV(C) = ∅
Q ∩ (P ∪ FV(S)) = ∅ X 6∈ Dom(S ′)
C ` structure X : S; B . (P ∪ Q)X : S,S ′ (E-4)

C ` εB . (∅)εS (E-5)

(E-1) The signature body specifies a type named t with the same denotation as
the given definable type d.

(E-2) The signature body specifies a type component t of kind k with an inde-
terminate realisation. The variable αk, which is chosen to be fresh with
respect to the current context, is used to represent the indeterminate.
Provided B denotes in the extended context, the variable αk is discharged,
added to the set P of types specified by B, and bound in the compound
signature ({αk} ∪ P)t = αk,S ′.

(E-4) The signature body specifies an arbitrary structure X matching the signa-
ture S. Provided S denotes the semantic signature (P)S, the denotation of
B is determined in the context extended with the assumption [X : S]. The
side condition on P ensures that the variables are treated as indeterminate
types. These variables are subsequently discharged and become bound in
the compound signature (P ∪Q)X : S,S ′.
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Signature Expressions C ` S . L

Signature expressions denote semantic signatures.

C ` B . L
C ` sig B end . L (E-6)

Type Occurrences C ` do . d

Type occurrences denote definable types.

t ∈ Dom(C) C(t) = τ

C ` t . η̂(τ ) (E-7)

C ` sp : S t ∈ Dom(S) S(t) = τ

C ` sp.t . η̂(τ ) (E-8)

(E-7) We assume that the Core judgements expect type occurrences to denote
definable types. However, type identifiers denote types, not definable types.
By applying the operation η̂ we convert the type τ denoted by t into the
equivalent definable type η̂(τ ). A similar comment applies to Rule (E-8).

(E-8) Observe how the denotation of the type projection sp.t is determined stat-
ically by inspecting the type S of the structure path sp. In particular, we
do not need to evaluate the term sp to determine the denotation of its type
component.

3.1.3.2 Classification Rules

Structure Paths C ` sp : S

Structure paths are classified by semantic structures.

X ∈ Dom(C) C(X) = S
C ` X : S (E-9)

C ` sp : S ′ X ∈ Dom(S ′) S ′(X) = S
C ` sp.X : S (E-10)
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Value Occurrences C ` vo : v

Value occurrences are classified by value types.

x ∈ Dom(C) C(x) = v
C ` x : v (E-11)

C ` sp : S x ∈ Dom(S) S(x) = v
C ` sp.x : v (E-12)

3.1.3.3 Generative Classification Rules

The generative classification judgements C,N ` b : S ⇒ M and C,N ` s : S ⇒
M are special. In each, the phrase is classified with respect to both a context
C and a set of type variables N . N is a state capturing the set of variables
generated so far. It should be a superset of FV(C). The phrase is related to
a semantic structure S and a set of variables M . M is the set of “new” type
variables generated during the classification of the phrase. Inspecting the rules,
we can see that these variable sets are threaded through the classification tree in
a global, state-like manner. Generated variables are accumulated in the state as
classification traverses the structure of the phrase. The rules ensure that M is
distinct from N . It is in this sense that the variables of M are new.

Structure Bodies C,N ` b : S ⇒M

Structure bodies are classified by semantic structures.

C ` d . d C[t = d ],N ` b : S ⇒ M t 6∈ Dom(S)
C,N ` type t = d; b : t = d ,S ⇒ M (E-13)

C ` e : v C[x : v ],N ` b : S ⇒M x 6∈ Dom(S)
C,N ` val x = e; b : x : v ,S ⇒ M (E-14)

C,N ` s : S ⇒ P C[X : S],N ∪ P ` b : S ′ ⇒ Q X 6∈ Dom(S ′)
C,N ` structure X = s;b : X : S,S ′ ⇒ P ∪Q

(E-15)

C,N ` s : S ′ ⇒ P C[X : S ′],N ∪ P ` b : S ⇒ Q
C,N ` local X = s in b : S ⇒ P ∪Q (E-16)
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C ` S . (P)S ′ P ∩N = ∅
C[X : S ′],N ∪ P ` s : S ′′ ⇒ Q C[F : (P)(S ′, (Q)S ′′)],N ` b : S ⇒M

C,N ` functor F (X : S) = s in b : S ⇒M
(E-17)

C,N ` εb : εS ⇒ ∅ (E-18)

(E-13) The structure body defines t as the denotation of d: the remainder of the
body b is classified in the context extended with the assumption [t = d ].
The types generated by the entire phrase are just the types generated by
classifying b. The component is added to the resulting structure.

(E-14) The structure body defines x as the value expression e. Provided e has
value type v , the remainder of the body b is classified in the context exten-
ded with the assumption [x : v ]. The types generated by the entire phrase
are just the type generated by classifying b. The type of x is recorded in
the resulting structure.

(E-15) The structure body defines X as the structure expression s. Provided s
has structure S, generating new types P , the remainder of the body b is
classified in the context extended by the typing assumption [X : S], and the
new state recording the additional types P . The set of types generated by
the entire phrase is just the union of the sets returned by the classification
of s and b. The type of X is recorded in the resulting structure.

(E-16) The rule is similar to Rule (E-15). The difference is that the definition of
X is local b, and does not become a component of the resulting structure.
Note that the type variables generated locally by s are still recorded in the
output set.

(E-17) The functor argument’s signature S denotes a semantic signature (P)S ′.
The functor F should be applicable to any actual argument whose structure
matches (P)S ′. To this end, the functor body s is classified in the context
extended with the assumption [X : S ′], and the state recording the addi-
tional types P . The side condition P ∩N = ∅ means that variables in P are
treated as fresh parameters during the classification of s. Adding P to the
state ensures that the new types in Q , generated by the body, are distinct
from P . F is bound to the semantic functor (P)(S ′, (Q)S ′′) before classi-
fying the remaining definitions in b. We stress that the functor F is only
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defined locally for the classification of b: it does not become a component
of the resulting structure.

Structure Expressions C,N ` s : S ⇒M

Structure expressions are classified by semantic structures.

C ` sp : S
C,N ` sp : S ⇒ ∅ (E-19)

C,N ` b : S ⇒ M
C,N ` struct b end : S ⇒ M (E-20)

C,N ` s : S ′ ⇒ P
C(F) = (Q)(S ′′, (Q ′)S ′′′)
S ′ � ϕ (S ′′)
Dom(ϕ) = Q
ϕ ((Q ′)S ′′′) = (P ′)S
P ′ ∩ (N ∪ P) = ∅
C,N ` F s : S ⇒ P ∪ P ′ (E-21)

C,N ` s : S ⇒ P C ` S . ΛP ′.S ′
S � ϕ (S ′) Dom(ϕ) = P ′

C,N ` s � S : ϕ (S ′)⇒ P (E-22)

C,N ` s : S ⇒ P
C ` S . ΛP ′.S ′ N ∩ P ′ = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C,N ` s \ S : S ′ ⇒ P ′ (E-23)

(E-19) Classifying a structure path does not generate any new types.

(E-21) To classify a functor application, we first classify the actual argument s
to obtain its structure S ′, generating the new types P . The application
is well-typed, provided there is some realisation ϕ of the functor’s type
parameters Q such that S ′ enriches the realised structure ϕ (S ′′). In other
words, we require that S matches the functor’s argument signature (Q)S ′′.
Moreover, the structure S of the application is obtained by applying the
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same realisation to the functor result (Q ′)S ′′′, yielding the signature (P ′)S.
This application of ϕ propagates the realisation from the functor’s actual
argument to its result. Variables in P ′ are the new types generated by the
functor: they must be chosen so that they are distinct from N and P . The
application itself generates new types P ∪P ′. Intuitively, this is the sum of
the types obtained by evaluating both the actual argument and the body
of the functor.

(E-22) The curtailment s � S can be classified provided: s has structure S,
generating new types P ; S denotes some signature (P ′)S ′; and S matches
this signature (via ϕ). Since we merely require that S enriches ϕ (S ′), the
structure ϕ (S ′) resulting from the curtailment may have fewer and less
general components than S. However, by the definition of enrichment,
those type components that remain will denote the same types as in S.
The phrase generates the types generated by s.

(E-23) The abstraction s \ S can be classified provided: s has structure S, gen-
erating new types P ; S denotes some signature (P ′)S ′; and S matches
this signature (via ϕ). Since we merely require that S enriches ϕ (S ′), the
structure S ′ resulting from the abstraction may have fewer and less general
components than S. Moreover, since the result of the abstraction is S ′ and
not its realisation ϕ (S ′), the actual realisation of types in P ′ is effectively
forgotten. Intuitively, these types are made abstract by replacing them with
the newly generated variables P ′. Their freshness is expressed by the side
condition N ∩ P ′ = ∅.

This completes the definition of Modules.

3.2 An Example Core Language: Core-ML

In this section, we describe a particular Core language: Core-ML. We include the
definition of Core-ML to provide a familiar, concrete example.

3.2.1 Phrase Classes

Definition 3.20 (Core-ML Phrase Classes (cf. Hypothesis 3.1)).

Core-ML is a typed language providing the phrase classes shown in Figure
3.10. The phrase classes SimTypVar, CoreId and SimTyp are specific to Core-ML,
the others are those required by Hypothesis 3.1. Figure 3.11 presents Core-ML’s
grammar.
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Figure 3.10 Core-ML Phrase Classes.

′a ∈ SimTypVar simple type variables
i ∈ CoreId λ-bound identifiers

(a) Identifiers

k ∈ DefKind kinds
u ∈ SimTyp simple types
d ∈ DefTyp definable types
v ∈ ValTyp value types

(b) Type Syntax

e ∈ ValExp value

(c) Term Syntax

Figure 3.11 Core-ML Grammar

CoreId def= {i, j, . . .} λ-bound identifiers
SimTypVar def= {′a, ′b, . . . } simple type variables

DefKind def= {0, 1, 2, 3, . . . } kinds (arities)

u ::= ′a
| u→ u′ function space
| do(u0, . . . , uk−1) type occurrence

d ::= Λ(′a0, . . . , ′ak−1).u parameterised simple type
v ::= ∀′a0, . . . , ′an−1.u polymorphic simple type

e ::= i identifier
| λi.e λ-abstraction
| e e′ application
| vo value occurrence
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Figure 3.12 Core-ML Semantic Objects
′a ∈ SimTypVar simple type variables

u ∈ SimTyp simple types
dk ∈ DefTypk definable types

v ∈ ValTyp value types
C ∈ CoreContext Core contexts

Variables ′a ∈ SimTypVar range over simple types. Identifiers i ∈ CoreId
range over simply typed values and are introduced by Core-ML λ-abstractions.

The kind k ∈ DefKind of a definable type is a natural number describing its
arity, or the number of simple type arguments it expects.

Simple types u ∈ SimTyp are constructed from simple type variables, the
arrow type constructor and applications of type occurrences do ∈ TypOcc, of the
Modules language, to k-tuples of simple type arguments.

Definable types d ∈ DefTyp are parameterised simple types, mapping k-
tuples of simple type arguments to simple types.

Value expressions are specified by value types v ∈ ValTyp. These are univer-
sally quantified simple types, conventionally called type schemes. The quantific-
ation over type variables expresses polymorphism.

Value expressions e ∈ ValExp are constructed from identifiers, λ-abstractions,
function application, and value occurrences vo ∈ ValOcc of the Modules language.

Notation. For k = 0 we will often write Λ(′a0, . . . , ′ak−1).u, ∀′a0, . . . , ′ak−1.u and
do(u0, . . . , uk−1) in the abbreviated forms u, u and do, respectively, when no
confusion can arise. We shall also omit the parentheses enclosing a 1-tuple of
simple type parameters or simple type arguments.

3.2.2 Semantic Objects

Definition 3.21 (Core-ML Semantic Objects (cf. Hypothesis 3.2)).

The semantic objects of Core-ML are defined in Figures 3.12 and 3.13. The sets
SimTypVar and SimTyp are specific to Core-ML, the others are those required
by Hypothesis 3.2.

Semantic simple type variables ′a ∈ SimTypVar are the denotations of syn-
tactic type variables ′a ∈ SimTypVar. Definable types dk ∈ DefTypk are k-ary
parameterised simple types. Value types v ∈ ValTyp are universally quantified
simple types. Semantic simple types u ∈ SimTyp are the denotations of syntactic
simple types u ∈ SimTyp. Notice that a semantic simple type can consist of an
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Figure 3.13 Semantic Objects of Core-ML

dk ∈ DefTypk ::= Λ(′a0, . . . , ′ak−1).u parameterised simple type
(provided ′a0, . . . , ′ak−1 distinct)

v ∈ ValTyp ::= ∀′a0, . . . , ′an−1.u polymorphic simple type
(provided ′a0, . . . , ′an−1 distinct)

u ∈ SimTyp ::= ′a simple type variable
| u → u ′ function space
| νk(u0, . . . , uk−1) type name occurrence

C ∈ CoreContext def=

Ci ∪ C′a

∣∣∣∣∣∣ Ci ∈ CoreId fin→ SimTyp,
C′a ∈ SimTypVar fin→ SimTyp



application of a type name νk ∈ TypNamk, of the Modules language, to a k-tuple
of simple type arguments.

Definable types Λ(′a0, . . . , ′ak−1).u and value types ∀′a0, . . . , ′an−1.u are bind-
ing constructs. We identify definable types and value types that are equivalent
up to renamings of bound simple type variables.

Remark 3.2.1 (Relating Type Phrases to their Denotations). Observe that
the structure of corresponding syntactic and semantic objects is almost isomorphic.
The essential difference between them is this: while simple type phrases may
contain applications of type occurrence phrases, semantic simple types may not;
instead, they allow for (well-kinded) applications of type names. It should come
as no surprise that the denotation judgements merely replace type occurrences
by expanding their denotations, preserving the structure of the original phrase in
all other respects.

Notation. For k = 0 we will often write Λ(′a0, . . . , ′ak−1).u, ∀′a0, . . . , ′ak−1.u
and ν(u0, . . . , uk−1) in the abbreviated forms u, u and ν respectively, when no
confusion can arise. We shall also omit the parentheses enclosing a 1-tuple of
simple type parameters or simple type arguments.

Definition 3.22 (Substitutions). A substitution:

σ or {′a0 7→ u0, . . . ,
′ak−1 7→ uk−1} ∈ Subst = SimTypVar fin→ SimTyp

is a finite map mapping simple type variables to simple types.

Definition 3.23 (Core Contexts). Core contexts C ∈ CoreContext map λ-
bound identifiers to semantic simple types, and (syntactic) simple type variables
to (semantic) simple types.
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The following operations extend contexts with Core assumptions.

[ = ] ∈ (Context × SimTypVar× SimTyp)→ Context

C[′a = u] def= C + {′a 7→ u}

[ : ] ∈ (Context × CoreId× SimTyp)→ Context

C[i : u] def= C + {i 7→ u}

Definition 3.24 (Free and Bound Simple Type Variables). For any semantic
object O, we let FTVS(O) denote the set of simple type variables occurring free
in O, where the notions of free and bound are defined as usual.

Definition 3.25 (η-expansion of Type Names (cf. Hypothesis 3.5)).

We define the kind-preserving operation η as follows:

η( ) ∈ ∪k∈DefKindTypNamk → DefTypk

η(νk) def= Λ(′a0, . . . ,
′ak−1).νk(′a0, . . . ,

′ak−1)

(provided ∀i ∈ [k].′a i 6∈ FTVS(νk) ∪ {′a0, . . . ,
′ai−1})

The proviso that ′a0, . . . , ′ak−1 are distinct and fresh4 ensures that the function
is injective.

The operation allows any type name ν to be viewed as an equivalent definable
type η(ν).

Definition 3.26 (Realisation of Definable and Value Types (cf. Hyp. 3.14)).

Recall that realisations were defined in Definition 3.13. We now define the effect
of applying a realisation to a Core semantic object as follows:

( ) ∈ (Real ×DefTypk)→ DefTypk (for each k ∈ DefKind)

ϕ
(
dk
)

def=


Λ(′a0, . . . , ′ak−1).ϕ (u) provided

dk = Λ(′a0, . . . , ′ak−1).u
and ∀i ∈ [k].′a i 6∈ FTVS(ϕ)

( ) ∈ (Real × ValTyp)→ ValTyp

ϕ (v) def=


∀′a0, . . . , ′an−1.ϕ (u) provided

v = ∀′a0, . . . , ′an−1.u
and ∀i ∈ [n].′a i 6∈ FTVS(ϕ)

4In this chapter, a type name νk can never contain free simple type variables. However,
when we generalise type names in Chapter 5, the condition ′ai 6∈ FTVS(νk) will no longer be
vacuous.
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( ) ∈ (Real × SimTyp)→ SimTyp

ϕ (′a) def= ′a

ϕ (u → u ′) def= ϕ (u)→ ϕ (u ′)

ϕ (ν(u0, . . . , uk−1))
def=

{
ν ′(ϕ (u0) , . . . , ϕ (uk−1)) if ϕ (ν ) = ν ′

{′ai 7→ ϕ (ui) |i ∈ [k]} (u) if ϕ(ν) = Λ(′a0, . . . , ′ak−1).u

Note the reduction step in the last case defining ϕ (ν(u0, . . . , uk−1)). This case
occurs whenever the type name ν is realised by a definable type. We need to
perform the reduction in order to respect the definition of simple types that only
allows applications of type names, not definable types, to simple type arguments.
Intuitively, simple types are kept in normal form.

We will need a relation that relates value types to their simple type instances
(this relation is specific to Core-ML):

Definition 3.27 (Value Types Generalising Simple Types). We define the
relation:

� ∈ ValTyp × SimTyp

as follows.

A value type v ≡ ∀′a0, . . . , ′an−1.u generalises a simple type u ′, written v � u ′

if, and only if, there is a substitution σ with Dom(σ) = {′a0, . . . , ′an−1} such that
σ(u) = u ′.

The generalisation relation is the basis for defining enrichment on value types.

Definition 3.28 (Enrichment between Value Types (cf. Hypothesis 3.16)).
We define the relation:

� ∈ ValTyp × ValTyp

as follows.
A value type v enriches another value type v ′, written v � v ′, if and only if,

for every simple type u, v � u whenever v ′ � u.
It is well-known that � is a pre-order [41]. It is easy to show that it is

closed under realisation.

3.2.3 Static Semantics

Definition 3.29 (Core-ML Judgements (cf. Hypothesis 3.19). The denota-
tion and classification judgements of Core-ML are presented in Figure 3.14.

89



Figure 3.14 Core Judgements.

C ` u . u
In context C, simple type u denotes simple type u.

C ` d . d
In context C, definable type d denotes definable type d .

C ` v . v
In context C, value type v denotes value type v .

(a) Denotation Judgements

C ` e : u
In context C, value expression e has simple type u.

C ` e : v
In context C, value expression e has value type v .

(b) Classification Judgements

The judgements C ` u . u and C ` e : u are specific to Core-ML (the others are
those required by Hypothesis 3.19). The former, C ` u . u, relates a simple type
expression to its denotation. The latter, C ` e : u, classifies a value expression
by a simple type. In Core-ML, a value expression may inhabit more than one
simple type. This judgement should be clearly distinguished from the judgement
C ` e : v (required by Hypothesis 3.19) that classifies an expression by a value
type, i.e. a universally quantified simple type. As for ordinary ML [41, 16], it is a
property of Core-ML that every typable value expression has a principal, or most
general, value type.

The judgements are defined by the following rules:

3.2.3.1 Denotation Rules

Simple Types C ` u . u

Simple types denote semantic simple types.

C(′a) = u
C ` ′a . u (C-1)

C ` u . u C ` u′ . u ′
C ` u→ u′ . u → u ′ (C-2)

C ` do . Λ(′a0, . . . , ′ak−1).u ∀i ∈ [k]. C ` ui . ui
C ` do(u0, . . . , uk−1) . {′a i 7→ ui|i ∈ [k]} (u) (C-3)
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(C-1) A simple type variable denotes only if it is bound in the context.

(C-3) The denotation of a type occurrence is immediately applied to its argu-
ments: simple types are kept in normal form. The application denotes only
if the arity of the definable type matches the number of its actual argu-
ments. Note that the first premise is an instance of the Modules judgement
C ` do . d .

Definable Types C ` d . d

Definable types denote semantic definable types.

C[′a0 = ′a0] · · ·[′ak−1 = ′ak−1] ` u . u
∀i ∈ [k].′ai 6∈ FTVS(C) ∪ {′a0, . . . , ′ai−1}
C ` Λ(′a0, · · · , ′ak−1).u . Λ(′a0, · · · , ′ak−1).u (C-4)

(C-4) Syntactic simple type variables are bound to distinct and fresh semantic
type variables before determining the denotation of u.

Value Types C ` v . v

Value types denote semantic value types.

C[′a0 = ′a0] · · ·[′an−1 = ′an−1] ` u . u
∀i ∈ [n].′ai 6∈ FTVS(C) ∪ {′a0, . . . , ′a i−1}
C ` ∀′a0, · · · , ′an−1.u . ∀′a0, · · · , ′an−1.u (C-5)

(C-5) See the comment to Rule (C-4).

3.2.3.2 Classification Rules

(Monomorphic) Values C ` e : u

In the first instance, value expressions are classified by semantic simple types.

C(i) = u
C ` i : u (C-6)

C[i : u] ` e : u ′

C ` λi.e : u → u ′ (C-7)

C ` e : u ′ → u C ` e′ : u ′
C ` e e′ : u (C-8)

C ` vo : v v � u
C ` vo : u (C-9)
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(C-6) Identifiers introduced by λ-abstractions have simple types. See rule (C-7).

(C-7) In Core-ML, to ensure decidable type inference, identifiers bound by λ-
abstractions range over monomorphic value expressions classified by simple
types.

(C-9) A value occurrence vo has any simple type that is an instance of its poly-
morphic value type. Note that the first premise is an instance of the Modules
judgement C ` vo : v .

(Polymorphic) Values C ` e : v

The definition of Modules assumes that value expression are classified by value
types. For Core-ML, a principal value type for an expression can be specified in
terms of its possible simple types.

C ` e : u {′a0, . . . , ′an−1} = FTVS(u) \ FTVS(C)
∀u ′. C ` e : u ′ ⊃ ∀′a0, . . . , ′an−1.u � u ′

C ` e : ∀′a0, . . . , ′an−1.u
(C-10)

(C-10) Informally, the rule states that e has value type v provided e has v ’s
generic instance as a type, and every other simple type of e is an instance
of v . The second condition is expressed by an infinitary premise. The
rule specifies that v is a principal value type for e. (The idea of using an
infinitary rule to force principality is similar to the use of “higher-order
inference rules” in Kahrs, Sannella and Tarlecki’s definition of Extended
ML [27]).

This completes the definition of Core-ML.

3.3 Discussion of Mini-SML

We define Mini-SML as the language obtained by combining the definitions of
Modules and Core-ML. Without being too pedantic, we define:

Definition 3.30 (Mini-SML). Mini-SML is obtained by:

• Defining the syntactic phrase classes of Mini-SML (Figures 3.2 and 3.10) as
the least solutions to the grammar rules in Figures 3.3 and 3.11.
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Figure 3.15 The datatype definition as an abbreviated structure body.

datatype t = Λ(′a1, . . . , ′ak).u with x, x′; b
def= local structure X =

struct type t = Λ(′a1, . . . , ′ak).u;
val x = λi.i;
val x′ = λi.i

end \
sig type t : k;

val x : ∀′a1, . . . , ′ak.u→ t(′a1, . . . , ′ak);
val x′ : ∀′a1, . . . , ′ak.t(′a1, . . . , ′ak)→ u

end
in type t = Λ(′a1, . . . , ′ak).X.t(′a1, . . . , ′ak);

val x = X.x;
val x′ = X.x′;
b

end

• Defining the semantic objects of Mini-SML (Figures 3.5 and 3.12) as the
least solutions to the defining equations in Figures 3.6 and 3.13.

• Defining the judgements of Mini-SML (Figures 3.9 and 3.14) as the least
relations closed under the rules in Sections 3.1.3 and 3.2.3.

Although Core-ML is much simpler than Core Standard ML, Mini-SML does
model the prominent features of Standard ML Modules. There is one apparent
omission that we should comment on.

Remark 3.3.1 (Standard ML’s Datatype Phrases). Readers familiar with
Standard ML may be disconcerted by the omission of datatype definitions and
specifications. In Standard ML, the phrase:

datatype (′a1, . . . , ′ak)t = C1 of u1| · · · |Cn of un; b (n ≥ 1)

is used to define a “new” (possibly recursive) type t along with constructors Ci
mediating between it and its representation. The relevant point here is that t is
abstract as soon as it is defined , yet our description of Modules only supports
abstraction after encapsulation, by applying a signature to a structure expression.

Adapting the notion to Core ML (which, for simplicity, has neither recurs-
ive types nor pattern-matching on constructors), we might at least expect an
analogous phrase:

datatype t = Λ(′a1, . . . ,
′ak).u with x, x′; b
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Figure 3.16 The datatype specification as an abbreviated signature body.

datatype t = Λ(′a1, . . . , ′ak).u with x, x′; B
def= type t : k;

val x : ∀′a1, . . . , ′ak.u→ t(′a1, . . . , ′ak);
val x′ : ∀′a1, . . . , ′ak.t(′a1, . . . , ′ak)→ u;
B

to introduce t as a new type with “constructor”:

x : ∀′a1, . . . ,
′ak.u→ t(′a1, . . . ,

′ak)

and “destructor”:

x′ : ∀′a1, . . . ,
′ak.t(′a1, . . . ,

′ak)→ u.

Fortunately, this can be defined as an abbreviation for the structure body in
Figure 3.15, where the identifier X must by chosen to be fresh with respect to the
current context and the identifiers defined in b.

Similarly, we can define the datatype specification

datatype t = Λ(′a1, . . . ,
′ak).u with x, x′; B

as an abbreviation for the signature body in Figure 3.16.

Treating datatype phrases as syntactic sugar means that we can avoid pol-
luting the generic Modules language and its semantics with constructs that are
incidental to Core-ML.

It is easy to verify that these abbreviations give rise to the following derived
rules:

C ` d . Λ(′a1, . . . , ′ak).u
αk 6∈ N
v ≡ ∀′a1, . . . , ′ak.u → αk(′a1, . . . , ′ak)
v ′ ≡ ∀′a1, . . . , ′ak.αk(′a1, . . . , ′ak)→ u
C[t = αk][x : v ][x′ : v ′],N ∪ {αk} ` b : S ′ ⇒ M
x 6= x′ {t, x, x′} ∩ Dom(S ′) = ∅ S ≡ t = αk, x : v , x′ : v ′,S ′

C,N ` datatype t = d with x, x′; b : S ⇒ {αk} ∪M
(C-11)
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C ` d . Λ(′a1, . . . , ′ak).u
αk 6∈ FV(C)
v ≡ ∀′a1, . . . , ′ak.u → αk(′a1, . . . , ′ak)
v ′ ≡ ∀′a1, . . . ,

′ak.α
k(′a1, . . . ,

′ak)→ u
C[t = αk][x : v ][x′ : v ′] ` B . (P)S ′
P ∩ ({αk} ∪ FV(v) ∪ FV(v ′)) = ∅
x 6= x′ {t, x, x′} ∩ Dom(S ′) = ∅ S ≡ t = αk, x : v , x′ : v ′,S ′

C ` datatype t = d with x, x′; B . ({αk} ∪ P)S
(C-12)

These rules should be familiar to those acquainted with the static semantics
of Standard ML [43, 44].

3.3.1 Discussion of the Syntax

Like many other statically typed programming languages, the syntax of Mini-
SML describes a language of types and terms. In Figures 3.2 and 3.10 we grouped
phrase classes according to whether they belong to the type or term syntax of the
language. However, a fundamental design principle of Modules is that related type
and term definitions should be packaged together in syntactic units as structures.
Access to these components is via the dot notation. As a result, the syntax
of Mini-SML exhibits a curious feature that is atypical of most statically typed
languages: terms may appear in types. The ultimate source of this dependency
is the type projection sp.t. The phrase belongs to the syntax of types, but sp
is a structure path, that, since it refers to a collection of both types and terms,
belongs to the proper syntax of terms. At first sight, this raises the uncomfortable
question of whether we need to evaluate the term sp in order to determine the
type denoted by sp.t.

This merits further explanation. In typical, statically-typed programming
languages, types and terms are kept distinct in the sense that types cannot contain
occurrences of terms. For this simple reason alone, the equivalence of types, used
in determining the classification of terms, can usually be decided without resorting
to reasoning about the equivalence of terms (evaluation). For instance, the type
theories we presented in Sections 2.2.1, 2.2.2, 2.2.3, and 2.2.4 were all of this
nature.

In languages with dependent types, such as the type theories of Sections 2.2.5
and 2.2.6, this stratification is relaxed: not only can types contain terms, but
more importantly, the notion of type equivalence actually depends on the notion
of term equivalence. This dependency is manifest in the rules defining type equi-
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valence, that refer, at least indirectly, to the judgement relating equivalent terms.
Similarly, in a programming language with true dependent types, we would expect
to see a dependency of the static semantics of the language on the dynamic se-
mantics of the language, preventing the language from having a phase distinction
between compile-time type-checking and run-time evaluation.

In Mini-SML, the fact that type phrases can contain term phrases is suggestive
of a dependently-typed language. It is this syntactic idiosyncrasy, shared by
Standard ML, that has inspired much of the research on the type structure of
Standard ML to resort to the use of dependent types [35, 20, 21]. Indeed, the
use of dependent types lingers on in the more recent type-theoretic alternatives
to Standard ML proposed in [18, 28, 31, 29, 33, 53, 22]. By contrast, in the
following sections and the next chapter, we shall present evidence to suggest that
dependent types play no discernible role in the semantics of Mini-SML. Since
Mini-SML is merely a cut down version of Standard ML, we will conclude with
the counter-claim that dependent types have no role in the semantics of Standard
ML.

3.3.2 Discussion of the Semantic Objects

As in Standard ML, the definition of Mini-SML distinguishes between syntactic
type phrases and the semantic objects they denote. Moreover, it is the semantic
objects of Mini-SML (Figures 3.4, 3.6 and 3.13), not the syntactic type phrases,
that serve the role of types in the judgements defining the static semantics. To
see this, observe that contexts relate identifiers to semantic objects and that the
judgements of Mini-SML classify term phrases by semantic objects. The type
phrases of Mini-SML do not play a direct role in the classification judgements.
Instead, the classification judgements exploit the denotations of type phrases,
where the denotation of a type phrase is obtained by a judgement that essentially
translates the phrase to its meaning as a semantic object.

The fundamental distinction between type phrases and semantic objects is
the following: while type phrases can contain occurrences of terms, semantic
objects cannot. It is easy to see this because the definition of semantic objects is
independent of the definition of terms. We noted that the dependency of syntactic
types on terms is introduced by type occurrence phrases do ∈ TypOcc, that allow
type projections sp.t from terms sp ∈ StrPath. Note that structure paths are
phrases that evaluate to structures and are, in a sense, first-order objects like the
term phrases of the simply typed λ-calculus of Section 2.2.1. Contrast this with
the semantic counterpart of TypOcc, the set of semantic definable types DefTyp .
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Observe that a semantic definable cannot contain occurrences of terms, but may,
instead, contain occurrences of type variables α ∈ TypVar . Type variables range
over semantic types, and for this reason, are second-order variables, just like the
type variables we encountered in the simply typed λ-calculus of Section 2.2.1.

To a type theorist, Mini-SML’s distinction between syntactic types and their
semantic counterparts is odd: in most type theories, type phrases are interpreted
syntactically, with more complicated type theories resorting to an equational the-
ory on type phrases. Adopting this approach in Mini-SML, whose type phrases
contain occurrences of first-order terms, would mean introducing some form of
dependency of type equivalence on term equivalence. By imposing an additional
layer of interpretation on type phrases, which reduces type phrases to semantic ob-
jects that do not contain first-order terms, Mini-SML manages to avoid this form
of dependency. The denotation judgements of Mini-SML thus serve to eliminate
first-order dependencies of type phrases on terms, replacing them with second-
order dependencies of semantic objects on types. The reason Mini-SML distin-
guishes between syntactic and semantic types is a pragmatic one: it maintains
the facade of a language with first-order dependent types, convenient for structur-
ing programs. The facade masks an underlying, purely second-order type theory,
formulated in terms of semantic objects.

3.3.3 Discussion of the Judgements

It should be clear that Mini-SML is a statically typed language. None of the
rules of the static semantics refer to term equivalence judgements of the dynamic
semantics of Mini-SML. In fact, we have not even defined these judgements.

When presenting the judgements of Mini-SML, we divided them into three
separate, functionally related, groups of judgements: denotation, classification
and generative classification judgements. Examining the roles of the judgments
will help us understand the semantics.

3.3.3.1 Denotation Judgements

The denotation judgements all have the form C ` p . p. In each, the phrase p is
a phrase from the syntax of types (not terms). Its denotation is determined with
respect to a context of typing assumptions C. The denotation p is an object in
the semantic counterpart of the phrase class of p. The denotation judgements are
used in the semantics to systematically replace type phrases by their denotations.

The key to understanding the purpose of the denotation judgements lies in
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understanding Rule (E-8):

C ` sp : S t ∈ Dom(S) S(t) = τ

C ` sp.t . η̂(τ )

The rule states that the denotation η̂(τ ) of the “dependent” phrase sp.t is de-
termined statically by inspecting the type and not the (run-time) value of sp. By
systematically applying rules (E-7) and (E-8) the denotation judgements in Figure
3.9(a) serve to replace occurrences of syntactic term-dependencies by their non-
dependent denotations. The denotation judgements translate the term-dependent
type syntax of Mini-SML into the underlying, term-independent language of se-
mantic objects.

3.3.3.2 Classification Judgements

The classification judgements all have the form C ` p : o. In each, the phrase
p is a term phrase that is related to its classification o in the context C. The
judgement states that the term p has type o. We stress that o is a semantic
object, not a syntactic type phrase. The classification judgements are clearly
of a different nature from the denotation judgements discussed in the previous
section: while a denotation judgement merely translates a syntactic type phrase
to its semantic representation, a classification judgement relates a term to its
type. Indeed, the denotation of a term phrase would be defined by the dynamic
semantics of terms, which we have not presented. Classification judgements are
thus instances of the familiar typing relations we encountered in our introduction
to Type Theory (Section 2.2).

3.3.3.3 Generative Classification Judgements

The generative classification judgements also serve to classify terms of the Mod-
ules language by their types. The judgement C,N ` b : S ⇒ P relates the
structure body b to its type S in the context C. The judgement C,N ` s : S ⇒ P
relates the structure expression s to its type S in the context C. These judgements
differ from the other classification judgements in that the classification of func-
tor applications and abstractions appearing within b and s can generate “new”
types. For this reason, the generative judgements take two additional arguments,
the sets of type variables N and P . Both sets are finite. N records the state of
type variables “generated” prior to the classification of the phrase. For sound-
ness reasons, it should be a superset of the type variables occurring free in C.
Classification produces, besides the semantic object S, the set of type variables
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P generated during the classification of the phrase. These new type variables
may occur in S. The rules defining the judgements enforce the condition that
each variable in P is distinct from those variables in the current state N , and, by
implication, from any types appearing in C. It is in this sense that P captures
the set of “new” types generated by the phrase. This invariant is maintained by
threading the state through the derivation tree, updating it as new variables are
generated by subphrases, functor applications and abstractions. This generative
behaviour is captured by the following property:

Property 3.31 (Generativity).

• If C,N ` b : S ⇒ P then N ∩ P = ∅.

• If C,N ` s : S ⇒ P then N ∩ P = ∅.

Proof. A simple rule induction.

Since the state is intended to record the variables occurring free in the context,
we define:

Definition 3.32 (Rigidity). A context C is rigid w.r.t. N , written C,N rigid

if, and only if, FV(C) ⊆ N .

As long as we start with C,N rigid, as a consequence of Property 3.31, type
variables generated during classification will never be confused with types occur-
ring in the context.

To a type theorist, the generative judgements appear odd. The intrusion of
the state forces a left-to-right dependency on the order of premises in the typing
rules which is a departure from the standard compositional formulation of typing
rules in Type Theory. The fact that the type of the term may contain “new” free
type variables, that do not occur free in the context, is peculiar (conventional
type theories enjoy the free variable property: the type of a term is closed with
respect to the variables occurring free in the context). Perhaps for this reason,
generativity has developed its own mystique and its own terminology. In the
Definition [43, 44], type variables are called “names”, to stress their persistent,
generative nature. Generativity is presented as an extra-logical device, useful
for programming language type systems, but distinct from the more traditional
type-theoretic constructs, as these can be related to constructive interpretations
of logical connectives. In Chapter 4 we will dispel this mystique, reformulating the
generative classification judgements in terms of familiar type-theoretic constructs,
obtaining more palatable, state-less classification judgements.
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3.3.4 The Different Roles of Bound Type Variables

In defining Modules, we have used the notation of Standard ML for semantic
structures (P)S ∈ Sig and functors (P)(S, (Q)S ′) ∈ Fun . Observe that Stand-
ard ML is decidedly non-committal in its choice of binding operators: parentheses
are used uniformly to bind sets of type variables. The use of the same notation
obscures the different roles that these binding constructs play. In this section, we
discuss the purpose of these binding constructs, and propose a more meaningful
notation for them. The notation will be adopted in later chapters.

3.3.4.1 Signatures as Families of Structures

What exactly are signature expressions and the semantic signatures they denote?
In the Standard ML literature, signatures are vaguely referred to as the types of
structure expressions. However, inspecting the rules we find that the type of a
structure is a semantic structure S, while a semantic signature has the form (P)S,
binding a set of type variables appearing in the structure S. Let S be a signature
expression denoting (P)S, i.e. C ` S . (P)S. Each type variable αk ∈ P arises
from some type specification of the form type t : k by an application of Rule
(E-2). Since such phrases only specify the kind k of the type component, without
determining its definition, it is clear that signatures merely specify families of
structures, indexed by the realisations of their bound type variables.

In fact, the role of the signature expression S changes according to the kind
of phrase in which it appears. In a functor definition functor F (X : S) = s , S
specifies that the functor should be uniformly applicable to any argument whose
type is in the family (P)S. In a signature curtailment s � S, S is used to check
that the type of s is at least as rich as some type that is a member of the family
(P)S. The type of the complete phrase is that particular member, which may
have less rich components, but by the definition of enrichment, will agree on its
type components with the type components of s. In a signature abstraction s \S,
S is also used to check that the type of s is at least as rich as some type that is
a member of the family (P)S. However, the type of the complete phrase is not
that particular member, but a generic member of the family. This is enforced by
generating fresh variables for the variables in P .

Given these observations, it should be clear that the denotation of the sig-
nature expression is never used as the type of a phrase, but merely as an aid in
the construction of a type. The common denominator of all of these usages is
the way in which the signature expression serves to specify a family of types. To
emphasise this role, we will from now on use a different notation for semantic
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signatures:

Notation (Semantic Signatures). A semantic signature (P)S ∈ Sig is iden-
tified with its notational variant ΛP .S. Variables in P are bound in S. The
signature ΛP .S specifies a family of semantic structures, whose members are ob-
tained by realising type variables in P . The use of Λ as a binder stresses that the
bound variables are parameters indexing a family of semantic structures.

Since the parameters P of a semantic signature ΛP .S are type variables,
and the structure S is itself a form of type used to classify terms, from a type-
theoretic perspective, the signature corresponds to a parameterised type, similar
to the notion of parameterised type we encountered in Section 2.2.3.

3.3.4.2 Functors as Polymorphic Functions

Recall the functor introduction rule (Rule E-17):

C ` S . (P)S P ∩N = ∅
C[X : S],N ∪ P ` s : S ′ ⇒ Q C[F : (P)(S, (Q)S ′)],N ` b : S ′′ ⇒M

C,N ` functor F (X : S) = s in b : S ′′ ⇒M

From the previous discussion, we can say that the signature expression S denotes
the family of structures ΛP .S. The functor body s is classified in the context
extended with the assumption [X : S]. Assuming C,N rigid, the second premise
ensures that P ∩ FV(C) = ∅, hence variables in P are treated as arbitrary, formal
type parameters. The semantic functor (P)(S, (Q)S ′), i.e. the type of F, is ob-
tained by discharging first the assumption [X : S] from the result of classifying the
functor body, and then discharging the type parameters P . In the first step, we
obtain a function taking a structure of type S as an argument. In the second step,
we generalise this function on its free type parameters to obtain a polymorphic
function. The functor elimination rule (Rule (E-21)) reflects the polymorphic
behaviour of functors. Before applying the functor, we must first choose a real-
isation (i.e. an instantiation) of its type parameters. This realisation is used to
check that the type of the actual argument is at least as rich as the realisation
of the functor’s domain. The conventional description of a functor as a function
taking structures to structures is clearly inaccurate. A functor is a polymorphic
function on structures that first needs to be applied to a type realisation, be-
fore it can be applied to an actual argument. Functors are thus similar to the
polymorphic functions we encountered in Section 2.2.2. For clarity, the type of a
functor should be written using universal quantification over its type parameters.

What of the range (Q)S ′ of a semantic functor (P)(S, (Q)S ′)? By adopting
the notation of semantic signatures, Standard ML suggests that applying a functor
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to a structure expression returns a term whose type is the family of types specified
by the signature (Q)S ′. This doesn’t make sense and overloading the notation
in this way is confusing. When a functor is applied, the bound variables of the
result signature give rise to fresh generative types. These types are essentially
abstract. For a given realisation of its type parameters, applying the functor to a
structure expression therefore returns a term whose type is some member of the
family of types specified by its result signature. Since the bound variables of the
result are replaced by generative type variables, precisely which member of this
family remains unknown. We emphasise the distinction between functor ranges
and semantic signatures by introducing a new notation for functor ranges:

Notation (Existential Structures). An existential structure X ∈ ExStr is an
existentially quantified structure of the form ∃P .S. Variables in P are bound in
S. Intuitively, ∃P .S is a type used to classify terms. A term belongs to this type
if, and only if, there exists a realisation ϕ of the variables in P such that the term
has type ϕ(S). In other words, a term belongs to this type if, and only if, its type
is some member of the family of types ΛP .S.

We can stress the observations of the preceding discussion by changing the
notation of semantic functors.

Notation (Semantic Functors). A semantic functor (P)(S, (Q)S ′) ∈ Fun is
identified with its notational variant ∀P .S → ∃Q .S ′. ∀P .S → ∃Q .S ′ is a type
classifying a functor. The use of ∀ as the outermost binder stresses that the
bound variables are universally quantified: the functor is polymorphic. The →
stresses that realising the functor’s type parameters yields a function on terms.
The existential quantifier stresses that, for any realisation ϕ of the functor’s type
parameters (i.e. Dom(ϕ) = P), applying the functor returns a term with exist-
ential structure ϕ (∃Q .S ′), in other words, a term whose type is some member of
the family of structures ϕ (ΛQ .S ′).

3.3.5 Is Mini-SML dependently typed?

We can now return to answer the question of whether Mini-SML’s syntactic de-
pendency of type phrases on term phrases actually induces a semantic dependency
of types on terms. Given the considerable effort that has been invested in find-
ing dependently typed models of Standard ML, it is surprising to find that the
underlying semantic objects reveal no dependency on terms. Perhaps the best
way to see this is to consider the semantic objects assigned to phrases exhibiting
syntactic dependencies.
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Figure 3.17 A term-dependent signature expression and its non-dependent de-
notation.

sig structure X : sig type t:0
end;

structure Y : sig type u:0;
type v = X.t → u

end;
val y: X.t → Y.v

end

(a) The signature suggests a dependency of types
on terms.

Λ{α, β}. (X : (t = α),
Y : (u = β,

v = α → β),
y : α → α → β)

(b) The signature’s non-
dependent denotation.

Consider the signature expression in Figure 3.17(a). Notice the syntactic
dependency of the specifications of v and y on the structure identifiers X and Y.
In fact, we can be a little more specific, by observing that the definition of v and
the specification of y depend on type components X.t, u, and Y.v. The phrase
denotes the semantic signature in Figure 3.17(b). Notice how the denotations of
t and u are represented by type variables α and β . In the semantic signature,
syntactic dependencies on X.t, u, and Y.v have been systematically replaced by
semantic occurrences of the second-order variables α and β . In particular, the
syntactic dependencies on the term phrases X and Y have been removed. The
simplification is effected by the denotation judgements, which, by assigning type
variables to type specifications, manage to replace all type occurrence phrases
by their denotations. Observe that the identifiers appearing within semantic
structures are not bound in any way, they are merely tags like the field names of
record types.

As another example, consider the functor in Figure 3.18(a). It returns a type
w whose definition is syntactically dependent on the functor argument Z. Figure
3.18(b) shows the semantic functor classifying F. Again the syntactic dependence
of the result type w on Z.X.t and Z.Y.v has been simplified by replacing these
type occurrence phrases by their denotations. The syntactic term dependency
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Figure 3.18 A dependent functor and its non-dependent type.

functor F(Z : sig structure X : sig type t:0
end;

structure Y : sig type u:0;
type v = X.t → u

end;
val y: X.t → Y.v

end ) =
struct type w = Z.X.t → Z.Y.v;

val z = Z.y
end

in . . .

(a) The functor body suggests a dependency of types on terms.

∀{α, β}.(X : (t = α),
Y : (u = β,

v = α → β),
y : α → α → β)
→ ∃∅.(w = α → α → β,

z : α → α → β)

(b) The functor’s non-dependent
type.
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on Z is completely removed, leaving a residual second-order dependency on the
functor’s type parameters α and β .

In summary, the first-order dependencies of types on terms, apparent in the
syntax of Mini-SML, boil down to second-order dependencies of semantic objects
on type variables.

3.4 Conclusion

In Section 3.1, we defined the Modules language. The definition of this language
is based directly on the definition of Standard ML Modules, capturing its essen-
tial features. Our definition of Modules is parameterised by an arbitrary Core
language. For concreteness, in Section 3.2 we presented a particular instance of
the Core language: Core-ML. Core-ML supports both parameterised type and
polymorphic values, capturing the two main features of Standard ML’s Core lan-
guage that are relevant to the definition of Modules. In Section 3.3, we defined
Mini-SML as the language obtained by combining the definitions of Modules and
Core-ML and proceeded with an informal analysis of the type-theoretic under-
pinnings of Mini-SML. We discussed how the syntactic dependency of types on
terms is suggestive of a dependently-typed language. Indeed, this feature has
prompted many researchers in the area to propose that dependent types underly
the type structure of Standard ML. However, by inspecting the static semantics
of Mini-SML, we have found ample evidence to suggest that Mini-SML can be
understood by relying only on the simpler type-theoretic notions of type para-
meterisation, type quantification and subtyping. Since Mini-SML is merely a cut
down version of Standard ML, we can make the counter-claim that dependent
types have no role in the static semantics of Standard ML.

The generative classification judgements, however, do not sit nicely with our
type-theoretic understanding of other aspects of the static semantics. In Chapter
4, we focus our attention on the generative judgements, and expose them as a
particularly operational incarnation of existential quantification over types. By
the end of that chapter, we hope to have discredited the claim that dependent
types are necessary to explain the type structure of Standard ML.
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Chapter 4

Type Generativity as Existential
Quantification

In this chapter, we present a new static semantics for structure bodies and ex-
pressions. It is intended as a more type-theoretic alternative to the generative
classification judgements we gave in Chapter 3. Our main objective is to first ex-
plain and then eliminate the state of type variables maintained by the generative
classification rules. Considerable effort is devoted to proving the equivalence of
the two systems. We claim that the resulting system is more type-theoretic in
style and easier to understand. In later chapters, we will substantiate this claim
by using the alternative semantics as the basis for significant extensions to the
language.

The chapter is organised as follows. In Section 4.1, we give an informal ac-
count of the role generativity plays in the existing semantics. In Section 4.2, we
suggest an alternative semantics for generative phrases. We first introduce the
concept of existential structures. We then define judgements classifying structure
bodies and expressions by existential structures. Unlike their generative counter-
parts, these judgements are state-less and have the more familiar form of typing
judgements. Section 4.3 is devoted to proving that the generative classification
judgements and their state-less replacements are equivalent. After setting up the
necessary machinery, we first prove an easy completeness result: every generative
classification (of interest) gives rise to a state-less classification. We then prove
a technically more difficult soundness result: every state-less classification (of in-
terest) gives rise to a generative classification. The proof of soundness factors into
two parts. In the first, we prove a generalised induction principle for state-less
classification judgements. In the second, we use this induction principle to prove
our result. Section 4.4 briefly discusses the implications of our equivalence result.

The work in this chapter is a slight generalisation of the author’s earlier work
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in [51], which presents similar results for a simplified, core-less Modules language.

Remark 4.0.1. We adopt the notational changes to semantic signatures and func-
tors motivated in Section 3.3.4. That is, from now on we will abandon the Stand-
ard ML notation and write a semantic signature L ∈ Sig in the form L ≡ ΛP .S, to
stress that it is a parameterised structure, and write a semantic functor F ∈ Fun
in the form F ≡ ∀P .S → X or F ≡ ∀P .S → ∃Q .S ′ to stress that it is the type
of a polymorphic function on structures with an existentially quantified range.

4.1 Generativity: An Informal Account

In Section 3.1.3.3 we presented the generative classification judgements used to
determine the types of structure bodies and expressions. In Section 3.3.3.3 we
briefly discussed the way in which the rules of these judgements maintain a state of
generated types during classification. The sense in which a generative judgement
returns new types was captured by Property 3.31 (Generativity). Definition 3.32
(Rigidity) captured a pre-condition on the initial context and state that is neces-
sary1 to ensure that the generative rules are sound. This condition is maintained
as an invariant during classification.

The following sections provide an informal account of why “generativity” is
needed at all. In a nutshell, generativity is used to avoid the unsafe identification
of types that might otherwise lead to run-time type errors.

4.1.1 The Rationale for Distinguishing Syntactic Type Iden-
tifiers From Semantic Type Variables

In a naive semantics, one might choose to identify syntactic type identifiers with
the semantic type variables they denote. Unfortunately, since Mini-SML, like
Standard ML, allows the redefinition of syntactic type identifiers, this can lead
to the confusion of types that ought to be kept distinct.

Consider the phrase in Figure 4.1(a). In the naive semantics it would “type-
check”. However, this is clearly not safe, since it leads, at run-time, to the
application of 1 to 2. The phrase is not sound. Initially, x is used to coerce 1 to a
value of type t. Here, the first defining occurrence of t is intended. Now y′ allows
us to coerce any value of type t, where the second defining occurrence of t is
intended, to a value of function type int → int. Unfortunately, by sharing their
denotations, the naive semantics identifies both definitions and fails to catch the
type violation in the expression y′ (x 1). In our semantics, we avoid this pitfall

1but, as we shall see, not quite sufficient.
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Figure 4.1 An unsound phrase illustrating the purpose of distinguishing between
syntactic type identifiers and semantic type variables.

datatype t = int with x,y;
structure X = struct datatype t = int→ int with x′,y′;

val z = (y′ (x 1)) 2
end

(a) The phrase is not sound: it attempts to masquerade 1 as a function
and apply it to 2, resulting in a run-time error. The phrase should be
rejected by a sound static semantics.

datatype tt = int with x,y;
structure X = struct datatype tt = int→ int with x′,y′;

val z = (y′t→int→int(xint→t 1)t )int→int 2
end

(b) An unsound classification of the same phrase constructed in a na-
ive semantics that identifies syntactic type identifiers with semantic type
variables.

datatype tα = int with x,y;
structure X = struct datatype tβ = int→ int with x′,y′;

val z = (y′β→int→int(xint→α 1)α ) 2
end

(c) The unsuccessful but sound classification of the same phrase according
to the semantics in Chapter 3. The offending subphrase is underlined.
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by assigning distinct type variables α and β to the first and second defining
occurrences of t. The situation is summarised in Figures 4.1(b) and 4.1(c). In
each, the defining occurrences are annotated with their semantic representations
and key subphrases are annotated with their types.

Of course, if we rule out the redefinition of type identifiers already bound in the
context, the need to distinguish them using type variables disappears. But this
is a harsh restriction and goes against one of the main motivations for Modules:
to provide a mechanism of name space control allowing component names to be
reused within different modules. After all, outside of the structure body, the
definitions are referred to by distinct phrases t and X.t.

4.1.2 The Rationale for Maintaining a State of Generated
Type Variables

Although the example of Section 4.1.1 illustrates how type variables are used to
distinguish between different definitions of the same type identifier, it does not
explain the need to maintain a state of type variables throughout classification.
In a typical classification, we must, at certain points, choose suitably “fresh” vari-
ables to represent syntactic type identifiers. In our example, we had to choose β
to be fresh for α. One may be tempted to define “fresh” to simply mean “distinct
from the variables free in the current context”, as this definition correctly deals
with our example yet does away with the overhead of the state. Unfortunately,
in the general case, this condition is too weak to ensure soundness. Indeed, clas-
sification must maintain a state of all variables generated so far, not just those
visible in the current context. The following example shows why.

Consider the phrase in Figure 4.2(a). As in the example of Section 4.1.1, a
sound semantics should reject the phrase since it leads to a run-time error in the
definition of z.

Suppose that, using a putatively simpler, state-less semantics, we were only to
require that the type variables chosen for t and u be distinct from the variables
currently free in the context of their respective definitions. Figure 4.2(b) shows
what can go wrong. We indicate, at the beginning of each structure body b, the

set N of variables free in the local context, using the notation
N
d b. In addition,

defining occurrences of t and u are annotated with their semantic representations
and key subphrases with their types. The problem is that t and u are assigned
the same type variable α, even though they must be distinguished. The problem
arises because α, already set aside for t, no longer occurs free in the context by
the time we need to choose a fresh variable for u: it is eclipsed by the shadow of
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Figure 4.2 An unsound phrase illustrating the necessity of maintaining a state
of type variables.

structure X = struct datatype t = int with x,y end;
structure Y = struct structure X = struct end;

datatype u = int→ int with x′,y′

end;
val z = (Y.y′ (X.x 1)) 2

(a) The phrase is unsound, attempting to apply 1 to 2. It should be
rejected by a sound static semantics.

∅
dstructure X = struct

∅
ddatatype tα = int with x,y end;

{α}
dstructure Y = struct

{α}
dstructure X = struct end;
∅
ddatatype uα = int→ int with x′,y′

end;
{α}
dval z = (Y.y′α→int→int(X.xint→α 1)α )int→int 2

(b) An unsound classification of the phrase in Figure 4.2(a) resulting from
a state-less semantics.

∅
↓ structure X = struct

∅
↓ datatype tα = int with x,y

{α}
↑ end;

{α}
↓ structure Y = struct

{α}
↓ structure X = struct end;
{α}
↓ datatype uβ = int→ int with x′,y′

{β}
↑

end;
{α,β}
↓ val z = (Y.y′β→int→int(X.xint→α 1)α ) 2

(c) A partial, correctly unsuccessful classification of the phrase in Figure 4.2(a).
The state prevents the offending subphrase from being accepted. The type
violation is underlined.
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the second definition of X. Thus we may again pick α and incorrectly accept the
definition of z.

In Figure 4.2(c) we can see how the use of a state maintains soundness. We
indicate, at the beginning of each structure body b, the state N of variables gen-
erated so far, and, at its end, the variables M generated during its classification.

We use the notation
N
↓ b

M
↑, corresponding to a classification . . .,N ` b : . . .⇒ M .

Observe that generated variables are accumulated in the state as we traverse the
phrase. At the definition of u, α is recorded in the state, even though it no longer
occurs free in the context, forcing the choice of a distinct variable β . In turn, this
leads to the detection of the type violation.

4.1.3 The Rationale for Generative Functor Application

Finally, let us examine the relationship between functors and type generativity.
Consider a typical functor definition functor F (X : S) = s in b. Recall
that classifying the body s of F with respect to its formal argument X may
itself generate new types. By way of comparison, in the structure definition
structure X = s;b, these variables would be added to the state before proceed-
ing with the classification of b. In the case of a functor definition, however, they
are not added to the state. Instead, they become (existentially) bound in the
result structure of F. At each application of F to an actual argument, fresh vari-
ables are generated to replace them in the actual result. In effect, generativity is
delayed from the point of definition to the point of application, each application
producing a fresh set of types.

Consider the misleading example in Figure 4.3(a). The phrase does not type-
check. In Figure 4.3(b) we have annotated the phrase with semantic objects to
show why classification fails: the types Y.u and Z.u are incompatible. Each
application of F has generated a fresh type, δ and γ respectively, to replace β .

At first glance, this seems overly restrictive since the example is, in fact, sound:
the evaluation of z does not cause a run-time error. Could we not, as in Figure
4.3(c), safely generate types once and for all at the functor’s definition? We
would add β as a new variable to the state, avoid the overhead of generativity
at each application, and accept the innocent phrase as it stands. A simpler
notion of semantic functor, minus the set of generative type variables, would do.
These modifications yield applicative functors, in the sense that every application
of a given functor yields equivalent abstract types, instead of generating fresh
ones. The idea of an applicative semantics for functors originates with Leroy [29].
Unfortunately, our approach to an applicative semantics is too naive and fails to
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Figure 4.3 A sound phrase that nevertheless fails to type-check due to the gener-
ativity of functor application. The example misleadingly suggests that generative
functor application is overly conservative.

functor F (X : sig end) = struct datatype u = int with x,y end in
structure Y = F (struct end);
structure Z = F (struct end);
val z = Z.y (Y.x 1)

(a) The phrase is sound but fails to type-check.

functor b
∀∅.εS→∃{β}.(u=β,x:int→β,y:β→int)
F (X : sig end) = struct datatype u = int with x,y end in

structure b
(u=δ,x:int→δ,y:δ→int)
Y = F (struct end);

structure b
(u=γ,x:int→γ ,y:γ→int)
Z = F (struct end);

val z = Z.yγ→int (Y.xint→δ 1)δ

(b) The unsuccessful classification of the same phrase. The example illustrates the
generation of fresh types at each and every functor application. The offending subphrase
is underlined.

functor b
∀∅.εS→(u=β,x:int→β,y:β→int)
F (X : sig end) = struct datatype u = int with x,y end in

structure b
(u=β,x:int→β,y:β→int)
Y = F (struct end);

structure b
(u=β,x:int→β,y:β→int)
Z = F (struct end);

val z = Z.yβ→int (Y.xint→β 1)β

(c) A successful and sound classification of the same phrase in a simpler semantics with
non-generative functor application.
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be sound. The following counter-example illustrates the problem.

Consider the phrase in Figure 4.4. It differs only slightly from the previous
one, by introducing a dependency of u on the formal argument X: in particular,
the definition of u is a function of the type parameter X.t. Now, with each
application of F, the realisation of u may vary according to F’s actual argument.
Indeed, in our example it does: the definition of z is unsound and should be
rejected. Generating fresh types at each application of F is a sufficient guard
against violations such as this one (see Figure 4.4(b)). Generating variables once-
and-for-all at a functor’s definition, as in our naive applicative semantics, is not
(see Figure 4.4(c)).

Remark 4.1.1 (Applicative Functors and Soundness). Leroy’s semantics of
applicative functors [29] is different from the naive semantics considered here and
does maintain soundness. His semantics is sound, because the abstract types re-
turned by a functor application are expressed as a function of the functor’s actual
argument. This leads to an applicative behaviour in the sense that two applica-
tions of the same functor to the same argument result in equivalent abstract types,
while an application of the same functor to a different argument yields distinct
abstract types. For instance, if F is the functor in Figure 4.4, and A and B are
structure identifiers defined as the two arguments of F in Figure 4.4, then each
application F A returns the same abstract type (F A).u, but the application F B

returns a different abstract (F B).u: the abstract types (F A).u and (F B).u are
distinct, because their constituent paths (F B) and (F A) are different (recall
that Leroy extends paths to allow applications of functors paths to argument
paths). Note, however, that Leroy’s syntactic restriction to paths means that
this technique can only be applied to applications of functor paths to argument
paths. For instance, this restriction means that the abstract types returned by two
applications of F to the same anonymous structure (struct type t = int end)
will be distinct, even though it is perfectly sound for them to be equivalent.

In Chapter 5, we will give an applicative semantics for functors that is sound
and also works for anonymous arguments, but is slightly different from Leroy’s
notion. In our proposal, two applications of the same functor to equivalent type
arguments (i.e. an equivalent realisation) yield equivalent abstract types, while an
application of the same functor to distinct type arguments yields distinct abstract
types. We will compare our semantics with Leroy’s in Chapter 9.
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Figure 4.4 An unsound phrase illustrating the need for generative functor ap-
plication.

functor F(X: sig type t : 0 end) =
struct datatype u = X.t with x,y end

in
structure Y = F (struct type t = int end);
structure Z = F (struct type t = int→ int end);
val z = (Z.y (Y.x 1)) 2

(a) The phrase is unsound, attempting to apply 1 to 2. It
should be rejected by a sound static semantics.

functor b
∀{α}.(t=α)→∃{β}.(u=β,x:α→β,y:β→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=δ,x:int→δ,y:δ→int)
Y = F (struct type t = int end);

structure b
(u=γ,x:(int→int)→γ ,y:γ→(int→int))
Z = F (struct type t = int→ int end);

val z = (Z.yγ→(int→int) (Y.xint→δ 1)δ) 2

(b) The unsuccessful but sound classification of the same
phrase. The example demonstrates how the generation of fresh
types at each and every functor application preserves sound-
ness. The denotations of Y.u and Z.u are correctly distin-
guished. The offending subphrase is underlined.

functor b
∀{α}.(t=α)→(u=β,x:α→β,y:β→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=β,x:int→β,y:β→int)
Y = F (struct type t = int end);

structure b
(u=β,x:(int→int)→β,y:β→(int→int))
Z = F (struct type t = int→ int end);

val z = (Z.yβ→(int→int) (Y.xint→β 1)β )int→int 2

(c) A successful but unsound classification of the same phrase
constructed in a naive semantics with applicative functors. By
sharing the same denotation, Y.u and Z.u are incorrectly iden-
tified.
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4.2 A Type-Theoretic Semantics

In this section we present an alternative static semantics for structure bodies and
expressions. The idea is to replace the mysterious reliance on a state of generated
types with a well understood construct from type theory: existential quantifica-
tion over types. The intuition arises from a slight shift in perspective. Instead
of treating the classification of structure bodies and expressions as resulting in a
semantic structure S with the possible side-effect of generating new types P , we
shall treat the new types as an integral part of the classifying object.

We first define:

Definition 4.1 (Existential Structures). An existential structure X ∈ ExStr
is an existentially quantified structure of the form ∃P .S. Variables in P are bound
in S. Intuitively, ∃P .S is a type used to classify terms. A term belongs to this
type if, and only if, there exists a realisation ϕ of the variables in P such that the
term has type ϕ(S). In other words, a term belongs to this type if, and only if,
its type is some member of the family of types ΛP .S.

In the new semantics, structure bodies and expressions are classified by exist-
ential structures X ∈ ExStr . Adopting this view allows us to replace the state-full
judgements:

C,N ` b : S ⇒ P

C,N ` s : S ⇒ P

by the state-less judgements:
C ` b : ∃P .S

C ` s : ∃P .S.

The key idea is to replace global generativity with respect to a state by the
implicit introduction and local elimination of existential quantifiers.

4.2.1 Static Semantics

The new static semantics of structure bodies and expressions is defined by the
judgements in Figure 4.5. We have indicated, below each judgement, its intended
English reading. The judgements are defined by the following rules. Instead
of relying on a global state, the rules employ side conditions on sets of bound
variables. The side conditions prevent the capture of free variables in the usual
way. The identification of existential structures up to capture-avoiding renamings
of bound variables means that we can always rename bound variables as necessary
to satisfy the side conditions.
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Figure 4.5 State-less Classification Judgements for Structure Bodies and Ex-
pressions

C ` b : X
In context C, structure body b has existential structure X .

C ` s : X
In context C, structure expression s has existential structure X .

Structure Bodies C ` b : X

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` b : ∃P .S t 6∈ Dom(S)
C ` type t = d; b : ∃P .t = d ,S (T-13)

(T-13) The type definition can be classified provided d denotes definable type d
and b has existential structure ∃P .S in the extended context. Ensuring free
variables in d are not accidentally captured by bound variables in P , we im-
plicitly eliminate the existential ∃P .S, extend S to record the denotation of
the type component t and then hide the hypothetical types by existentially
quantifying over the resulting structure.

C ` e : v P ∩ FV(v) = ∅
C[x : v ] ` b : ∃P .S x 6∈ Dom(S)
C ` val x = e; b : ∃P .x : v ,S (T-14)

(T-14) The value definition can be classified provided e has type v and b has
existential structure ∃P .S in the extended context. Ensuring free variables
in v are not accidentally captured by bound variables in P , we implicitly
eliminate the existential ∃P .S, extend S to record the type of the value com-
ponent x and then hide the hypothetical types by existentially quantifying
over the resulting structure.

C ` s : ∃P .S P ∩ FV(C) = ∅
C[X : S] ` b : ∃P ′.S ′
P ′ ∩ (P ∪ FV(S)) = ∅ X 6∈ Dom(S ′)
C ` structure X = s;b : ∃P ∪ P ′.X : S,S ′ (T-15)
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(T-15) Assume s has existential structure ∃P .S. To provide access to the com-
ponents of s, we locally eliminate the existential, introducing fresh hypothet-
ical types P , and type check b in the suitably extended context to obtain a
semantic structure ∃P ′.S ′. Now ∃P ′.S ′ may contain occurrences of the loc-
ally eliminated types in P , and these should not escape their scope: so we
eliminate the existential ∃P ′.S ′, extend the structure S ′ by the component
X and existentially quantify over the types P ∪ P ′, yielding the result type
∃P ∪ P ′.X : S,S ′. The quantification over P in this type means that the
variables in P do not escape their scope. The first side condition of the rule
ensures that the variables in P are treated as hypothetical types and not
confused with any existing types in C. The second side condition prevents
the accidental capture of variables in P and S by bound variables in P ′.

C ` s : ∃P .S C[X : S] ` b : ∃P ′.S ′
P ∩ FV(C) = ∅ P ′ ∩ P = ∅
C ` local X = s in b : ∃P ∪ P ′.S ′ (T-16)

(T-16) Similar to Rule (T-15) except that X does not become a component of
the resulting structure.

C ` S . ΛP .S
P ∩ FV(C) = ∅
C[X : S] ` s : X ′
C[F : ∀P .S → X ′] ` b : X

C ` functor F (X : S) = s in b : X (T-17)

(T-17) The signature expression S denotes a family of semantic structures, ΛP .S.
We want F to be applicable to any argument whose type matches the signa-
ture ΛP .S. To this end, we classify the body s of F in the context extended
with the assumption that the formal argument X has type S. Because
we ensure that P is a locally fresh set of variables, the type S is a gen-
eric instance of ΛP .S. The classification of s is an existentially quantified
structure X ′, which may contain occurrences of our generic variables P . In-
tuitively, since the functor can be classified for arbitrary type parameters P ,
it can be classified for any realisation of these parameters: F is polymorphic
in P . We discharge the assumption [X : S], universally quantify over the
type parameters, and add the assumption [F : ∀P .S → X ′] to the context.
Classifying the scope b of the functor definition yields the type of the entire
phrase (the functor is only defined locally).
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C ` εb : ∃∅.εS (T-18)

(T-18) The empty structure body introduces an empty quantifier.

Structure Expressions C ` s : X

C ` sp : S
C ` sp : ∃∅.S (T-19)

(T-19) The classification of a path is a structure. Existentially quantifying over
the empty set reflects the fact that a path cannot introduce new types.

C ` b : X
C ` struct b end : X (T-20)

C ` s : ∃P .S ′
C(F) = ∀Q .S ′′ → X P ∩ FV(∀Q .S ′′ → X ) = ∅
S ′ � ϕ (S ′′) Dom(ϕ) = Q
ϕ (X ) = ∃P ′.S P ∩ P ′ = ∅

C ` F s : ∃P ∪ P ′.S (T-21)

(T-21) Assume the argument s has existential structure ∃P .S ′. We locally elimin-
ate the quantifier to see whether the functor may be applied to the structure
(a combination of realisation and enrichment), obtaining the existentially
quantified functor result ϕ (X ) = ∃P ′.S. By virtue of the realisation, the
functor may propagate some of the hypothetical types in P from the actual
argument to the result. To prevent them escaping their scope, we extend
the existential quantification over the actual result S to hide both P and
P ′. The side conditions on P ensure that these hypothetical types are not
accidentally confused with existing types, nor with the types returned by
the application. They can always be satisfied by suitable renamings of P
and P ′.

C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FV(ΛP ′.S ′) = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C ` s � S : ∃P .ϕ (S ′) (T-22)
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(T-22) The signature expression S denotes a family of semantic structures, ΛP ′.S ′.
The curtailment s � S checks whether the type of s is at least as rich as
some member ϕ (S ′) of this family. Since s has existential type ∃P .S, we
must first eliminate the existential before checking enrichment, ensuring
that P is not accidentally confused with the free type variables of ΛP ′.S ′.
Since ϕ is applied to S ′ in the result ∃P .ϕ (S ′), the actual identities of type
components merely specified in S is retained: the visibility and generality
of some components of s, however, may be curtailed. The realisation may
mention variables in P . The existential quantification over P in the result
prevents these hypothetical types from escaping their scope.

C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FV(ΛP ′.S ′) = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C ` s \ S : ∃P ′.S ′ (T-23)

(T-23) As in Rule (T-22) we require that there be some realisation ϕ such that
S matches the signature ΛP ′.S ′. However, the type of s \ S is ∃P ′.S ′, not
∃P .ϕ (S ′). As a result, types merely specified in S are made abstract.

4.2.2 An Example

We can now revisit the example in Section 4.1.2, Figure 4.2(a), to see how clas-
sification using existential structures manages to distinguish between abstract
types that need to be kept distinct, without relying on the use of a global state
of generated type variables. In Figure 4.6(a), we have indicated the semantic

existential structures of the two key structure expressions using the notation d
X
s,

and the semantic structures, with which the identifiers X and Y are declared in
the context, using the notation b

S
X. In addition, we’ve annotated the defining

occurrences of t and u with the type variables chosen to represent them at their
point of definition.

Let’s assume the initial context is empty. The existential type of the structure
expression defining X is:

∃{α}.(t = α,x : int→ α,y : α → int).

Since α is fresh for the empty context, we can eliminate this existential quantifier
directly so that, after the definition of X, the context of Y is:

[X : (t = α,x : int→ α,y : α → int)],
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Figure 4.6 The example in Figure 4.2(a) revisited.

structure b
(t=α,x:int→α,y:α→int)
X = d

∃{α}.(t=α,x:int→α,y:α→int)
struct datatype tα = int with x,y end;

structure b
(X:(),u=β,x′:(int→int)→β,y′:β→(int→int))
Y = d

∃{α}.(X:(),u=α,x′:(int→int)→α,y′:α→(int→int))
struct structure X = struct end;

datatype uα = int→ int with x′,y′

end;
val z = (Y.y′β→int→int(X.xint→α 1)α ) 2

(a) A partial, correctly unsuccessful classification of the phrase in Figure
4.2(a). The state-less classification using existential types manages to pre-
vent the offending subphrase from being accepted. The type violation is
underlined.

structure b
(t=α,x:int→α,y:α→int)
X = d

(t=α,x:int→α,y:α→int)
struct datatype tα = int with x,y end;

structure b
(X:(),u=α,x′:(int→int)→α,y′:α→(int→int))
Y = d

(X:(),u=α,x′:(int→int)→α,y′:α→(int→int))
struct structure X = struct end;

datatype uα = int→ int with x′,y′

end;
val z = (Y.y′α→int→int(X.xint→α 1)α )int→int 2

(b) The unsound classification of Figure 4.2(c) annotated with types.
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containing a free occurrence of α. Still, as in the state-less classification of Figure
4.2(b), we are free to re-use α to represent u at the definition of u, since α no
longer occurs in the context after the second definition of X. However, examining
the existential structure,

∃{α}.(X : (),u = α,x′ : (int→ int)→ α,y′ : α → (int→ int)),

of the structure expression defining Y, we can see that this variable is distin-
guished from the free occurrence of α in the context by the fact that it existen-
tially bound. According to Rule (T-15), in order to extend the context with the
definition of Y, we need to first eliminate this existential quantifier. The first
side-condition of Rule (T-15) only permits us to do this in a way that avoids
capturing the free occurrence of α in the context of Y. To do this, it suffices to
choose a renaming,

∃{β}.(X : (),u = β,x′ : (int→ int)→ β,y′ : β → (int→ int)),

of
∃{α}.(X : (),u = α,x′ : (int→ int)→ α,y′ : α → (int→ int)),

for a variable β that is locally fresh for the context of Y, and, in particular,
distinct from α. Then, eliminating the renamed quantifier and extending the
context by the declaration:

[Y : (X : (),u = β,x′ : (int→ int)→ β,y′ : β → (int→ int))],

ensures that the abstract types X.t and Y.u are correctly distinguished by distinct
variables α and β , resulting in the detection of the type violation in the definition
of z.

The way in which the putatively simpler, state-less semantics used in Figure
4.2(b) managed to get it wrong is summarised in Figure 4.6(b), that uses similar
annotations to the ones used in Figure 4.6(a). Notice that the representation α

of u is free in the type

(X : (),u = α,x′ : (int→ int)→ α,y′ : α → (int→ int))

of the structure expression defining Y. This means that it cannot be distinguished
from the free occurrence of α in the context of Y. Even though α is locally fresh
for the context of the definition of u, choosing α to represent u is unsound,
because it eventually escapes into the type Y, without being fresh for the context
of Y.
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Figure 4.7 The definition of solvable structures and signatures.

Solvable Structures ∃P ` S Slv

∃∅ ` εS Slv

FV(τ ) ∩ P = ∅ ∃P ` S Slv
∃P ` t = τ ,S Slv

α 6∈ P ∃P ` S Slv
∃{α} ∪ P ` t = α,S Slv

FV(v) ∩ P = ∅ ∃P ` S Slv
∃P ` x : v ,S Slv

∃P ` S Slv ∃P ′ ` S ′ Slv P ∩ P ′ = ∅
∃P ∪ P ′ ` X : S,S ′ Slv

Solvable Signatures ` L Slv

∃P ` S Slv
` ΛP .S Slv

4.3 The Equivalence of the Generative and State-
less Classification Judgements

In this section, we prove the equivalence of the generative and state-less classific-
ation judgements. Before proceeding to the statement of the main result, we will
need a few more concepts:

Definition 4.2 (Solvable Structures and Signatures). The predicates ∃P `
S Slv and ` L Slv are defined as the least relations closed under the rules in
Figure 4.7.

Intuitively, ` ΛP .S Slv holds if, and only if, every type parameter α ∈ P
of the signature first occurs in a type binding t = α within S. The semantic
signatures that arise as the denotations of signature expressions are invariably
solvable:

Lemma 4.3 (Solvability). If C ` S . L then ` L Slv.

Proof. A simple induction on the rules defining C ` B . L and C ` S . L.

Intuitively, the solvability of a signature ensures that whenever a structure
matches the signature, then the corresponding realisation is unique. Moreover,
the region of this realisation will only mention type variables already free in the
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Figure 4.8 The definition of ground functors and contexts.

Ground Functors ` F Gnd

∃P ` S Slv
` ∀P .S → X Gnd

Ground Contexts ` C Gnd

∀F ∈ Dom(C). ` C(F) Gnd
` C Gnd

structure (the region of a realisation was defined in Definition 3.13 (Realisations)).
The latter is captured by the following Lemma:

Lemma 4.4 (Propagation).

If ∃Dom(ϕ) ` S ′ Slv and S � ϕ (S ′) then Reg(ϕ) ⊆ FV(S).

Remark 4.3.1 (Motivating Solvability). We will not need the property that
solvable signatures gives rise to unique matching realisations. However, it is worth
mentioning that this is the key property one needs to prove that the classifications
of structure bodies and expressions are unique. To see this, consider the Mini-
SML signature L and structure S defined as:

L ≡ Λα.(x : α(int)),

S ≡ (x : int).

Observe that L fails to be solvable (6` L Slv) since its parameter α does not occur
as the denotation of a type component within its body. Consider the two distinct
realisations ϕ1 ≡ [Λ(′b).′b/α] and ϕ2 ≡ [Λ(′b).int/α]. It is easy to check that S
matches L by either one, since in each case we have S � ϕi (x : α(int)).

Definition 4.5 (Ground Functors and Contexts). The predicates ` F Gnd
and ` C Gnd are defined as the least relations closed under the rules in Figure
4.8.

Informally, a semantic functor is ground provided the signature of its argument
is solvable; a context is ground provided all the functors in its domain are ground.

No matter which classification judgements we adopt, as long as a given se-
mantic functor F is ground, whenever we apply a functor of this type, the free
variables of the result are either propagated from the type of the actual argument,
or were already free in F :
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Lemma 4.6 (Functor Propagation). If ` ∀P .S → X Gnd and S ′ � ϕ (S),
where Dom(ϕ) = P, then FV(ϕ (X )) ⊆ FV(S ′) ∪ FV(∀P .S → X ).

Proof. A simple consequence of Lemma 4.4 (Propagation).

Remark 4.3.2 (Motivating Groundedness). Although we will not need this
property, we should also point out that insisting on ground functors ensures that
the type of a functor application is uniquely determined by the type of the actual
argument. As a counter-example, consider the Mini-SML functor F defined as:

F ≡ ∀α.(x : α(int))→ ∃∅.(y : α(bool))

Let L, S, ϕ1 and ϕ2 be defined as in Remark 4.3.1. Observe that F fails to
be ground since its argument signature is the unsolvable signature L . Consider
the application F s, where F is a functor of type F , and s is a structure expres-
sion of type S. Recall that S matches L via both ϕ1 and ϕ2. Consequently,
in either semantics, there are two ways of using the functor application rule,
one for each choice of matching realisation. Choosing ϕ1 yields the result type
ϕ1 (y : α(bool)) ≡ (y : bool), with a boolean component. Choosing ϕ2, on the
other hand, yields the result type ϕ2 (y : α(bool)) ≡ (y : int), with an integer
component. There is no principled way to select between these very different
results. Insisting on ground functors excludes such examples.

We will need the following simple lemma:

Lemma 4.7 (Free Variables).

• C ` d . d implies FV(d ) ⊆ FV(C).

• C ` v . v implies FV(v) ⊆ FV(C).

• C ` e : v implies FV(v) ⊆ FV(C).

• C ` sp : S implies FV(S) ⊆ FV(C).

• C ` do . d implies FV(d ) ⊆ FV(C).

• C ` vo : v implies FV(v) ⊆ FV(C).

• C ` S . L implies FV(L) ⊆ FV(C).

• C ` B . L implies FV(L) ⊆ FV(C).
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Proof (Sketch). The proof follows easily by simultaneous induction on the rules
defining the judgements. The first three clauses are Core language dependent,
but must be proven together with the remaining statements in order deal with
subphrases containing type and value occurrences.

We will also need a similar lemma for the judgements C ` b : X and C ` s : X .
The lemma holds as long as the functors occurring in derivations are ground. This
is only a technical restriction since we already discussed how the presence of non-
ground functors leads to problems (cf. Remark 4.3.2). Indeed, by Lemma 4.3
(Solvability), we know that all signatures arising from signature expressions are
solvable, so that functor definitions only introduce ground functors. However,
because a context may contain arbitrary functor bindings, we need to impose
a condition to ensure that any pre-declared functors are ground. This is the
motivation for requiring that contexts are ground in the following lemma:

Lemma 4.8 (Free Variables).

• C ` s : X implies ` C Gnd implies FV(X ) ⊆ FV(C); and

• C ` b : X implies ` C Gnd implies FV(X ) ⊆ FV(C).

Proof (Sketch). The proof follows easily by rule induction. The idea is to main-
tain the groundedness of the context as an invariant of the proof. In case (T-17)
we appeal to Lemma 4.3 (Solvability) to ensure that the context extended with
the functor binding is ground. In case (T-21) we appeal to Lemma 4.6 (Functor
Propagation) to show that applying the matching realisation to the result does not
introduce spurious type variables. Similarly, case T-22 requires an appeal to Lem-
mas 4.3 (Solvability) and 4.4 (Propagation). Case (T-23) follows by an appeal to
Lemma 4.7 (Free Variables).

In the previous chapter, we informally identified semantic objects that are
equivalent up to capture-avoiding renamings of bound type variables. For the
results in this chapter, we will need to make the identification more formal (though
we will still refrain from spelling out all the details). We first define the concept
of a renaming, which is similar to, but simpler than, the notion of realisation we
already encountered.

Definition 4.9 (Renamings). A renaming is a kind-preserving, finite map from
type variables to type variables. We let

ρ, σ, π ∈ def= {f ∈ TypVar fin→ TypVar | ∀κ.∀ακ ∈ Dom(f).f(ακ) ∈ TypVarκ},
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range over renamings.
We will use the more suggestive notation [M /N ] to denote a bijective renaming

with domain N and range M that simply swaps variables. The effect of applying
a renaming ρ to a variable α, written ρ〈α〉, is defined to be ρ〈α〉 def= if α ∈
Dom(ρ) then ρ(α) else α. We extend the operation of renaming free variables
compositionally to all semantic objects in such a way that bound variables are
renamed only when necessary to avoid capture (in the obvious way).

Let Inv(ρ) def= Dom(ρ) ∪ Rng(ρ) describe the set of variables involved in the
renaming ρ.

We can now formally define the sense in which semantic objects are identified
“up to renamings of bound variables”:

Definition 4.10 (α-Equivalence).

• Two signatures L ≡ ΛP .S, L′ ≡ ΛP ′.S ′, are α-equivalent, written L α≡ L′,
if, and only if, there is a bijective renaming [P ′/P ] such that [P ′/P ]〈S〉 ≡ S ′

and FV(L) = FV(L′).

• Two existential structures X ≡ ∃P .S, X ′ ≡ ∃P ′.S ′, are α-equivalent, writ-
ten X α≡ X ′, if, and only if, there is a bijective renaming [P ′/P ] such that
[P ′/P ]〈S〉 ≡ S ′ and FV(X ) = FV(X ′).

• Two functors F ≡ ∀P .S → X , F ′ ≡ ∀P ′.S ′ → X ′, are α-equivalent,
written F α≡ F ′, if, and only if, there is a bijective renaming [P ′/P ] such
that [P ′/P ]〈S〉 ≡ S ′, [P ′/P ]〈X 〉 α≡ X ′ and FV(F) = FV(F ′).

We identify all semantic objects that are α-equivalent.

Renamings enjoy the following properties:

Properties 4.11 (of Renamings).

• If Dom(ρ) ∩ FV(O) = ∅ then ρ〈O〉 ≡ O.

• If Dom(ρ′) ∩ FV(O) = ∅ then (ρ+ ρ′)〈O〉 ≡ ρ〈O〉.

• If Dom(ρ) ∩Rng(ρ′) = ∅ then (ρ+ ρ′)〈O〉 ≡ ρ〈ρ′〈O〉〉.

• If (ρ ↓ FV(O)) = (ρ′ ↓ FV(O)) then ρ〈O〉 ≡ ρ′〈O〉.

• If Inv(ρ) ∩ P = ∅ then

– ρ〈ΛP .S〉 ≡ ΛP .ρ〈S〉,
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– ρ〈∃P .S〉 ≡ ∃P .ρ〈S〉, and

– ρ〈∀P .S → X〉 ≡ ∀P .ρ〈S〉 → ρ〈X 〉.

In our proofs, we shall frequently make implicit appeals to these properties.
We are now in a position to state the main result of this chapter:

Theorem 4.12 (Equivalence). Provided ` C Gnd and C,N rigid:

(Completeness)

• If C,N ` b : S ⇒ P then C ` b : ∃P .S.

• If C,N ` s : S ⇒ P then C ` s : ∃P .S.

(Soundness)

• If C ` b : X then, for some P and S, C,N ` b : S ⇒ P with
X α≡ ∃P .S.

• If C ` s : X then, for some P and S, C,N ` s : S ⇒ P with X α≡ ∃P .S.

It might help to explain the provisos on Theorem 4.12. We already motivated
the restriction to ground contexts, so let us consider the rigidity requirement.
Informally, with the generative classification judgements, it is only if we start
with a rigid context that the set of variables returned by the classification of a
phrase will be distinct from the variables occurring free in the context. Violating
this condition leads to unsound judgements. For this reason, the only generative
judgements of actual interest to us are those that mention rigid contexts. Because
it covers the cases that we are interested in, the fact that Theorem 4.12 only holds
for judgements with respect to ground and rigid contexts is merely a technical
restriction.

The next two sections are devoted to the proof of Theorem 4.12.

4.3.1 Completeness

An operational view of the state-less classification judgements is that we have
replaced the notion of global generativity by local freshness, using the ability to
rename existentially bound variables whenever necessary to avoid capture of free
variables. The proof of completeness is easy because any variable that is globally
generative with respect to both the state and the context, will also be locally
fresh with respect to the context, enabling a straightforward construction of a
corresponding state-less derivation.
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Proof (Completeness). We use strong rule induction on the generative classi-
fication judgements to prove the theorems:

C,N ` b : S ⇒ P ⊃ ` C Gnd ⊃ C,N rigid ⊃ C ` b : ∃P .S

C,N ` s : S ⇒ P ⊃ ` C Gnd ⊃ C,N rigid ⊃ C ` s : ∃P .S

We will only consider the case for structure definitions, the other cases are
similar:

E-15 By strong induction we may assume the premises:

C,N ` s : S ⇒ P , (1)

C[X : S],N ∪ P ` b : S ′ ⇒ P ′, (2)

X 6∈ Dom(S ′). (3)

and the induction hypotheses:

` C Gnd ⊃ C,N rigid ⊃ C ` s : ∃P .S, (4)

` C[X : S] Gnd ⊃ C[X : S],N ∪ P rigid ⊃ C[X : S] ` b : ∃P ′.S ′.
(5)

We need to show:

` C Gnd ⊃ C,N rigid ⊃ C ` structure X = s;b : ∃P ∪ P ′.X : S,S ′.
(6)

Assume:

` C Gnd, (7)

C,N rigid. (8)

By induction hypothesis (4) on (7) and (8) we obtain:

C ` s : ∃P .S. (9)
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Property 3.31 (Generativity) of (1), together with (8), ensures that:

P ∩ FV(C) = ∅. (10)

Since we are only declaring a structure (not a functor), (7) extends to:

` C[X : S] Gnd. (11)

Lemma 4.8 (Free Variables) on (7) and (9) guarantees FV(∃P .S) ⊆ FV(C).
It follows from (8) that:

FV(S) ⊆ N ∪ P (12)

and consequently:

C[X : S],N ∪ P rigid. (13)

Induction hypothesis (5) applied to (11) and (13) yields:

C[X : S] ` b : ∃P ′.S ′. (14)

Property 3.31 (Generativity) of (2) ensures P ′ ∩ (N ∪ P) = ∅, which, to-
gether with (12), entails:

P ′ ∩ (P ∪ FV(S)) = ∅. (15)

Rule (T-15) on (9), (10), (14) (15) and (3) derives:

C ` structure X = s;b : ∃P ∪ P ′.X : S,S ′

as desired.

In the complete proof, Property 3.31 (Generativity) and Lemma 4.8 (Free
Variables) conspire to ensure that the side conditions on bound variables, that
are imposed by Rules (T-13) through (T-23) to prevent the capture of free vari-
ables, are immediately satisfied by the semantic objects classifying phrases in
subderivations: implicit appeals to α-conversion are never required.

4.3.2 Soundness

Soundness is more difficult to prove, because the state-less classification judge-
ments merely require subderivations to hold for particular choices of locally fresh
variables. A variable may be locally fresh without being globally generative with
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Figure 4.9 State-less Classification Judgements with Generalised Premises (mod-
ified rules only)

Structure Bodies C `′ b : X

C `′ s : ∃P .S Q ∩ (P ∪ FV(S)) = ∅
∀π.Dom(π) = P ⊃ C[X : π〈S〉] `′ b : π〈∃Q .S ′〉 X 6∈ Dom(S ′)

C `′ structure X = s;b : ∃P ∪ Q .X : S,S ′
(T’-15)

C `′ s : ∃P .S Q ∩ P = ∅
∀π.Dom(π) = P ⊃ C[X : π〈S〉] `′ b : π〈∃Q .S ′〉

C `′ local X = s in b : ∃P ∪Q .S ′ (T’-16)

C ` S . ΛP .S
∀π.Dom(π) = P ⊃ C[X : π〈S〉] `′ s : π〈X ′〉
C[F : ∀P .S → X ′] `′ b : X
C `′ functor F (X : S) = s in b : X (T’-17)

respect to a given state. This foils naive attempts to directly construct a gener-
ative derivation from a state-less derivation.

To address this problem, we introduce a modified formulation of the classi-
fication judgements with the judgement forms C `′ b : X and C `′ s : X (note
the prime on the `). The modified rules appear in Figure 4.9. The rules for the
other constructs remain the same (modulo replacing occurrences of judgements
C ` b : X and C ` s : X by C `′ b : X and C `′ s : X , respectively). Instead of
requiring subderivations to hold for particular choices of fresh variables, the mod-
ified rules require them to hold for every renaming of these variables. This makes
it easy to construct a generative derivation from the derivation of a generalised
judgement. Note that the inference rules are no longer finitely branching, but the
relations remain well-founded, admitting inductive arguments. This technique
of introducing a generalised judgement is adapted from McKinna and Pollack’s
formalisation of α-conversion [38].

Our strategy for proving soundness is to first show that any derivation in the
original system gives rise to a corresponding derivation in the generalised system:

Lemma 4.13 (Soundness — Part I).

• If C ` b : X then C `′ b : X .
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• If C ` s : X then C `′ s : X .

This corresponds to proving a stronger induction principle for our classification
judgements. We then prove that any derivation in the generalised system gives
rise to a corresponding generative classification.

Lemma 4.14 (Soundness — Part II).

Provided ` C Gnd and C,N rigid,

• if C `′ b : X then we can find an M and S such that C,N ` b : S ⇒ M ,
with X α≡ ∃M .S.

• if C `′ s : X we can find an M and S such that C,N ` s : S ⇒ M , with
X α≡ ∃M .S.

Proof (Soundness). Follows easily from Lemmas 4.13 and 4.14.

Proof (Lemma 4.13). We use rule induction on the classification rules to prove
the stronger statements:

C ` b : X ⊃ ∀ρ.ρ〈C〉 `′ b : ρ〈X 〉

C ` s : X ⊃ ∀ρ.ρ〈C〉 `′ s : ρ〈X 〉

Lemma 4.13 follows immediately by choosing ρ to be the empty (identity)
renaming.

We will only consider the case of a structure definition. The other cases are
similar.

T-15 By induction we may assume:

∀ρ.ρ〈C〉 `′ s : ρ〈∃P .S〉, (1)

P ∩ FV(C) = ∅, (2)

∀ρ.ρ〈C[X : S]〉 `′ b : ρ〈∃Q .S ′〉, (3)

Q ∩ (P ∪ FV(S)) = ∅, (4)

X 6∈ Dom(S ′). (5)
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We need to show:

∀ρ.ρ〈C〉 `′ structure X = s;b : ρ〈∃P ∪Q .X : S,S ′〉.

Consider an arbitrary renaming ρ.

We first choose a bijective renaming [P̄/P ] such that:

P̄ ∩ (Inv(ρ) ∪ FV(∃P ∪Q .X : S,S ′)) = ∅. (6)

Then it is easy to verify that:

∃P .S α≡ ∃P̄ .[P̄/P ]〈S〉. (7)

Moreover, from (7) and our choice of P̄, we can show:

ρ〈∃P .S〉 α≡ ∃P̄ .ρ〈[P̄/P ]〈S〉〉. (8)

By induction hypothesis (1) applied to ρ we have:

ρ〈C〉 `′ s : ρ〈∃P .S〉,

which by α-equivalence (8) is also a derivation of:

ρ〈C〉 `′ s : ∃P̄.ρ〈[P̄/P ]〈S〉〉. (9)

We now choose a bijective renaming [Q̄/Q ] such that:

Q̄ ∩ (Inv(ρ) ∪ P ∪ P̄ ∪ FV(∃P ∪Q .X : S,S ′)) = ∅. (10)

Then it is easy to verify that:

∃Q .S ′ α≡ ∃Q̄ .[Q̄/Q ]〈S ′〉. (11)

Moreover, from (11) and our choice of Q̄, it follows that:

ρ〈[P̄/P ]〈∃Q .S ′〉〉 α≡ ∃Q̄ .ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉. (12)

Our choice of Q̄ also ensures:

Q̄ ∩ (P̄ ∪ FV(ρ〈[P̄/P ]〈S〉〉)) = ∅. (13)

We will now show:

∀π.Dom(π) = P̄ ⊃ ρ〈C〉[X : π〈ρ〈[P̄/P ]〈S〉〉〉] `′ b : π〈∃Q̄ .ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉〉.
(14)
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Consider an arbitrary renaming π with Dom(π) = P̄ .
Define σ to be the renaming σ def= ρ + (π ◦ [P̄/P ]).

By induction hypothesis (3) on the renaming σ we obtain:

σ〈C[X : S]〉 `′ b : σ〈∃Q .S ′〉. (15)

By reasoning about renamings we can prove equivalences (16), (17) and (18)
below:

σ〈C〉 = (ρ+ (π ◦ [P̄/P ]))〈C〉 by the definition of σ

= ρ〈C〉 since P ∩ FV(C) = ∅ (16)

σ〈S〉 = (ρ + (π ◦ [P̄/P ]))〈S〉 by the definition of σ

= π〈ρ+ [P̄/P ]〈S〉〉

since Dom(π) ∩ (Rng(ρ) ∪ (FV(S) \ P)) = ∅

= π〈ρ〈[P̄/P ]〈S〉〉〉 since P̄ ∩Dom(ρ) = ∅ (17)

σ〈∃Q .S ′〉 = (ρ+ (π ◦ [P̄/P ]))〈∃Q .S ′〉 by the definition of σ

= π〈ρ+ [P̄/P ]〈∃Q .S ′〉〉

since Dom(π) ∩ (Rng(ρ) ∪ (FV(∃Q .S ′) \ P)) = ∅

= π〈ρ〈[P̄/P ]〈∃Q .S ′〉〉〉 since P̄ ∩ Dom(ρ) = ∅
α≡ π〈∃Q̄ .ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉〉 by (12) (18)

Using equations (16), (17), and α-equivalence (18) we can re-express (15)
as:

ρ〈C〉[X : π〈ρ〈[P̄/P ]〈S〉〉〉] `′ b : π〈∃Q̄.ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉〉.
(19)

Since π was arbitrary we have established (14).
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Clearly

X 6∈ Dom(ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉) (20)

follows from (5) since renaming the structure S ′ does not affect its domain.

Rule (T’-15) applied to (9), (13), (14) and (20) derives:

ρ〈C〉 `′ structure X = s;b : ∃P̄ ∪ Q̄ .X : ρ〈[P̄/P ]〈S〉〉, ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉.
(21)

From our choice of P̄ and Q̄ in (6) and (10) it is easy to verify that:

∃P ∪Q .X : S,S ′ α≡ ∃P̄ ∪ Q̄ .X : [P̄/P ]〈S〉, [P̄/P ]〈[Q̄/Q ]〈S ′〉〉.
(22)

Moreover, we have:

∃P̄ ∪ Q̄ .X : ρ〈[P̄/P ]〈S〉〉, ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉
= ρ〈∃P̄ ∪ Q̄ .X : [P̄/P ]〈S〉, [P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉 (23)

since (P̄ ∪ Q̄) ∩ Inv(ρ) = ∅ by (6) and (10)

α≡ ρ〈∃P ∪Q .X : S,S ′〉 by (22) (24)

Using α-equivalence (24) on judgement (21) yields:

ρ〈C〉 `′ structure X = s;b : ρ〈∃P ∪ Q .X : S,S ′〉,

as desired.

Before proceeding with the proof of Lemma 4.14 we will require the counter-
part to Lemma 4.8 (proof omitted but easy):

Lemma 4.15 (Free Variables).

• If ` C Gnd and C `′ b : X then FV(X ) ⊆ FV(C).

• If ` C Gnd and C `′ s : X then FV(X ) ⊆ FV(C).

Proof (Lemma 4.14). We use strong rule induction on the generalised classi-
fication rules to prove the statements:
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C `′ b : X ⊃
` C Gnd ⊃
∀N .C,N rigid ⊃
∃P ,S. C,N ` b : S ⇒ P

∧ X α≡ ∃P .S

C `′ s : X ⊃
` C Gnd ⊃
∀N .C,N rigid ⊃
∃P ,S. C,N ` s : S ⇒ P

∧ X α≡ ∃P .S

We will only consider the case of a structure definition. The other cases are
similar.

T’-15 By strong induction we may assume the premises:

C `′ s : ∃P .S, (1)

Q ∩ (P ∪ FV(S)) = ∅, (2)

∀π.Dom(π) = P ⊃ C[X : π〈S〉] `′ b : π〈∃Q .S ′〉, (3)

X 6∈ Dom(S ′), (4)

and induction hypotheses:

` C Gnd ⊃
∀N .C,N rigid ⊃
∃P̄ , S̄. C,N ` s : S̄ ⇒ P̄

∧ ∃P .S α≡ ∃P̄ .S̄

(5)

∀π.Dom(π) = P ⊃

` C[X : π〈S〉] Gnd ⊃
∀N .C[X : π〈S〉],N rigid ⊃
∃Q̄ , S̄ ′. C[X : π〈S〉],N ` b : S̄ ′ ⇒ Q̄

∧ π〈∃Q .S ′〉 α≡ ∃Q̄ .S̄ ′ (6)

We need to show:

` C Gnd ⊃
∀N .C,N rigid ⊃
∃P̂ , Ŝ. C,N ` structure X = s;b : Ŝ ⇒ P̂

∧ ∃P ∪ Q .X : S,S ′ α≡ ∃P̂ .Ŝ
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Assume:

` C Gnd. (7)

Consider an arbitrary N such that:

C,N rigid. (8)

By induction hypothesis (5) applied to (7) and (8) we obtain:

C,N ` s : S̄ ⇒ P̄ . (9)

for some P̄ , S̄ satisfying:

∃P .S α≡ ∃P̄ .S̄. (10)

By (10) we must have some bijective renaming [P̄/P ] such that:

[P̄/P ]〈S〉 = S̄. (11)

Since we are only declaring a structure (not a functor), (7) extends to:

` C[X : [P̄/P ]〈S〉] Gnd. (12)

Lemma 4.15 (Free Variables) on (1) and (7) ensures:

FV(∃P .S) ⊆ FV(C). (13)

Combining (13) with (8), (10) and (11) we can establish:

FV([P̄/P ]〈S〉) ⊆ N ∪ P̄ . (14)

Hence we can extend (8) to:

C[X : [P̄/P ]〈S〉],N ∪ P̄ rigid. (15)

Applying induction hypothesis (6) to the renaming [P̄/P ], using (12), N∪P̄ ,
(15) and equation (11) we obtain:

C[X : S̄],N ∪ P̄ ` b : S̄ ′ ⇒ Q̄ (16)

for some Q̄, S̄ ′ satisfying:

[P̄/P ]〈∃Q .S ′〉 α≡ ∃Q̄ .S̄ ′. (17)
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Furthermore, as a consequence of (4) and (17) we must also have:

X 6∈ Dom(S̄ ′). (18)

Rule (E-15) applied to (9), (16) and (18) derives:

C,N ` structure X = s;b : X : S̄, S̄ ′ ⇒ P̄ ∪ Q̄ . (19)

It remains to show:

∃P ∪ Q .X : S,S ′ α≡ ∃P̄ ∪ Q̄ .X : S̄, S̄ ′.

Assembling the premises (1), (2), (3) and (4) and applying Rule (T’-15) we
obtain the original derivation of:

C `′ structure X = s;b : ∃P ∪ Q .X : S,S ′. (20)

Lemma 4.15 (Free Variables) on (20) using (7) ensures:

FV(∃P ∪Q .X : S,S ′) ⊆ FV(C). (21)

First, observe that, as a consequence of Property 3.31 (Generativity) applied
to both (9) and (16), we have:

N ∩ P̄ = ∅, (22)

and

(N ∪ P̄) ∩ Q̄ = ∅. (23)

By Definition 3.32 (Rigidity) on (8), combined with (21), (22) and (23) we
have:

P̄ ∩ FV(∃P ∪ Q .X : S,S ′) = ∅, (24)

Q̄ ∩ FV(∃P ∪ Q .X : S,S ′) = ∅, (25)

and:

P̄ ∩ Q̄ = ∅. (26)

Now choose a bijective renaming [Q̂/Q ] such that:

Q̂ ∩ (P ∪ P̄ ∪ Q ∪ Q̄ ∪ FV(∃P ∪ Q .X : S,S ′)) = ∅. (27)
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By our choice of [Q̂/Q ] we also have:

Q̂ ∩ FV(∃Q .S ′) = ∅. (28)

Hence it is easy to verify that:

∃Q .S ′ α≡ ∃Q̂ .[Q̂/Q ]〈S ′〉. (29)

We can now show:

∃Q̄ .S̄ ′
α≡ [P̄/P ]〈∃Q .S ′〉 (by (17))
α≡ [P̄/P ]〈∃Q̂ .[Q̂/Q ]〈S ′〉〉 (by (29))

= ∃Q̂.[P̄/P ]〈[Q̂/Q ]〈S ′〉〉 (since Q̂ ∩ Inv([P̄/P ]) = ∅ by (27)) (30)

Hence there is some bijection [Q̄/Q̂ ] such that:

S̄ ′ = [Q̄/Q̂ ]〈[P̄/P ]〈[Q̂/Q ]〈S ′〉〉〉 (31)

With these observations it is easy to show:

∃P ∪Q .X : S,S ′
α≡ ∃P ∪ Q̂ .X : [Q̂/Q ]〈S〉, [Q̂/Q ]〈S ′〉

(since [Q̂/Q ] bijective, and

Q̂ ∩ (P ∪ FV(∃P ∪Q .X : S,S ′)) = ∅
follows from (27))

α≡ ∃P ∪ Q̂ .X : S, [Q̂/Q ]〈S ′〉 (32)

(since Q ∩ FV(S) = ∅ by (2))
α≡ ∃P̄ ∪ Q̂ .X : [P̄/P ]〈S〉, [P̄/P ]〈[Q̂/Q ]〈S ′〉〉 (33)

(since [P̄/P ] bijective, and

P̄ ∩ (Q̂ ∪ FV(∃P ∪ Q̂ .X : S, [Q̂/Q ]〈S ′〉)) = ∅
follows from (27), (24) and (32))

α≡ ∃P̄ ∪ Q̄ .X : [Q̄/Q̂ ]〈[P̄/P ]〈S〉〉, [Q̄/Q̂ ]〈[P̄/P ]〈[Q̄/Q̂ ]〈S ′〉〉〉
(since [Q̄/Q̂ ] bijective, and

Q̄ ∩ (P̄ ∪ FV(∃P̄ ∪ Q̂ .X : [P̄/P ]〈S〉, [P̄/P ]〈[Q̂/Q ]〈S ′〉〉)) = ∅
follows from (26), (25) and (33))

α≡ ∃P̄ ∪ Q̄ .X : S̄, S̄ ′ (34)

(by (31) and since

[Q̄/Q̂ ]〈[P̄/P ]〈S〉〉 = [P̄/P ]〈S〉 = S̄
follows from (27) and (11) )
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Choosing P̂ ≡ P̄ ∪ Q̄, Ŝ ≡ X : S̄, S̄ ′ and combining (19) with (34) gives the
desired result.

4.4 Conclusion

By adopting the notational changes to semantic structures and functors sugges-
ted in Section 3.3.4, and replacing the generative classification judgements by
their state-less counterparts, we obtain a semantics of Mini-SML which is easily
understood in terms of well-known concepts from Type Theory. Without being
too precise, we will sketch the analogy between Mini-SML’s semantic objects and
type-theoretic constructs.

Putting aside Mini-SML’s idiosyncratic denotation judgements, we find that
the type theory underlying Mini-SML, embodied in its semantic objects and clas-
sification judgements, is based entirely on second-order type parameterisation and
quantification, with no evidence whatsoever of first-order dependent types.

Semantic structures are related to record types: they list the types of their
components. As in record types, the names of components are merely tags: they
are neither free nor bound within subsequent components of the structure and
there is no dependency between fields. Structures differ from record types in
also recording the denotation of type components. This additional information is
needed to determine the realisation of type variables when matching a structure
against a signature. The enrichment relation can be seen as a combination of
record subtyping and the Core subtyping relation on value types.

In Section 3.3.4, we introduced the interpretation of functors as polymorphic
functions on structures returning existential structures. This interpretation is
merely reinforced by the alternative presentations of the functor introduction
and elimination rules (Rules (T-17) and (T-21)).

In Section 3.3.4, we also introduced the interpretation of signatures as type
indexed families of structures, that is, as types parameterised by types. The
alternative rules emphasise the distinct roles that signatures play in the semantics.
In the functor introduction rule (Rule (T-17)), the signature is used to enforce
polymorphism: the functor may be applied to any argument whose type is in the
family of structures described by the signature. In the structure curtailment rule
(Rule (T-22)), the signature is used to restrict the visibility and generality of the
structure expression’s components, by coercing its type to a particular member of
the family of structures described by the signature. In the structure abstraction
rule (Rule (T-23)), the signature is used to introduce existential quantification
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over types, by coercing the type of the structure expression to that of a generic
member of the family of structures described by the signature.

Finally, in this chapter we have shown how the generative classification judge-
ments may be regarded as a particularly operational presentation of a system
based on existential quantification over types.

Although we have not gone so far as to translate Mini-SML and its semantics
into an accepted type theory, we hope that the observations of the previous para-
graph, together with the “type-theoretic” presentation of the judgements, give
some indication of how such a translation may be achieved. Our primary motiv-
ation for the results in this chapter is to provide the necessary insight required to
facilitate the extensions in subsequent chapters.
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Chapter 5

Higher-Order Modules

In this chapter, we extend the Modules language of Chapter 4 to higher-order.
Functors are given the same status that structures enjoy in Modules: they may be
bound as components of structures, specified as functor arguments and returned
as functor results. We will continue to refer to the first-order language collectively
as Modules. Its generalisation will be called Higher-Order Modules. The Core
language remains the same.

The chapter is organised as follows. Section 5.1 motivates the extension to
higher-order with the help of an example. Section 5.2 informally explains the
key ideas used to generalise the first-order static semantics we gave in Chapter
4. Section 5.3 briefly presents the phrase classes and grammar of Higher-Order
Modules. In Section 5.4 we extend the definition of semantic objects to the
new setting. The main difficulty is in defining a notion of enrichment between
modules which is both easily understood by a programmer and a suitable basis
for subtyping. We first give an intuitive, but non-definitional specification of
enrichment. We then define enrichment as an inductive relation, show that is a
pre-order and that it satisfies its specification. In Section 5.5 we present a static
semantics for Modules. The semantics yields a type checking algorithm, provided
we can give an algorithm for computing the higher-order realisations required by
those rules that match semantic modules against semantic signatures. Section
5.6 presents an algorithm for computing such realisations. We prove that it is
sound and complete for a restricted set of matching problems. Section 5.7 gives
a brief justification of why the restricted matching algorithm may still be used
to turn the static semantics into a sound and complete type checking algorithm.
The work in this chapter is based, in part, on a rational reconstruction and
subsequent extension of earlier research by Biswas [3]. Section 5.8 is a summary
of our contribution and the relation to his results.
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Figure 5.1 The specification of a module evaluating polynomials.

sig module Nat:sig type nat:0;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end;
val eval:Nat.nat→(list Nat.nat)→Nat.nat

end

5.1 Motivation

This section presents an example program illustrating the utility of Higher-Order
Modules and introducing some of the key concepts. Many more examples may
be found in the literature [57, 58, 36, 3, 29, 31, 33].

To help understand the example, here’s a brief preview of the syntax of Higher-
Order Modules. In Higher-Order Modules, the grammar of structure expressions
is generalised to a syntax of module expressions that includes anonymous functors
functor(X : s)m, for m a module expression, and module applications m m′. The
structure definition structure X = s is generalised to the module definition
module X = m, that can define a component that is either a structure or a
functor. The structure specification structure X : S is generalised to the module
specification module X : S that can specify a component that is either a structure
or a functor. Finally, the grammar of signature expressions is extended to include
functor signatures: informally, the functor signature funsig(X:S)S′ specifies the
type of a functor that maps any argument matching S to some result matching
S′. The meaning of these phrases will be made precise later in this chapter.

5.1.1 Programming with Higher-Order Functors

Suppose we are given the task of producing a package for evaluating polynomials
over the natural numbers, where a polynomial a0x0+· · ·+an−1xn−1 is specified by
the list [a0, . . . , an−1] of its (natural) coefficients . More specifically, the require-
ment is to produce a module matching the signature in Figure 5.1. Here nat is
the type representing naturals, z is zero, s is the successor function on naturals,
i implements polymorphic iteration and eval x l evaluates the polynomial l at
x.

Let us assume we are carrying out a top-down design. We first observe that we
can avoid using exponentiation in the implementation of eval by using Horner’s
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Figure 5.2 The specification of N.

N : sig type nat:0;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end

Figure 5.3 The specification of A.

A : funsig(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:X.nat→X.nat→X.nat end

Figure 5.4 The specification of M.

M : funsig(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
funsig(A:funsig(Y:sig type nat = X.nat;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:Y.nat→Y.nat→Y.nat end)

sig val mult:X.nat→X.nat→X.nat
end
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rule:
a0x

0 + · · · + an−1x
n−1 = a0 + x(a1 + x(· · ·+ x(an−1 + 0) · · · ))

This leaves just the implementation of the naturals, addition and multiplication
to be worked out. We suspect that, given an implementation of naturals, addition
should be easily defined in terms of iteration. In turn, given a means of construct-
ing addition, multiplication should be easily obtained from iterated addition. We
decide to decompose the problem into the simpler problems of implementing:

1. A structure N of natural numbers matching the signature in Figure 5.2.

2. A functor A which from N constructs an implementation of addition. We
require that A matches the functor signature in Figure 5.3.

3. A higher-order functor M which from N and A constructs an implementa-
tion of multiplication. We require that M matches the higher-order functor
signature in Figure 5.4.

With higher-order functors we can delegate these subtasks to a separate team
of programmers, assume implementations of N, A and M and implement the ori-
ginal specification using the higher-order functor MkPoly (Figure 5.5). Here, fix
f takes the fix-point of a function f, implementing recursion; listcase l b f per-
forms case analysis on the value of the list l: if this value is the empty list, b is
evaluated, otherwise the function f is evaluated and applied to the head and tail
of the list. Note that we can proceed with the design of MkPoly before modules
N, A and M have been written.

Meanwhile, our team of programmers is busy producing prototype implement-
ations of N, A and M. Fortunately, an implementation of N already exists as an
abstract module Nat from which they can construct implementations of A and M

(Figure 5.6).
Applying the functor MkPoly to N, A and M produces a module matching the

original specification in Figure 5.1.

5.1.2 Functor Generalisation as Enrichment

During coding, the author of functor A realises that its body requires less structure
from its argument than initially assumed. In particular, the concrete representa-
tion of X.nat is irrelevant, no use is made of the zero component X.z and only a
particular type instance of the iterator X.i is required. In the interest of writing
general-purpose code (say, for inclusion in a library), he rewrites the functor as in
Figure 5.7, adding, for future convenience, a function sum for summing over lists
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Figure 5.5 The implementation of MkPoly.

module MkPoly =
functor(N:sig type nat:0;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
functor(A:funsig(X:sig type nat = N.nat;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:X.nat→X.nat→X.nat end)

functor(M:funsig(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
funsig(A:funsig(Y:sig type nat = X.nat;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:Y.nat→Y.nat→Y.nat end)

sig val mult:X.nat→X.nat→X.nat end)
struct
module Nat = N;
module Add = A N;
module Mult = M N A;
val eval = λx.fix λevalx.λl.

listcase l
(Nat.z)
(λh.λl. Add.add h (Mult.mult x (evalx l)))

end
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Figure 5.6 The implementations of N, A, M.

module N = Nat;

module A = functor(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
struct val add = λn.λm. X.i n X.s m end;

module M = functor(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
functor(A:funsig(Y:sig type nat = X.nat;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:Y.nat→Y.nat→Y.nat end)

struct module Add = A X;
val mult = λn.λm. X.i X.z (Add.add n) m

end

Figure 5.7 The functor A’ is a more general version of A.

module A’ = functor(X:sig type nat:0;
val s:nat→nat;
val i: nat→(nat→nat)→nat→nat

end)
struct val add = λn.λm. X.i n X.s m;

val sum = λb.fix λsum.λl.
listcase l b (λh.λl.add h (sum l))

end
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Figure 5.8 Efficient implementations of N,A and M.

module N = struct type nat = int;
val z=0;
val s=λi.+ i 1;
val i=λb.λf.fix λibf.

λj.ifzero j b (f (ibf (+ j (-1))))
end;

module A = functor(X:sig end)
struct val add = λi.λj.+ i j
end;

module M = functor(X:sig end)
functor(A:funsig(Y:sig type nat = int;

val z: nat;
val s: nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig end)

struct val mult = λi.λj.* i j
end

of naturals. From our understanding of first-order Modules, it should be clear
that A’ is more general than A: any argument to which A may be applied is also
a valid argument of A’ (but not vice-versa). Moreover, in each case, the result of
applying A’ is at least as rich as the result of applying A (add is defined and the
presence of sum is irrelevant). Consequently, in Higher-Order Modules we will
allow the application MkPoly N A’ since the type of A’ is at least as general as
the type expected by MkPoly N.

5.1.3 Decomposition Need Not Compromise Efficiency

A possible objection to our choice of problem decomposition is that it sacrifices
the efficiency of addition and multiplication by forcing the programmer to use
an implementation based on iteration. This not a valid criticism, since our team
can still exploit more efficient designs. For instance, assuming a built in type of
integers, the team may decide to represent natural numbers as the positive subset
of the integers int and use the built-in operations of addition + and multiplication
* on integers directly, producing the code in Figure 5.8.

With the first implementation of N, which used the abstract Module Nat, we
implicitly assumed that every value of type Nat.nat corresponded to a natural
number. Since we are now using a proper subset of the integers, we should
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Figure 5.9 An efficient and abstract implementation of N, A and M.

module FastNat =
struct

module N = ...
module A = ...
module M = ...

end \
sig

module N: sig type nat:0;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end;
module A:funsig(X:sig end)

sig val add: N.nat→N.nat→N.nat end;
module M:funsig(X:sig end)

funsig(A:funsig(Y:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig end)

sig val mult: N.nat→N.nat→N.nat end
end
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enforce the invariant that only positive integers are ever used as natural numbers.
Grouping the definitions of N, A and M into a single module and then applying
a signature abstraction to hide all occurrences of the concrete representation
produces a fast implementation whose integrity cannot be violated (Figure 5.9).
The application MkPoly (FastNat.N) (FastNat.A) (FastNat.M) is well-typed,
since each of MkPoly’s arguments is at least as general as required. The result is
an efficient implementation of polynomial evaluation.

The ability to define functors as structure components is crucial in this ex-
ample. If we could only define functors at top-level, as in (first-order) Modules,
we would be faced with only two design options, both of which are bad: we could
either make the implementation of N.nat public, compromising integrity but sup-
porting efficient implementations of A and M, or private, preserving integrity, but
rendering efficient implementations of A and M impossible.

5.2 From Modules to Higher-Order Modules

5.2.1 Functor Signatures

In Higher-Order Modules, in order to define a functor taking a functor as an
argument, we will need some means of indicating the formal argument’s type. In
(first-order) Modules, we used a signature expression to specify the structures to
which a functor may be applied. Recall that a structure signature, by contain-
ing unconstrained type specifications of the form type t : k, will typically only
specify a family of structure types. In Modules, we exploited this variation to
ensure that the functor is polymorphic and may be applied to any instance of its
argument signature. In Higher-Order Modules, we generalise signature expres-
sions by introducing the functor signature phrase funsig(X:S)S′. By analogy to
a structure signature, this phrase should specify a family of functor types. It is
reasonable to expect each functor of a type in this family to be applicable to any
module matching the argument signature S. But how do we interpret the result
signature S′? Like the argument S, it may contain unconstrained type specifica-
tions of the form type t : k, thus specifying a family of result modules. The trick
is to use this variation to define a family of functor types in the following way:
the phrase funsig(X:S)S′ describes the family of types classifying functors that,
when applied to any argument of a type in the family S, return a result whose
type is in the family S′. The phrase denotes a family of types, indexed according
to the actual realisation of type components left undetermined by type t : k
specifications in the result signature S′.
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How do we interpret this in the language of semantic objects? Before we can
answer this, it helps to have an idea of what the semantic objects of Higher-
Order Modules will be. We will let M,M′ ∈ Mod range over semantic modules,
the disjoint union of both semantic structures S ∈ Str and semantic functors
F ≡ ∀P .M′ →M ∈ Fun. Note that, because we are in a higher-order setting,
the domain and range of a semantic functor are semantic modules, not just se-
mantic structures. Also, in Higher-Order Modules, unlike in first-order Modules,
the range of a semantic functor will no longer be existentially quantified: the
reason for this change will be explained in the next section. Finally, recall that,
in first-order Modules, a semantic signature was just a parameterised semantic
structure L ≡ ΛP .S ∈ Sig ; in Higher-Order Modules, a semantic signature will
be a parameterised semantic module L ≡ ΛP .M ∈ Sig , which is a natural gen-
eralisation of the first-order notion.

Now we can return to answer the question of what the semantic interpret-
ation of the functor signature funsig(X:S)S′ should be. Suppose the argument
signature S denotes the semantic signature ΛP .M, i.e. C ` S . ΛP .M, where P
represents the type components of the argument on which any functor, of a type
in this family, should behave parametrically. Since the result signature S′ may
contain occurrences of X we should extend C by the assumption [X : M] before
elaborating S′ to its denotation (treating type variables in P as fresh parameters).
Now suppose that, in this extended context, S′ denotes the semantic signature
ΛQ .M′, i.e. C[X :M] ` S′ . ΛQ .M′. Here Q arises from the undetermined type
components of the range and thus, by our previous discussion, should give rise
to the parameters of the semantic signature of the complete phrase. Our first
approximation is to say that funsig(X:S)S′ should denote the semantic signature
ΛQ .∀P .M→M′. Unfortunately, because Q is bound before P , this approach
fails to capture the functional dependency of types defined in M′ on the para-
meters P . Biswas’s [3] important insight is to use higher-order type variables to
encode this dependency. Let P be the set of variables {α0, . . . , αn−1}. By raising
the order (i.e. the kind) of each variable β ∈ Q , we enable it to take the paramet-
ers α0, . . . , αn−1 as arguments. Replacing each occurrence inM′ of β ∈ Q by the
application β α0 · · · αn−1 provides for a functional dependency of these variables
on the type parameters of the argument. Ignoring the usual side-conditions on
bound variables, the rule relating a functor signature to its denotation can be
expressed as:

C ` S . ΛP .M C[X :M] ` S′ . ΛQ .M′

C ` funsig(X:S)S′ . ΛQ̂ .∀P .M→ [Q̂/Q ] (M′)
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where Q̂ is an appropriately raised variant of Q , and the realisation

[Q̂/Q ] = {β 7→ β α0 · · · αn−1|β ∈ Q}

takes care of the parameterisation (recall that P ≡ {α0, . . . , αn−1}).
To use this technique, we will need to generalise our language of semantic types

to the higher-order setting, obtaining a variant of the simply-typed λ-calculus.
The “terms” of this calculus are semantic types extended with Λ-abstraction
(Λα.τ ) and application (ν τ ); the “types” of the calculus are the semantic kinds,
extended with the higher kind (κ→ κ′) classifying functions on types. As in the
first-order setting, realisations essentially define substitutions on type variables.
However, because type variables may have higher kinds, realisations will typically
be higher-order substitutions.

We illustrate the idea with a simple example. Consider the functor signature:

funsig(X:sig type t : k end)sig type t : k end

Since
. . . ` sig type t : k end . Λ{α}.(t = α),

and
. . .[X : (t = α)] ` sig type t : k end . Λ{β}.(t = β),

from our previous discussion it should be clear that, by raising β to account for
dependencies on α:

. . . ` funsig(X:sig type t : k end)sig type t : k end .

Λ{β}.∀{α}.(t = α)→ (t = β α). (*)

Let’s consider some examples of functors that match signature (*). The iden-
tity functor

functor(X : sig type t : k end)X

has module type
∀{α}.(t = α)→ (t = α),

which matches the signature (*) by choosing the higher-order realisation [Λα.α/β ].
The constant functor

functor(X : sig type t : k end)struct type t = int end,

has module type
∀{α}.(t = α)→ (t = int),
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which matches the signature (*) by choosing the realisation [Λα.int/β ].
The functor

module F = functor(X : sig type t : k end)struct type t = X.t→ X.t end

has module type
∀{α}.(t = α)→ (t = α → α),

which matches the signature (*) by choosing the realisation [Λα.α → α/β ].
Now consider the higher-order functor:

module H = functor(G : funsig(X:sig type t : k end)sig type t : k end)
functor(Y : sig type t : k end)

G (G Y).

It has module type:

∀{β}.(∀{α}.(t = α)→ (t = β α))→
∀{δ}.(t = δ)→

(t = β (β δ)).

Notice how H is polymorphic in its first argument’s (i.e. G’s) argument-result
dependency β , and that this argument is itself required to be polymorphic in
α. Moreover, the argument’s polymorphism is actually exploited within the
functor body, since G is applied at two different instances, choosing [δ/α] and
[β δ/α] respectively. Since F matches H’s argument signature (via the realisation
[Λα.α → α/β ]), the partial application H F has module type:

∀{δ}.(t = δ)→ (t = (δ → δ)→ (δ → δ)).

5.2.2 Incorporating Generativity

In the previous discussion, no mention was made of the generative nature of
functors. Recall that in first-order Modules, a functor may return new types
as the result of abstractions and functor applications appearing within its body;
in order to preserve type soundness, each application of a given functor causes
the generation of fresh types. This “generative” capability is reflected in the
semantic objects classifying functors: a semantic functor has the form ∀P .S →
∃Q .S ′, where generativity is captured by the existential quantification of Q in
the result. In the examples of the previous section we implicitly assumed that
semantic functors had the form ∀P .M → M′, where the result M′ is a simple
module (either a structure or functor), and not, conspicuously, an existential
module. Indeed, in his paper, Biswas explicitly uses the simplifying assumption
that generativity has been removed from the language [3].
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While it is possible to do this, the practical ramifications for programming
in the language are rather severe. To ensure data abstraction (one of the key
motivations for using a modules language), programs have to be written in a
fully functorised form. By this we mean the following. Suppose P [m] is a program
with an occurrence of a module m, implementing the signature S, and we wish to
ensure that the module expression m can be replaced by any other implementation
m′ matching S. Using an abstraction, we can isolate m from its context P by
writing P [m \ S]. If this program type-checks, then so does P [m′ \ S]. If we
remove generativity from the language then we can no longer accommodate the
abstraction phrase. Without abstractions, we can only ensure the above property
if P is written as the outermost application of a functor to m, i.e. if P has the form
(functor(X : S)m′′) [m]. Notice that if the application is not outermost, i.e. P is
merely in the form P ′[(functor(X : S)m′′) [m]] for a non-empty program context
P ′, then the inner functor application may propagate the actual implementations
of types in m that are meant to be abstract according to the signature S. With
access to the concrete implementations, the outer context P ′ can inadvertently
make use of this information and violate the intended abstraction, preventing
the replacement of m by m′. Unfortunately, insisting on fully functorised code
leads to an unnatural and unintelligible coding style in which all abstract modules
must be anticipated early on and imported as initial functor arguments, possibly
at considerable distance from their point of use. As MacQueen [35] rightly points
out, this seriously impedes the incremental construction of programs, which is,
after all, the main motivation for using a modules language. Notice, also, that the
approach only works if both S and m are closed1, since each must be well-formed
in the outermost and thus empty context. An abstraction phrase, on the other
hand, may be embedded deep within a program, and may be used to isolate an
open2 module expression using an open signature.

Biswas leaves the extension of his proposal to handle generativity as an “im-
portant direction for future research associated with this approach to providing
semantics to higher-order functors” [3]. He does not give any concrete indication
of how this may be accomplished beyond speculating that “by considering gensym
as a primitive function and introducing environments, can we capture some form
of generativity in the language” [3]. The fact that this statement was written
nearly five years after the publication of the Definition of Standard ML [43] is
evidence of the prevalent, state-based understanding of generativity. With our

1A phrase is closed if it contains no free identifiers.
2A phrase is open if it contains zero or more free identifiers.
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understanding of generativity as existential quantification, we shall see that the
higher-order extension is almost trivial. This application alone hopefully justifies
the pedantic but nevertheless useful reformulation of the static semantics which
we undertook in Chapter 4.

Given that we want some notion of generativity in Higher-Order Modules,
we actually have two ways to proceed. We could attempt to extend Biswas’s
approach, discussed in the previous section, by adding existential quantification
to his semantic functors. This would be a considerable departure from his work
and it is not clear whether it would succeed. At the very least, the syntax of
functor result signatures has to be extended to allow the specification of generative
as well as undetermined types. Furthermore, the notion of enrichment between
functors has to be altered in a non-trivial manner to take account of existentially
quantified results.

Fortunately, there is a much simpler approach: we can relax the notion of
functor generativity in a way that eliminates the need for existentially quantifying
over a functor’s result type. We encountered the germ of this idea in Chapter 4,
Section 4.1.3, where we briefly considered the consequences of making functors
applicative. The suggestion was to do away with the generation of fresh types at
each application of a given functor, by, instead, generating fresh types once and
for all at the functor’s point of definition. The term “applicative” refers to the
property that two distinct applications of the same functor will yield equivalent
abstract types. Expressed in terms of existential quantification and ignoring the
usual side-conditions preventing variable capture, the proposal meant replacing
the “generative” functor introduction and elimination rules:

C ` S . ΛP .S C[X : S] ` s : ∃Q .S ′ C[F : ∀P .S → ∃Q .S ′] ` b : ∃Q ′.S ′′
C ` functor F (X : S) = s in b : ∃Q ′.S ′′

(T-17)

C(F) = ∀P .S ′ → ∃Q .S C ` s : ∃Q ′.S ′′
S ′′ � ϕ (S ′) Dom(ϕ) = P

C ` F s : ∃Q ∪Q ′.ϕ (S) (T-21)

by the “applicative” rules:

C ` S . ΛP .S C[X : S] ` s : ∃Q .S ′ C[F : ∀P .S → S ′] ` b : ∃Q ′.S ′′
C ` functor F (X : S) = s in b : ∃Q ∪Q ′.S ′′

(*)

C(F) = ∀P .S ′ → S C ` s : ∃Q ′.S ′′
S ′′ � ϕ (S ′) Dom(ϕ) = P

C ` F s : ∃Q ′.ϕ (S) (T-21’)
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Observe that the applicative functor introduction rule (Rule (*)) eliminates
the existential quantification of Q at F’s point of definition before proceeding
with the classification of b; Q is added once and for all to the set of existential
types produced by the classification of the complete phrase. As a result, the
elimination rule (Rule (T-21’)) is simpler: only the argument of an application,
not its functor, will introduce existential variables. Clearly, with the applicative
rules, the general form of semantic functors can now be simplified to ∀P .S → S ′,
dropping any existential quantification over the result. This then allows us to
apply Biswas’s results directly. Unfortunately, as demonstrated by the counter-
example in Chapter 4, Figure 4.4(c), Rule (*) is not sound. The types hidden by
Q may, in general, have a functional dependency on the type parameters P of the
functor. Directly eliminating the existential from the range signature S ′ ignores
this dependency.

All is not lost however. Resorting to higher-order type variables, we can encode
such functional dependencies by exploiting essentially the idea used to define the
interpretation of functor signatures. Let P be the set of variables {α0, . . . , αn−1}.
By raising the order of each variable β ∈ Q , we enable it to take the parameters
α0, . . . , αn−1 as arguments. Replacing each occurrence in the functor range S ′ of
β ∈ Q by the application β α0 · · · αn−1 provides for the functional dependency
of these variables on the type parameters of the functor. We can now formulate
a sound introduction rule:

C ` S . ΛP .S C[X : S] ` s : ∃Q .S ′ C[F : ∀P .S → [Q̂/Q ] (S ′)] ` b : ∃Q ′.S ′′

C ` functor F (X : S) = s in b : ∃Q̂ ∪Q ′.S ′′
(T-17’)

where Q̂ is an appropriately raised variant of Q and the realisation

[Q̂/Q ] = {β 7→ β α0 · · · αn−1|β ∈ Q}

takes care of the parameterisation, provided P ≡ {α0, . . . , αn−1}. In effect, this
amounts to the skolemisation of the existentially quantified variables Q by the
universally quantified variables P .

In the sound applicative semantics, the term “applicative” refers to the prop-
erty that two distinct applications of the same functor will yield equivalent ab-
stract types, provided they both agree on the realisation of the functor’s type para-
meters.

The example in Figure 5.10, continued in Figure 5.11, illustrates the differences
between adopting a generative semantics, naive applicative semantics and sound
applicative semantics for functors.
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Figure 5.10 A phrase illustrating the difference between generative and applic-
ative functors.

functor F(X: sig type t : 0 end) =
struct datatype u = X.t with x,y end

in
structure X = F (struct type t = int end);
structure Y = F (struct type t = int end);
structure Z = F (struct type t = int→ int end);
val x = X.y (Y.x 1);
val z = (Z.y (Y.x 1)) 2

(a) The definition of x is sound. The definition of z is not,
attempting to apply 1 to 2. It should be rejected by a sound
static semantics.

functor b
∀{α}.(t=α)→∃{β}.(u=β,x:α→β,y:β→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=β,x:int→β,y:β→int)
X = F (struct type t = int end);

structure b
(u=δ,x:int→δ,y:δ→int)
Y = F (struct type t = int end);

structure b
(u=γ,x:(int→int)→γ ,y:γ→(int→int))
Z = F (struct type t = int→ int end);

val x = X.yβ→int (Y.xint→δ 1)δ ;
val z = (Z.yγ→(int→int) (Y.xint→δ 1)δ) 2

(b) The partial, unsuccessful classification of the phrase in Fig-
ure 5.10(a) using the standard, generative semantics (Rules
(T-17) and (T-21)). Notice how the generation of fresh types
at each and every functor application ensures that X.u, Y.u
and Z.u are all distinct, preserving soundness. The offending
subphrases are underlined.

156



Figure 5.11 Classifying the phrase in Figure 5.10(a) in both a naive applicative
semantics and a sound applicative semantics.

functor b
∀{α}.(t=α)→(u=β,x:α→β,y:β→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=β,x:int→β,y:β→int)
X = F (struct type t = int end);

structure b
(u=β,x:int→β,y:β→int)
Y = F (struct type t = int end);

structure b
(u=β,x:(int→int)→β,y:β→(int→int))
Z = F (struct type t = int→ int end);

val x = (X.yβ→int (Y.xint→β 1)β )int;
val z = (Z.yβ→(int→int) (Y.xint→β 1)β )int→int 2

(a) A completely successful but unsound classification of the
phrase in Figure 5.10(a), constructed in a semantics employing
naive applicative functors (Rules (*) and (T-21’)). X.u, Y.u
and Z.u are incorrectly identified.

functor b
∀{α}.(t=α)→(u=β α,x:α→β α,y:β α→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=(β int),x:int→(β int),y:(β int)→int)
X = F (struct type t = int end);

structure b
(u=(β int),x:int→(β int),y:(β int)→int)
Y = F (struct type t = int end);

structure b
(u=(β (int→int)),x:(int→int)→(β (int→int)),y:(β (int→int))→(int→int))
Z = F (struct type t = int→ int end);

val x = (X.y(β int)→int (Y.xint→(β int) 1)(β int))int;
val z = (Z.y(β (int→int))→(int→int) (Y.xint→(β int) 1)(β int)) 2

(b) An incomplete but sound classification of the phrase in Figure
5.10(a), constructed in a semantics using the correct rules for applic-
ative functors (Rules (T-17’) and (T-21’)). Even though X.u and
Y.u are (safely) identified, they are still correctly distinguished from
Z.u.
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5.2.3 Generalising the Dot Notation

In Modules, the dot notation, used to project components from structures, is
syntactically restricted to paths sp ∈ StrPath. Recall that a path is essentially
a non-empty, dot-separated sequence of structure identifiers. As a result, we can
only access components of named, but not anonymous, structure expressions. As
observed by Leroy [29], if we retain this syntactic restriction in Higher-Order
Modules, it becomes impossible to fully specify the types returned by functor
applications. Consider the example of wanting to express a functor which, given
two functors H and G returning types u and v respectively, returns a functor that
constructs a derived operation that requires the compatibility of these types:

functor(H:funsig(X:sig type t:0 end)
sig type u : 0;

val in : X.t → u
end)

functor(G:funsig(X:sig type t:0 end)
sig type v = ? ;

val out : v → X.t
end)

functor(X:sig type t:0 end)
struct module Y = H X;

module Z = G X;
val image = λx. Z.out (Y.in x)

end

Of course, this program fails to type check unless we can specify that the
types returned by H and G are compatible by filling in the ? in the definitional
specification of v. Unfortunately, if we restrict projections to paths, our only
option is to fix not only v but also u, by giving equivalent concrete definitions
with specifications of the form type u = d and type v = d′ for some particular
definitions d and d′ denoting the same type d . If u is not fixed, there is no
syntax to express that for every argument X, the v component of (G X) should be
equivalent to the u component of (H X). Intuitively, however, the functor body
should type-check for any definition of u, provided u and v are equivalent as
functions of X.t. If we generalise the dot notation to operate on arbitrary module
expressions m, allowing module, type and value projections of the form m.X, m.t
and m.x, then we can replace the ? by the type projection (H X).u, yielding a
functor that is polymorphic in the definition of u, capturing our intuition.

Remark 5.2.1 (For Type Theorists). There is also a more theoretical motiva-
tion for generalising projections. If we want to prove a syntactic subject reduction
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Figure 5.12 Higher-Order Modules Phrase Classes

t ∈ TypId type identifiers
x ∈ ValId value identifiers

X ∈ ModId module identifiers

(a) Identifiers

B ∈ SigBod signature bodies
S ∈ SigExp signature expressions

do ∈ TypOcc type occurrences

(b) Type Syntax

b ∈ StrBod structure bodies
m ∈ ModExp module expressions

vo ∈ ValOcc value occurrences

(c) Term Syntax

result for Modules, then a key lemma we will need is that the type of a functor
application is preserved when substituting the actual argument for the formal ar-
gument of the functor. It is easy to see that the phrase class StrPath is not even
syntactically closed under substitution of module phrases for identifiers, making
it impossible to state this lemma, let alone prove it. By generalising projections
from paths to projections from arbitrary module expressions, the syntax of Mod-
ules becomes closed under substitution, bringing us one step closer3 to proving
syntactic subject reduction. Courant [14] addresses a similar failing of Leroy’s
module calculi: in Leroy’s original proposal [28], projections are restricted to
paths; even Leroy’s extended notion of path [29], that includes applications of
(functor) paths to (argument) paths, fails to remedy this problem with subject
reduction.

5.3 Phrase Classes

Figure 5.12 presents the phrase classes of Higher-Order Modules. Figure 5.13
defines their (abstract) grammar. Most of the phrases in Higher-Order Modules
should be familiar from their counterparts in first-order Modules. We will focus

3But not quite all the way there, for reasons we shall not explore further in this thesis.
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Figure 5.13 Higher-Order Modules Grammar

TypId def= {t,u, . . . } type identifiers
ValId def= {x,y, . . . } value identifiers
ModId def= {X,Y,F,G, . . . } module identifiers

B ::= type t = d; B type definition
| type t : k; B type specification
| val x : v; B value specification
| module X : S; B module specification
| εB empty body

S ::= sig B end structure signature
| funsig(X:S)S′ functor signature

do ::= t type identifier
| m.t type projection

b ::= type t = d; b type definition
| val x = e; b value definition
| module X = m; b module definition
| local X = m in b local module definition
| εb empty body

m ::= X module identifier
| m.X submodule projection
| struct b end structure
| functor(X : S)m functor
| m m′ functor application
| m � S signature curtailment
| m \ S signature abstraction

vo ::= x value identifier
| m.x value projection
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our attention on the differences between the grammars.

Identifiers X ∈ ModId range over module expressions and subsume the sep-
arate phrase classes StrId and FunId of Modules. The phrase class ModExp
generalises the first-order phrase class StrExp of structure expressions. Phrases
m ∈ ModExp are used to express both structures and functors. The distinguished
phrase class of structure paths sp ∈ StrPath for accessing subcomponents of struc-
tures has been removed. Instead, we extend the class of module expressions, type
occurrences and value occurrences with generalised projections. The class StrPath
is redundant since we essentially have StrPath ⊆ModExp.

Signature bodies B ∈ SigBod are defined as for first-order Modules, except
that we replace the structure specification structure X : S; B by its generalisation
module X : S; B. The phrase specifies a module named X, matching the signature
S. Note that S may specify either a structure or a functor.

Signature expressions S ∈ SigExp specify modules. The new phrase
funsig(X:S)S′ specifies a functor with argument signature S and result signature
S′. X is bound in S′. In particular, types defined in S′ may refer to X. Moreover,
types merely specified, but not defined, in S′ have an implicit dependency on X.

Structure bodies b ∈ StrBod are defined as in (first-order) Modules, except
that we replace the structure definitions structure X = s;b and local X =
s in b by their generalisations module X = m; b and local X = m in b.
The phrase module X = m; b defines X as a component of the surrounding
structure expression that can be accessed by the dot-notation. Since m may be
a functor, structures may now contain functor components. Recall that Mod-
ules only catered for local definitions of functors; this restriction has now been
removed. The corresponding phrase functor F (X : S) = m in b is re-
dundant and has been deleted, since it can be treated as an abbreviation of
local F = functor(X : S)m in b.

Module expressions m ∈ ModExp evaluate to both structures, i.e. collections
of type, value and module definitions, and functors. Every module identifier X
is a proper module expression, as is the direct projection m.X of the submodule
X from m (provided m evaluates to a structure). The phrase struct b end
encapsulates a structure body to form a module. The phrase functor(X : S)m
is an anonymous functor, i.e. a parameterised module. The identifier X names
the formal argument. The scope of X is the functor body m. The functor may
be applied to any module that matches the argument’s signature S. Note that
S may specify either a functor or a structure, and that m may itself evaluate
to either a functor or a structure. The phrase m m′ is the application of the
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(possibly anonymous) module m, which must be a functor, to the module m′.
Since functors may now take functors as arguments, m′ may itself be a functor.
Curtailments and abstractions have the same interpretation as in the first-order
setting. The phrase m � S matches the module m against the signature S and
curtails it accordingly: m is specialised according to S, provided the type of
m enriches a suitable realisation of S. The actual realisation of types that are
specified, but not defined, in S is retained. Note that if m is a functor and S
a functor signature, then the curtailment preserves the actual argument-result
dependencies of m that are merely specified, but not defined, in the functor
signature S. The abstraction m \S is similar to the curtailment m � S. However,
the actual realisation of types is hidden outside the abstraction. Note that if
m is a functor and S a functor signature, then the abstraction hides the actual
argument-result dependencies of m. (In the static semantics, abstractions will
just introduce existentially quantified semantic modules, just as they introduced
existentially quantified semantic structures in the first-order semantics of Chapter
4.)

Informally, a module expression matches a signature as follows. If m is a
module evaluating to a structure, then m matches S provided that S is of the form
sig B end, and, as in the first-order setting, it implements all of the components
specified in the signature body B. In particular, the structure must realise all of
the type components that are merely specified but not defined in B. Moreover, the
structure must enrich B subject to this realisation: every specified type must be
implemented by an equivalent type; every specified value must be implemented
by a value whose type is at least as general as its specification; finally, every
specified module must be implemented by a module that enriches its specification.
As before, the order in which components of the structure are actually defined
is irrelevant. Furthermore, the structure is free to define more components than
are specified in the signature. If m is a module evaluating to a functor, then m
matches S provided S is of the form funsig(X:S′)S′′, and there is a realisation
of the argument-result dependencies of S(i.e. the dependencies of types merely
specified in S′′ on types merely specified in S′), such that, whenever an actual
argument m′ matches the signature S′, then the application m m′ evaluates to
a module matching the realisation of S′′. Of course, we won’t need to evaluate
module expressions to check matching; it will be enough to know the type of the
module at hand. This will be all be made more precise in Section 5.4.

Finally, the grammars of type occurrences do ∈ TypOcc and value occurrences
vo ∈ ValOcc are modified, replacing restricted type and value projections sp.t
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Figure 5.14 Semantic Objects of Higher-Order Modules
κ ∈ Kind kinds classifying types

ακ ∈ TypVarκ type variables
M ,N ,P ,Q ,R ∈ TypVarSet variable sets

νκ ∈ TypNamκ type names
τκ ∈ Typκ types

S ∈ Str structures
F ∈ Fun functors

M ∈Mod modules

X ∈ ExMod existential modules

L ∈ Sig signatures

C ∈ Context contexts

and sp.x by the generalised phrases m.t and m.x respectively. Of course, the
static semantics will have to ensure that the module expression m evaluates to a
structure and not a functor.

5.4 Semantic Objects

Figures 5.14 and 5.15 define the semantic objects assigned to module expressions.
They serve the role of types in the module semantics. We let O range over all
semantic objects.

Definition 5.1 (Kinds, Type Variables, Type Names and Types).

A kind κ ∈ Kind is either a Core kind k ∈ DefKind used to specify definable
types, or a higher kind κ→ κ′, classifying functions from types of kind κ to types
of kind κ′.

Kinds are used to index sets of kind-equivalent type variables, type names and
types. For each kind κ ∈ Kind we have:

• An infinite, denumerable set of type variables, TypVarκ. A type variable
ακ ∈ TypVarκ ranges over types in Typκ.

• A set of type names, TypNamκ. A type name νκ ∈ TypNamκ is either a
type variable of kind κ, or an application ν ′ τ of a type name ν ′ of kind
κ′ → κ to a type τ of kind κ′.
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Figure 5.15 Semantic Objects of Higher-Order Modules (cont. )

κ ∈ Kind ::= k Core kind
| κ→ κ′ function space

ακ ∈ TypVarκ def= {ακ, βκ, δκ, γκ, . . . } an infinite, denumerable set
α ∈ TypVar def=

⊎
κ∈Kind TypVarκ

P ∈ TypVarSet def= Fin(TypVar )

νκ ∈ TypNamκ ::= ακ type variable
| νκ

′→κ τκ
′ type application

τκ ∈ Typκ ::= dk Core definable type
(provided κ ≡ k ∈ DefKind)

| Λακ′ .τκ′′ type function
(provided κ ≡ κ′ → κ′′)

| νκ type name

τ ∈ Typ def=
⊎
κ∈Kind Typκ

S ∈ Str ::= t = τ k,S ′ type component
(provided t 6∈ Dom(S ′))

| x : v ,S ′ value component
(provided x 6∈ Dom(S ′))

| X :M,S ′ module component
(provided X 6∈ Dom(S ′))

| εS empty structure

F ∈ Fun ::= ∀P .M→M′ functor

M∈ Mod ::= S structure
| F functor

X ∈ ExMod ::= ∃P .M existential module

L ∈ Sig ::= ΛP .M signature

C ∈ Context def=


C ∪ Ct ∪ Cx ∪ CX

∣∣∣∣∣∣∣∣∣∣∣

C ∈ CoreContext ,
Ct ∈ TypId fin→ Typ,
Cx ∈ ValId fin→ ValTyp,
CX ∈ ModId fin→ Mod
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• A set of types, Typκ. A type τκ ∈ Typκ is either a type name of kind κ, a
Core definable type of an equivalent Core kind, or a type function Λα.τ ′. In
the case of a function, its kind κ must be a higher kind κ′ → κ′′, its bound
variable α must have the kind κ′, and its body τ ′ must have the kind κ′′.

In short, we have generalised the first-order concepts of Definition 3.4 by allow-
ing higher kinds, well-kinded applications of type names to types, and well-kinded
type functions. As in the first-order setting, type names enter Core semantic ob-
jects when they arise as the denotations of type occurrences.

Remark 5.4.1. Types, type names and type variables essentially define the β-
normal terms of an extended, simply-typed λ-calculus. The base “terms” of the
calculus are the Core definable types d ∈ DefTyp . The “base types” are the Core
kinds k ∈ DefKind. Kinds κ ∈ Kind play the role of “types” constructed with
the “function space” κ → κ′ from “base types”. The motivations for restricting
our attention to terms in β-normal form are twofold:

• We avoid the formulation of β-equivalence, and, more importantly, its ex-
tension to all other semantic objects of Higher-Order Modules.

• Terms enjoy the technically convenient property that if two terms are equi-
valent, then their sets of free variables are equivalent as well. Moreover,
these are the “necessarily” free variables of the terms. This property sim-
plifies the proofs in subsequent sections. Note that the property still holds
when we identify terms up to η-equivalence.

The disadvantages of restricting ourselves to terms in β-normal form are also
twofold:

• Their grammar is slightly more complex (two syntactic classes of type names
and types, instead of just one). This complicates the definition of the usual
operations on terms.

• The straightforward substitution of terms for variables does not respect the
structure of terms. Instead, we need to define a more refined notion of
substitution (i.e. realisation) that performs β-reduction on the fly.

Definition 5.2 (Equivalence of Types). Once again, using the Core opera-
tion η, every type name ν of Core kind k can be viewed as an equivalent Core
definable type η(ν). We implicitly identify types that are equivalent up to such
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η-expansions and extend the operation η to operate on types of Core kind k (any
k) as follows:

η̂k( ) ∈ Typk → DefTypk

η̂k(τ ) def=
{
η(ν) if τ ≡ ν ∈ TypNamk

d if τ ≡ d ∈ DefTypk

From now on, we will identify any type of the form Λα.ν α ∈ TypNamκ→κ′

with its η-contraction ν , provided α 6∈ FV(ν ) and ν ∈ TypNamκ→κ′ .

Moreover, we only consider as valid those equations between pairs of type
variables, type names and definable types that compare objects of the same kind.

Definition 5.3 (Structures). A semantic structure S ∈ Str is a nested associ-
ation list, binding identifiers to types (of Core kind), value types and semantic
modules, i.e. both structures and functors. The domain of S, written Dom(S), is
the finite set of identifiers it binds:

Dom( ) ∈ Str → Fin(TypId ∪ValId∪ModId)

Dom(εS)
def= ∅

Dom(t = τ ,S) def= {t} ∪Dom(S)

Dom(x : v ,S) def= {x} ∪Dom(S)

Dom(X :M,S) def= {X} ∪ Dom(S)

The provisos on structures in Figure 5.15 ensure that identifiers are uniquely
bound, allowing one to view a semantic structure as a triple of finite maps with
corresponding (partial) retrieval functions:

( ) ∈ (Str × TypId) ⇀ Typ

εS(t) def= undefined

(t′ = τ ,S)(t) def=
{
τ if t = t′

S(t) otherwise.

(x : v ,S)(t) def= S(t)

(X :M,S)(t) def= S(t)

The retrieval functions for value and module bindings are defined similarly.
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Definition 5.4 (Functors). A semantic functor F ∈ Fun is the type of a
polymorphic function taking modules to modules. Consider a functor of type
F ≡ ∀P .M → M′. Variables in P are bound simultaneously in M and M′.
These variables capture the type components of the domain M on which the
functor behaves parametrically; their possible occurrence in the range M′ caters
for the propagation of type identities from the functor’s actual argument to its
result. In first-order Modules, the range of a functor is an existentially quantified
semantic structure. Since we have chosen applicative functors as the more appro-
priate notion for Higher-Order Modules (recall our discussion in Section 5.2.2),
the range M′ is simply an unquantified semantic module.

Definition 5.5 (Signatures). Signature expressions denote semantic signatures
L ∈ Sig . The signature L ≡ ΛP .M specifies a family of module types (either
structures or functors), indexed by the realisation of type variables in P . Variables
in P are bound inM.

Definition 5.6 (Existential Modules). An existential module X ∈ ExMod is
an existentially quantified module type of the form ∃P .M. Variables in P are
bound inM. Intuitively, ∃P .M is the type of any abstracted module expression,
whose actual type is some member of the family of types ΛP .M.

Definition 5.7 (Contexts). A context C ∈ Context is a finite map assigning
semantic objects to identifiers. Note that CoreContext ⊆ Context , so that every
Core context is also a (Higher Order Modules) context, and that contexts support
Core context operations. In addition to Core bindings, type, value, and module
identifiers are mapped to types, value types, and modules respectively. Again, un-
like semantic structures, contexts support re-bindings to identifiers. Subsequent
bindings taking precedence over previous ones.

We will let FV(O) denote the set of variables free in O, where the notions
of free and bound are defined as usual. We identify semantic objects that are
equivalent up to capture-avoiding, kind-preserving changes of bound variables.

Definition 5.8 (Realisations). As for first-order Modules, a realisation ϕ ∈
Real is a kind-preserving finite map:

ϕ ∈ Real def= {f ∈ TypVar fin→ Typ | ∀κ.∀ακ ∈ Dom(f).f(ακ) ∈ Typκ},

defining a substitution on type variables. Unlike the realisations of first-order
Modules, these realisations are higher-order substitutions.
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Note that realisations are finite maps and we will often treat them as such.
Moreover, to make it convenient to reason and state properties about the beha-
viour of realisations on semantic objects, we will define two auxiliary concepts.
First, for a realisation ϕ, as in first-order Modules, we define its region as follows:

Reg( ) ∈ Real → Fin(TypVar )

Reg(ϕ) def=
⋃

τ∈Rng(ϕ)

FV(τ ).

Second, the set of variables involved in ϕ is captured by the definition:

Inv( ) ∈ Real → Fin(TypVar )

Inv(ϕ) def= Dom(ϕ) ∪ Reg(ϕ).

Definition 5.9 (Realisation of Type Names and Types). Realisation of type
names and types is defined below. Because we essentially keep types in normal
form, we may need to perform β-reductions on types and type names during
realisation (see Remark 5.4.1):

( ) ∈ (Real × TypNamκ)→ Typκ

ϕ (α) def=
{
ϕ(α) if α ∈ Dom(ϕ)
α otherwise

ϕ (ν τ ) def=
{
ν̄ (ϕ (τ )) if ϕ (ν) ≡ ν̄
[ϕ (τ )/α] (τ̄ ) if ϕ (ν) ≡ Λα.τ̄

and

( ) ∈ (Real × Typκ)→ Typκ

ϕ (d ) def= ϕ (d )

ϕ (Λα.τ ) def=


Λα.ϕ (τ ) if α 6∈ Inv(ϕ)

Λβ.ϕ ([β/α] (τ ))
if α ∈ Inv(ϕ) and
β 6∈ FV(Λα.τ ) ∪ Inv(ϕ)

ϕ (ν ) def= ϕ (ν )

Property 5.10 (Realisation is well-defined). Since realisation is a combin-
ation of substitution and reduction, we should prove that it is kind-preserving and
terminating. This follows by translating kinds, types and type names into types
and well-typed normal terms of the simply-typed λ-calculus. Realisation can be
seen as type-preserving substitution, followed by standard β-reduction to β-normal
form. By strong normalisation of the simply-typed λ-calculus with β-reduction, all
such reduction sequences terminate. Hence realisation is total and well-defined.
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We extend realisations to structures, functors and modules, avoiding variable-
capture by binding constructs (∀P .M → M′, ∃P .M and ΛP .M) in the usual
way.

Properties 5.11 (Realisations). It is easy to verify that realisations enjoy the
following properties. In later proofs, we shall frequently make implicit appeals to
these properties.

• If Dom(ϕ) ∩ FV(O) = ∅ then ϕ (O) = O.

• If Dom(ϕ) ∩ FV(O) = ∅ then (ϕ | ϕ′) (O) = ϕ′ (O).

• If Dom(ϕ) ∩ Inv(ϕ′) = ∅ then (ϕ | ϕ′) (O) = ϕ (ϕ′ (O)).

• If α 6∈ Inv(ϕ) then ϕ (Λα.τ ) = Λα.ϕ (τ ).

• If Inv(ϕ) ∩ P = ∅ then

– ϕ (ΛP .M) = ΛP .ϕ (M),

– ϕ (∃P .M) = ∃P .ϕ (M), and

– ϕ (∀P .M→M′) = ∀P .ϕ (M)→ ϕ (M′).

Here, as in Definition 3.3, the operation ϕ | ϕ′ defines a parallel realisation,
i.e. provided Dom(ϕ) ∩Dom(ϕ′) = ∅ then the parallel realisation ϕ | ϕ′ is the
realisation ϕ | ϕ′ def= ϕ ∪ ϕ′ (viewing ϕ and ϕ′ as sets) with domain Dom(ϕ) ∪
Dom(ϕ′).

5.4.1 Specifying Enrichment

In first-order Modules, the intuition motivating the enrichment relation is that,
given a phrase of type O, then provided O � O′, we may also use the phrase as
if it had the less general type O′. The question is how to generalise this notion
to the higher-order setting. In particular, what shall we mean when we say that
one functor enriches another? Since functors are polymorphic, we might expect
that a more polymorphic functor enriches any less polymorphic one that can be
obtained from the richer functor by a realisation of its type parameters. This is
similar to the way generalisation of Core-ML value types is defined. We could
stop here, and proceed with this definition, but in fact, we will take it a little
further by adapting the usual contra-variant definition of subtyping on function
spaces: roughly speaking (and ignoring polymorphism for now), we shall also
allow F � F ′ if every functor of type F may be applied to any argument in
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the domain of F ′, i.e. the domain of F is at most as rich as the domain of F ′,
yielding a result at least as rich as the range of F ′, i.e. the range of F enriches
the range of F ′. The difficulty lies in combining the two notions of polymorphic
generalisation and contra-variant enrichment in a single definition. Intuitively,
this idea is captured by the following specification:

Specification 5.12 (Enrichment). We generalise the enrichment relation from
(first-order) Modules, by extending its definition on structures to both functors and
modules.

S � S ′ Given two semantic structures S and S ′, S enriches S ′, written S � S ′,
if, and only if, the following conditions hold.

• Dom(S) ⊇ Dom(S ′),

• for each type identifier t ∈ Dom(S ′), S(t) = S ′(t),

• for each value identifier x ∈ Dom(S ′), S(x) � S ′(x),

• for each module identifier X ∈ Dom(S ′), S(X) � S ′(X).

F � F ′ Given two functors F and F ′, F enriches F ′, written F � F ′, if, and
only if, every instance of F ′ is an instance of F , i.e. for any modules M
and M′, F ′ >M→M′ implies F >M→M′.

M�M′ Given two modules M and M′, M enriches M′, written M � M′,
if, and only if, either:

• M andM′ are both structures, i.e.M≡ S andM′ ≡ S ′, and S � S ′;
or

• M andM′ are both functors, i.e. M≡ F andM′ ≡ F ′, and F � F ′.

F >M→M′ A functor instance M → M′ is the type of a monomorphic
function on modules.

Given functor F ≡ ∀P .MP →M′
P , M→M′ is an instance of F , written

F >M→M′, if, and only if, for some realisation ϕ with Dom(ϕ) = P,
M� ϕ (MP ) and ϕ (M′

P ) �M′.

Unfortunately, Specification 5.12 cannot be taken as a proper (inductive)
definition of the enrichment relations, since one of the relations we are specifying
occurs in the antecedent (i.e. in a negative position) of the clause relating func-
tors. However, it is relatively easy for a programmer to understand, and can be
treated as a specification of the enrichment relations we will define. In the next
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section, we will give a proper inductive definition of enrichment and show that
it satisfies Specification 5.12. For the moment, we can observe that the property
expressed by the specification is obviously reflexive and transitive, forming a good
basis for a subtyping relation.

As in first-order Modules, matching a module against a signature is defined
as a combination of realisation and enrichment:

Definition 5.13 (Signature Matching). A module M matches a signature
L ≡ ΛP .M′ if, and only if, there exists a realisation ϕ such that M � ϕ (M′)
and Dom(ϕ) = P .

5.4.2 Defining Enrichment

As we discussed, Specification 5.12, although intuitive, cannot serve as a definition
of the enrichment relations between structures, functors and modules. In this
section, we define enrichment as a collection of inductive relations and show that
they form a pre-order that is closed under realisation. Using these properties, we
can then prove that our definition satisfies Specification 5.12. Our proofs rely on
certain assumptions about the Core language which we will state as hypotheses.
These hypotheses must be proved separately for each instantiation of the Core
language. But first, we give the definition:

Definition 5.14 (Enrichment). The enrichment relations between structures,
functors and modules are defined as the least relations � ∈ Str × Str , � ∈
Fun × Fun, and � ∈ Mod ×Mod closed under the rules in Figure 5.16. Note
that Rules ( � -3) and ( � -4) allow module enrichment to be derived from struc-
ture and functor enrichment.

Properties of Enrichment

We can now verify the properties of enrichment that justify its use as a subtyping
relation.

We need to assume that the Core satisfies the following hypothesis:

Hypothesis 5.15 (Reflexivity of � ∈ ValTyp × ValTyp).

v � v .

Then it is easy to prove:

Property 5.16 (Reflexivity).

O � O.
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Figure 5.16 An inductive definition of enrichment for Higher-Order Modules.

Structure Enrichment S � S ′

Dom(S) ⊇ Dom(S ′)
∀t ∈ Dom(S ′).S(t) = S ′(t)
∀x ∈ Dom(S ′).S(x) � S ′(x)
∀X ∈ Dom(S ′).S(X) � S ′(X)

S � S ′ ( � -1)

Functor Enrichment F � F ′

MQ � ϕ (MP ) ϕ (M′
P) �M′

Q
Dom(ϕ) = P Q ∩ FV(∀P .MP →M′

P) = ∅
∀P .MP →M′

P � ∀Q .MQ →M′
Q ( � -2)

Module Enrichment M�M′

S � S ′
S � S ′ ( � -3)

F � F ′
F � F ′ ( � -4)
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Proof. The proof is an easy structural induction on O, with an appeal to Hypo-
thesis 5.15.

Moreover, we need to know that enrichment between value types is closed
under realisation of type variables:

Hypothesis 5.17 (Closure under Realisation of � ∈ ValTyp × ValTyp).

v � v ′ ⊃ ϕ (v) � ϕ (v ′).

This hypothesis allows us to prove a similar closure property for the enrich-
ment relation on structures, functors and modules:

Lemma 5.18 (Closure under Realisation).

O � O′ ⊃ ϕ (O) � ϕ (O′).

Proof. Because we need to be able to apply the induction hypothesis to a modified
realisation in case ( � -2), we actually need to prove the statement:

O � O′ ⊃ ∀ϕ.ϕ (O) � ϕ (O′),

that quantifies over all ϕ. The proof then follows by induction on the rules defining
enrichment. Note that we need to appeal to Hypothesis 5.17 in case � -1.

(As an aside, we point out that the strategy of first choosing some arbitrary,
but fixed ϕ, and then trying to prove

O � O′ ⊃ ϕ (O) � ϕ (O′)

directly by induction on the rules defining enrichment, fails, although it works fine
for the enrichment relation of first-order Modules (Definition 3.17).)

Finally, we shall need to assume that Core enrichment is transitive.

Hypothesis 5.19 (Transitivity of � ∈ ValTyp × ValTyp).

v � v ′ ∧ v ′ � v ′′ ⊃ v � v ′′.

We can then prove that the enrichment relations on structures, functors and
modules is transitive.

Property 5.20 (Transitivity).

O � O′ ⊃ O′ � O′′ ⊃ O � O′′.
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Proof. The proof is a little tricky because of the simultaneous use of contra-
variance and realisation in Rule ( � -2). The trick is to use Lemma 5.18 to prove
the stronger property:

O � O′ ⊃
(

∀ϕ,O′′.ϕ (O′) � O′′ ⊃ ϕ (O) � O′′
∧ ∀ϕ,O′′.O′′ � ϕ (O) ⊃ O′′ � ϕ (O′)

)

which succumbs to rule induction and an appeal to Hypothesis 5.19. The stronger
induction hypothesis corresponds to splitting the proof of transitivity into a sim-
ultaneous proof of transitivity for objects enriched by realisations of O′, together
with a proof of transitivity for objects enriching realisations of O.

Lemma 5.20 follows easily from the first conjunct, by choosing the empty, or
identity, realisation.

(As an aside, we point out that the simpler strategy of trying to prove

O � O′ ⊃ ∀O′′.O′ � O′′ ⊃ O � O′′

directly by induction on the rules defining enrichment, fails, although it works fine
for the enrichment relation of first-order Modules (Definition 3.17).)

We now have everything we need to prove that our enrichment relations satisfy
Specification 5.12. We first define, as in Specification 5.12:

Definition 5.21 (Functor Instance). A functor instanceM→M′ is the type
of a monomorphic function on modules.

Given functor F ≡ ∀P .MP → M′
P , M → M′ is an instance of F , writ-

ten F > M→M′, if, and only if, for some realisation ϕ with Dom(ϕ) = P ,
M� ϕ (MP) and ϕ (M′

P ) �M′.

We will need the following, simple observation:

Observation 5.22 (Generic Instance). Every functor is a generic instance of
itself:

∀P .M→M′ >M→M′

Proof. Easy, by choosing ϕ to be the identity on P and appealing to Property
5.16.

The key to proving that our relations satisfy their specification is to show the
following lemma:

Lemma 5.23. F � F ′ if, and only if, ∀M,M′.F ′ >M→M′ ⊃ F >M→M′.
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Figure 5.17 Higher-Order Modules Judgements

C ` S . L
In context C, signature expression S denotes signature L.

C ` B . L
In context C, signature body B denotes signature L.

C ` do . d
In context C, type occurrence do denotes definable type d .

(a) Denotation Judgements

C ` b : X
In context C, structure body b has existential module type X .

C ` m : X
In context C, module expression m has existential module type X .

C ` vo : v
In context C, value occurrence vo has value type v .

(b) Classification Judgements

Proof. The reverse direction is easy and relies on Observation 5.22. The forward
direction is harder and requires appeals to Property 5.20 and Lemma 5.18.

It is now straightforward to verify:

Theorem 5.24. The family of relations � satisfies Specification 5.12.

Proof. Easy using Lemma 5.23.

5.5 Static Semantics

The static semantics of Modules is defined by the judgements in Figure 5.17.
We have indicated, below each judgement, its intended English reading. The
judgements are defined by the following rules:

Denotation Rules

The denotation rules for signature bodies and signature expressions are the same
as their first-order counterparts (cf. Section 3.1.3.1), except that we have adopted
the notation ΛP .M instead of (P)M for semantic signatures. Rule (H-4) gener-
alises the first-order Rule (E-4) by catering for module specifications instead of
structure specifications, but is otherwise unchanged. Rule (H-7) is new and deals
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with functor signatures, incorporating the ideas we sketched in Section 5.2.1. Fi-
nally, the original denotation rule for projecting a type component from a path
(Rule (E-8)) has been generalised to support the projection of a type component
from an arbitrary module expression (Rule (H-9)).

Signature Bodies C ` B . L

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` B . ΛP .S t 6∈ Dom(S)
C ` type t = d; B . ΛP .t = d ,S (H-1)

C[t = αk] ` B . ΛP .S αk 6∈ FV(C) ∪ P t 6∈ Dom(S)
C ` type t : k; B . Λ{αk} ∪ P .t = αk,S (H-2)

C ` v . v P ∩ FV(v) = ∅
C[x : v ] ` B . ΛP .S x 6∈ Dom(S)
C ` val x : v; B . ΛP .x : v ,S (H-3)

C ` S . ΛP .M
C[X :M] ` B . ΛQ .S P ∩ FV(C) = ∅
Q ∩ (P ∪ FV(M)) = ∅ X 6∈ Dom(S)
C `module X : S; B . ΛP ∪Q .X :M,S (H-4)

C ` εB . Λ∅.εS (H-5)

Signature Expressions C ` S . L

C ` B . L
C ` sig B end . L (H-6)

C ` S . ΛP .M
P ∩ FV(C) = ∅ P = {ακ0

0 , . . . , α
κn−1
n−1 }

C[X :M] ` S′ . ΛQ .M′

Q ′ ∩ (P ∪ FV(M) ∪ FV(ΛQ .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}
C ` funsig(X:S)S′ . ΛQ ′.∀P .M→ [Q ′/Q ] (M′) (H-7)
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(H-7) The range signature S′ denotes a semantic signature ΛQ .M′. We want to
capture the fact that types specified in S′ may have a functional dependency
on the type parameters in P . We cater for these dependencies by applying
the realisation [Q ′/Q ] toM′. This effectively parameterises each occurrence
inM′ of a variable β ∈ Q by the variables P . The kinds of the variables in
Q must be adjusted to reflect this, yielding the set Q ′. Having modified vari-
ables in Q to take account of their implicit dependencies on P , we can move
the parameterisation over Q from the range, i.e. ΛQ .M′, to a position out-
side the entire functor yielding the signature ΛQ ′.∀P .M→ [Q ′/Q ] (M′).
This is how we systematically treat type parameters arising from the range
of a functor signature. Note that, even though these parameters are bound
by an “outermost” Λ, they still manage to encode the dependency of the
functor’s result types on the functor’s type arguments.

Type Occurrences C ` do . d

t ∈ Dom(C) C(t) = τ

C ` t . η̂(τ ) (H-8)

C ` m : ∃P .S t ∈ Dom(S) S(t) = τ P ∩ FV(τ ) = ∅
C ` m.t . η̂(τ ) (H-9)

(H-9) The side condition P ∩ FV(τ ) = ∅ ensures that existential variables in P
do not escape their scope. Note that m must be a structure, not a functor.

Classification Rules

The classification rules for structure bodies are the same as their first-order coun-
terparts (cf. Section 4.2.1): Rules (H-12) and (H-13) merely generalise the first-
order Rules (T-15) and (T-16) by catering for module definitions instead of struc-
ture definitions, but are otherwise unchanged.

The classification rules for module expressions deserve the most comment.
Rules (H-15) and (H-16) subsume the role of the first-order Rules (T-19), (E-9)
and (E-10), but also cater for generalised module projections. Rules (H-18) and
(H-19) are new and formalise the applicative semantics of Section 5.2.2 for an-
onymous functors and module applications. The remaining rules for encapsulating
a structure body, curtailing a module by a signature and abstracting a module
by a signature are unchanged from the first-order rules of Section 4.2.1, except
that the last two now apply to both structures and functors.
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Finally, the original classification rule for projecting a value component from
a path (Rule (E-12)) has been generalised to support the projection of a value
component from an arbitrary module expression (Rule (H-23)).

This static semantics, as it stands, does not yield a type checking algorithm.
For instance, in Rule (H-19), classifying a functor application, we have to “guess”
a realisation ϕ such that M′′ � ϕ (M′) and Dom(ϕ) = Q . In Section 5.6, we
define an algorithm that finds a suitable matching realisation provided it exists.
We can then replace the problematic premise M′′ � ϕ (M′) with an appeal to
this algorithm. Similar comments apply to the rules for module curtailment, Rule
H-20, and module abstraction, Rule H-21. All the other rules, by contrast, are
syntax directed and can be used directly to define a type checking algorithm.

Structure Bodies C ` b : X

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` b : ∃P .S t 6∈ Dom(S)
C ` type t = d; b : ∃P .t = d ,S (H-10)

C ` e : v P ∩ FV(v) = ∅
C[x : v ] ` b : ∃P .S x 6∈ Dom(S)
C ` val x = e; b : ∃P .x : v ,S (H-11)

C ` m : ∃P .M P ∩ FV(C) = ∅
C[X :M] ` b : ∃P ′.S
P ′ ∩ (P ∪ FV(M)) = ∅ X 6∈ Dom(S)
C `module X = m; b : ∃P ∪ P ′.X :M,S (H-12)

C ` m : ∃P .M C[X :M] ` b : ∃P ′.S
P ∩ FV(C) = ∅ P ′ ∩ P = ∅
C ` local X = m in b : ∃P ∪ P ′.S (H-13)

C ` εb : ∃∅.εS (H-14)
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Module Expressions C ` m : X

X ∈ Dom(C) C(X) =M
C ` X : ∃∅.M (H-15)

C ` m : ∃P .S X ∈ Dom(S) S(X) =M
C ` m.X : ∃P .M (H-16)

(H-16) As we have generalised the dot notation to apply to arbitrary module ex-
pressions, which may have existentially quantified types, we need to ensure
that the projection of a sub-module X from an existential structure ∃P .S
does not allow variables in P to escape their scope. Existentially quanti-
fying over P in the result ∃P .M is sufficient. Moreover, this allows us to
access deeply nested type or value components even though the intermedi-
ate sub-modules might contain existentially quantified variables. Note that
the side-conditions of Rules (H-9) and (H-23) will prevent these variables
from escaping their scope via projected type and value components. Also
note that m must be a structure, not a functor.

C ` b : X
C ` struct b end : X (H-17)

C ` S . ΛP .M
P ∩ FV(C) = ∅ P = {ακ0

0 , . . . , α
κn−1
n−1 }

C[X :M] ` m : ∃Q .M′

Q ′ ∩ (P ∪ FV(M) ∪ FV(∃Q .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}
C ` functor(X : S)m : ∃Q ′.∀P .M→ [Q ′/Q ] (M′)

(H-18)

(H-18) Note the applicative semantics of functors. Classifying the functor body
m introduces existential types Q . In general, because m is classified in the
extended context C[X :M], variables in Q may have hidden functional de-
pendencies on the type parameters P of the formal argument X. We make
these dependencies explicit by applying the realisation [Q ′/Q ] toM′. This
effectively skolemises each occurrence in M′ of a variable β ∈ Q by the
variables P . The kinds of the variables in Q must be adjusted to reflect
this, yielding the set Q ′. Having “raised” variables in Q by their impli-
cit parameters, we can move the existential quantification over the functor
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range, i.e. ∃Q .M′, to a position outside the entire functor yielding the ex-
istential module ∃Q ′.∀P .M→ [Q ′/Q ] (M′). This is how we systematically
avoid the need to existentially quantify the range of a semantic functor.

C ` m : ∃P .∀Q .M′→M
C ` m′ : ∃P ′.M′′

P ∩ (P ′ ∪ FV(M′′)) = ∅
P ′ ∩ FV(∀Q .M′ →M) = ∅
M′′ � ϕ (M′)
Dom(ϕ) = Q
C ` m m′ : ∃P ∪ P ′.ϕ (M) (H-19)

(H-19) Note that, because the functor m is an anonymous module, its type may
be existentially quantified (for instance, m might be an abstracted func-
tor). However, because functors are applicative, the range of the functor
will simply be a semantic moduleM, not an existentially quantified type as
in the first-order semantics. To classify the application, we first eliminate
the existential quantifiers in both the type of functor and the type of the
argument, yielding the semantic functor ∀Q .M′→M, and semantic mod-
uleM′′. We now choose a realisation ϕ of the functor’s type parameters Q
such thatM′′ enriches the realised domain ϕ (M′). We then propagate this
realisation through to the range M of the functor yielding the result type
ϕ (M). (Another way of saying the last two sentences is that we choose the
functor instance ∀Q .M′ →M >M′′ → ϕ (M) appropriate to the domain
M′′.) However, because the type ϕ (M) may mention the eliminated exist-
ential variables P and P ′, we need to ensure that they cannot escape their
scope. So we re-introduce an existential quantifier that hides both P and
P ′ in the final type of the application ∃P ∪ P ′.ϕ (M).

C ` m : ∃P .M
C ` S . ΛP ′.M′ P ∩ FV(ΛP ′.M′) = ∅
M � ϕ (M′) Dom(ϕ) = P ′

C ` m � S : ∃P .ϕ (M′) (H-20)

(H-20) Applying the realisation ϕ to M′ in the result ∃P .ϕ (M′) ensures that
the actual realisations of type components merely specified in S are re-
tained. In particular, if m is a functor, then the curtailment preserves the
actual argument-result dependencies of m that are merely specified, but not
defined, in S.
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C ` m : ∃P .M
C ` S . ΛP ′.M′ P ∩ FV(ΛP ′.M′) = ∅
M � ϕ (M′) Dom(ϕ) = P ′

C ` m \ S : ∃P ′.M′ (H-21)

(H-21) As in Rule H-20 we require that there be some realisation ϕ such thatM
matches ΛP ′.M′. However, the type of m\S is ∃P ′.M′, not ∃P .ϕ (M′). As
a result, types merely specified in S are made abstract. In particular, if m is
a functor, then the abstraction makes the actual argument-result depend-
encies of m that are merely specified, but not defined, in S abstract. Note
that this is the only rule that introduces existentially quantified variables.

Value Occurrences C ` vo : v

x ∈ Dom(C) C(x) = v
C ` x : v (H-22)

C ` m : ∃P .S x ∈ Dom(S) S(x) = v P ∩ FV(v) = ∅
C ` m.x : v

(H-23)

(H-23) The side condition P ∩ FV(v) = ∅ ensures that existential variables in P
do not escape their scope. Note that m must be a structure, not a functor.

5.6 An Algorithm for Matching

The rules defining the static semantics of Higher-Order Modules almost capture a
type checking algorithm that, given a context and phrase, calculates the semantic
object (if any) that the phrase denotes or is classified by. However, Rules H-19,
H-20 and H-21 present a problem. Each of the rules carries premises that require
the choice of an appropriate realisation such that one module enriches the realisa-
tion of another. We have not yet shown how such a realisation may be found. For
(first-order) Modules it is easy to see that we can factor the process of matching
a structure S to a signature ΛP .S ′ into two steps: first, we find an appropriate
realisation ϕ, then we check that S � ϕ (S ′). Unfortunately, in the higher-order
case, these two steps can no longer be carried out separately. In Rule � -2,
defining when one functor enriches another, we need to guess a realisation such
that the domain of the less general functor enriches the realisation of the more
general functor’s domain. The notions of enrichment and matching are now inter-
twined, and it should come as no surprise that the algorithm for matching must
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simultaneously construct a realisation while verifying enrichment. Note that the
realisations we need to construct are essentially higher-order substitutions, since
semantic types define the terms of a simply typed λ-calculus (cf. Remark 5.4.1).
Although, in general, higher-order unification of typed λ-terms is undecidable
and non-unitary (i.e. there may be more than one solution to a given problem)
[25], we shall find that the matching problems encountered during type checking
belong to a restricted class of problem for which matching is both decidable and
unitary. Indeed, we will only need to construct realisations for type variables that
occur in types that take the restricted form of higher-order patterns. The class of
higher-order patterns was originally identified and studied by Miller [39].

Definition 5.25 (Algorithm ∀P .∀R ` O � O′ ↓ ). Figure 5.18 defines the
rules of an algorithm that, given as inputs two sets of type variables P and R,
and a pair of semantic objects O and O′, be they structures, functors or modules,
computes a realisation ϕ as its output, provided it succeeds.

The intention is that, provided certain conditions on its inputs hold, we will
have:

O � ϕ (O′) if, and only if, ∀P .∀R ` O � O′ ↓ ϕ.

The algorithm traverses the structure ofO′ to incrementally compute a match-
ing realisation while verifying enrichment. Informally, Rule (M-2) verifies that
S defines an equivalent type component t, where t has a specific definition in
S ′. Rule (M-3), on the other hand, verifies that S realises the type component
t of S ′, where t is merely specified, but not defined, in S ′. More precisely, t is
specified in way that permits it to have some functional dependency α on the
fixed parameters β0, . . . , βn−1. The type α β 0 · · · βn−1 corresponds to a higher-
order pattern in the sense of Miller [39]: α is a variable that must occur in the
domain of the computed realisation; its arguments {β0, . . . , βn−1} ⊆ R are fixed
parameters on which the definition of t may depend. The preconditions on the
inputs to the algorithm will ensure that the side condition α 6∈ P ∪R uniquely
determines whether Rule (M-2) or Rule (M-3) applies. In Rule M-6, due to
the contravariance of functor enrichment, the computation of the realisation ϕ is
delayed as the roles of left and right object are swapped in order to construct a
realisation ϕ′ with domain N such that the generic domain of the lesser functor
matches the realised domain of the richer functor.

The rules define an algorithm because, on any input satisfying the precondi-
tions, there is a most one instance of a rule that applies (the rules are syntax
directed). Further details of the algorithm’s operation and the roles of the input
sets P and R will be explained in Section 5.6.1.
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Figure 5.18 An algorithm for matching. Subject to certain constraints, we have
∀P .∀R ` O � O′ ↓ ϕ if, and only if, O � ϕ (O′).
Structure Matching ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � εS ↓ ∅ (M-1)

t ∈ Dom(S) S(t) = τ ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � t = τ ,S ′ ↓ ϕ (M-2)

α 6∈ P ∪R
t ∈ Dom(S)
S(t), (α β0 · · · βn−1) ∈ Typκ

FV(S(t)) ∩R ⊆ {β i | i ∈ [n]}
∀P .∀R ` S � [Λβ0 · · ·βn−1.S(t)/α] (S ′) ↓ ϕ

∀P .∀R ` S � t = α β0 · · · βn−1,S ′ ↓ ([Λβ0 · · · βn−1.S(t)/α] | ϕ)
(M-3)

x ∈ Dom(S) S(x) � v ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � x : v ,S ′ ↓ ϕ (M-4)

X ∈ Dom(S) ∀P .∀R ` S(X) �M ↓ ϕ ∀P .∀R ` S � ϕ (S ′) ↓ ϕ′
∀P .∀R ` S � X :M,S ′ ↓ (ϕ | ϕ′)

(M-5)

Functor Matching ∀P .∀R ` F � F ′ ↓ ϕ

N ∩ (P ∪ R ∪M ) = ∅ M ∩ (P ∪R) = ∅
∀P ∪R ∪M .∀∅ ` MM �MN ↓ ϕ′ ∀P .∀R ∪M ` ϕ′ (M′

N ) �M′
M ↓ ϕ

∀P .∀R ` ∀N .MN →M′
N � ∀M .MM →M′

M ↓ ϕ
(M-6)

Module Matching ∀P .∀R `M �M′ ↓ ϕ

∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � S ′ ↓ ϕ
(M-7)

∀P .∀R ` F � F ′ ↓ ϕ
∀P .∀R ` F � F ′ ↓ ϕ

(M-8)
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Theorem 5.26 (Termination). The algorithm of Definition 5.25 terminates.

Proof. We define a positive measure on the size of the inputs to the algorithm
and then show that in each rule, the size of the inputs to each premise is strictly
smaller than the size of the inputs to its conclusion. In particular, we define

m(εS)
def= 0

m(d = τ ,S) def= 1 +m(S)

m(x : v ,S) def= 1 +m(S)

m(X :M,S) def= 1 +m(M) +m(S)

m(∀P .M→M′) def= 1 +m(M) +m(M′)

m(M) def=
{

1 +m(S) if M≡ S
1 +m(F) if M≡ F

m(P ,R,O,O′) def= m(O) +m(O′).

Observing that m(ϕ (O)) = m(O), it is easy to see that each invocation of the
algorithm on inputs P, R, O, and O′ of size m(P ,R,O,O′) decreases the size of
this measure in recursive calls.

5.6.1 Ground and Solvable Modules

We now define conditions on the inputs to the algorithm for which it is well-
behaved. In Section 5.7 we will show that these conditions are always satisfied
whenever we need to invoke the algorithm. Intuitively, we will say a matching
problem ∀P .∀R ` O � O′ ↓ is well-posed, if O is ground and O′, the object
to which the desired realisation will be applied, is solvable. More precisely, we
define:

Definition 5.27 (Ground and Solvable Modules). The family of predicates
∀ ` Gnd and ∀ .∃ .∀ ` Slv on structures, functors and modules is defined by
the rules in Figure 5.19 and 5.20. The predicates characterise the classes of ground
and solvable objects (respectively) for which Algorithm 5.25 is well-behaved.

Intuitively, if an objectO is ground with respect to a set of variables P , written
∀P ` O Gnd, then FV(O) ⊆ P . Moreover, if O is a functor ∀Q .M→M′ then,
because of contravariance (and thus the swapping of roles in Rule M-6), we also
require that M is solvable for the variables in Q , and (swapping back again)
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Figure 5.19 The definition of ground and solvable objects (the definition of
solvable objects is continued in Figure 5.20). We will show that provided
∀P ∪R ` O Gnd and ∀P .∃Q .∀R ` O′ Slv, then, for any realisation ϕ with
Dom(ϕ) = Q and Reg(ϕ) ∩ R = ∅, we have ∀P .∀R ` O � O′ ↓ ϕ if, and only
if, O � ϕ (O′).
Ground Structures ∀P ` S Gnd

∀t ∈ Dom(S). FV(S(t)) ⊆ P
∀x ∈ Dom(S). FV(S(x)) ⊆ P
∀X ∈ Dom(S). ∀P ` S(X) Gnd

∀P ` S Gnd (G-1)

Ground Functors ∀P ` F Gnd

∀P .∃Q .∀∅ ` MQ Slv ∀P ∪Q `M′
Q Gnd

∀P ` ∀Q .MQ →M′
Q Gnd (G-2)

Ground Modules ∀P `MGnd

∀P ` S Gnd
∀P ` S Gnd (G-3)

∀P ` F Gnd
∀P ` F Gnd (G-4)
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Figure 5.20 The definition of solvable objects (continued from Figure 5.19).

Solvable Structures ∀P .∃Q .∀R ` S Slv

P ∩R = ∅
∀P .∃∅.∀R ` εS Slv (S-1)

FV(τ ) ⊆ P ∪ R ∀P .∃Q .∀R ` S Slv
∀P .∃Q .∀R ` t = τ ,S Slv (S-2)

α 6∈ P
∀i ∈ [n].β i ∈ R
∀i 6= j ∈ [n].β i 6= β j
∀P ∪ {α}.∃Q .∀R ` S Slv

∀P .∃{α} ∪Q .∀R ` t = α β0 · · · βn−1,S Slv (S-3)

FV(v) ⊆ P ∪R ∀P .∃Q .∀R ` S Slv
∀P .∃Q .∀R ` x : v ,S Slv (S-4)

∀P .∃Q .∀R `M Slv ∀P ∪Q .∃Q ′.∀R ` S Slv
∀P .∃Q ∪Q ′.∀R ` X :M,S Slv (S-5)

Solvable Functors ∀P .∃Q .∀R ` F Slv

∀P ∪R.∃N .∀∅ ` M Slv ∀P .∃Q .∀R ∪ N ` M ′ Slv
∀P .∃Q .∀R ` ∀N .M → M ′ Slv (S-6)

Solvable Modules ∀P .∃Q .∀R ` M Slv

∀P .∃Q .∀R ` S Slv
∀P .∃Q .∀R ` S Slv (S-7)

∀P .∃Q .∀R ` F Slv
∀P .∃Q .∀R ` F Slv (S-8)
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that M′ is ground with respect to P ∪ Q (note we must cater for the possible
occurrence of the parameters Q inM′).

Solvability is captured by the predicate ∀P .∃Q .∀R ` O Slv. Suppose we are
looking for a realisation ϕ as a solution to a matching problem. Intuitively, the
prefix ∀P .∃Q .∀R declares the role of any free type variables in O. The set P
contains variables which may occur free in Reg(ϕ). Q is the set of variables we
are solving for, i.e. we require Dom(ϕ) = Q . The set R lists the parameters which
must not occur free in Reg(ϕ), i.e. it records the set of parameters introduced by
any enclosing semantic functor of O, and thus the parameters that may appear
as arguments to variables in Q . However, if O is a functor ∀N .M→M′ then,
because of contravariance (and thus the swapping of roles in Rule M-6), we require
thatM is solvable for the variables in N (with respect to free variables P∪R and
no parameters), and, swapping back again, M′ is solvable for Q with respect to
P , and the parameters R ∪N . The set N is added to R as we enter the range of
the functor: since we are now in the scope of N , variables in Q should be allowed
to take on these additional parameters.

We can characterise the solvability of O for a set a variables Q , with respect
to free variables P and parameters R, informally as follows:

• The sets P , Q , and R are distinct.

• FV(O) ⊆ P ∪ Q ∪R.

• FV(O) \ (P ∪R) = Q .

• If O is a functor ∀N .M→M′ then its domainM must be solvable for the
variables N , with respect to free variables P ∪ R and no parameters. On
the one hand, the parameters R of Q are considered as free variables for
N , because the variables in N are declared within the scope of R. On the
other hand, because no variables have yet been declared in the scope of N ,
the set of parameters for N is empty.

• Each variable α ∈ Q first occurs positively within O, where α first occurs
positively in O if, and only if:

either O is a structure S, and

either α first occurs in a type binding t = α β0 · · · βn−1 within S,
where β0, . . . , βn−1 are distinct parameters drawn from R.

or α first occurs positively within a sub-module of S;
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or O is a functor ∀N .M → M′, in which case α may not occur in the
domain M, and must first occur positively in the range M′, where it
may be applied to any of the additional parameters in N as well as R.

Our algorithm ∀P .∀R ` O � O′ ↓ operates by traversing O′ to find
a first positive occurrence of a variable not occurring in P ∪ R, matching it
against its corresponding binding in O to determine its realisation, applying the
realisation to the remaining problem, and proceeding until the traversal of O′

and the construction of the realisation is complete. Along the way, it also checks
that the enrichment relation holds. The two conditions, that the region of the
realisation may not contain parameters (from R) and that each variable in the
domain of the realisation is applied to a list of distinct parameters, ensure that
the realisation is unique, provided it exists.

5.6.1.1 Properties of Ground and Solvable Objects

It is easy to verify the following properties of ground and solvable objects. We
shall make use of them in subsequent proofs.

Lemma 5.28 (Closure).

• ∀P ` O Gnd ⊃ FV(O) ⊆ P.

• ∀P .∃Q .∀R ` O Slv ⊃ P ∩Q = ∅ ∧Q ∩R = ∅ ∧ P ∩R = ∅.

• ∀P .∃Q .∀R ` O Slv ⊃ FV(O) ⊆ P ∪Q ∪R.

• ∀P .∃Q .∀R ` O Slv ⊃ FV(O) \ (P ∪R) = Q.

Lemma 5.29 (Strengthening).

• If ∀P ∪Dom(ϕ) ` O Gnd, Dom(ϕ)∩ P = ∅ and Reg(ϕ) ⊆ P then
∀P ` ϕ (O) Gnd.

• If ∀P ∪Dom(ϕ).∃Q .∀R ` O Slv, Dom(ϕ) ∩ P = ∅ and Reg(ϕ) ⊆ P ∪R
then ∀P .∃Q .∀R ` ϕ (O) Slv.

• In particular, if ∀P ∪ {ακ}.∃Q .∀R ` O Slv, ακ 6∈ P and FV(τκ) ⊆ P ∪R
then ∀P .∃Q .∀R ` [τκ/ακ] (O) Slv.

Lemma 5.30 (Weakening).

• ∀P ` O Gnd ⊃ ∀P ∪ P ′ ` O Gnd.

• ∀P .∃Q .∀R ` O Slv ⊃ P ′ ∩ (Q ∪R) = ∅ ⊃ ∀P ∪ P ′.∃Q .∀R ` O Slv.
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Lemma 5.31 (Grounding).

• ∀P .∃Q .∀R ` O Slv ⊃ ∀P ∪Q ∪ R ` O Gnd.

5.6.2 Soundness

We can now verify that our algorithm only computes correct realisations:

Theorem 5.32 (Soundness). If ∀P .∀R ` O � O′ ↓ ϕ then O � ϕ (O′),
provided ∀P ∪R ` O Gnd and ∀P .∃Dom(ϕ).∀R ` O′ Slv.

(Readers not interested in the proof should skip ahead to Section 5.6.3 on
page 198.)

Proof (Soundness). We prove the stronger theorem:

∀P .∀R ` O � O′ ↓ ϕ ⊃
∀P ∪ R ` O Gnd ⊃

∀Q . ∀P .∃Q .∀R ` O′ Slv ⊃ Dom(ϕ) = Q
∧Reg(ϕ) ⊆ P
∧O � ϕ (O′)

 .

by induction on the rules in Figure 5.18.

M-1 Easy.

M-2 By induction we may assume:

t ∈ Dom(S), (1)

S(t) = τ , (2)

∀P ∪R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` S ′ Slv ⊃ Dom(ϕ) = Q

∧ Reg(ϕ) ⊆ P
∧ S � ϕ (S ′)

 (3)

We need to show:

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` t = τ ,S ′ Slv ⊃ Dom(ϕ) = Q

∧Reg(ϕ) ⊆ P
∧ S � ϕ (t = τ ,S ′)
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Assume

∀P ∪ R ` S Gnd. (4)

Consider an arbitrary Q such that:

∀P .∃Q .∀R ` t = τ ,S ′ Slv. (5)

Inverting (4), by (1) we have, in particular FV(S(t)) ⊆ P ∪ R. Hence, by
(2):

FV(τ ) ⊆ P ∪R. (6)

Lemma 5.28 (Closure) on (5) ensures Q ∩ (P ∪ R) = ∅, from which

Q ∩ (FV(τ )) = ∅ (7)

follows by (6). Hence (5) cannot have been derived by Rule (S-3), and must
in fact result from an application of Rule (S-2). Inverting (5) we therefore
have both

FV(τ ) ⊆ P ∪R (8)

and

∀P .∃Q .∀R ` S ′ Slv. (9)

We can now apply induction hypothesis (3) to (4), Q, and (9) to obtain:

Dom(ϕ) = Q , (10)

Reg(ϕ) ⊆ P (11)

and

S � ϕ (S ′). (12)

Clearly, by (10) we can re-express (7) as Dom(ϕ) ∩ FV(τ ) = ∅. Con-
sequently:

ϕ (τ ) = τ . (13)

With (2) and (12), we can verify the premises of Rule ( � -1) to derive:

S � t = τ , ϕ (S ′), (14)

which we may re-express by (13) as

S � ϕ (t = τ ,S ′). (15)

Combining (10), (11) and (15) gives the desired result.
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M-3 By induction we may assume:

α 6∈ P ∪ R, (1)

t ∈ Dom(S), (2)

S(t), (α β0 · · · βn−1) ∈ Typκ, (3)

FV(S(t)) ∩R ⊆ {β i | i ∈ [n]}, (4)

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` [Λβ0 · · ·βn−1.S(t)/α] (S ′) Slv ⊃

Dom(ϕ) = Q
∧Reg(ϕ) ⊆ P
∧ S � ϕ

(
[Λβ0 · · · βn−1.S(t)/α] (S ′)

)
 (5)

We need to show:

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` t = α β0 · · · βn−1,S ′ Slv ⊃

Dom ([Λβ0 · · · βn−1.S(t)/α] | ϕ) = Q
∧Reg ([Λβ0 · · ·βn−1.S(t)/α] | ϕ) ⊆ P
∧ S � ([Λβ0 · · · βn−1.S(t)/α] | ϕ)

(
t = α β0 · · · βn−1,S ′

)


Assume

∀P ∪R ` S Gnd. (6)

Consider an arbitrary Q such that

∀P .∃Q .∀R ` t = α β0 · · · βn−1,S ′ Slv. (7)

By (1) we know that FV(α β 0 · · · βn−1) 6⊆ P ∪ R hence (7) cannot have
been derived by Rule (S-2) and must be the result of an application of Rule
(S-3). Inverting (7) we therefore have:

α 6∈ P , (8)

∀i ∈ [n].β i ∈ R, (9)

∀i 6= j ∈ [n].β i 6= β j , (10)
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∀P ∪ {α}.∃Q ′.∀R ` S ′ Slv, (11)

for some Q ′ with Q = {α} ∪ Q ′.

Inverting (6), by (2) we have FV(S(t)) ⊆ P ∪R, which together with (4)
ensures:

FV(Λβ0 · · · βn−1.S(t)) ⊆ P . (12)

Lemma 5.29 (Strengthening) on (11) with [Λβ0 · · ·βn−1.S(t)/α] using (8)
and (12) produces:

∀P .∃Q ′.∀R ` [Λβ0 · · ·βn−1.S(t)/α] (S ′) Slv. (13)

We can now apply induction hypothesis (5) to (6), Q ′ and (13) to obtain:

Dom(ϕ) = Q ′, (14)

Reg(ϕ) ⊆ P (15)

and

S � ϕ
(
[Λβ0 · · ·βn−1.S(t)/α] (S ′)

)
. (16)

It is straightforward to show:

Dom([Λβ0 · · ·βn−1.S(t)/α] | ϕ) = {α} ∪Dom(ϕ) = Q . (17)

Moreover, (12) and (15) ensure that

Reg([Λβ0 · · ·βn−1.S(t)/α] | ϕ) ⊆ P . (18)

Lemma 5.28 (Closure) on (11) yields:

Q ′ ∩ ((P ∪ {α}) ∪R) = ∅. (19)

Together with (19), (14) and (9) ensure that

α 6∈ Dom(ϕ), (20)

∀i ∈ [n].βi 6∈ Dom([Λβ0 · · · βn−1.S(t)/α] | ϕ). (21)
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By applying the realisation using facts (20) and (21) we can verify:

S(t) = ([Λβ0 · · · βn−1.S(t)/α] | ϕ)
(
α β0 · · · βn−1

)
. (22)

Moreover, from (19), (12) and (14) we can verify that
Dom(ϕ) ∩ Inv([Λβ0 · · ·βn−1.S(t)/α]) = ∅. Hence

([Λβ0 · · ·βn−1.S(t)/α] | ϕ) (S ′) = ϕ
(
[Λβ0 · · ·βn−1.S(t)/α] (S ′)

)
,

and thus, by equation (22):(
t = S(t), ϕ

(
[Λβ0 · · · βn−1.S(t)/α] (S ′)

))
= ([Λβ0 · · · βn−1.S(t)/α] | ϕ)

(
t = α β0 · · · βn−1,S ′

)
. (23)

With (2), (22) and (16), we can verify the premises of Rule ( � -1) that, if
followed by equation (23), derives:

S � ([Λβ0 · · · βn−1.S(t)/α] | ϕ)
(
t = α β0 · · · βn−1,S ′

)
. (24)

Combining (17), (18) and (24) gives the desired result.

M-4 Similar to, but easier than, case M-2 .

M-5 By induction we may assume:

X ∈ Dom(S), (1)

∀P ∪R ` S(X) Gnd ⊃
∀Q . ∀P .∃Q .∀R ` M Slv ⊃ Dom(ϕ1) = Q

∧ Reg(ϕ1) ⊆ P
∧ S(X) � ϕ1 (M)

 (2)

∀P ∪R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` ϕ1 (S ′) Slv ⊃ Dom(ϕ2) = Q

∧Reg(ϕ2) ⊆ P
∧ S � ϕ2 (ϕ1 (S ′))

 (3)

We need to show:

∀P ∪R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` X :M,S ′ Slv ⊃ Dom (ϕ1 | ϕ2) = Q

∧Reg (ϕ1 | ϕ2) ⊆ P
∧ S � (ϕ1 | ϕ2) (X :M,S ′)
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Assume

∀P ∪ R ` S Gnd. (4)

Consider an arbitrary Q such that

∀P .∃Q .∀R ` X :M,S ′ Slv. (5)

Inverting (5) we must have both

∀P .∃Q1.∀R `M Slv (6)

and

∀P ∪Q1.∃Q2.∀R ` S ′ Slv. (7)

for some Q1,Q2 with Q = Q1 ∪Q2.

Inverting (4) together with (1) yields

∀P ∪R ` S(X) Gnd. (8)

Applying induction hypothesis (2) to (8), Q1, and (6) we obtain:

Dom(ϕ1) = Q1, (9)

Reg(ϕ1) ⊆ P , (10)

S(X) � ϕ1 (M). (11)

Lemma 5.28 (Closure) on (6) ensures

Q1 ∩ P = ∅ (12)

and

FV(M) ⊆ P ∪Q1 ∪ R. (13)

Lemma 5.29 (Strengthening) on (7) with ϕ1 using (9), (12) and (10) yields:

∀P .∃Q2.∀R ` ϕ1 (S ′) Slv. (14)

We can now apply induction hypothesis (3) to (4), Q2, and (14) to obtain:

Dom(ϕ2) = Q2, (15)
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Reg(ϕ2) ⊆ P , (16)

S � ϕ2 (ϕ1 (S ′)). (17)

Lemma 5.28 (Closure) on (7) ensures

Q2 ∩ (P ∪Q1 ∪ R) = ∅. (18)

It is easy to show

Dom(ϕ1 | ϕ2) = Q , (19)

Reg(ϕ1 | ϕ2) ⊆ P . (20)

Now (ϕ1 | ϕ2) (M) = ϕ1 (M) follows from (13), (15) and (18). Moreover,
we can easily verify that Dom(ϕ2) ∩ Inv(ϕ1) = ∅ using (9), (10) and (18).
Hence (ϕ1 | ϕ2) (S ′) = ϕ2 (ϕ1 (S ′)) and we have:

(ϕ1 | ϕ2) (X :M,S ′) = X : ϕ1 (M), ϕ2 (ϕ1 (S ′)). (21)

With (1), (11), and (17) we can verify the premises of Rule ( � -1) that, if
followed by equation (21), derives:

S � (ϕ1 | ϕ2) (X :M,S ′). (22)

Combining (19), (20) and (22) gives the desired result.

M-6 By induction we may assume:

N ∩ (P ∪R ∪M ) = ∅, (1)

M ∩ (P ∪ R) = ∅, (2)

∀P ∪ R ∪M ∪ ∅ `MM Gnd ⊃
∀Q . ∀P ∪R ∪M .∃Q .∀∅ ` MN Slv ⊃ Dom(ϕ′) = Q

∧Reg(ϕ′) ⊆ P ∪R ∪M
∧MM � ϕ′ (MN )

 (3)

∀P ∪R ∪M ` ϕ′ (M′
N ) Gnd ⊃

∀Q . ∀P .∃Q .∀R ∪M `M′
M Slv ⊃ Dom(ϕ) = Q

∧ Reg(ϕ) ⊆ P
∧ ϕ′ (M′

N ) � ϕ (M′
M )

 (4)
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We need to show:

∀P ∪R ` ∀N .MN →M′
N Gnd ⊃

∀Q . ∀P .∃Q .∀R ` ∀M .MM →M′
M Slv ⊃ Dom(ϕ) = Q

∧Reg(ϕ) ⊆ P
∧ ∀N .MN →M′

N � ϕ (∀M .MM →M′
M )


Assume

∀P ∪ R ` ∀N .MN →M′
N Gnd. (5)

Consider an arbitrary Q such that

∀P .∃Q .∀R ` ∀M .MM →M′
M Slv. (6)

Inverting (6) we must have both

∀P ∪R.∃M .∀∅ ` MM Slv (7)

and

∀P .∃Q .∀R ∪M `M′
M Slv. (8)

Inverting (5) we must have both

∀P ∪ R.∃N .∀∅ ` MN Slv (9)

and

∀P ∪R ∪N `M′
N Gnd. (10)

Applying Lemma 5.31 (Grounding) to (7) we obtain:

∀P ∪ R ∪M `MM Gnd. (11)

From (1), in particular, we have M ∩ N = ∅, so by Lemma 5.30 (Weaken-
ing) on (9) and M we also have:

∀P ∪R ∪M .∃N .∀∅ ` MN Slv. (12)

Induction hypothesis (3) on (11), N , and (12) produces:

Dom(ϕ′) = N , (13)
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Reg(ϕ′) ⊆ P ∪R ∪M , (14)

MM � ϕ′ (MN ). (15)

By Lemma 5.30 (Weakening) on (10) and M we also have:

∀P ∪R ∪N ∪M `M′
N Gnd. (16)

Furthermore, Lemma 5.29 (Strengthening) on (16) and ϕ′ using (1), (13)
and (14) establishes:

∀P ∪R ∪M ` ϕ′ (M′
N ) Gnd. (17)

We can now apply induction hypothesis (4) to (17), Q, and (8) to obtain:

Dom(ϕ) = Q , (18)

Reg(ϕ) ⊆ P , (19)

ϕ′ (M′
N ) � ϕ (M′

M ). (20)

It remains to show:

∀N .MN →M′
N � ϕ (∀M .MM →M′

M ).

Two applications of Lemma 5.28 (Closure) on (7) and (8) ensure that
M ∩ (P ∪R) = ∅ and M ∩ Q = ∅. Then, from (19) and (18), it is easy to
see that M ∩ Inv(ϕ) = ∅. Hence:

ϕ (∀M .MM →M′
M ) = ∀M .ϕ (MM )→ ϕ (M′

M ). (21)

Two applications of Lemma 5.28 (Closure) on (7) and (8) establish that
FV(MM ) ⊆ P ∪R ∪M and Q ∩ (P ∪R ∪M ) = ∅. Hence
Dom(ϕ) ∩ FV(MM ) = ∅ and ϕ (MM ) = MM letting us re-express (15)
as:

ϕ (MM ) � ϕ′ (MN ). (22)

Two applications of Lemma 5.28 (Closure) on (5) and (7) allows us to
verify that

M ∩ FV(∀N .MN →M′
N ) = ∅. (23)
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Applying Rule ( � -2) to (22), (20), (13) and (23) derives:

∀N .MN →M′
N � ∀M .ϕ (MM )→ ϕ (M′

M ).

which we may re-express by (21) as:

∀N .MN →M′
N � ϕ (∀M .MM →M′

M ). (24)

Combining (18), (19) and (24) gives the desired result.

M-7 Trivial induction.

M-8 Trivial induction.

5.6.3 Completeness

We can also show that our algorithm is complete, i.e. if a matching problem is
well-posed and has a solution, then the algorithm computes it:

Theorem 5.33 (Completeness). If O � ϕ (O′) then, provided ∀P ∪R ` O Gnd
and ∀P .∃Dom(ϕ).∀R ` O′ Slv and Reg(ϕ)∩R = ∅, our algorithm succeeds with
∀P .∀R ` O � O′ ↓ ϕ.

(Readers not interested in the proof of completeness should skip ahead to
Section 5.7 on page 211.)

In order to prove the completeness of the matching algorithm we will need
a stronger induction principle than the one provided by the definition of � .
Fortunately, a slightly different definition of � does the trick:

Definition 5.34 (The Relation �′ ). The family of relations �′ on struc-
tures, functors and modules is defined by the rules in Figure 5.21.

The alternative family of relations �′ gives us an appropriate induction
principle for proving completeness. The validity of performing induction on the
rules of �′ instead of � is justified by:
Lemma 5.35 (Strong Induction).

O � O′ ⊃ O �′ O′

We will also need the following (easy) lemma:

Lemma 5.36 (Filtering). Suppose τ is of the form τ ≡ ϕ
(
α β0 · · · βn−1

)
(for

some n ≥ 0).If βi 6∈ Inv(ϕ) ∪ FV(α β0 · · · β i−1) (for all i ∈ [n]), then we must
have

ϕ(α) = Λβ0 · · · βn−1.τ

(up to η, α-equivalence).
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Figure 5.21 An slightly different definition of enrichment with a stronger induc-
tion principle. One can show O �′ O′ whenever O � O′.
Structure Enrichment S �′ S ′

S �′ εS ( �′ -1)

t ∈ Dom(S) S(t) = τ S �′ S ′
S �′ t = τ ,S ′ ( �′ -2)

x ∈ Dom(S) S(x) � v S �′ S ′
S �′ x : v ,S ′ ( �′ -3)

X ∈ Dom(S) S(X) �′M S �′ S ′
S �′ X :M,S ′ ( �′ -4)

Functor Enrichment F �′ F ′

MQ �′ ϕ (MP) ϕ (M′
P ) �′M′

Q
Dom(ϕ) = P Q ∩ FV(∀P .MP →M′

P ) = ∅
∀P .MP →M′

P �′ ∀Q .MQ →M′
Q ( �′ -5)

Module Enrichment M�′M′

S �′ S ′
S �′ S ′ ( �′ -6)

F �′ F ′
F �′ F ′ ( �′ -7)
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Proof (Completeness). We can now prove the stronger theorem:

O �′ O′ ⊃
∀Ō, ϕ,P ,R.

Reg(ϕ) ∩R = ∅ ⊃
O′ = ϕ

(
Ō
)
⊃

∀P ∪R ` O Gnd ⊃
∀P .∃Dom(ϕ).∀R ` Ō Slv ⊃(

∀P .∀R ` O � Ō ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

Note that we need to do induction on the relation �′ rather than � .
Completeness then follows easily by an appeal to Lemma 5.35 (Strong Induction).

The proof itself is a tricky rule induction and requires appeals to Lemmas
5.28 (Closure), 5.31 (Grounding), 5.29 (Strengthening) and 5.30 (Weakening)
and 5.36 (Filtering).

�′ -1 Easy.

�′ -2 By induction we may assume:

t ∈ Dom(S), (1)

S(t) = τ , (2)

∀S̄, ϕ,P ,R.
Reg(ϕ) ∩R = ∅ ⊃

S ′ = ϕ
(
S̄
)
⊃

∀P ∪R ` S Gnd ⊃
∀P .∃Dom(ϕ).∀R ` S̄ Slv ⊃(

∀P .∀R ` S � S̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

(3)

We need to show:

∀S̄, ϕ,P ,R.
Reg(ϕ) ∩R = ∅ ⊃

(t = τ ,S ′) = ϕ
(
S̄
)
⊃

∀P ∪R ` S Gnd ⊃
∀P .∃Dom(ϕ).∀R ` S̄ Slv ⊃(

∀P .∀R ` S � S̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

Consider arbitrary S̄, ϕ, P, R such that:

Reg(ϕ) ∩R = ∅, (4)
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(t = τ ,S ′) = ϕ
(
S̄
)
, (5)

∀P ∪R ` S Gnd, (6)

∀P .∃Dom(ϕ).∀R ` S̄ Slv. (7)

By (5) there must be some type τ̄ and structure S̄ ′ such that:

τ = ϕ (τ̄ ) (8)

and

S ′ = ϕ
(
S̄ ′
)
, (9)

where

S̄ = (t = τ̄ , S̄ ′). (10)

Inverting (7) we have two cases:

A Assumption (7) was derived by S-2. Then the following premises must
hold:

FV(τ̄ ) ⊆ P ∪R, (a)

∀P .∃Dom(ϕ).∀R ` S̄ ′ Slv. (b)

Lemma 5.28 (Closure) on (7) ensures Dom(ϕ) ∩ (P ∪ R) = ∅. Hence
ϕ (τ̄ ) = τ̄ by (a), and equations (2) and (8) yield:

S(t) = τ̄ . (c)

Induction hypothesis (3) on S̄ ′, ϕ, P and R, applied to (4),(9), (6)
and (b) yields:

∀P .∀R ` S � S̄ ′ ↓ ϕ. (d)

Reg(ϕ) ⊆ P , (e)

Rule (M-2) applied to (1), (c) and (d) derives:

∀P .∀R ` S � t = τ̄ , S̄ ′ ↓ ϕ. (f)

Combining (f) and (e) gives the desired result.
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B Assumption (7) was derived by S-3. Then the following premises must
hold:

α 6∈ P , (a)

∀i ∈ [n].β i ∈ R, (b)

∀i 6= j ∈ [n].β i 6= β j , (c)

∀P ∪ {α}.∃Q .∀R ` S̄ ′ Slv, (d)

for some α, Q, n, and βi (i ∈ [n]), where

Dom(ϕ) = {α} ∪ Q (e)

and

τ̄ = α β0 · · · βn−1. (f)

Lemma 5.28 (Closure) on (d) together with (a) ensures

α 6∈ P ∪ R. (g)

By (2), (8) and (f) we have

S(t) = ϕ
(
α β0 · · · βn−1

)
. (h)

Since they are equal, S(t) and α β0 · · · βn−1 must be of the same kind
κ, for some κ, that is:

S(t), (α β0 · · · βn−1) ∈ Typκ. (i)

Lemma 5.28 (Closure) on (7), ensures

Dom(ϕ) ∩R = ∅, (j)

P ∩R = ∅. (k)

Consider arbitrary i ∈ [n]. Then βi ∈ R by (b) from which βi 6∈ Inv(ϕ)
follows by (j) and (4); moreover, from (g) we have βi 6= α, and from
(c) we obtain βi 6∈ {βj | j ∈ i− 1}.
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Hence βi 6∈ Inv(ϕ) ∪ FV(α β0 · · · β i−1). Since i was arbitrary, we
have:

∀i ∈ [n].βi 6∈ FV(α β 0 · · · β i−1). (l)

Lemma 5.36 (Filtering) on equation (h) and (l) determines that:

ϕ (α) = Λβ0 · · ·βn−1.S(t). (m)

From (m) we clearly have: FV(S(t)) \ {βi | i ∈ [n]} ⊆ FV(ϕ (α)).
Hence FV(S(t)) ⊆ FV(ϕ (α)) ∪ {βi | i ∈ [n]}. Now

FV(S(t)) ∩R ⊆ (FV(ϕ (α)) ∪ {βi | i ∈ [n]}) ∩R

⊆ (FV(ϕ (α)) ∩R) ∪ ({βi | i ∈ [n]} ∩R).

Hence by (e), (4) and (b):

FV(S(t)) ∩R ⊆ {β i | i ∈ [n]}. (n)

Inverting (6) we have, in particular by (1), FV(S(t)) ⊆ P ∪R, which,
together with (k) and (n), lets us show:

FV(Λβ 0 · · ·βn−1.S(t)) ⊆ P . (o)

Lemma 5.29 (Strengthening) (d) on α and Λβ0 · · ·βn−1.S(t) using (a)
and (o) produces:

∀P .∃Q .∀R ` [Λβ0 · · · βn−1.S(t)/α]
(
S̄ ′
)

Slv. (p)

Lemma 5.28 (Closure) on (d) yields:

α 6∈ Q , (q)

Q ∩ P = ∅. (r)

Let ϕ′ def= {α 7→ ϕ (α) |α ∈ Q}. Then (m) and (q) give:

ϕ = [Λβ0 · · ·βn−1.S(t)/α] | ϕ′, (s)

since

Dom(ϕ′) = Q . (t)
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In particular, by (4) we also have:

Reg(ϕ′) ∩R = ∅. (u)

From (r), (q) and (o) it is easy to verify that
Dom(ϕ) ∩ Inv([Λβ0 · · · βn−1.S(t)/α]) = ∅. Hence, by (9) we have:

S ′ = ϕ′
(
[Λβ0 · · ·βn−1.S(t)/α]

(
S̄ ′
))
. (v)

Induction hypothesis (3) on [Λβ0 · · ·βn−1.S(t)/α]
(
S̄ ′
)
, ϕ′, P and R,

applied to (u), (v), (6) and (p) (using equality (t)) yields:

∀P .∀R ` S � [Λβ0 · · ·βn−1.S(t)/α]
(
S̄ ′
)
↓ ϕ′, (w)

Reg(ϕ′) ⊆ P . (x)

Rule (M-3) applied to (g), (1), (i), (n) and (w) derives:

∀P .∀R ` S � t = α β0 · · · βn−1, S̄ ′ ↓ ([Λβ0 · · ·βn−1.S(t)/α] | ϕ′)

i.e.:

∀P .∀R ` S � S̄ ↓ ϕ. (y)

by (10) and (s).

Finally, using (s), (o) and (x) it is easy to verify

Reg(ϕ) = Reg([Λβ0 · · ·βn−1.S(t)/α] | ϕ′)
= FV(Λβ 0 · · ·βn−1.S(t)) ∪ Reg(ϕ′)

⊆ P . (z)

Combining (y) and (z) gives the desired result.

�′ -3 Similar to case �′ -2 , reasoning as in sub-case A .

�′ -4 By induction we may assume:

X ∈ Dom(S), (1)

∀M̄, ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃

M = ϕ
(
M̄
)
⊃

∀P ∪R ` S(X) Gnd ⊃
∀P .∃Dom(ϕ).∀R ` M̄ Slv ⊃(

∀P .∀R ` S(X) � M̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
) (2)
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∀S̄, ϕ,P ,R.
Reg(ϕ) ∩R = ∅ ⊃

S ′ = ϕ
(
S̄
)
⊃

∀P ∪R ` S Gnd ⊃
∀P .∃Dom(ϕ).∀R ` S̄ Slv ⊃(

∀P .∀R ` S � S̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

(3)

We need to show:

∀S̄, ϕ,P ,R.
Reg(ϕ) ∩R = ∅ ⊃

X :M,S ′ = ϕ
(
S̄
)
⊃

∀P ∪R ` S Gnd ⊃
∀P .∃Dom(ϕ).∀R ` S̄ Slv ⊃(

∀P .∀R ` S � S̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

Consider arbitrary S̄, ϕ, P, R such that:

Reg(ϕ) ∩R = ∅, (4)

X :M,S ′ = ϕ
(
S̄
)
, (5)

∀P ∪R ` S Gnd, (6)

∀P .∃Dom(ϕ).∀R ` S̄ Slv. (7)

By (5) there must be some module M̄ and structure S̄ ′ such that:

M = ϕ
(
M̄
)
, (8)

S ′ = ϕ
(
S̄ ′
)
, (9)

where

S̄ = X : M̄, S̄ ′. (10)

Inverting (7) the following premises must hold:

∀P .∃Q1.∀R ` M̄ Slv, (11)

∀P ∪ Q1.∃Q2.∀R ` S̄ ′ Slv, (12)
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for some Q1 and Q2 with

Dom(ϕ) = Q1 ∪ Q2. (13)

Two applications of Lemma 5.28 (Closure) to (11) and (12) yield:

FV(M̄) ⊆ P ∪Q1 ∪ R, (14)

Q1 ∩ P = ∅, (15)

Q2 ∩ (P ∪ Q1 ∪R) = ∅. (16)

Let ϕ1
def= {α 7→ ϕ (α) |α ∈ Q1} and ϕ2

def= {α 7→ ϕ (α) |α ∈ Q2}. Then

Dom(ϕ1) = Q1, (17)

Dom(ϕ2) = Q2 (18)

and

ϕ = ϕ1 | ϕ2, (19)

by (13) and (16). Moreover, from (4) we obtain:

Reg(ϕ1) ∩ R = ∅, (20)

Reg(ϕ2) ∩ R = ∅. (21)

Now Dom(ϕ2) ∩ FV(M̄) = ∅ follows from (14), (16) and (18). Hence
ϕ
(
M̄
)

= (ϕ1 | ϕ2)
(
M̄
)

= ϕ1

(
M̄
)
, and by (8):

M = ϕ1

(
M̄
)
. (22)

Inverting (6) we have, in particular by (1),

∀P ∪R ` S(X) Gnd. (23)

Induction hypothesis (3) on M̄, ϕ1, P and R, applied to (20), (22), (23)
and (11) (using equality (17)) yields:

∀P .∀R ` S(X) � M̄ ↓ ϕ1, (24)
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Reg(ϕ1) ⊆ P . (25)

It is easy to verify that Dom(ϕ2) ∩ Inv(ϕ1) = ∅.
Hence ϕ

(
S̄ ′
)

= (ϕ1 | ϕ2)
(
S̄ ′
)

= ϕ2

(
ϕ1

(
S̄ ′
))

, and by (9) we have:

S ′ = ϕ2

(
ϕ1

(
S̄ ′
))
. (26)

Lemma 5.29 (Strengthening) on (12) with ϕ1 using (15), (17) and (25)
produces:

∀P .∃Q2.∀R ` ϕ1

(
S̄ ′
)

Slv. (27)

Induction hypothesis (3) on ϕ1

(
S̄ ′
)
, ϕ2, P and R, applied to (21), (26), (6)

and (27) (using equality (18)) yields:

∀P .∀R ` S � ϕ1

(
S̄ ′
)
↓ ϕ2, (28)

Reg(ϕ2) ⊆ P . (29)

Rule (M-5) applied to (1), (24), and (28) derives

∀P .∀R ` S � X : M̄, S̄ ′ ↓ (ϕ1 | ϕ2),

i.e. using equations (10) and (19):

∀P .∀R ` S � S̄ ↓ ϕ. (30)

Using (19), (25) and (29) it is easy to verify:

Reg(ϕ) = Reg(ϕ1 | ϕ2)

= Reg(ϕ1) ∪Reg(ϕ2)

⊆ P . (31)

Combining (30) and (31) gives the desired result.

�′ -5 By induction we may assume:

∀M̄, ϕ,P ,R.
Reg(ϕ) ∩R = ∅ ⊃

ϕ′ (MN ) = ϕ
(
M̄
)
⊃

∀P ∪R `MM Gnd ⊃
∀P .∃Dom(ϕ).∀R ` M̄ Slv ⊃(

∀P .∀R ` MM � M̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
) (1)

207



∀M̄, ϕ,P ,R.
Reg(ϕ) ∩R = ∅ ⊃

M′
M = ϕ

(
M̄
)
⊃

∀P ∪ R ` ϕ′ (M′
N ) Gnd ⊃

∀P .∃Dom(ϕ).∀R ` M̄ Slv ⊃(
∀P .∀R ` ϕ′ (M′

N ) � M̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
) (2)

Dom(ϕ′) = N , (3)

M ∩ FV(∀N .MN →M′
N ) = ∅. (4)

We need to show:

∀F̄, ϕ,P ,R.
Reg(ϕ) ∩R = ∅ ⊃

∀M .MM →M′
M = ϕ

(
F̄
)
⊃

∀P ∪R ` ∀N .MN →M′
N Gnd ⊃

∀P .∃Dom(ϕ).∀R ` F̄ Slv ⊃(
∀P .∀R ` ∀N .MN →M′

N � F̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

Consider arbitrary F̄ , ϕ, P, R such that:

Reg(ϕ) ∩R = ∅, (5)

∀M .MM →M′
M = ϕ

(
F̄
)
, (6)

∀P ∪ R ` ∀N .MN →M′
N Gnd, (7)

∀P .∃Dom(ϕ).∀R ` F̄ Slv. (8)

W.l.o.g. we may assume (by renaming bound variables if necessary) that:

M ∩ Inv(ϕ) = ∅, (9)

M ∩N = ∅. (10)

Then, by (6), can assume:

F̄ ≡ ∀M .M̄M → M̄′
M . (11)
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for some M̄M and M̄′
M .

Moreover, by (9) and (11) we have

ϕ
(
F̄
)

= ∀M .ϕ
(
M̄M

)
→ ϕ

(
M̄′

M

)
, (12)

where, by (6):

MM = ϕ
(
M̄M

)
, (13)

M′
M = ϕ

(
M̄′

M

)
. (14)

Inverting (7) the following premises must hold:

∀P ∪R.∃N .∀∅ ` MN Slv, (15)

∀P ∪ R ∪ N `M′
N Gnd. (16)

Similarly, inverting (8), using (11), the following premises must also hold:

∀P ∪R.∃M .∀∅ ` M̄M Slv, (17)

∀P .∃Dom(ϕ).∀R ∪M ` M̄′
M Slv. (18)

Two applications of Lemma 5.28 (Closure) to (17) and (18) yield
FV(M̄M ) ⊆ P ∪ R ∪M and Dom(ϕ) ∩ (P ∪R ∪M ) = ∅. Hence
Dom(ϕ) ∩ FV(M̄M ) = ∅, ϕ

(
M̄M

)
= M̄M and, by (13), we have:

MM = M̄M . (19)

By Lemma 5.31 (Grounding) on (17) using equation (19) we obtain:

∀P ∪R ∪M `MM Gnd. (20)

Lemma 5.30 (Weakening) on (15) with M , using assumption (10) provides:

∀P ∪R ∪M .∃N .∀∅ ` MN Slv. (21)

Clearly

Reg(ϕ′) ∩ ∅ = ∅, (22)
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ϕ′ (MN ) = ϕ′ (MN ) . (23)

Induction hypothesis (1) on MN , ϕ′, P ∪R ∪ M and ∅, applied to (22),
(23), (20) and (21) (using equation (3)) yields

∀P ∪R ∪M .∀∅ ` M̄M �MN ↓ ϕ′, (24)

Reg(ϕ′) ⊆ P ∪ R ∪M . (25)

Lemma 5.30 (Weakening) on (16) with M provides:

∀P ∪ R ∪ N ∪M ` M′
N Gnd. (26)

Lemma 5.28 (Closure) on (15) establishes N ∩ (P ∪ R) = ∅, which together
with (10) yields:

N ∩ (P ∪R ∪M ) = ∅. (27)

Lemma 5.29 (Strengthening) on (26) with ϕ′ using (3), (27) and (25) yields:

∀P ∪ R ∪M ` ϕ′ (M′
N ) Gnd. (28)

From (9), we have, in particular, M ∩ Reg(ϕ) = ∅, which, together with
(5), ensures:

Reg(ϕ) ∩ (R ∪M ) = ∅. (29)

Induction hypothesis (2) on M̄′
M , ϕ, P and R ∪M , applied to (29), (14),

(28) and (18) yields

∀P .∀R ∪M ` ϕ′ (M′
N ) � M̄′

M ↓ ϕ, (30)

Reg(ϕ) ⊆ P . (31)

Lemma 5.28 (Closure) on (17) establishes:

M ∩ (P ∪R) = ∅. (32)

Applying Rule (M-6) to (27), (32), (24) and (30) derives

∀P .∀R ` ∀N .MN →M′
N � ∀M .M̄M → M̄′

M ↓ ϕ,

which, by equation (11), may be rewritten as:

∀P .∀R ` ∀N .MN →M′
N � F̄ ↓ ϕ. (33)

Combining (33) and (31) gives the desired result.

�′ -6 Trivial induction.

�′ -7 Trivial induction.
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Figure 5.22 The definition of ground contexts, ground existential modules, and
solvable signatures.
Ground Contexts ` C Gnd

∀X ∈ Dom(C). ∀FV(C(X)) ` C(X) Gnd
` C Gnd (G-5)

Ground Existential Modules ` X Gnd

∀FV(∃P .M) `M Gnd
` ∃P .MGnd (G-6)

Solvable Signatures ` L Slv

∀FV(ΛP .M).∃P .∀∅ ` M Slv
` ΛP .M Slv (G-7)

5.7 A Type Checking Algorithm for Higher-Order
Modules

In the preceding sections we focussed on producing an algorithm for matching.
Although the algorithm is only sound and complete provided its inputs are ground
and solvable, we can now turn to the static semantics of Higher-Order Modules
to show that, whenever we need to invoke the algorithm, the matching problem
will indeed be well-posed. To this end, we first define a notion of ground contexts,
ground existential modules, and solvable signatures.

Definition 5.37 (Well-formed Contexts, Existential Modules, Signatures).

The three predicates ` C Gnd, ` X Gnd and ` L Slv are defined by the rules
in Figure 5.22.

We will need a lemma that allows us to eliminate spurious variables from
judgements stating solvability and groundedness:

Lemma 5.38 (Elimination).

• If ∀P ` O Gnd then ∀FV(O) ` O Gnd.

• If ∀P .∃Q .∀R ` O Slv then ∀P ∩ FV(O).∃Q .∀R ` O Slv.

Proof. The proof proceeds by strong rule induction. The proof is easy and requires
appeals to Lemmas 5.28 (Closure) and 5.29 (Strengthening).
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To show the well-formedness of semantic functors introduced by Rules (H-7)
and (H-18) we will also need the following lemma:

Lemma 5.39 (Raising). If ∀P ∪ P ′.∃Q .∀R ` O Slv, where

• P ∩ P ′ = ∅,

• P ′ = {ακ0
0 , . . . , α

κn−1
n−1 },

• Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q},

• [Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}, and

• Q ′ ∩ (P ∪ P ′ ∪ R) = ∅,

then ∀P .∃Q ′.∀R ∪ P ′ ` [Q ′/Q ] (O) Slv.

Proof. We first prove a simpler lemma for the case where P ′ consists of a single
variable:

∀P .∃Q .∀R ` O Slv ⊃
∀ακ ∈ P .∀βκ′ ∈ Q .βκ→κ′ 6∈ P ∪ R ⊃
∀P \ {ακ}.∃{βκ→κ′|βκ′ ∈ Q}.∀R ∪ {ακ} ` {βκ′ 7→ βκ→κ

′
ακ|βκ′ ∈ Q} (O) Slv

The proof proceeds by strong rule induction.
Lemma 5.39 then follows easily by induction on n, the size of P ′.

We will also need a further simple lemma to enable invocation of the algorithm
in Rules (H-19), (H-20) and (H-21).

Lemma 5.40 (Invocation). Provided ∀FV(M) ` MGnd and ` ΛP .M′ Slv,
where w.l.o.g. P ∩ FV(M) = ∅, we have, for any ϕ:

Dom(ϕ) = P and M� ϕ (M′),
if, and only if,

∀FV(M) ∪ FV(ΛP .M′).∀∅ ` M �M′ ↓ ϕ.

Proof. A simple consequence of Lemma 5.30 (Weakening), Theorem 5.32 (Sound-
ness) and Theorem 5.33 (Completeness).

This final lemma is needed to show that realisations cannot introduce spurious
free variables:

Lemma 5.41 (Free Variables). Provided ∀P `M Gnd and ∀P .∃Dom(ϕ).∀R `
O′ Slv, we have O � ϕ (O′) implies FV(Reg(ϕ)) ⊆ P.
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Proof. This is a simple consequence of Strong Induction (Lemma 5.35) and the
stronger statement we used to prove Completeness (Theorem 5.33).

We can now prove the main theorem which justifies the correctness of appeals
to the matching algorithm in Rules (H-19), (H-20) and H-21:

Lemma 5.42 (Invariance).

Provided ` C Gnd, we have:

• C ` d . d implies FV(d ) ⊆ FV(C).

• C ` v . v implies FV(v) ⊆ FV(C).

• C ` e : v implies FV(v) ⊆ FV(C).

• C ` do . d implies FV(d ) ⊆ FV(C).

• C ` vo : v implies FV(v) ⊆ FV(C).

• C ` S . L implies ` L Slv and FV(L) ⊆ FV(C).

• C ` B . L implies ` L Slv and FV(L) ⊆ FV(C).

• C ` m : X implies ` X Gnd and FV(X ) ⊆ FV(C).

• C ` b : X implies ` X Gnd and FV(X ) ⊆ FV(C).

Proof. The proof proceeds by induction on the rules of the static semantics. The
proofs of the first three statements are Core language dependent but must be car-
ried out simultaneously with the proofs of the remaining statements. We cannot
easily factor them out as separate lemmas since we need to maintain the invari-
ant that the context is ground in order to be able to use the fourth and fifth
statements. Other than that, the proof is fairly easy. In particular, we need to
appeal to Lemma 5.39 (Raising) in cases H-18 (skolemising a functor) and H-
7 (parameterising a functor signature). Lemma 5.38 (Elimination) is needed in
a number of cases to remove spurious bound variables in order to establish that
the resulting semantic objects are indeed well-formed. In cases H-19 and H-20,
Lemma 5.41 (Free Variables) is used to show that a matching realisation does not
introduce any variables that did not already occur free in the current context. The
fact that the existential module inferred by Rule H-21 is ground is a consequence
of Lemma 5.31 (Grounding).
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5.8 Contribution and Relation to Biswas’s Work

Since this chapter relies heavily on the work of Biswas [3], we should make its rela-
tion to it clear. Biswas studies a skeletal Modules language supporting uniquely-
kinded Core definable types but no Core value bindings, while we prove our
results for a full language supporting many-kinded Core definable types, Core
values and enrichment on Core value types. The clever observation that higher-
order variables may be used to interpret higher-order functor signatures is due
to Biswas. His presentation of the static semantics, especially of signature ex-
pressions, is very operational; ours is not. The underlying intuition, though not
the precise statement, of our specification of enrichment (Specification 5.12) as a
combination of polymorphic generalisation and contra-variant enrichment, is re-
constructed from his informal account. Our definition of enrichment (Definition
3.17) is simpler than his operational formulation. We justify its suitability for
subtyping by proving that it is a pre-order; he does not. Our matching algorithm
(Algorithm 5.25), unlike his, is fully deterministic and requires less book-keeping,
but it is basically a slightly optimised version of his algorithm and the credit
for the underlying ideas should lie with him. Biswas sketches a proof that his
algorithm is sound and complete. The proofs of soundness and completeness of
the algorithm presented here are my own, although the sequence of preparatory
lemmas and the definitions of ground and solvable objects owe a great debt to
the lemmas and more complicated relations presented in Biswas’s paper.

My contribution, in relation to Biswas’s work, can be summarised as a ra-
tional reconstruction of his ideas that builds on the reformulation of the static
semantics in Chapter 4, resulting in a more accessible account. Biswas’s work,
regrettably, does not seem to have had the significant impact on the wider Stand-
ard ML community that it deserves. I believe this is largely due to its difficult
presentation. I hope the work in this chapter remedies this situation.

The novel contribution of this chapter is the addition of generativity using
applicative functors, and the successful generalisation of Biswas’s ideas from a
skeletal to a full language, particularly to a language supporting many-kinded
Core definable types (e.g. the parameterised types of Core-ML). These accom-
plishments address the two important areas for future research singled out in
Biswas’s concluding remarks. In combination, these ideas can now be used to
design an acceptable, higher-order version of Standard ML’s first-order modules
language.
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Chapter 6

Separate Compilation for
Modules

In this chapter, we address the foundations for the separate compilation of Mod-
ules. One of the main criticisms of Standard ML Modules is its perceived lack
of support for separate compilation. In Section 6.1 we set the scene by briefly
describing the approach to separate compilation commonly taken in traditional
programming languages. The success of this approach relies on identifying a
suitable notion of compilation unit, where each unit can be factored into a de-
scription of the unit’s implementation, and a description of the interface that this
implementation presents to other compilation units. In Section 6.2, we review
the naive approach to separate compilation in Standard ML, that attempts to
identify compilation units with constrained module definitions, and show why it
fails. We place the blame for this failure, not on the semantics of Modules, but
on an inappropriate choice of compilation unit. In Section 6.3, we identify an
alternative notion of compilation unit, based on abstracted module definitions,
that satisfies the requirements of separate compilation. In Section 6.4 we reveal
a theoretical sense in which our solution is only partial: a module expression
may fail to admit a complete syntactic representation of its type, preventing a
programmer from fully specifying its interface using an abstraction. After ana-
lysing the problem we suggest appropriate modifications to the semantics, which
are formalised for a skeletal higher-order modules language in Section 6.5. The
adequacy of our proposal is expressed by a theorem, whose proof is sketched.
Section 6.6 concludes this chapter with a brief assessment.

6.1 Modules and Separate Compilation

Leroy gives a nice summary of modularisation and separate compilation [28]:
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“Modularisation is the process of decomposing a program in small
units (modules) that can be understood in isolation by the program-
mers, and making the relations between these units explicit to the
programmers. Separate compilation is the process of decomposing a
program in small units (compilation units) that can be typechecked
and compiled separately by the compiler, and making the relations
between these units explicit to the compiler and linker. Both pro-
cesses are required for realistic programming: modularisation makes
large programs understandable by programmers; separate compilation
makes large programs tractable by compilers.”

In the simplest separate compilation schemes, each compilation unit has a
name, a public interface and a private implementation. A unit’s interface records
the static information used to typecheck and compile references to the unit’s im-
plementation. The unit’s implementation must satisfy its interface. The unit’s
interface and the implementation may refer to antecedent units on which it de-
pends.

The approach of distinguishing between the public interface and the private
implementation of a unit has two useful properties. A unit may be implemented,
typechecked and compiled as soon as the interfaces, but not necessarily any of
the implementations, of its antecedents are available. Moreover, if a unit’s imple-
mentation changes but its interface remains fixed, none of the units depending
on it need to be re-typechecked or re-compiled.

The programming language Modula-2 [59] is a good example of a language
supporting this simple form of separate compilation. It also has a first-order
module system. Modula-2 is particularly elegant because the notion of module
coincides with the notion of compilation unit. In Modula-2, a module identi-
fier is defined by giving both its private implementation and its public interface.
Moreover, clients of a module are not allowed to assume any more about the
module than is declared in its interface. In this way, it is possible to identify
compilation unit interfaces with module interfaces, and compilation unit imple-
mentations with module implementations.

Ideally, as in Modula-2, in Standard ML the distinction between separate com-
pilation and modularisation should merely be a matter of perspective: we should
be able to identify compilation units with modules. Like Modula-2, Standard
ML’s syntax supports a form of constrained module definition in which the im-
plementation of the identifier is accompanied by an explicit signature. The im-
plementation is constrained to match the signature. Unfortunately, as observed
by Leroy [28], the approach of identifying compilation units with Standard ML’s
constrained definitions does not succeed.
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Motivated by the failure of this approach, Leroy [28] proposes an alternat-
ive Modules calculus that, while preserving most of the flavour of Standard ML
Modules, drops the distinction between syntactic and semantic objects, using
signature expressions directly to type modules. Leroy’s semantics provides good
support for separate compilation.

Leroy’s strategy for achieving separate compilation might lead one to believe
that Standard ML’s distinction between syntactic types and semantic objects
cannot support separate compilation1. The purpose of the next two sections is
to dispel this belief. We first analyse why the identification of compilation units
with constrained module definitions fails. Instead of rejecting the semantics of
Standard ML, we place the blame on an inappropriate choice of compilation unit.
We then suggest an alternative notion of compilation unit that supports separate
compilation.

Since we do not consider compilation issues in this thesis, we will only address
the primary concern of separate typechecking of compilation units.

6.2 Identifying Compilation Units with Constrained
Definitions

In Standard ML, as in Modula-2, it is possible to define a structure identifier
by giving both its implementation and a signature expression used to constrain
that implementation: the type of the implementation must match the signature.
Similarly, one can constrain a functor definition by an explicit result signature:
the type of the functor body must match this signature. In Mini-SML, the analog
of Standard ML’s syntax is obtained by adding the phrases:

structure X:S = s;b

functor F(X:S):S′ = s in b

to the syntax of structure bodies.
At first sight, this syntax seems to support separate compilation in the same

way that the syntax of Modula-2 does. Since each module is declared with a
signature that its definition must match, it is tempting to identify a constrained
definition with a compilation unit, treating the module identifier as the unit’s
name, the structure expression as its implementation and the signature as its
interface. Intuitively, any program that is written as a sequence of constrained
definitions should be “separately compilable”.

1We do not mean to imply that this is suggested by Leroy.
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Unfortunately, this approach fails: it is possible to write a “separately compil-
able” program that typechecks as a monolithic program, but contains a compila-
tion unit that fails to typecheck when relying solely on the information provided
by its antecedents’ interfaces.

The reason this approach fails is quite simple. In Modula-2, a module’s de-
clared interface completely determines its typing properties — this is why it can
be used as the interface of the corresponding compilation unit. In Standard ML,
on the other hand, the signature of a constrained definition need not fully de-
termine the typing properties of the defined module identifier. It is true that
the module’s implementation must match the signature; but the signature alone
does not determine the identifier’s interface to the rest of the program. This is
because the explicit signature is merely used to curtail the type of its implement-
ation. Consequently, the actual realisation of any type component that is merely
specified but not defined in the signature is apparent to the rest of the program.
If the correct classification of the remaining program depends on this realisa-
tion, then relying on the information in the signature alone can cause separate
typechecking to fail. Moreover, if we replace the implementation by another, then
the proviso that the replacement matches the same signature does not guarantee
that the remaining program will continue to typecheck, because it may match the
signature via a different realisation.

In Mini-SML terms, the semantics of Standard ML’s constrained definitions
are equivalent to the semantics derived from the following abbreviations:

structure X:S = s;b def= structure X = s � S;b

functor F(X:S):S′ = s in b def= functor F (X : S) = s � S′ in b

Note that, in the expansion of each abbreviation, the constraining signature cur-
tails its implementation.

It is easy to see why it is a mistake to identify compilation units with con-
strained definitions by examining the semantics of constrained definitions. Ignor-
ing the side conditions on variable capture, the derived rule for the constrained
structure definition is:

C ` s : ∃P .S
C ` S . ΛP ′.S ′
S � ϕ (S ′)
Dom(ϕ) = P ′

C[X : ϕ (S ′)] ` b : ∃P ′′.S ′′
X 6∈ Dom(S ′′)

C ` structure X:S = s;b : ∃P ∪ P ′′.(X : ϕ (S ′),S ′′)
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Observe that the type ϕ (S ′) of the structure identifier X is determined both from
the denotation ΛP ′.S ′ of the signature S and from the type ∃P .S of its actual
implementation s. This is because ϕ (S ′) incorporates the matching realisation
ϕ. By preserving this realisation, the type of X contains more information than
the signature alone. Moreover, it is this more informative type that serves as
X’s “interface” to the remaining definitions in b (notice that b is classified in the
context C[X : ϕ (S ′)]). Clearly, the static semantics of this phrase means that the
signature, on its own, does not provide adequate information for typechecking
b. For this reason, it is a mistake to consider S as the interface of X, and it
should come as no surprise that the naive identification of compilation units with
constrained definitions fails. Similar comments apply to the derived rule for a
constrained functor definition.

6.3 Identifying Compilation Units with Abstrac-
ted Definitions

The previous discussion shows that the naive identification of compilation units
with constrained definitions fails. But this does not imply that Standard ML is
incompatible with separate compilation, as long as we can identify a better notion
of compilation unit.

Contrast the curtailment rule:

C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FV(ΛP ′.S ′) = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C ` s � S : ∃P .ϕ (S ′)

that underlies the semantics of constrained definitions, with the abstraction rule:

C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FV(ΛP ′.S ′) = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C ` s \ S : ∃P ′.S ′

While the type of the curtailment s � S depends on both the type of s and the
denotation of S, the type ∃P ′.S ′ of the abstraction s \S is fully determined solely
by the signature’s denotation ΛP ′.S ′.

This observation suggests that abstractions may be used to enforce the re-
quirement needed for separate compilation, namely, that a module’s complete
typing properties are captured by an explicit signature.
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If we define abstracted definitions to be definitions of the form:

structure X = s \ S;b,

functor F (X : S) = s \ S′ in b,

then the semantics of abstraction ensures that, in each case, the type of the
module identifier is determined by its accompanying signature(s) alone. We claim
that typechecking of the remaining definitions in b can proceed independently of
the task of verifying that the implementation of the identifier is well-typed and
matches its signature.

We can justify this claim by examining the derived rules for abstracted defin-
itions. For instance, ignoring the side conditions to prevent variable capture, the
derived rule for an abstracted structure definition is:

C ` s : ∃P .S
C ` S . ΛP ′.S ′
S � ϕ (S ′)
Dom(ϕ) = P ′

C[X : S ′] ` b : ∃P ′′.S ′′
X 6∈ Dom(S ′′)

C ` structure X = s \ S;b : ∃P ′ ∪ P ′′.(X : S ′,S ′′)

Observe that, provided the signature denotes, then the classification of the entire
phrase can be split into two independent subtasks. The first task corresponds to
verifying that the implementation s matches the signature (checking C ` s : ∃P .S
and S � ϕ (S ′) with Dom(ϕ)=P ’). The second task corresponds to classifying the
remaining definitions of b (checking C[X : S ′] ` b : ∃P ′′.S ′′ and X 6∈ Dom(S ′′)).
The tasks are independent, because the parameters required to carry out each
task, namely P ′ and S ′, are determined by the signature alone. A similar division
into independent subtasks arises from the derived rule for an abstracted functor
definition.

We thus obtain a simple solution to the separate compilation problem: identify
compilation units with abstracted definitions and define a separately compilable
program to be a program that is written as a sequence of abstracted definitions.
For a program written in this style, each unit’s implementation can be typechecked
by relying solely on the signature(s) of its antecedent units. Moreover, the type
(and typability) of the program is the same, irrespective of whether we choose to
check it as a whole or to check its units separately.

Remark 6.3.1 (Compilation Units for Higher-Order Modules). Although
our discussion has focussed on first-order Modules, the proposal to identify com-
pilation units with abstracted definitions applies equally well to Higher-Order
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Modules, and for the same reasons. Indeed, it is even easier in the higher-order
case because we already have a notion of functor interface: the functor signature.
Moreover, since structure and functor definitions are subsumed by a single no-
tion of module definition, we can get away with a uniform treatment of both by
identifying compilation units with abstracted module definitions :

module X = m \ S; b.

Remark 6.3.2. Strictly speaking, Leroy’s criticism that the original version of
Standard ML [43] does not support separate compilation is valid, but only be-
cause of syntactic deficiencies of the language. This version does not support
abstractions, although they are mentioned in MacQueen’s original design [19]
and their adoption is discussed in the Commentary [42]. Furthermore, even with
their adoption, the systematic use of abstractions to achieve separate compilation
is too restrictive for practical programming. This is due to shortcomings in the
syntax of signature expressions. In this version of Standard ML, signatures cannot
specify concrete type definitions. This has the unfortunate consequence of forcing
the programmer to hide the definitions of all type components of an abstracted
structure. Type sharing constraints alleviate this restriction somewhat but not
in a fully general manner. These problems disappear in the revision of Standard
ML [44]. It supports abstractions and the syntax of signature expressions has
been changed to include type definitions.

6.4 A Lingering Problem: The Lack of Syntactic
Interfaces

In the previous section, we identified a programming style that supports separate
compilation. As long as the programmer adheres to this style, she can separately
type-check (and compile) the components of her program. The style is flexible
enough for practical programming, because the syntax of signatures provides fine
control over the abstraction of individual type components.

There remains, however, a sense in which this approach is unsatisfactory and
offers only a partial solution. As we will soon see, in Mini-SML (and, by ex-
tension, Standard ML), it is not always possible to fully specify the type of a
structure expression using a signature. Consequently, it is possible to write a
program consisting of a sequence of ordinary module definitions that typechecks,
but which cannot be re-written as a sequence of compilation units by surrounding
each module’s implementation with an abstraction. In theory, this can prevent a
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Figure 6.1 A structure with an inexpressible type because of an eclipsed identi-
fier.

structure X = (struct type t = int end
\ sig type t : 0 end);

structure Y = (struct local A = X in
structure X = (struct type u = bool end

\ sig type u : 0 end);
type v = A.t→ X.u

end
\ sig structure X : sig type u : 0 end;

type v = ? → X.u
end)

programmer from decomposing a monolithic program into a sequence of separate
compilation units that still typecheck.

From a practical, software engineering perspective, this is a minor flaw: the
primary motivation for identifying a notion of compilation unit is to support the
incremental construction of programs (not the inverse process). Nevertheless, it
is worth pointing out why the problem arises. In the remainder of this chapter,
we illustrate the problem and propose modifications to the semantics that make
it disappear. The main point of this work is not to suggest that these modifica-
tions are urgently required, but merely to clarify exactly how far the semantics
is from enjoying the property that every module expression admits a syntactic
representation of its type.

6.4.1 Eclipsed Identifiers

In Mini-SML, as in Standard ML, it is possible to redeclare an identifier which
is already declared in the current context. This is useful, as it allows the same
component name to be re-used within substructures and subsignatures. The
meaning of an identifier is resolved by static scoping: each occurrence of an
identifier refers to its textually most recent declaration.

Unfortunately, this simple scheme has a flaw: it prevents a programmer from
referring to two distinct declarations of the same identifier in situations where it
is necessary to do so: any earlier declaration is eclipsed by the shadow of the most
recent declaration. In turn, this can prevent the programmer from expressing the
full type of a module using a signature.

Example 6.4.1. To see why, consider the (contrived) example in Figure 6.1. The
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Figure 6.2 Another structure with an inexpressible type because of an eclipsed
identifier.

structure X = (struct type t = int end
\ sig type t : 0 end);

functor F (A : sig type t : 0 end) =
struct structure X = (struct type u = bool end

\ sig type u : 0 end);
type v = A.t→ X.u

end
in
structure Y = (F X) \ (sig structure X : sig type u : 0 end;

type v = ? → X.u
end)

structure expression in the definition of Y has a type, but it is impossible to give
a signature expression that fully specifies this type. To specify Y’s type we need
to be able to complete the specification of its type component v by filling in the
? . Unfortunately, we are prevented from doing this because the domain and

range of v’s definition are types that cannot be specified in a common context.
The domain of v can only be specified as X.t in a context where the outermost
definition of X is in scope. The range of v can only be specified as X.u in a
context where the inner specification of X is in scope. Since the definition and
specification of X both declare the same identifier, one must eclipse the other
and they cannot be in scope at the same time. Because the actual definition of
its v-component cannot be specified, the type of Y cannot be fully captured by
a signature.

The example in Figure 6.2, that uses a functor definition instead of a local
definition, demonstrates the same flaw, indicating that the cause does not lie with
allowing local definitions.

This problem with eclipsed identifiers has been noted before by Harper and
Lillibridge [18]. They suggest a solution to this problem that relies on distin-
guishing between external and internal component identifiers. This solution is
satisfactory, but it requires the programmer to maintain two name-spaces, which
can be inconvenient.

We will sketch another solution, that relies on distinguishing declarations by
their binding depth. Observe that the example above is problematic only be-
cause the syntax of Mini-SML does not allow us to distinguish between different
declarations of the same identifier, in this case the structure identifier X. Every
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Figure 6.3 The signature of Y using indexed identifiers.

sig structure X : sig type u : 0 end;
type v = X1.t→ X.u

end

reference to an identifier is resolved by static scoping. In the semantics, this be-
haviour is ensured by defining contexts as finite maps. Extending a context by a
new declaration overrides any previous declaration of that identifier.

Our alternative solution relies on defining contexts, not as finite-maps, but as
lists of declarations. New declarations are added to the head of the list, without
forgetting the effect of previous declarations. In this way, all declarations are
preserved in the inverse order in which they were added.

To provide access to all declarations in the context, each reference to an iden-
tifier must now be accompanied by an index indicating the depth of the intended
declaration. The depth is understood to be relative to the depth of other declar-
ations of the same identifier, counting from the head of the context. Intuitively,
the reference in, where i is an identifier and n ≥ 0 is an index, references the n-
th-most recent declaration of i in the current context. For convenience, we adopt
the convention that the reference i, lacking an index, is an abbreviation for i0,
i.e. the most recent declaration of i. We will formalise this mechanism in Section
6.5.

Example 6.4.2. The signature in Figure 6.3 exploits an indexed reference to fully
specify the problematic type of the structure expression Y in Figure 6.1.

Our technique is essentially a combination of named identifiers and de Bruijn
[17] indices. Although terms written in pure de Bruijn notation are notoriously
difficult for humans to read, our scheme seems more acceptable in realistic pro-
gramming situations. First, we need only use an index when we need to refer
to an eclipsed identifier (this rarely occurs in practice and can easily be avoided
by disciplined programming). Second, the counting scheme is relative to identifi-
ers of the same name: hence indices, when they need to be used, are small and
manageable.

6.4.2 Anonymous Abstract Types

There is another, more problematic phenomenon that can prevent a structure
expression s from admitting a complete specification of its type as a signature S.
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Figure 6.4 A structure with an anonymous abstract type.

structure X =
((struct type t = int;

type u = int→ int
end
\ sig type t : 0;

type u = int→ t
end)

� sig type u : 0
end)

Figure 6.5 Another structure with an anonymous abstract type.

functor F (A : sig type u : 0 end) = A
in
structure X = F (struct type t = int;

type u = int→ int
end
\ sig type t : 0;

type u = int→ t
end)

It is possible for the type ∃P .S of the structure expression to contain an exist-
entially quantified variable α ∈ P , i.e. an abstract type, that is anonymous, in
the sense that α does not occur as the denotation of a type component within
the semantic object S. For the signature S to completely specify the type of the
structure s, there must be a one-to-one correspondence between the parameters
P ′ of the signature’s denotation ΛP ′.S ′ and the abstract types P that are exist-
entially quantified in the structure’s type ∃P .S. The problem is that a signature
parameter can never be anonymous. So if the type ∃P .S quantifies an anonymous
abstract type, no such correspondence can exist.

Example 6.4.3. Consider the definition of the structure X in Figure 6.4. It is
well-typed, but its type contains an anonymous abstract type.

The type of the innermost structure expression is:

∃∅.(t = int,u = int→ int).
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The type of the inner abstraction that hides the implementation of all occur-
rences of t is:

∃{α}.(t = α,u = int→ α).

Finally, the type of the curtailment that forgets the type component t, yet
preserves the implementation of u, is:

∃{α}.(u = int→ α).

Notice that the abstract type α is anonymous.

Unfortunately, there is no signature expression that, when used as an abstrac-
tion, fully specifies the type of X’s implementation. To see why, suppose, to the
contrary, that S is such a signature expression. Inverting the abstraction rule, it
must be that case that S denotes the semantic signature:

Λ{α}.(u = int→ α).

This signature is not solvable in the sense of Definition 4.2 (Chapter 4), precisely
because the type parameter α is anonymous in (u = int→ α). This contradicts
Lemma 4.3 (Solvability), that states that the denotation of a signature must be
solvable. It follows that S cannot exist.

The example in Figure 6.5, that uses functor application instead of curtail-
ment, demonstrates the same flaw, indicating that anonymous abstract types do
not only arise from curtailment phrases.

This raises a natural question: can we modify the semantics in such a way
that every module expression admits a signature specifying its type? The ob-
servation that the existential quantification in module types cannot be captured
by the restricted form of type parameterisation afforded by signature expressions
suggests two ways to proceed.

The first is to generalise signature expressions to provide a finer degree of
control of type parameterisation: unfortunately, it is not clear how to do this in a
manner that preserves the fundamental properties ensured by solvable signatures:
the decidability and existence of unique solutions to signature matching problems.

A more radical proposal is to abandon the use of existential quantification
altogether. Observe that the only construct that introduces existential types
is the abstraction s \ S. Deleting the phrase from the language allows us to
simplify the static semantics dramatically. Structure expressions can be classified
by simple semantic structures (as opposed to existential structures). Moreover,
the classification rules no longer have to implicitly eliminate and re-introduce
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existential quantifiers when determining the classification of a phrase from the
classification of its subphrases.

The loss of the abstraction phrase is lamentable. Without it, there is no way
to isolate a structure from its program context. In Section 5.2.2, we discussed how
abstractions permit the programmer to change the realisation of type components
within a structure, without this change affecting the typability of the surrounding
program.

Fortunately, it is possible to formulate a weaker form of abstraction without
resorting to existential quantification. Intuitively, the idea is to strike a com-
promise between the semantics of constrained and abstracted module definitions.
We retain the syntax of constrained definitions but suggest a different semantics:

C ` s : S
C ` S . ΛP .S ′
S � ϕ (S ′)
Dom(ϕ) = P
P ∩ FV(C) = ∅
C[X : S ′] ` b : S ′′
X 6∈ Dom(S ′′)

C ` structure X:S = s;b : X : ϕ (S ′), ϕ (S ′′)

The novelty of this rule lies in the treatment of the signature constraint. The
variables P of the signature are treated as parameters during the classification
of b. Thus their actual realisation, ϕ, cannot affecting the typability of b. This
allows X’s actual implementation s to change, provided it continues to match the
signature. The realisation is not abstracted, however. Instead, it is applied to
the result type X : ϕ (S ′), ϕ (S ′′). This final step of discharging the parameters
manages to avoid the introduction of existential quantification over P .

Notice that the signature S fully determines X’s interface to the remaining
definitions in b, providing good support for separate compilation. However, any
change in realisation will be reflected in the type of the complete phrase, even
though it cannot affect the typability of the remaining definitions. In short, the
realisation of the module is locally abstract, but globally transparent. Indeed, the
semantics of the phrase module X : S = s;b is very similar to the semantics of
the functor application (functor(X′ : S)struct module X = X′; b end) s, except
that the former is a structure body, while the latter is structure expression.

The advantage of this semantics is the following. If such a definition occurs
at the top-level of a program, then it may be treated as a compilation unit,
without relying on existential types. The disadvantage of this semantics is that
if the definition occurs, not at the top-level, but deeper within the program, then
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any change in its realisation may affect the program’s typability. In summary,
the phrase provides a weak form of abstraction that is adequate for separate
compilation, but cannot replace the role of arbitrary abstractions.

6.5 A Module Language with Syntactic Repres-
entations of Types

The aim of this section is to sketch a modules language that, by adopting the
changes discussed in Sections 6.4.1 and 6.4.2, namely the introduction of indexed
identifiers to prevent eclipsing, and the removal of abstractions to rule out an-
onymous abstract types, enjoys the following, informal property:

Property 6.1 (Representation). Every well-typed module expression admits a
signature that fully specifies its type.

Since Higher-Order Modules is already equipped with a notion of functor
signature, and has a uniform treatment of structures and functors, it is easier
to design our language as a variant of Higher-Order Modules. However, for the
results in this section, the sheer size of a full Modules and Core language begins
to get in the way of feasible pencil and paper proof. To simplify the argument, we
will eliminate the Core by considering a skeletal Modules language with a fixed
grammar of definable types and no value definitions or specifications. A further
simplification is to restrict our attention to a language with a single kind (?) of
(non-parameterised) definable types.

Figure 6.6 defines the grammar of our language. Most of its phrases should
be familiar from the full definition of Higher-Order Modules. Note that type and
module declarations are referenced by indexed identifiers, as motivated in Section
6.4.1. The abstraction phrase m\S has been removed in favour of the constrained
definition module X : S = m;b. This is the higher-order version of the phrase
proposed in Section 6.4.2.

The semantic objects of our language are defined in Figure 6.7. They are
derived from the semantic objects of Higher-Order Modules, with the following
modifications. The set of Core kinds has been replaced by a single base kind ?

classifying definable types. Semantic structures and contexts no longer declare
value components. The removal of the abstraction phrase means that existentially
quantified types are no longer needed. Finally, instead of being finite maps,
contexts are defined inductively as lists of declarations to support the use of
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Figure 6.6 Grammar

TypId def= {t,u, . . . } type identifiers
ModId def= {X,Y,F,G, . . . } module identifiers

d ::= tn indexed type identifier
| m.t type projection
| d→ d function space

B ::= type t = d; B type definition
| type t;B type specification
| module X : S; B module specification
| εB empty body

S ::= sig B end structure signature
| funsig(X:S)S′ functor signature

b ::= type t = d; b type definition
| module X = m; b module definition
| module X : S = m;b constrained module definition
| local X = m in b local module definition
| εb empty body

m ::= Xn indexed module identifier
| m.X submodule projection
| struct b end structure
| functor(X : S)m functor
| m m′ functor application
| m � S signature curtailment
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Figure 6.7 Semantic Objects
κ ∈ Kind ::= ? base kind

| κ→ κ′ function space
ακ ∈ TypVarκ def= {ακ, βκ, δκ, γκ, . . . } type variables
α ∈ TypVar def=

⊎
κ∈Kind TypVarκ

P ,Q , . . . ∈ TypVarSet def= Fin(TypVar ) sets of type variables

d ∈ DefTyp ::= ν? type name
| d → d ′ function space

νκ ∈ TypNamκ ::= ακ type variable
| νκ

′→κ τκ
′ application

τκ ∈ Typκ ::= d definable type
(provided κ ≡ ?)

| Λακ′ .τκ′′ type abstraction
(provided κ ≡ κ′ → κ′′)

| νκ type name

τ ∈ Typ def=
⊎
κ∈Kind Typκ

S ∈ Str ::= t = τ ?,S type component
(provided t 6∈ Dom(S),

| X :M,S module component
(provided X 6∈ Dom(S))

| εS empty structure

F ∈ Fun ::= ∀P .M→M′ functor

M∈ Mod ::= S structure
| F functor

L ∈ Sig ::= ΛP .M signature

C ∈ Context ::= C[t = τ ?] type declaration
| C[X :M] module declaration
| εC empty context

230



indexed identifiers. For readability, contexts are defined to extend to the right2,
so that the head of a context is its rightmost declaration, and its tail the context
preceding that declaration.

The definition of the enrichment relations, � , between structures, functors
and modules is as for Higher-Order Modules (Definition 5.14), except that the
premise concerning value components is deleted from the rule relating structures
(Rule ( � -1)).

The definition of the operation η̂( ), converting a type of kind ? into an equi-
valent definable type, degenerates to:

η̂( ) ∈ Typ? → DefTyp

η̂(ν ) def= ν

η̂(d ) def= d .

We can now present the judgements and rules of the static semantics. The
rules defining the denotation of definable types are straightforward. The only
novelty lies in Rules (1)-(4) that formalise the retrieval of the nth-most recent
declaration of a type identifier. The denotation judgements for signature expres-
sions and bodies are essentially unchanged. The classification rules for structure
bodies and expressions are degenerate instances of the corresponding rules in
Higher-Order Modules. Since the abstraction phrase has been removed, we can
classify module expression by module typesM∈ Mod instead of existential mod-
ule types ∃P .M. This simplifies the rules considerably because they no longer
need to perform any implicit elimination and introduction of existential quantifi-
ers. Rules (18)-(21) formalise the retrieval of the nth-most recent declaration of
a module identifier; their definition is analogous to Rules (1)-(4).

Definable Types C ` d . d

C[t = τ ] ` t0 . η̂(τ ) (1)

C ` tn . d
C[t = τ ] ` tn+1 . d (2)

C ` tn . d t 6= t′

C[t′ = τ ] ` tn . d (3)

2This goes against the usual convention that lists extend to the left, but this is just a matter
of syntax.
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C ` tn . d
C[X :M] ` tn . d (4)

C ` m : S t ∈ Dom(S) S(t) = τ

C ` m.t . η̂(τ ) (5)

C ` d . d C ` d′ . d ′
C ` d→ d′ . d → d ′ (6)

Signature Bodies C ` B . L

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` B . ΛP .S t 6∈ Dom(S)
C ` type t = d; B . ΛP .t = d ,S (7)

C[t = α?] ` B . ΛP .S α? 6∈ FV(C) ∪ P t 6∈ Dom(S)
C ` type t;B . Λ{α?} ∪ P .t = α?,S (8)

C ` S . ΛP .M
C[X :M] ` B . ΛQ .S P ∩ FV(C) = ∅
Q ∩ (P ∪ FV(M)) = ∅ X 6∈ Dom(S)
C `module X : S; B . ΛP ∪Q .X :M,S (9)

C ` εB . Λ∅.εS (10)

Signature Expressions C ` S . L

C ` B . L
C ` sig B end . L (11)

C ` S . ΛP .M
P ∩ FV(C) = ∅ P = {ακ0

0 , . . . , α
κn−1
n−1 }

C[X :M] ` S′ . ΛQ .M′

Q ′ ∩ (P ∪ FV(M) ∪ FV(ΛQ .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}
C ` funsig(X:S)S′ . ΛQ ′.∀P .M→ [Q ′/Q ] (M′) (12)
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Structure Bodies C ` b : S

C ` d . d C[t = d ] ` b : S t 6∈ Dom(S)
C ` type t = d; b : t = d ,S (13)

C ` m :M C[X :M] ` b : S X 6∈ Dom(S)
C ` module X = m; b : X :M,S (14)

C ` m :M
C ` S . ΛP .M′ M� ϕ (M′)
Dom(ϕ) = P P ∩ FV(C) = ∅
C[X :M′] ` b : S X 6∈ Dom(S)

C `module X : S = m;b : (X : ϕ (M′), ϕ (S)) (15)

C ` m :M C[X :M] ` b : S
C ` local X = m in b : S (16)

C ` εb : εS (17)

Module Expressions C ` m :M

C[X :M] ` X0 :M (18)

C ` Xn :M
C[X :M′] ` Xn+1 :M (19)

C ` Xn :M X 6= X′

C[X′ :M′] ` Xn :M (20)

C ` Xn :M
C[t = τ ] ` Xn :M (21)

C ` m : S X ∈ Dom(S) S(X) =M
C ` m.X :M (22)

C ` b :M
C ` struct b end :M (23)

C ` S . ΛP .M P ∩ FV(C) = ∅ C[X :M] ` m :M′

C ` functor(X : S)m : ∀P .M→M′ (24)

C ` m : ∀Q .M′ →M C ` m′ :M′′ M′′ � ϕ (M′) Dom(ϕ) = Q
C ` m m′ : ϕ (M)

(25)

C ` m :M′ C ` S . ΛP .M M′ � ϕ (M) Dom(ϕ) = P
C ` m � S : ϕ (M) (26)
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6.5.1 A Strategy to Establish the Representation Prop-
erty

We can express the representation property more formally as the following re-
quirement: if C ` m :M then there is some signature S such that C ` S . Λ∅.M.
Insisting on an empty set of parameters in the denotation of S ensures that S is
a complete specification of the type of m. From now on, we shall refer to such a
signature as a representation of M.

Unfortunately, we cannot simply recover a representation by defining an in-
ductive translation of the semantic object. Semantic objects arise by erasing the
dependency of type phrases on module terms. Thus, given a arbitrary semantic
object, it is typically impossible to infer the module terms that produced it.

Instead, we will need to use a more refined strategy that constructs a repres-
entation by induction on the derivation of C ` m :M. The idea is to increment-
ally construct the representation of M from both the subphrases of m and the
representations obtained for their types.

For example, in the case of a well-typed application m m′, if m’s type has the
representation funsig(X:S)S′, then the type of the application may be represented
by the derived signature [m′/X]S′, obtained by substituting the actual argument
in the functor signature’s range. Of course, this means that we will need to define
a notion of substitution on phrases.

In the case of a projection m.X, a representation can be obtained by projecting
the corresponding subsignature from the representation of m’s type. This requires
care, because X’s specification may depend on components specified earlier in the
enclosing signature.

In the case of an identifier occurrence Xn, we will need to construct a rep-
resentation from the signature used to introduce that identifier. To prove that
the representation property holds, we will therefore need to maintain the in-
variant that every module identifier in the context admits a signature denot-
ing its type. If X occurs in a phrase of the form functor(X : S). . .X . . . or
module X : S = m;. . .X . . . then the signature S introducing X into the
context may not itself be a representation, because its denotation may contain
a non-empty set of parameters. Fortunately, we can define an operation that
strengthens the original signature to yield a representation of X’s type in the
context of its declaration.
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6.5.2 Syntactic Operations on Phrases

In this section, we define the syntactic operations needed to establish the repres-
entation property.

The first operation we will need is a notion of substituting a module expression
for a module identifier, and a definable type for a type identifier. This is the
technical motivation for introducing de Bruijn indexed identifiers. The indices
allow us to define substitution in a way that avoids the capture of free identifiers.

The definition of substitution relies on an auxiliary operation on phrases,
called lifting. Its definition is derived from the standard definition of lifting used
to implement substitution for pure de Bruijn terms. Lifting is a ternary operation,
written p ↑nX. Lifting modifies the phrase p to avoid the capture of any free
occurrences of the module identifier X. It is used when substituting p into the
scope of a new declaration of X. Intuitively, lifting increments the free occurrences
of X within p to refer past one extra declaration of X. The additional argument
n is just a counter of the number of declarations of X enclosing p. The counter
keeps track of which occurrences of X are free, and which are bound. Thus, when
we encounter the phrase Xi, if i ≥ n, the occurrence is free and lifted to Xi+1;
otherwise, the occurrence is bound by one of the n enclosing declarations of X
and is left unchanged. The operation p ↑nt for lifting a type identifier is analogous.

Definition 6.2 (Lifting). We will only show a few cases of the definition. The
others are similar.

Lifting of module identifiers is defined as:

X′i ↑nX
def=

{
Xi+1 if X = X′ and i ≥ n

X′i otherwise.

(m.X′) ↑nX
def= (m ↑nX).X′

...

(functor(X′ : S)m) ↑nX
def=

{
functor(X′ : (S ↑nX))(m ↑nX) if X 6= X′

functor(X′ : (S ↑nX))(m ↑(n+1)
X ) if X = X′

...

(type t = d; b) ↑nX
def= type t = (d ↑nX); (b ↑nX)
...
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Lifting of type identifiers is analogous:

t′i ↑nt
def=

{
ti+1 if t = t′ and i ≥ n
t′i otherwise.

(m.t′) ↑nt
def= (m ↑nt ).t′

...

(functor(X : S)m) ↑nt
def= functor(X : (S ↑nt ))(m ↑nt )
...

(type t′ = d; b) ↑nt
def=

{
type t′ = (d ↑nt ); (b ↑nt ) if t 6= t′

type t = (d ↑nt ); (b ↑(n+1)
t ) if t = t′

...

We can now define substitution. Our definition is derived from the standard
one for pure de Bruijn terms. The operation [m/Xn]p substitutes the module
expression m for any free occurrences of Xn within the phrase p, adjusting the
indices on other free occurrences of X accordingly. Intuitively, when we encounter
the phrase Xi we get one of the following cases: if i = n then the substitution
takes place; if i > n then this is a free occurrence and must be adjusted to the free
occurrence Xi−1 (since the substitution eliminates one declaration of X); otherwise
i < n and this is a bound occurrence that remains unchanged. Note that if p is a
declaration binding an identifier, then we need to prevent the capture of any free
occurrences of that identifier in m. This is achieved by lifting references to that
identifier in m, before substituting in the scope of the declaration. If the bound
identifier happens to be X itself, then we also need to ensure that the substitution
does not affect occurrences bound by this declaration of X. This is achieved by
incrementing the index n of the substitution before descending into the scope of
the declaration.

Definition 6.3 (Substitution). We will only show a few cases of the definition.
The others are similar.

The substitution of a module expression for a module identifier is defined as
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follows:

[m/Xn]X′i def=


m if X = X′ and i = n
Xi−1 if X = X′ and i > n

X′i otherwise.

[m/Xn](m′.X′) def= ([m/Xn]m′).X′

...

[m/Xn](functor(X′ : S)m′) def=



functor(X′ : ([m/Xn]S))([(m ↑0
X′)/Xn]m′)

if X 6= X′

functor(X′ : ([m/Xn]S))([(m ↑0
X′)/X

(n+1)]m′)
if X = X′

...

[m/Xn](type t = d; b) def= type t = ([m/Xn]d); ([(m ↑0
t)/X

n]b)
...

The substitution of a definable type for a type identifier is analogous:

[d/tn]t′i def=


d if t = t′ and i = n
ti−1 if t = t′ and i > n

t′i otherwise.

[d/tn](m.t′) def= ([d/tn]m).t′

...

[d/tn](functor(X : S)m) def= functor(X : ([d/tn]S))([(d ↑0
X)/tn]m)

...

[d/tn](type t′ = d′; b) def=



type t′ = ([d/tn]d′); ([(d ↑0
t′)/tn]b)

if t 6= t′

type t′ = ([d/tn]d′); ([(d ↑0
t′)/t

(n+1)]b)
if t = t′

...

To motivate the definitions that follow, it is convenient to introduce some
additional terminology. Let’s define a signature expression to be semantically
complete if, and only if, it denotes a semantic signature with an empty set of
parameters. Note that a representation must always be semantically complete.
Similarly, let’s define a signature to be syntactically complete if, and only if, either
it is a structure signature with a body that contains no type specifications of the
form type t and only contains module specifications with syntactically complete
signatures; or, it is a functor signature with a syntactically complete range. It is
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easy to verify that a signature expression can only be semantically complete if it
is syntactically complete.

To establish the representation property, we will need to construct a syn-
tactically complete signature for each module expression in order to obtain a
representation of its type.

If the module expression is a projection m.X that is well-typed, then the
representation of m’s type must be a syntactically complete structure signature
sig B end. Our method is to obtain a representation for m.X’s type from the
corresponding subsignature of B. Intuitively, the projection operation B ↓m

X ,
defined below, constructs a representation for the type of m.X from both m and
its representation’s body B. Note that we cannot merely extract the subsignature
of X since it may contain occurrences of identifiers specified previously in the body.
To prevent the introduction of dangling references, we substitute any occurrence
of a previously specified type identifier by its definition, and any occurrence of
a previously specified module component by the corresponding component of m.
This is why the projection operation needs to take a module expression as an
argument.

Definition 6.4 (Projection). Projection is defined as the following partial op-
eration on signature bodies:

(type t;B) ↓m
X

def= undefined

(type t = d; B) ↓m
X

def= [d/t0](B ↓(m↑0t )
X )

(module X′ : S; B) ↓m
X

def=


S if X = X′

[(m.X′)/X′0](B ↓(m↑0
X′)

X )
if X 6= X′

εB ↓m
X

def= undefined

Note that if the signature sig B end is syntactically complete and B contains a
specification of X, then the result of B ↓m

X is well-defined.

The final cases we need to deal with are when the module expression is an
occurrence, say X0, of an identifier declared as a functor argument functor(X :
S). . .X0 . . . or as a constrained definition module X : S = m′;. . .X0 . . ., or
the module expression is a curtailment m � S. In each case, we would like to
use the signature S as a representation but cannot because it may be syntactic-
ally incomplete. Our method of obtaining a representation is to complete the
signature. This is the purpose of the strengthening operation, defined below.
Strengthening the signature S by a matching module m, written S\m, converts
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every type specification of S into a definitional type specification derived from
m, yielding a syntactically complete signature. In this way, the strengthened
signature (S ↑0

X)\X0 may be used as a representation of X0’s type; similarly, the
strengthened signature S\m may be used as a representation of m � S’s type.

Definition 6.5 (Strengthening). The strengthening operation is defined as
follows.

(type t = d; B)\m def= type t = d; (B\(m ↑0
t ))

(type t;B)\m def= type t = m.t; (B\(m ↑0
t ))

(module X : S; B)\m def= module X : (S\m.X); (B\(m ↑0
X))

εB\m def= εB

(sig B end)\m def= sig (B\m) end

(funsig(X:S)S′)\m def= funsig(X:S)(S′\((m ↑0
X) X0))

Remark 6.5.1. The definitions of projection and strengthening are generalisations
of similar operations originally proposed by Leroy [29, 28]. In Leroy’s formulation,
the operations’ module argument is a path. Courant [14] also exploits generalised
operations.

6.5.3 Properties

The proof of the representation property relies on the following lemmas, which
we state without further proof.

The denotation of a signature is closed under realisation:

Lemma 6.6 (Closure under Realisation).

If C ` B . L, then ϕ (C) ` B . ϕ (L).
If C ` S . L, then ϕ (C) ` S . ϕ (L).

The denotation of a signature is preserved by enrichment of the context:

Lemma 6.7 (Enrichment).

If C[X :M] ` S . L and M′ �M then C[X :M′] ` S . L.

The denotation of a signature can be preserved by lifting the signature past
an additional declaration in the context:

Lemma 6.8 (Weakening).

If C ` S . L then C[X :M] ` S ↑0
X . L and C[t = τ ] ` S ↑0

t . L.
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Figure 6.8 The definition of representable contexts.

` C Rep

` εC Rep (R-1)

` C Rep C ` d . d
` C[t = d ] Rep (R-2)

` C Rep C ` S . ΛP .M
` C[X :M] Rep (R-3)

The denotation of a signature or signature body is preserved by discharging
a declaration with a module expression of the appropriate type:

Lemma 6.9 (Substitution). Provided C ` m :M:

• C[X :M] ` S . L implies C ` [m/X0]S . L.

• C[X :M] ` B . L implies C ` [m/X0]B . L.

The denotation of a projected signature is the same as the corresponding
component of the body’s denotation, provided the module expression used in the
projection has the type of the enclosing body:

Lemma 6.10 (Projection).

If C ` B . Λ∅.S, C ` m : S and X ∈ Dom(S) then the projection B ↓m
X is

well-defined and C ` B ↓m
X . Λ∅.S(X).

Finally, strengthening a signature by a matching module yields the corres-
ponding realisation of the signature’s denotation:

Lemma 6.11 (Strengthening).

If C ` S . ΛP .M, C ` m : M′, M′ � ϕ (M), and Dom(ϕ) = P then
C ` S\m . Λ∅.ϕ (M).

The proof of the representation property relies on maintaining the following
predicate on contexts as an invariant:

Definition 6.12 (Representable Contexts). The predicate ` C Rep, read
“C is representable”, is defined as the least relation closed under the rules in
Figure 6.8.
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Intuitively, a context is representable if, and only if, every semantic object
in its range arises as the denotation of some type phrase, where the denotation
is derived from the preceding assumptions in the context. Note that the meta-
variables d, S and P of Rules (R-2) and (R-3) are existentially quantified, since
they occur in the premises, but not the conclusions, of the rules. If a context
is representable, then every occurrence of a module identifier declared in that
context can be given a syntactic representation of its type by taking the original
signature expression, lifting it past the subsequent declarations in the context
and then strengthening the resulting signature by the occurrence itself.

We can now state the main theorem of this Chapter:

Theorem 6.13 (Representation). Provided ` C Rep, if C ` m : M then
there is some signature expression S such that C ` S . Λ∅.M.

Proof (Representation). We use strong induction on the rules defining the
classification judgements to prove the statements:

C ` b : S ⊃ ` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.S,

C ` m :M⊃ ` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M.

Here are the cases:

13 By strong induction we can assume the original premises:

C ` d . d , (1)

C[t = d ] ` b : S, (2)

t 6∈ Dom(S) (3)

as well as the induction hypothesis:

` C[t = d ] Rep ⊃ ∃B̄.C[t = d ] ` B̄ . Λ∅.S. (4)

We need to show:

` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.t = d ,S.
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Assume:

` C Rep. (5)

From (5) and premise (1) if follows that:

` C[t = d ] Rep. (6)

By induction hypothesis (4) on (6), we obtain a signature body B such that:

C[t = d ] ` B . Λ∅.S. (7)

Applying Rule (7) to (1), (7) and (3) we can derive:

C ` type t = d; B . Λ∅.t = d ,S. (8)

Choosing B̄ ≡ type t = d; B gives the desired result.

14 By strong induction we can assume the original premises:

C ` m :M, (1)

C[X :M] ` b : S, (2)

X 6∈ Dom(S) (3)

as well as the induction hypotheses:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M, (4)

` C[X :M] Rep ⊃ ∃B̄.C[X :M] ` B̄ . Λ∅.S. (5)

We need to show:

` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.X :M,S.

Assume:

` C Rep. (6)
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By induction hypothesis (4) on (6), we obtain a signature expression S such
that:

C ` S . Λ∅.M. (7)

From (6) and (7) if follows that:

` C[X :M] Rep. (8)

By induction hypothesis (5) on (8), we obtain a signature body B such that:

C[X :M] ` B . Λ∅.S. (9)

Applying Rule (9) to (7), (9) and (3) we can derive:

C ` module X : S; B . Λ∅.X :M,S. (10)

Choosing B̄ ≡ module X : S; B gives the desired result.

15 By strong induction we can assume the original premises:

C ` m :M, (1)

C ` S . ΛP .M′, (2)

M� ϕ (M′), (3)

Dom(ϕ) = P , (4)

P ∩ FV(C) = ∅, (5)

C[X :M′] ` b : S, (6)

X 6∈ Dom(S) (7)

as well as the induction hypotheses:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M, (8)

243



` C[X :M′] Rep ⊃ ∃B̄.C[X :M′] ` B̄ . Λ∅.S. (9)

We need to show:

` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.(X : ϕ (M′), ϕ (S)).

Assume:

` C Rep. (10)

By Lemma 6.11 (Strengthening) on (2), (1), (3) and (4) we have:

C ` S\m . Λ∅.ϕ (M′). (11)

From (10) and (2) it is easy to show that:

` C[X :M′] Rep. (12)

By induction hypothesis (9) on (12), we obtain a signature body B such
that:

C[X :M′] ` B . Λ∅.S. (13)

By Lemma 6.6 (Closure under Realisation) on ϕ and (13) we obtain:

ϕ (C[X :M′]) ` B . ϕ (Λ∅.S). (14)

By (4) and (5), (14) may be expressed as:

C[X : ϕ (M′)] ` B . Λ∅.ϕ (S). (15)

Applying Rule (9) to (11), (15) and (7) we can derive:

C `module X : S\m; B . Λ∅.X : ϕ (M), ϕ (S). (16)

Choosing B̄ ≡module X : S\m; B gives the desired result.

16 By strong induction we can assume the original premises:

C ` m :M, (1)
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C[X :M] ` b : S, (2)

as well as the induction hypotheses:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M, (3)

` C[X :M] Rep ⊃ ∃B̄.C[X :M] ` B̄ . Λ∅.S. (4)

We need to show:

` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.S.

Assume:

` C Rep. (5)

By induction hypothesis (3) on (5), we obtain a signature expression S such
that:

C ` S . Λ∅.M. (6)

From (5) and (6) if follows that:

` C[X :M] Rep. (7)

By induction hypothesis (4) on (7), we obtain a signature body B such that:

C[X :M] ` B . Λ∅.S. (8)

Using Lemma 6.9 (Substitution) on (1) and (8), we can substitute m′ for X
to obtain:

C ` [m′/X0]B . Λ∅.S. (9)

Choosing B̄ ≡ [m′/X0]B gives the desired result.

17 Trivial.
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18 We need to show:

` C[X :M] Rep ⊃ ∃S̄.C[X :M] ` S̄ . Λ∅.M

Assume:

` C[X :M] Rep. (1)

Inverting (1) there must be some signature S and set of variables P such
that:

C ` S . ΛP .M. (2)

By Lemma 6.8 (Weakening) on (2) extended with the declaration of X we
have:

C[X :M] ` S ↑0
X . ΛP .M. (3)

By Rule (18) on (3) we can derive:

C[X :M] ` X0 :M. (4)

Let ϕ be the identity realisation with:

Dom(ϕ) = P . (5)

From reflexivity of � it follows that:

M� ϕ (M). (6)

By Lemma 6.11 (Strengthening) on (3), (4) and (6) and (5) we obtain:

C[X :M] ` (S ↑0
X)\X0 . Λ∅.ϕ (M).

Since ϕ is the identity, this is equivalent to:

C[X :M] ` (S ↑0
X)\X0 . Λ∅.M. (7)

Choosing S̄ ≡ (S ↑0
X)\X0 gives the desired result.
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19 By strong induction we can assume the original premise:

C ` Xn :M, (1)

as well as the induction hypothesis:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M (2)

We need to show:

` C[X :M′] Rep ⊃ ∃S̄.C[X :M′] ` S̄ . Λ∅.M.

Assume

` C[X :M′] Rep. (3)

Inverting (3) we must have:

` C Rep. (4)

By induction hypothesis (2) on (4) we obtain a signature S such that:

C ` S . Λ∅.M. (5)

By Lemma 6.8 (Weakening) on (5) extended with the declaration of X we
obtain:

C[X :M] ` S ↑0
X . Λ∅.M. (6)

Choosing S̄ ≡ S ↑0
X gives the desired result.

20 Similar to case 19 , except that we weaken by the declaration of a distinct
module identifier, lifting references to this module identifier.

21 Similar to case 19 , except that we weaken by the declaration of a type
identifier, lifting references to this type identifier.

22 By strong induction we can assume the original premises:

C ` m : S, (1)
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X ∈ Dom(S), (2)

S(X) =M (3)

as well as the induction hypothesis:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.S (4)

We need to show:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M.

Assume:

` C Rep. (5)

By induction hypothesis (4) on (5) we obtain a signature expression S such
that:

C ` S . Λ∅.S. (6)

Inverting (6), which can only have been derived by Rule (11), we must have
S ≡ sig B end for some signature body B such that:

C ` B . Λ∅.S. (7)

By Lemma 6.10 (Projection) applied to (7), and premises (1) and (2) we
know that the projection B ↓m

X is well-defined and that:

C ` B ↓m
X . Λ∅.S(X). (8)

By (3) this can be re-expressed as:

C ` B ↓m
X . Λ∅.M. (9)

Choosing S̄ ≡ B ↓m
X yields the desired result.

23 The result follows easily by induction on the premise.
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24 By strong induction we can assume the original premises:

C ` S . ΛP .M, (1)

P ∩ FV(C) = ∅, (2)

C[X :M] ` m :M′ (3)

as well as the induction hypothesis:

` C[X :M] Rep ⊃ ∃S̄.C[X :M] ` S̄ . Λ∅.M′. (4)

We need to show:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.∀P .M→M′.

Assume:

` C Rep. (5)

From (5) and (1) we can derive:

` C[X :M] Rep. (6)

By induction hypothesis (4) on (6), we obtain a signature S′ such that:

C[X :M] ` S′ . Λ∅.M′. (7)

Applying Rule (12) to (1), (2) and (7) we can derive:

C ` funsig(X:S)S′ . Λ∅.∀P .M→M′ (8)

Choosing S̄ ≡ funsig(X:S)S′ gives the desired result.

25 By strong induction we can assume the original premises:

C ` m : ∀Q .M′ →M, (1)

C ` m′ :M′′, (2)

M′′ � ϕ (M′), (3)
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Dom(ϕ) = Q (4)

as well as the induction hypotheses:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.∀Q .M′→M, (5)

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M′′. (6)

We need to show:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.ϕ (M).

Assume

` C Rep. (7)

By induction hypothesis (5) on (7), we obtain a signature S such that:

C ` S . Λ∅.∀Q .M′→M. (8)

Inverting (8), which can only have been derived by Rule (12), it follows that
S ≡ funsig(X:S1)S1, for some S1 and S1, such that:

C ` S1 . ΛQ .M′, (9)

C[X :M′] ` S2 . Λ∅.M, (10)

where w.l.o.g. we can assume that:

Q ∩ FV(C) = ∅. (11)

By Lemma 6.6 (Closure under Realisation) applied to (10) and ϕ, we obtain:

ϕ (C[X :M′]) ` S2 . ϕ (Λ∅.M). (12)

By (4) and (11) we can re-express (12) as:

C[X : ϕ (M′)] ` S2 . Λ∅.ϕ (M). (13)

By Lemma 6.7 (Enrichment) on (13) and (3) we obtain:

C[X :M′′] ` S2 . Λ∅.ϕ (M). (14)

Using Lemma 6.9 (Substitution) on (2) and (14), we can substitute m′ for
X to obtain:

C ` [m′/X0]S2 . Λ∅.ϕ (M). (15)

Choosing S̄ ≡ [m′/X0]S2 gives the desired result.
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26 By strong induction we can assume the original premises:

C ` m :M′, (1)

C ` S . ΛP .M, (2)

M′ � ϕ (M), (3)

Dom(ϕ) = P (4)

as well as the (redundant) induction hypothesis:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M′ (5)

We need to show:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.ϕ (M).

Assume:

` C Rep. (6)

By Lemma 6.11 (Strengthening) applied to (2), (1), (3) and (4) we have:

C ` S\m . Λ∅.ϕ (M). (7)

Choosing S̄ ≡ S\m yields the desired result.

6.6 Conclusion

In this chapter, we have shown that Modules can support separate compilation.
We analysed why the naive approach to separate compilation fails in Standard
ML, placing the blame on an inappropriate choice of compilation unit. We sugges-
ted a better notion of compilation unit, based on abstractions. From a practical
perspective, this approach seems perfectly acceptable.

However, from a theoretical perspective, the problems arising from eclipsed
identifiers and anonymous abstract types means that some module expressions
may fail to possess syntactic representations of their types. We sketched a simpli-
fied (higher-order) Modules language that, by introducing indexed identifiers and
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removing the abstraction phrase, always admits syntactic representations. This
property is captured by Theorem 6.13.

The language we proposed sports a weak form of abstraction (the constrained
module definition) that supports separate compilation. Unfortunately, the loss
of general abstractions means that it is impossible to isolate a module expression
from its program context if that expression occurs, not at the top-level, but deeper
within the program.

We should point out that the proof of Theorem 6.13 is constructive. In prin-
ciple, the proof can be implemented in a compiler to report module types to the
user as syntactic signatures, instead of semantic objects. Such an implementation
can relieve the programmer of the burden of understanding semantic objects.
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Chapter 7

First-Class Modules

In Chapter 5 we promoted the status of functors by making them first-class cit-
izens of the Modules language. Although much more expressive than first-order
Modules, Higher-Order Modules still maintains a rigid stratification between
Modules and the Core. The notion of computation at the level of Modules is
very weak, consisting solely of functor application, to model the linking of mod-
ules, and projection, to provide access to the components of structures. This
weakness reflects the historical intention that Modules should merely be used to
express the architecture of Core programs: actual algorithms and data structures
are expressed by Core values and types.

To support general-purpose programming, the Core must provide more power-
ful notions of computation than Modules. For instance, Standard ML’s Core sup-
ports recursive types and functions, control constructs, exceptions and references.
Unfortunately, the stratification between Core and Modules means that the com-
putational mechanisms of the Core cannot be exploited in the construction of
modules. In this chapter, we relax this restriction by making modules first-class
citizens of a particular Core language, Core-ML. In this extension, modules may
be passed as arguments to Core-ML functions, returned as results of Core-ML
computations, stored in data structures and so on.

In Section 7.1 we extend the grammar, semantic objects and static semantics
of Core-ML to support first-class higher-order modules. In Section 7.2 we present
an example illustrating the elegance of first-class modules. In Section 7.3 we
give another example illustrating the additional expressive power of first-class
modules. In Section 7.4 we propose an alternative, intuitively more natural elim-
ination phrase for first-class modules but show that it is unsound. This violation
of soundness highlights an important distinction between type abstraction at the
level of Modules and its counterpart in the extended Core. In Section 7.4.1 we
sketch a dynamic semantics for first-class modules and give a sketched proof that
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our static semantics is sound for this dynamic semantics. Section 7.5 closes with
a brief assessment.

7.1 Core-ML with First-Class Modules

The motivation for introducing first-class modules is to extend the repertoire
of computations producing module results. One way of achieving this end is
to extend the class of module expressions and types directly with constructs
usually associated with the Core. Taken to the extreme, this approach relaxes the
stratification between Modules and the Core by removing it altogether: Modules
and the Core are amalgamated in a single language. This is the route taken
by Harper and Lillibridge [18], and explored further in the subsequent work by
Lillibridge [33], and Harper and Stone [53, 22].

We adopt a different approach. We maintain the distinction between Core
and Modules, but relax the stratification by enriching the Core language with a
family of Core types, called package types, corresponding to first-class modules.
A package type is introduced by encapsulating, or packing, a module as a Core
expression. A package type is eliminated by breaking an encapsulation, unpacking
an expression as a module in the scope of another expression. Because package
types are ordinary Core types, packages are first-class citizens of the Core. The
introduction and elimination phrases allow computation to alternate between
computation at the level of Modules and computation at the level of the Core,
without having to identify the notions of computation.

The advantage of preserving the distinction between Modules and the Core
language is that we do not have to make an a priori commitment to a particular
Core language in order to give the definition of Modules; the approach of amal-
gamating the Core and Modules into a single language, on the other hand, forces
such a commitment from the outset. The advantage of distinguishing between
Modules computation and Core computation is that each form of computation
can be designed to satisfy different invariants. For instance, the invariant needed
to support applicative functors, namely that the abstract types returned by a
functor depend only on its type arguments and not the value of its term argu-
ment, is violated if we extend Modules computation directly with computational
mechanisms such as conditional computation and recursion. On the other hand,
these are precisely the sort of mechanisms that Core computation should provide.
Applicative functors provide good support for programming with Higher-Order
Modules; recursion and conditional computation are necessary in order to support
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realistic Core programs. By keeping Modules computation and Core computa-
tion separate, we can accommodate both. By contrast, although the amalgamated
languages proposed by Harper and Lillibridge [18], Lillibridge [33], and Harper
and Stone [53, 22] support higher-order functors, because there is only a single
notion of computation, there is a trade-off between supporting either applicative
functors or recursion and conditional computation. Since ruling out the latter is
too severe a restriction, functors are not applicative.

From now on we will refer to a first-class module as a package, and its type
as a package type. For concreteness, we will describe our extension of the Core
with package types as an extension of a particular Core language, Core-ML. The
technique should apply to other Core languages as well.

In Chapter 3, we were able give a presentation of Core-ML parameterised by an
arbitrary Modules language, exploiting the fact that the points of contact between
Core and Modules are few. This level of abstraction enabled us to generalise
first-order Modules to Higher-Order Modules while keeping the definition of Core
ML essentially fixed. Since the aim of this chapter is to extend Core-ML with
first-class modules, we will need to make a stronger commitment to a particular
modules language. For maximum generality, we will fix the modules language to
be Higher-Order Modules.

We shall call the language resulting from the combination of Higher-Order
Modules, Core-ML and package types First-Class Modules.

7.1.1 Phrase Classes

The grammar of Core-ML must be extended to support package types.

The grammar of Core-ML type phrases is modified by extending the grammar
of simple types with the phrase <S> ∈ SimTyp, specifying a package type. For
instance, if we were to adopt a call-by-value dynamic semantics, then <S> would
specify the simple type of a Core value that encapsulates a module value, where
the type of the module value must match the signature S. The denotation rule for
package types will ensure that the denotation of the simple type <S> is derived
from the denotation of the encapsulated signature expression S.

The grammar of Core-ML value expressions is extended with phrases intro-
ducing and eliminating package types.

The value expression pack m as S ∈ ValExp introduces a value of package
type <S>. For instance, in a call-by-value dynamic semantics, the phrase is
evaluated by evaluating the module expression m and encapsulating the resulting
module value as a Core-ML value. The classification rule will ensure that the
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Figure 7.1 Grammar of Core-ML Extended with Package Types

CoreId def= {i, j, . . .} λ-bound identifiers
SimTypVar def= {′a, ′b, . . . } simple type variables

DefKind def= {0, 1, 2, 3, . . . } kinds (arities)

u ::= ′a
| u→ u′ function type
| do(u0, . . . , uk−1) type occurrence
| <S> package type

d ::= Λ(′a0, . . . ,
′ak−1).u parameterised simple type

v ::= ∀′a0, . . . , ′an−1.u polymorphic simple type

e ::= i identifier
| λi.e λ-abstraction
| e e′ application
| vo value occurrence
| pack m as S package introduction
| open e as X : S in e′ package elimination

module expression matches the signature S, via some realisation. The signature
determines the package type of the expression, and is also used to make the actual
realisation of types in m abstract.

The phrase open e as X : S in e′ ∈ ValExp eliminates a value of package type
<S>. For instance, in a call-by-value dynamic semantics, the expression e is
evaluated to an encapsulated module value, the module value is bound to the
module identifier X, and the value of the entire phrase is obtained by evaluating
the client expression e′ in the current environment extended with the value of
X. The classification rule will ensure that e has package type <S>, that X is
assumed to have the type of an arbitrary realisation of S, and that the type of e′

does not depend on the realisation. Note that the explicit signature determines
the package type of e.

Figure 7.1 summarises the grammar of Core-ML extended with package types
(cf. Figure 3.11).

7.1.2 Semantic Objects

The semantic objects of Core-ML must be extended to include the semantic coun-
terpart of package type phrases.
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The denotation of a package type phrase is a semantic package type<∃P .M> ∈
SimTyp. Variables in P are bound inM. By definition, we admit a package type
<∃P .M> only if it satisfies the following well-formedness condition: the cor-
responding signature ΛP .M must be solvable ( ` ΛP .M Slv) in the sense of
Definition 5.37. The motivation for this proviso will be explained in a moment.

As usual, we identify package types that are equivalent up to renamings of
bound variables. Moreover, since we do not want to distinguish between package
types that differ merely in a reordering of components, we from now on identify
all package types that are equivalent according to the following definition:

Definition 7.1 (Equivalence of Package Types). Two package types
<∃P .M> and <∃P ′.M′> are equivalent, written <∃P .M> = <∃P ′.M′> if,
and only if:

• P ′ ∩ FV(∃P .M) = ∅ andM′ � ϕ (M) for some ϕ with Dom(ϕ) = P ; and,
symmetrically,

• P ∩ FV(∃P ′.M′) = ∅ and M� ϕ′ (M′) for some ϕ′ with Dom(ϕ′) = P ′.

The well-formedness condition on package types is intended to ensure that
the equivalence on simple types is decidable. Intuitively, the equivalence of two
well-formed package types can be decided by two invocations of the signature
matching algorithm.

Conjecture 7.2 (Decidability). The equivalence on package types of Defini-
tion 7.1 is decidable.

Proof (Sketch). Consider the two package types <∃P .M> and <∃P ′.M′>.
Suppose we want to decide whether they are equivalent by verifying the con-
ditions of Definition 7.1. Since P and P ′ are bound we can w.l.o.g. assume
that P ′ ∩ FV(∃P .M) = ∅ and P ∩ FV(M′) = ∅. By the definition of well-
formed package types we have ` ΛP ′.M′ Slv. Two straightforward applica-
tions of Lemma 5.31 (Grounding) and Lemma 5.38 (Elimination) establish that
∀FV(M′) ` M′ Gnd. By the definition of well-formed package types we also
have ` ΛP .M Slv. Appealing to Lemma 5.40 (Invocation) it follows that there
exists a realisation ϕ such that M′ � ϕ (M) with Dom(ϕ) = P if, and only if,
the invocation of the algorithm ∀FV(M′) ∪ FV(ΛP .M).∀∅ ` M′ � M ↓ .
succeeds. Thus the first half of Definition 7.1 can be decided by the matching
algorithm. A symmetric argument applies for deciding the second half.
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Figure 7.2 Semantic Objects of Core-ML Extended with Package Types

dk ∈ DefTypk ::= Λ(′a0, . . . , ′ak−1).u parameterised simple type
(provided ′a0, . . . , ′ak−1 distinct)

v ∈ ValTyp ::= ∀′a0, . . . , ′an−1.u polymorphic simple type
(provided ′a1, . . . , ′an−1 distinct)

u ∈ SimTyp ::= ′a simple type variable
| u → u ′ function space
| νk(u0, . . . , uk−1) type name occurrence
| <∃P .M> package type

(provided ` ΛP .M Slv)

C ∈ CoreContext def=

Ci ∪ C′a

∣∣∣∣∣∣ Ci ∈ CoreId fin→ SimTyp,
C′a ∈ SimTypVar fin→ SimTypVar



Remark 7.1.1. Strictly speaking, the naive argument used in the proof of Con-
jecture 7.2 does not constitute a valid proof. This is because the definitions of
simple type equivalence, realisation and enrichment are now intertwined, while
our proofs of the lemmas to which we appeal assumed they were not. However,
the purpose of this chapter is not to develop the full meta-theory of First-Class
Modules but merely to sketch a plausible proposal. We conjecture that the sup-
porting lemmas still hold, but with modified proofs.

Remark 7.1.2. The motivation for focusing on the decidability of package type
equivalence may not be clear. The reason decidability is important is that the
equivalence between simple types is fundamental to the static semantics of Core-
ML. For instance, a Core-ML function application can be classified only if type
of the argument is equivalent to the function’s domain type. This should be con-
trasted with the static semantics of Modules for which the enrichment relation on
module types is fundamental. For instance, a functor application can be classified
only if the type of the argument enriches (a realisation) of the functor’s domain.
Enrichment is a pre-order, not an equivalence relation. The static semantics of
Core-ML and Modules are predicated on different notions of type comparison,
type equivalence on the one hand, and type ordering on the other. It is fortunate
that we can use the ordering of Modules to define an appropriate equivalence on
package types.

Figure 7.2 summarises the semantic objects of Core-ML extended with package
types (cf. Figure 3.13). Notice the proviso that package types are well-formed.
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7.1.3 Static Semantics

We extend the judgements defining the static semantics of Core-ML by adding
the following three rules:

Denotation Rules

Simple Types C ` u . u

C ` S . ΛP .M
C ` <S> . <∃P .M> (P-1)

(P-1) Since the denotation of the signature expression S must be solvable by
Lemma 5.42 (Invariance), the resulting package type is well-formed.

Classification Rules

(Monomorphic) Values C ` e : u

C ` m : ∃P ′.M′

C ` S . ΛP .M
P ′ ∩ FV(ΛP .M) = ∅
M′ � ϕ (M)
Dom(ϕ) = P

C ` pack m as S : <∃P .M> (P-2)

C ` e : <∃P .M>
C ` S . ΛP .M
P ∩ FV(C) = ∅
C[X :M] ` e′ : u
P ∩ FV(u) = ∅

C ` open e as X : S in e′ : u (P-3)

(P-2) The static semantics of pack m as S is almost identical to the semantics of
the abstraction phrase m \ S (Rule (H-21)). It too introduces an existential
quantifier. The only difference is that the type of the phrase is an encapsu-
lated existentially quantified module type. Notice also that abstracting the
type of m by an explicit signature ensures that the resulting package type
is well-formed (by Lemma 5.42 (Invariance)). This would not be the case
were we to use the classification of m directly to derive the package type
“<∃P ′.M′>”, since there is no guarantee that the corresponding signature
ΛP ′.M′ is solvable (for a counter-example, let m be the module expression
in Example 6.4.3).
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(P-3) The rule requires that e is a package of the specified package type <S>.
By assuming that X has the type of an arbitrary realisation of S, the rule
ensures that the type of e′ is parametric in the package’s actual realisation.
Moreover, the side condition P ∩ FV(u) = ∅ prevents the type of e′ from de-
pending on this realisation. Observe that the explicit signature S uniquely
determines the simple type of the expression e (up to the equivalence of
package types), while guaranteeing that it is well-formed (by Lemma 5.42
(Invariance)). This makes the type inference problem for Core-ML tract-
able: intuitively, it means that a type inference algorithm never has to guess
the type of an expression that is used as a package.

Remark 7.1.3. The syntax pack m as S and open e as X : S in e′ is deliberately
designed to evoke the phrases pack τ e as ∃α:κ.τ ′ and open e as α:κ, x:τ in e′

associated with the higher-order existential types of Type Theory (Section 2.2.2).
Indeed, their classification rules are very similar.

Let’s compare Rule (P-2) with the existential introduction rule of Figure 2.14:

C ` ∃α:κ.τ ′ : ? C ` τ : κ C ` e : [τ/α] (τ ′)
C ` pack τ e as ∃α:κ.τ ′ : ∃α:κ.τ ′

Both rules introduce an existential quantifier. In Rule (P-2), the witness to this
quantifier is the implicit realisation ϕ, while in this rule, it is the explicitly spe-
cified type τ . The signature S in the phrase pack m as S serves the same role
as the template ∃α:κ.τ ′ in the phrase pack τ e as ∃α:κ.τ ′: each indicates the
type occurrences that are to be made abstract in the actual types of m and e,
respectively. The premise C ` S .ΛP .M, establishing the signature’s denotation,
corresponds to the well-formedness premise C ` ∃α:κ.τ ′ : ?. Finally, the premises
C ` m : ∃P ′.M′ andM′ � ϕ (M) ensure that the actual type of m is a realisation
of the existential module type, much as the premise C ` e : [τ/α] (τ ′) ensures that
the type of e is a substitution instance of the existential type. The only substant-
ive differences in these rules is that Rule (P-2) can introduce an n-ary, not just
a unary quantifier; moreover, Rule (P-2) incorporates an appeal to enrichment
that corresponds to permitting e’s actual type to be a subtype of [τ/α] (τ ′).

Now let us compare Rule (P-3) with the existential elimination rule of Figure
2.14:

C ` ∃α:κ.τ : ?
C ` e : ∃α:κ.τ
C, α : κ, x : τ ` e′ : τ ′

C ` τ ′ : ?
C ` open e as α:κ, x:τ in e′ : τ ′
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Both rules eliminate an existential quantifier. The declaration X:S in the phrase
open e as X : S in e′ serves the same role as the declarations α:κ, x:τ in the phrase
open e as α:κ, x:τ in e′: each specifies the existential type of the opened term.
In Rule (P-3), the hypothetical witness to the quantifier is the implicit set of type
variables P , while in this rule, it is the explicitly specified type variable α. Both
P and α must be fresh with respect to the type variables in the context, ensuring
that the body of each phrase is parametric in the actual witness of the quantifier
(to see that α must be fresh, it suffices to show that C, α : κ, x : τ ` e′ : τ ′ only
if ` C, α : κ, x : τ valid, from which it then follows that α 6∈ FV(C)). Finally,
the side-condition P ∩ FV(u) = ∅ plays the same role as the premise C ` τ ′ : ?:
each verifies that the type of the body is independent of the actual witness to the
quantifier (the correspondence may be difficult to see at first, but α 6∈ FV(τ ′) is
a simple consequence of applying a free variable lemma to the premise C ` τ ′ : ?,
coupled with the previous observation that α 6∈ FV(C)). Of course, the rules
differ in the sense that Rule (P-3) eliminates an n-ary, not a unary quantifier.

Remark 7.1.4. Even without the well-formedness condition on package types, as
long as the current context C is ground, then, provided the package types occurring
in C are well-formed, any additional package types arising from the phrases <S>,
pack m as S and open e as X : S in e′ will be well-formed too. In each case, the
semantic package type that is specified, introduced or eliminated is determined
from the denotation of the explicit signature S. This denotation is guaranteed
to be solvable by Lemma 5.42 (Invariance). However, it is preferable to impose
the well-formedness condition on the definition of semantic package types, since
this makes the above proviso on C redundant, while ensuring that any test of
equivalence with a pre-existing package type in C will be decidable; this measure
also prevents Rules (C-7) and (C-9) from silently introducing ill-formed package
types.

7.2 An Example: The Sieve of Eratosthenes

We can illustrate the elegance of package types using a nice example adapted from
Mitchell and Plotkin’s exploration of existential types [46]. We take no credit for
the example itself, nor for its explanation, which is paraphrased from [46].

The example is an implementation of the Sieve of Eratosthenes. The Sieve
is an algorithm for enumerating prime numbers. Let Sieve be the enumeration
2, 3, 5, 7, 11 . . . of primes.

We can think of an enumeration as a stream, or infinite list, of values. For
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Figure 7.3 The signature Stream of integer streams

signature Stream =
sig type state: 0;

val start: state;
val next: state → state;
val value: state → int

end

Figure 7.4 The function sift implementing sift .

val sift =
λs.open s as S:Stream in

pack
struct

val divisor = S.value S.start;
val filter = fix λfilter.

λstate. if (divides divisor (S.value state))
then (filter (S.next state))
else state;

type state = S.state;
val start = filter S.start;
val next = λstate.filter (S.next state);
val value = S.value

end
as Stream;

this example, we will only need streams of integers.
In turn, we can represent a stream as a “process”, defined by a set of internal

states, a designated initial or start state, a transition function taking us from one
state to the next state, and a specific value associated with each state. Reading
the values off the process’s sequence of states yields the stream.

Our implementation of Sieve uses packages to represent streams. The abbre-
viated signature Stream, defined in Figure 7.3, specifies the type of a structure
implementing a stream1. The denotation of Stream is the following semantic
signature:

Λα0.(state = α, start : α,next : α → α,value : α → int).

Given a stream s, let sift(s) be the substream of s consisting of those values
not divisible by the initial value of s.

1We use a signature abbreviation for convenience only: every occurrence of the signature
identifier Stream in the code that follows can be removed by in-lining its definition.
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Figure 7.5 The implementation Sieve of Sieve .

module Sieve =
struct

type state = <Stream>;
val start = pack

struct
type state = int;
val start = 2;
val next = succ;
val value = λstate.state

end
as Stream;

val next = sift;
val value = λstate.open state as S:Stream in

S.value S.start
end \ Stream;

Figure 7.4 depicts an implementation sift of sift based on representing streams
as packaged modules of signature Stream. The function sift takes a packaged
stream, opens it, constructs the filtered stream and returns it as a package2. Our
implementation of sift assumes the existence of a boolean test divides i j that
returns true if, and only if, i is divisible by j with remainder zero. It is easy to
see that sift has the type:

u → u

where u is the package type:

u ≡ <∃α0.(state = α, start : α,next : α → α,value : α → int)>.

If start is the stream 2, 3, 4, 5, 6, 7, 8, . . . , then the stream obtained by taking
the initial value of each stream in the sequence of streams:

start = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .
sift(start) = 3, 5, 7, 9, 11, . . .
sift(sift(start)) = 5, 7, 11, . . .
sift(sift(sift(start))) = 7, 11, . . .

...

will itself yield the stream of primes 2, 3, 5, 7, . . . .
This is the intuition for constructing the Sieve of Eratosthenes: Sieve is im-

plemented as a process representing the stream of primes. The states of Sieve are

2The function sift can also be implemented as a functor.
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Figure 7.6 The function nthprime implementing the mathematical function
nthprime.

val nthstate = fix λnthstate.
λn.ifzero n

(Sieve.start)
(Sieve.next (nthstate (+ n (-1))));

val nthprime = λn.Sieve.value (nthstate n);

streams. The start state of Sieve is the stream start of all integers ≥ 2. The next
state of Sieve is obtained by sifting the current state. The value of each Sieve
state is the first value of that state viewed as a stream.

Figure 7.5 shows an implementation of Sieve as the structure Sieve. The
type Sieve.state is the type of packaged streams. The value Sieve.start is
the packaged stream of all integers ≥ 2. The function Sieve.next sift’s a given
state. The function Sieve.value returns the first value of a state (opened as a
stream).

Note that Sieve also matches the signature Stream, reflecting our conceptu-
alisation of Sieve as a stream constructed from streams. In particular, the type
of the implementation of Sieve, before abstraction by Stream is:

∃∅.(state = u, start : u,next : u → u,value : u → int),

where:

u ≡ <∃α0.(state = α, start : α,next : α → α,value : α → int)>.

Applying the abstraction yields:

∃α0.(state = α, start : α,next : α → α,value : α → int).

(As an aside, notice that, because Sieve matches Stream, we can even apply
the sift function to the package pack Sieve as Stream. Of course, in a call-
by-value dynamic semantics, this application fails to terminate as the definition
of the resulting start state diverges: since the values of Sieve’s states are distinct
primes, none of the subsequent states of Sieve have a value that is divisible by
the value of Sieve’s start state.)

In Figure 7.6, the value nthprime implements the mathematical function
nthprime(n) that returns the n-th prime number, for n ≥ 0. Notice how the
function nthstate is used to construct the n-th state of the sieve, for an arbit-
rary n.
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Figure 7.7 A stratified implementation Sieve’ of Sieve .

module Sieve’ =
struct

module Start = struct
type state = int;
val start = 2;
val next = succ;
val value = λstate.state

end;
module Next = functor(S:Stream)

struct
type state = S.state;
val divisor = S.value S.start;
val filter = fix λfilter.

λstate. if (divides divisor (S.value state))
then (filter (S.next state))
else state;

val start = filter S.start;
val next = λstate.filter (S.next state);
val value = S.value

end;
module Value = functor(S:Stream)

struct val value = S.value (S.start) end
end
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Figure 7.8 The signature Array specifies a structure implementing fixed-size
arrays.

signature Array =
sig type array: 1;

val init: ∀’a. ’a → (array ’a);
val sub: ∀’a. (array ’a) → int → ’a;
val update : ∀’a. (array ’a) → int → ’a → (array ’a)

end;

Besides conceptual elegance, what does the addition of package types really
achieve in terms of computational power? Without package types, it is still
possible to give a stratified implementation of Sieve , say as the structure Sieve’

defined in Figure 7.7. Sieve’ uses an ordinary structure Start for the initial
state, a functor Next for computing state transitions, and another functor Value
for extracting the value from a state.

Using Sieve’, we can still calculate the nth-prime with the expression:

(Sieve’.Value(Sieve’.Next(...Sieve’.Next(Sieve’.Start)...))).value

by chaining n applications of the functor Sieve’.Next. The problem is that
we can only do this for a fixed n. This means that it is impossible to derive the
function nthprime from Sieve’ because there is no way to iterate the construction
of Sieve’s intermediate states.

Remark 7.2.1. Of course, the Sieve of Eratosthenes can be implemented directly
in Core-ML using other means. The point is that, without package types, we
cannot use structures as a natural representation of streams.

Notice also that Sieve’, unlike Sieve, no longer matches the signature Stream,
even though the states of Sieve’ do. Thus the implementation Sieve’ fails to
capture the conceptualisation of Sieve as a stream constructed from streams. In
the stratified language, it is impossible to capture this conceptualisation: if we
use structures of signature Stream to represent the state’s of the sieve, then the
states of the structures may be represented using Core-ML values of a Core-ML
type, but the state’s of the sieve must be represented by Modules values of a
Modules type.
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Figure 7.9 The structure ArrayZero implementing arrays of size 20.

module ArrayZero=
struct

type array = Λ’a.’a;
val init = λx.x;
val sub = λa.λi.a;
val update = λa.λi.λx.x

end;

Figure 7.10 The functor ArraySucc mapping an implementation of arrays of
size 2n to an implementation of arrays of size 2n+1.

module ArraySucc =
functor(A:Array)
struct

type array = Λ’a.(A.array ’a) * (A.array ’a);
val init = λx. pair (A.init x) (A.init x)
val sub = λa.λi.

ifzero (mod i 2)
(A.sub (fst a) (div i 2))
(A.sub (snd a) (div i 2));

val update = λa.λi.λx.
ifzero (mod i 2)

(pair (A.update (fst a) (div i 2) x) (snd a))
(pair (fst a) (A.update (snd a) (div i 2) x))

end;

Figure 7.11 The function mkArray: applying mkArray to an integer n ≥ 0
returns an abstract implementation of arrays of size 2n.

val mkArray = fix (λmkArray.λn.
ifzero n
(pack ArrayZero as Array)
(open mkArray (+ n (-1)) as A:Array in

pack ArraySucc(A) as Array));
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7.3 Another Example: Dynamically-Sized Func-
tional Arrays

With package types, it is perfectly possible to make the actual realisation of an
abstract type depend on the result of some Core-ML computation. In this way,
package types strictly extend the class of types that can be defined in Core-ML
with Higher-Order Modules alone. Since this feature is not illustrated by our
implementation of the Sieve of Eratosthenes, we will give a different example
exploiting it here.

A familiar example of a type whose representation depends on the result of
some computation is the type of dynamically allocated arrays of size n > 0, where
n is a value that is computed at run-time. To keep our example simple, we will
implement functional arrays of size 2n, for arbitrary n ≥ 0.

Figure 7.8 defines the signature Array as a convenient abbreviation for the
specification of a structure implementing polymorphic arrays. This signature
should be interpreted as the following specification. For a fixed n, the type array
u represents arrays containing 2n entries of type u. The function init x creates
an array that has its entries initialised to the value of x. The function sub a i
returns the value of the (i mod 2n)-th entry of the array. The function update a
i x returns an array that is equivalent to the array a, except for the (i mod 2n)-
th entry that is updated with the value of x. Interpreting each index i modulo 2n

ensures that a client of an array never attempts to access or update a non-existent
entry. We informally require that the functions sub and update have worst-case
time-complexity O(n); i.e. that their execution takes time logarithmic in the size
of the array.

The structure ArrayZero, defined in Figure 7.9, is a trivial implementation of
arrays of size 20 = 1. An array is represented by the type of its sole entry. The
function init x returns the initial value x of its entry, viewed as an array. Since
(i mod 20) = 0, for any i, the function sub a i merely returns the value of the
entire array a, viewed as an entry. Similarly, the function sub a i x updates the
array a by simply returning the updated entry x, viewed as an array.

The functor ArraySucc, defined in Figure 7.10, maps a structure A, imple-
menting arrays of size 2n, to a structure implementing arrays of size 2n+1. The
definition of ArraySucc assumes that Core-ML has been extended with the cross
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product type, written u * u′, supporting pairing and projection:

pair : ∀’a ’b. ’a → ’b → (’a * ’b),

fst : ∀’a ’b. (’a * ’b) → ’a,

snd : ∀’a ’b. (’a * ’b) → ’b.

We additionally assume that the function div i j returns the largest integral
divisor of i by j; and that the function mod i j returns the integral remainder of
dividing i by j.

The functor ArraySucc represents an array of size 2n+1 as a pair of arrays of
size 2n. Entries with even indices are stored in the first component of the pair.
Entries with odd indices are stored in the second component of the pair. The
function init a returns a pair of arrays of size 2n, initialised using the function
A.init on arrays of size 2n. The function sub a i uses the parity of i to determine
which component of the array to inspect, returning its (div i 2)-th entry using
the function A.sub on arrays of size 2n. The function update a i x uses the
parity of i to determine which component of the array to update, returning the
pair of the unaltered component and the result of updating the other component
using the function A.update on arrays of size 2n. It is easy to see that sub and
update are of time-complexity O(n + 1), provided A.sub and A.update are of
complexity O(n).

Figure 7.11 shows the definition of the Core-ML function mkArray. When ap-
plied to an integer n, it returns a package implementing arrays of size 2n (provided
n ≥ 0). If n = 0, it simply returns the packaged structure ArrayZero. If n 6= 0,
it first creates a package of arrays of size 2n−1 by recursion on n − 1, and then
uses this package to implement a package of arrays of size 2n by a simple applic-
ation of the functor ArraySucc. Notice that the actual realisation of the type
of arrays returned by mkArray depends on the value of n. It is easy to reason
that mkArray returns an implementation whose sub and update functions have
complexity 0(n).

7.4 Soundness and Package Elimination

The phrase pack m as S turns a module expression into a value expression of
the Core language. It is natural to expect this phrase to have a direct inverse
that turns a value expression of package type back into a module expression. For
instance, we might consider adding the module expression unpack e as S, with
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Figure 7.12 Unpacking a Core value as a module is unsound.

module F = functor(X:sig val b:bool end)
unpack if X.b

then pack struct type t = int;
val x = 1;
val y = λx. -x

end
as sig type t:0;

val x:t;
val y:t → t

end
else pack struct type t = bool;

val x = true;
val y = λx.if x then false

else true
end

as sig type t:0;
val x:t;
val y:t → t

end
as sig type t:0;

val x:t;
val y:t → t

end;

module A = F (struct val b = true end);
module B = F (struct val b = false end);

val z = A.y B.x

the classification rule:

C ` e : <∃P .M> C ` S . ΛP .M
C ` unpack e as S : ∃P .M (?)

Unfortunately, combining this phrase with applicative functors is unsound.

Example 7.4.1. Consider the well-typed, but unsound counter-example in Figure
7.12. In the definition of the functor F, by exploiting the phrase unpack e as S
we have made the implementation of the functor body conditional on the value
of its argument’s boolean component.

In particular, each branch of the conditional expression has package type:

<∃α0.(t = α,x : α,y : α → α)>.

270



The standard classification rule for conditionals allows us to derive that the con-
ditional expression also has this type. By unpacking this expression, we can give
the functor body the existential module type:

∃α0.(t = α,x : α,y : α → α).

Now, because functors are applicative, the type derived for the functor expression
is:

∃α0.∀∅.(b : bool)→ (t = α,x : α,y : α → α).

This type is unsound. Intuitively, it expresses that the abstract type returned by
the functor is constant, i.e. that it returns the same type α irrespective of the
value of its module argument. For this functor, this is patently false, since the
realisation of α is conditional on the actual value of the functor argument.

To see how this can lead to a type violation, consider the remaining definitions
in Figure 7.12. Because the definition of F eliminates the existential quantifier
in the type of the functor expression, the abstract types A.t and B.t will be the
same, causing the definition of z to type-check, even though it leads to the sad
attempt of applying integer negation (A.y) to a boolean value (B.x).

In the functor introduction rule (Rule (H-18)), a functor is made applicative
by raising the existential quantification in its body’s type to a position quanti-
fying the type of the functor itself. The rule ensures that each occurrence of an
existentially quantified variable is parameterised by the type parameters of the
functor. This skolemisation step is sound, provided the actual realisation of these
variables has the property that it depends at most on the functor’s type paramet-
ers, but not on the value of its actual argument. For Higher-Order Modules, it
can be shown that this property holds as an invariant of the classification rules.
Our example demonstrates how the addition of the phrase unpack e as S can
violate the invariant.

Intuitively, the weaker elimination phrase open e as X : S in e′ remains
sound because it manages to preserve the invariant. Since it only allows us to
eliminate a package type in the scope of another value expression, its existentially
quantified variables will never be skolemised by the functor introduction rule.

Another way to look at this is to consider the difference in the interpretation
of the quantifiers in the judgements:

C ` m : ∃P .M,

C ` e : <∃P .M>.
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In the first judgement, the module type ∃P .M hides a realisation of P that can
depend at most on the static interpretation of the type variables occurring in C.
In the second judgement, the package type <∃P .M> hides a realisation of P that
can depend both on the static interpretation of the type variables in C and on the
dynamic interpretation of the module and value identifiers in C. It is sound to
treat a purely static realisation as if it had a vacuous dynamic dependency. This
forward direction justifies the soundness of the package introduction rule. It is
not sound to treat a possibly dynamic realisation as if it were purely static. This
explains why the stronger elimination rule for unpack e as S is unsound.

7.4.1 Towards a Proof of Type Soundness

To demonstrate that the proposal in this chapter is sound, we need to define a
dynamic semantics for First-Class Modules and then prove that evaluating well-
typed module and value expressions does not lead to type violations. Although a
thorough treatment of the dynamic semantics takes us beyond the scope of this
thesis, in this section, we will give a brief sketch of how this might be done. A
fuller description may be found in Maharaj and Gunter’s work on the definition
of a dynamic semantics for higher-order Standard ML Modules [37].

Suppose we adopt a call-by-value semantics for First-Class Modules. One
way to define such a semantics, akin to the formulation of the dynamic semantics
of Standard ML, is to define a set of core values v ∈ CoreVal, that includes
encapsulated module values<V> and function closures (whose form we shall leave
unspecified); and a set of module values V ∈ ModVal including functor closures
<X, E,m> and structure values (whose form we shall also leave unspecified). The
component E in a closure is a dynamic environment mapping module and value
identifiers to values. We can then define an evaluation relation relating value
expressions to their core values:

E ` e ↓ v

...
E ` m ↓ V

E ` pack m as S ↓ <V>

E ` e ↓ <V> E[X = V] ` e′ ↓ v
E ` open e as X : S in e′ ↓ v

...

and Module expressions to their module values:
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E ` m ↓ V

...

E ` functor(X : S)m ↓ <X, E,m>

E ` m ↓ <X, E ′,m′′> E ` m′ ↓ V′ E ′[X = V′] ` m′′ ↓ V′′

E ` m m′ ↓ V′′

...

To prove that the static semantics is sound for the dynamic semantics, we can
introduce a semantic classification judgement relating core values to their simple
types:

` v : u

...

Dom(ϕ) = P ` V : ϕ (M)
` <V> : <∃P .M>

...

and module values to their module types:

` V :M

...

∀ϕ.Dom(ϕ) = P ⊃ ∀V.` V : ϕ (M) ⊃ ∀V′.E[X = V] ` m ↓ V′ ⊃ ` V′ : ϕ (M′)
` <X, E,m> : ∀P .M→M′

...

We say that an environment E has type C, written ` E : C, if, and only if,
every module and value identifier declared with a type in the context C is assigned
a value in E that inhabits this type.

The type soundness property can then be stated as:

Property 7.3 (Type Soundness).

• C ` e : u ⊃ ` E : C ⊃ E ` e ↓ v ⊃ ` v : u.

...

273



• C ` m : ∃P .M⊃ ` E : C ⊃ E ` m ↓ V ⊃ ∃ϕ. Dom(ϕ) = P ∧ ` V : ϕ (M).

Proof (Sketch). Now to prove Property 7.3, we need to prove the stronger prop-
erties:

C ` e : u ⊃
∀ψ, σ, E, v.` E : ψ (σ(C)) ⊃ E ` e ↓ v ⊃ ` v : ψ (σ(u)).

...

C ` m : ∃P .M⊃
∃ϕ.Dom(ϕ) = P ∧
∀ψ, σ, E,V.
` E : ψ (σ(C)) ⊃
E ` m ↓ V ⊃
` V : ψ (σ(ϕ (M))).

by simultaneous induction on the classification rules.
In both properties, ψ is a realisation of type variables and σ is a substitution

for simple type variables. Quantifying over all ψ and σ allows us to prove that
the rules introducing type polymorphism and simple type polymorphism are sound.
The second property tells us that the actual realisation ϕ of the module’s abstract
types P may vary uniformly with the static interpretations ψ and σ of type variable
in the context C, but not with the dynamic interpretation E of C. Notice that this
is strictly stronger than the requirement on ϕ in Property 7.3: in Property 7.3,
ϕ is quantified within the scope of the dynamic environment E, permitting it to
vary with E. The stronger property of ϕ is needed in order to show that the
skolemisation of existential types in the functor introduction rule (Rule (H-18))
is sound.

To give an indication of how the proof proceeds, we will give the proof of type
soundness for Rules (P-3) and (H-18). This proof remains a sketch because we
have not verified the other cases, nor have we formalised the machinery necessary
to do so.

P-3 By induction we may assume:

∀ψ, σ, E, v.` E : ψ (σ(C)) ⊃ E ` e ↓ v ⊃ ` v : ψ (σ(<∃P .M>)) ,
(1)

C ` S . ΛP .M, (2)
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P ∩ FV(C) = ∅, (3)

∀ψ, σ, E, v.` E : ψ (σ(C[X :M])) ⊃ E ` e′ ↓ v ⊃ ` v : ψ (σ(u)) ,
(4)

P ∩ FV(u) = ∅. (5)

We need to show:

∀ψ, σ, E, v.` E : ψ (σ(C)) ⊃ E ` open e as X : S in e′ ↓ v ⊃ ` v : ψ (σ(u)) .

Consider arbitrary ψ, σ, E and v such that:

` E : ψ (σ(C)), (6)

E ` open e as X : S in e′ ↓ v. (7)

We need to show:

` v : ψ (σ(u)).

W.l.o.g. we can assume:

P ∩ (Inv(ψ) ∪ FV(σ)) = ∅. (8)

Inverting (7) by the evaluation rule for open e as X : S in e′ we must have,
for some module value V:

E ` e ↓ <V>, (9)

E[X = V] ` e′ ↓ v. (10)

By induction hypothesis (1) applied to ψ, σ, E, <V>, (6) and (9) we obtain:

` <V> : ψ (σ(<∃P .M>)), (11)

which, by assumption(8), may be re-expressed as:

` <V> : <∃P .ψ (σ(M))>. (12)
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Inverting (12) by the classification rule for encapsulated module values, we
must have some realisation ϕ such that:

Dom(ϕ) = P , (13)

` V : ϕ (ψ (σ(M))). (14)

Let ψ′ = ψ | ϕ. Then, by (13), (3) and (8), we have:

ψ′ (σ(C)) = ψ (σ(C)) . (15)

Moreover, by (13) and (8) we have:

ψ′ (σ(M)) = ϕ (ψ (σ(M))) . (16)

Combining (6) and (14) we can show:

` E[X = V] : (ψ (σ(C)))[X : ϕ (ψ (σ(M)))],

which, by (15) and (16), may be expressed as:

` E[X = V] : ψ′ (σ(C[X :M])). (17)

By induction hypothesis (4) on ψ′, σ, E[X = V], v, (17) and (10) we obtain:

` v : ψ′ (σ(u)). (18)

Now ψ′ (σ(u)) = ϕ (ψ (σ(u))) = ψ (σ(u)), where the first equation follows
by (13) and (8), and the second follows by (13) and (5).

Hence we can re-express (18) as

` v : ψ (σ(u)),

which is the desired result.

H-18 By induction we may assume:

C ` S . ΛP .M, (1)

P ∩ FV(C) = ∅, (2)
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P = {ακ0
0 , . . . , α

κn−1
n−1 } (3)

∃ϕ.Dom(ϕ) = Q ∧
∀ψ, σ, E,V.
` E : ψ (σ(C[X :M])) ⊃
E ` m ↓ V ⊃
` V : ψ (σ(ϕ (M′))),

(4)

Q ′ ∩ (P ∪ FV(M)∪ FV(∃Q .M′)) = ∅. (5)

[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}. (6)

Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}. (7)

We need to show:

∃ϕ′.Dom(ϕ′) = Q ′ ∧
∀ψ, σ, E,V.
` E : ψ (σ(C)) ⊃
E ` functor(X : S)m ↓ V ⊃
` V : ψ (σ(ϕ′ (∀P .M→ [Q ′/Q ] (M′)))).

By induction hypothesis (4) there is some ϕ such that:

Dom(ϕ) = Q , (8)

∀ψ, σ, E,V.` E : ψ (σ(C[X :M])) ⊃ E ` m ↓ V ⊃ ` V : ψ (σ(ϕ (M′))).
(9)

Choose

ϕ′ = {βκ0→···κn−1→κ 7→ Λακ0
0 , . . . , α

κn−1
n−1 .ϕ (βκ) | βκ ∈ Q}.

Clearly, by (7), we have:

Dom(ϕ′) = Q ′. (10)

Moreover, by (3), (5) and our choice of ϕ′:

P ∩ Inv(ϕ′) = ∅. (11)

Consider arbitrary ψ, σ, E, V such that:

` E : ψ (σ(C)), (12)
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E ` functor(X : S)m ↓ V. (13)

W.l.o.g. we can assume:

P ∩ (Inv(ψ)∪ FV(σ)) = ∅. (14)

We need to show:

` V : ψ (σ(ϕ′ (∀P .M→ [Q ′/Q ] (M′)))).

By assumption (14), our choice of ϕ′, (11) and (5), this can be re-expressed
as:

` V : ∀P .ψ (σ(M))→ ψ (σ(ϕ (M′))).

Inverting (13) by the evaluation rule for functors we must have:

V ≡ <X, E,m>. (15)

Thus it suffices to show:

` <X, E,m> : ∀P .ψ (σ(M))→ ψ (σ(ϕ (M′))).

Inverting this goal by the classification rule for functor closures it suffices
to show:

∀δ.Dom(δ) = P ⊃
∀V′.` V′ : δ (ψ (σ(M))) ⊃
∀V′′.E[X = V′] ` m ↓ V′′ ⊃
` V′′ : δ (ψ (σ(ϕ (M′)))).

Consider an arbitrary δ such that:

Dom(δ) = P . (16)

Consider an arbitrary V′ such that:

` V′ : δ (ψ (σ(M))). (17)

Consider an arbitrary V′′ such that:

E[X = V′] ` m ↓ V′′. (18)

It remains to show:
` V′′ : δ (ψ (σ(ϕ (M′)))).
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Let ψ′ = ψ | δ. Then, by (2), (14) and (16), we have:

ψ′ (σ(C)) = ψ (σ(C)) . (19)

Moreover, by (14) and (16), we also have:

ψ′ (σ(M)) = δ (ψ (σ(M))) . (20)

Combining (12) and (17) we can show:

` E[X = V′] : (ψ (σ(C)))[X : δ (ψ (σ(M)))],

which, by (19) and (20), may be expressed as:

` E[X = V′] : ψ′ (σ(C[X :M])). (21)

By (9) (the second half of the induction hypothesis) applied to ψ′, σ,
E[X = V′], V′′, (21) and (18) we obtain:

` V′′ : ψ′ (σ(ϕ (M′))), (22)

Now by assumption (11), (22) may be re-expressed as:

` V′′ : δ (ψ (σ(ϕ (M′)))).

which is the desired result.

We can now consider the effect that adding the phrase unpack e as S has on
our proof of Property 7.3. The counter-example in Figure 7.12 already demon-
strates that the proof must fail because the type soundness property does not
hold, but it is revealing to see where it goes wrong. The obvious evaluation rule
for the phrase unpack e as S is:

E ` e ↓ <V>
E ` unpack e as S ↓ V.

Unfortunately, the addition of the phrase means that we can no longer prove the
stronger property on module expressions used in the proof of Property 7.3. In
particular, we can no longer establish the induction hypothesis needed to argue
that the classification rule for applicative functors (Rule (H-18)) is sound.

It is easy to see why the proof breaks down. Let’s attempt to prove the
new case corresponding to the classification rule of unpack e as S (Rule (?)).
According to this rule, the induction hypothesis on e tells us that

∀ψ, σ, E, v.` E : ψ (σ(C)) ⊃ E ` e ↓ v ⊃ ` v : ψ (σ(<∃P .M>)),
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However, because unpack e as S is a module expression, we actually need to
prove that there is some ϕ such that:

Dom(ϕ) = P ,

∀ψ, σ, E,V.` E : ψ (σ(C)) ⊃ E ` unpack e as S ↓ V ⊃ ` V : ψ (σ(ϕ (M))).

Notice that the realisation ϕ must be static: since it must hold for all dynamic en-
vironments E, it cannot vary with the interpretation of E. Since there is no obvious
candidate for ϕ, let’s delay making the choice of ϕ to see if the induction hypo-
thesis is of any help. Consider an arbitrary ψ, σ, E, and V such that ` E : ψ (σ(C))
and E ` unpack e as S ↓ V. W.l.o.g. we can assume P ∩ (Inv(ψ)∪ FV(σ)) = ∅.
Then, inverting the evaluation rule for unpack e as S, we know that E ` e ↓
<V>. The induction hypothesis applied to ψ, σ, E, and <V> tells us that
` <V> : ψ (σ(<∃P .M>)), which, by our assumption on P , is equivalent to
` <V> : <∃P .ψ (σ(M))>. Inverting the classification rule for encapsulated mod-
ule values we can establish that there is some realisation ϕ′ with Dom(ϕ′) = P
such that ` V : ϕ′ (ψ (σ(M))). Unfortunately, this realisation ϕ′ is of no use
in determining the static realisation ϕ because it depends on the dynamic en-
vironment E. In short, adding the phrase unpack e as S violates the invariant
required to support applicative functors.

7.5 Conclusion

The addition of first-class modules extends the expressive power of both Core-
ML and Higher-Order Modules considerably. Although seductively easy to define
by the addition of a new form of simple type and corresponding denotation,
introduction and elimination rules, we need to tread carefully. In particular,
the equivalence of semantic simple types and the definition of realisation and
enrichment are now mutually dependent. Therefore, we should not immediately
presume that the algorithm for solving matching problems remains well-behaved.
We shall not investigate the meta-theory of First-Class Modules any further in
this thesis, leaving it to future work. We will, however, touch upon First-Class
Modules again briefly at the end of Chapter 8. There, we will consider the
practical problem of performing Core-ML type inference in the presence of First-
Class Modules and propose a tentative solution.
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Chapter 8

Type Inference for Core-ML with
Higher-Order and First-Class

Modules

The aim of this chapter is to design an algorithm that integrates Core-ML type
inference with Modules type checking. The primary motivation for this work is
that it paves the way for the correct integration of our proposals with existing
implementations of Standard ML. Although we take care to present our

algorithms with their intended correctness properties, the verification
of these properties is left to future work.

In previous chapters, we focused on Modules and took the Core language for
granted. In Chapter 5, we laid the foundations for type-checking Higher-Order
Modules by presenting a signature matching algorithm that terminates and is
sound and complete for the matching problems encountered during module clas-
sification (Sections 5.6 and 5.7). Using these results, it is straightforward to derive
a type checking algorithm for Higher-Order Modules directly from the rules of the
static semantics by replacing premises requiring the existence of matching real-
isations by appeals to the signature matching algorithm. The resulting algorithm
has the following behaviour: given as input a context C and a phrase p, the al-
gorithm terminates with one of two results: it either succeeds with a semantic
object o as its output or it fails. The algorithm is sound in the sense that if it
succeeds with o, and p is a type phrase, then the denotation judgement C ` p . o
holds; if p is a term phrase, then the classification judgement C ` p : o holds.
The algorithm is complete in the sense that, if it does fail, then this is because
there is no object o to which the phrase may be related: if p is a type phrase, it
fails to denote; if p is a term phrase, it fails to be well-typed.

The soundness and completeness of this algorithm is predicated on the exist-
ence of analogous type checkers for type and term phrases of the Core. As an
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hypothesis concerning an arbitrary Core language, this simplifying assumption is
reasonable: a wide variety of strongly typed Core languages admit type checking
algorithms of this kind. Unfortunately, as we shall see, Core-ML does not.

Core-ML, too, is a strongly typed language. But it differs from most other
such languages by being implicitly typed. As in ordinary ML, a function λi.e does
not declare the type of its parameter i. Similarly, an occurrence of a polymorphic
phrase vo gives no indication of the monomorphic type at which it is used. In
ML, the justification for omitting the type of a λ-bound identifier is that it can
be recovered in a principled manner by examining both the ways in which the
identifier is used within the body of the function and the types of the arguments
to which the function is applied. Similarly, the monomorphic instance of a poly-
morphic phrase can be determined from both the phrase’s polymorphic type, and
the way in which this phrase is used. For ML, the magic that makes this pos-
sible is Milner’s well known type inference algorithm, algorithmW (and its many
variants). Algorithm W satisfies its own form of soundness and completeness
theorems with respect to the static semantics of ML.

Given the similarities between Core-ML and ordinary ML, let us assume for
the moment that we can adapt W to provide type inference for Core-ML. Unfor-
tunately, we cannot just naively plug it into the type checker for Higher-Order
Modules to obtain a combined type inference and type checking algorithm for the
entire language. The problem is that W does not belong to the family of generic
Core type checkers from which we can construct the type checker for Higher-Order
Modules. It is easy to see this by comparing the output and soundness properties
that we assumed of the generic Core’s type checker with the actual output and
soundness property of W. For the generic Core, we assumed that the input to
the type checker is a context C and a value expression e and that the successful
output is a value type v such that C ` e : v . The input to W is also a context C
and a value expression e. However, the successful output of W is not just a type
but a pair, consisting of both a type v and an inferred substitution σ, mapping
simple type variables to simple types. The soundness property of W tells us not
that C ` e : v but rather that σ(C) ` e : v . The substitution is the necessary
by-product of performing type inference instead of mere type checking. It cap-
tures the minimal type information that needs to be inferred about the original
context to make the expression well-typed: σ(C) is the inferred context. Thus we
encounter the first difficulty posed by integrating Core-ML type inference with
Modules type checking: the Core-ML type inference algorithm does not meet the
requirements of the Modules type checking algorithm.
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Unfortunately, the converse is also true: our type checking algorithm for Mod-
ules does not satisfy the requirements of an W-style type inference algorithm for
Core-ML. Core-ML, because it must cater for Modules, extends the grammar of
ordinary ML expressions with the phrase vo, where vo ∈ ValOcc is a value oc-
currence. Value occurrences provide access to values defined in the context and
within structures. In Higher-Order Modules, the inclusion of value occurrences of
the form m.x means that a Core-ML expression can contain an arbitrary module
expression as a subphrase. This is also true in First-Class Modules, since it ex-
tends the grammar of Core-ML expression with the phrase pack m as S, where
m is a module expression. This has considerable ramifications for both Core-ML
type inference and Modules type checking.

For instance, consider the type inference problem posed by a Core-ML func-
tion of the form λi.e[m[i], i]1. For soundness, the type inferred for the function
parameter i must be consistent with every type at which i is used within the
function’s body e[m[i], i]. In particular, it must also be consistent with each free
occurrence of i in the enclosed module expression m[i]. It should be clear that
the algorithm for type checking the module expression m[i] must be able to con-
tribute to the result of the algorithm inferring the type of the Core-ML function.
Moreover, since the type of i may not be fully determined before the inspection
of m[i], the Modules type checker must be able to proceed with only imperfect
knowledge of the context. The type checking algorithm of Chapter 5 falls short
of these requirements and we shall have to adapt it to support Core-ML type
inference.

Finally, the static semantics of Modules places an additional requirement on
type inference that goes beyond those dictated by the static semantics of ML:
the Core-ML type inference algorithm must respect any side-conditions on type
variables imposed by the rules of the static semantics. A specific example is
the functor introduction rule that has a side-condition stipulating that the func-
tor’s type parameters do not occur free in the context. For instance, to respect
this side-condition when inferring the type of a Core-ML function of the form
λi.e[functor(X : sig type t : k end)m[i]], the algorithm must ensure that the de-
notation of the type parameter X.t cannot appear in the type inferred for i. Since
the static semantics of ML does not impose such side-conditions, algorithm W
was not designed to respect them. To adapt W to Core-ML requires a non-trivial
extension of both W and its underlying unification algorithm.

1The notation p[p1, . . . , pn] signifies that the subphrases p1, . . . , pn have some non-
overlapping occurrences in the phrase p.
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Figure 8.1 ML’s Grammar and Semantic Objects

e ::= i monomorphic identifier
| λi.e λ-abstraction
| e e′ application
| x polymorphic identifier
| let x = e in e′ polymorphic definition

(a) Grammar

u ∈ SimTyp ::= ′a | u → u ′

v ∈ ValTyp ::= ∀′a0, . . . , ′an−1.u polymorphic simple type

C ∈ Context def=

Ci ∪ Cx

∣∣∣∣∣∣ Ci ∈ CoreId fin→ SimTyp,
Cx ∈ ValId fin→ ValTyp


(b) Semantic Objects

Section 8.1 provides some background: we review ML and its static semantics,
define substitution and unification and use these concepts to present algorithmW.
Section 8.2 gives examples illustrating the issues that need to be addressed when
designing a type inference algorithm for Core-ML in the presence of Higher-Order
Modules. In Section 8.3 we design new unification and matching algorithms that
can solve the more difficult problems encountered in this setting, and then use
these algorithms to design a type inference algorithm for Core-ML with Higher-
Order Modules. The algorithm is similar in spirit to W. In Section 8.4 we briefly
suggest how to “tie the knot” to obtain a type inference algorithm for First-Class
Modules (Core-ML extended with package types). The existence of this algorithm
makes the proposals of Chapter 7 a little more concrete.

Section 8.5 closes with a brief assessment.

8.1 A Review of ML Type Inference

Figure 8.1 presents the grammar and semantic objects of ordinary ML, the lan-
guage originally proposed and studied by Milner [41].

A brief comparison of ML with Core-ML is appropriate. The ML phrases
let x = e in e′ and x define and eliminate identifiers with polymorphic types.
Although easily incorporated, we omitted these phrases from Core-ML since their
roles are similar to the ones played by value definitions and value occurrences.
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Figure 8.2 Static Semantics of ML.

Monomorphic Values C ` e : u

i ∈ Dom(C) C(i) = u
C ` i : u (ML-1)

C[i : u] ` e : u ′

C ` λi.e : u → u ′ (ML-2)

C ` e : u ′ → u C ` e′ : u ′
C ` e e′ : u (ML-3)

x ∈ Dom(C) C(x) = v v � u
C ` x : u (ML-4)

C ` e : v C[x : v ] ` e′ : u
C ` let x = e in e′ : u (ML-5)

Polymorphic Values C ` e : v

C ` e : u {′a0, . . . , ′an−1} = FTVS(u) \ FTVS(C)
C ` e : ∀′a0, . . . , ′an−1.u (ML-6)

Also note that, because ML is implicitly typed, there is no need for type phrases.
Core-ML provides type phrases solely for the benefit of Modules, where they
are required in order to define and specify structure components. Turning to the
semantic objects, observe that ML’s simple types u ∈ SimTyp are less complicated
than their Core-ML counterparts. Indeed, in ML the equivalence between simple
types is purely syntactic. In Core-ML, on the other hand, a simple type may
consist of an application ν(u0, . . . , uk−1) ∈ SimTyp of a type name ν ∈ TypNam
and we need to identify applications that are equivalent “up to” the equivalence
of type names.

Figure 8.2 defines the static semantics of ML. Our description of ML’s static
semantics and algorithm W is closer to Tofte’s equivalent, but more modern,
presentation of Milner’s work [55].

The classification judgement C ` e : u relates the expression e to a mono-
morphic simple type u that it inhabits. The separate classification judgement
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C ` e : v , on the other hand, relates e to a value type v , i.e. a quantified simple
type. Rule (ML-4) eliminates the polymorphism of an identifier. The rule employs
a generalisation relation � ∈ ValTyp × SimTyp that is defined as in Definition
3.27. Rule (ML-5) introduces a polymorphic identifier by deriving a polymorphic
type for its definition. Rule (ML-6) derives a value type of an expression from a
simple type of that expression, by universally quantifying over every type variable
that occurs free in the simple type, without occurring free in the context. Notice
that none of the rules impose side-conditions on type variables, e.g. premises of
the form ′a 6∈ FTVS(C), but that similar conditions are ubiquitous in the static
semantics of Core-ML and Modules.

Observe that an expression may inhabit more than one simple type. For
instance, the identity function λi.i has types:

′a → ′a,

(′a → ′a)→ (′a → ′a),

(′a → ′b)→ (′a → ′b),
...

In fact, it can be assigned the type u → u, for any simple type u. By
using universal quantification over type variables, the static semantics of ML can
internalise this observation, assigning the identity the polymorphic value type
∀′a.′a → ′a. This particular value type is obtained by quantifying over ′a in the
identity’s simple type ′a → ′a. Notice, however, that the rules equally allow us to
assign the less general value type ∀′a.(′a → ′a)→ (′a → ′a), by quantifying over
′a in the identity’s more specific simple type (′a → ′a)→ (′a → ′a).

Fortunately, among the value types that can be assigned to expressions, there
are some that are most general, according to a pre-order � ∈ ValTyp × ValTyp
on ML value types that is defined just as in Definition 3.28 of Core-ML:

Definition 8.1 (Principal Value Types).
A value type v is principal for e in C if, and only if, C ` e : v and v � v ′

whenever C ` e : v ′.

It can be shown that whenever an expression has a simple type in a given
context, then it also has a principal value type in that context.

It should be clear that the rules in Figure 8.2 do not describe an algorithm for
determining the principal type of an expression. The rule for typing an abstraction
λi.e is non-deterministic since it does not specify which simple type u to assume
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for i. The rule for using a polymorphic value x of type v does not uniquely
determine which particular instance u of v to return. Even the let-rule is non-
deterministic, since it fails to indicate which value type to assume for x.

This is where Milner’s algorithm W comes in. Given a context C and an
expression e,W returns the principal value type of e in a context derived from C.
The definition of W, which we shall shortly present, relies on the more primitive
concepts of substitution and unification.

Definition 8.2 (Substitution). A substitution σ is a finite map from simple
type variables to (semantic) simple types:

σ ∈ Subst = SimTypVar fin→ SimTyp.

The operation of applying a substitution σ to a semantic object o, written
σ(o), is defined in the usual way, taking care to avoid capture of free variables by
binding constructs.

The composition of two substitutions, written σ2 ◦ σ1, is defined as the essen-
tially unique substitution, satisfying,

(σ2 ◦ σ1)(o) = σ2(σ1(o)),

for every semantic object o.
Given two substitutions σ and σ1, σ is more general than σ1 written σ � σ1,

if, and only if:
∃σ2. σ2 ◦ σ = σ1.

The substitution σ \ R, where R is a set of simple type variables, is defined
as the substitution that is equivalent to σ on the restricted domain Dom(σ) \R,
i.e. σ \R def= {′a 7→ σ(′a)|′a ∈ Dom(σ) \R}.

During its execution, W sets up tentative equations between pairs of simple
types containing type variables. Such equations must be solved by finding sub-
stitutions that make them hold. Formally, we define:

Definition 8.3 (Unification Problems, and (Most General) Unifiers).

• A unification problem is a pair of simple types u and u ′.

• A unifier of u and u ′ is a substitution σ such that σ(u) = σ(u ′). A unifier
of u and u ′ is a solution to the unification problem posed by u and u ′.

• A most general unifier of u and u ′ is a unifier σ of u and u ′ such that, for
every other unifier σ1 of u and u ′, σ � σ1. A most general unifier of u and
u ′ is a principal solution to the unification problem posed by u and u ′.
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Figure 8.3 Robinson’s Unification Algorithm.

Unification of Simple Types ` u = u ′ ↓ σ

` ′a = ′a ↓ ∅ (R-1)

′a 6∈ FTVS(u)
` ′a = u ↓ [u/′a] (R-2)

′a 6∈ FTVS(u) ∀′b ∈ SimTypVar .u 6≡ ′b
` u = ′a ↓ [u/′a] (R-3)

` u1 = u ′1 ↓ σ1 ` σ1(u2) = σ1(u ′2) ↓ σ2

` u1 → u2 = u ′1 → u ′2 ↓ σ2 ◦ σ1 (R-4)

A particular unification problem may fail to have a unifier. However, if it does
have a unifier, then it also has a most general unifier. Figure 8.3 shows a simple
implementation of a deterministic algorithm that solves unification problems,
returning a most general unifier whenever one exists, and failing otherwise. The
side condition ′a 6∈ FTVS(u) on Rules (R-2) and (R-3) is known as the occur
check and is used to rule out substitutions that assume the existence of infinite
types. The side condition ∀′b ∈ SimTypVar .u 6≡ ′b on Rule (R-3) ensures that
only Rule (R-2) applies in the special case that both types are distinct variables.
This implementation is based on Robinson’s original unification procedure [50].
Its correctness is captured by the following theorem:

Theorem 8.4 (Correctness of Unification [50]). For any simple types u
and u ′:

Termination The appeal ` u = u ′ ↓ terminates either in success, returning
a substitution, or failure.

Soundness If ` u = u ′ ↓ σ then σ(u) = σ(u ′).

Completeness If σ1(u) = σ1(u ′) then, for some σ, ` u = u ′ ↓ σ with σ � σ1.

Figure 8.4 presents Milner’s algorithm W as a collection of inference rules.
The algorithm takes a context and an expression as input, and outputs a pair of
a value type and substitution on type variables. At the heart of algorithm W lies
an appeal to unification (Rule (W-3)). Rules (W-2), (W-4) and (W-3) employ
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Figure 8.4 Milner’s algorithm W.

Monomorphic Values C ` e ↓ u, σ

i ∈ Dom(C) C(i) = u
C ` i ↓ u, ∅ (W-1)

′a fresh C[i : ′a] ` e ↓ u ′, σ
C ` λi.e ↓ σ(′a)→ u ′, σ \ {′a} (W-2)

C ` e ↓ u, σ1

σ1(C) ` e′ ↓ u ′, σ2
′a fresh
` σ2(u) = u ′ → ′a ↓ σ3

C ` e e′ ↓ σ3(′a), (σ3 ◦ σ2 ◦ σ1) \ {′a} (W-3)

x ∈ Dom(C) C(x) = ∀′a0, . . . , ′an−1.u ∀i ∈ [n].′a i fresh
C ` x ↓ u, ∅

(W-4)

C ` e ↓ v , σ1 σ1(C)[x : v ] ` e′ ↓ u, σ2

C ` let x = e in e′ ↓ u, σ2 ◦ σ1 (W-5)

Polymorphic Values C ` e ↓ v , σ

C ` e ↓ u, σ
{′a0, . . . , ′an−1} = FTVS(u) \ FTVS(σ(C))

C ` e ↓ ∀′a0, . . . , ′an−1.u, σ (W-6)
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side conditions, e.g. ′a fresh, stipulating the choice of a new variable drawn from
some infinite supply of currently unused variables. For the moment, we shall
follow Milner and Tofte [41, 55] and be vague about what it means to choose a
“fresh” variable. We shall be more precise about this in our own algorithms.

Algorithm W satisfies the following theorem:

Theorem 8.5 (Correctness of W [41, 16]).

For every context C and expression e:

Termination The appeal C ` e ↓ , terminates either in success, returning a
value type and a substitution, or failure.

Soundness If C ` e ↓ v , σ, then σ(C) ` e : v.

Completeness If σ1(C) ` e : v1 then for some v, σ and σ2, C ` e ↓ v , σ with
σ2 ◦ σ = σ1 and σ2(v) � v1.

Indeed, the termination, soundness and completeness properties of W are
indirect consequences of the corresponding properties of the unification algorithm.

How doesW work? Consider the rules of the static semantics. For each phrase,
the type of that phrase, even though it may not be uniquely determined, is at
least constrained by three factors: the context, the types of its subphrases, and
the form of the phrase itself. For instance, Rule (ML-3), classifying an application
e e′, places an implicit equational constraint on the types of its subphrases: e’s
type must be equivalent to a function space; moreover, the domain of this function
space must be equivalent to the type of the argument e′. Algorithm W proceeds
by traversing the structure of the given phrase. If the corresponding rule of the
static semantics requires the non-deterministic choice of a suitable type, then W
introduces a “fresh” type variable to represent that choice. The fact that the
variable is fresh ensures that the choice is initially unconstrained. If the rule also
requires an equation between types to hold, W attempts to solve the equation
by finding a most general substitution for the type variables that makes the
equation hold. Since all of the equational constraints between types must hold
simultaneously, these substitutions are propagated (i.e. applied to the context)
in recursive calls, and accumulated (i.e. composed) in the result.

For a less operational interpretation, we can first observe the following key
property of ML and its judgements:

Property 8.6 (Closure under Substitution).

• v � u implies σ(v) � σ(u).
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• C ` e : u implies σ(C) ` e : σ(u).

• C ` e : v implies σ(C) ` e : σ(v).

Since the classification rules of ML are syntax directed, the algorithm merely
attempts to construct the most general typing derivation in the given context,
directed by the syntax of the given phrase. At certain points, it uses unification
to determine the most general substitution that is necessary in order to apply the
corresponding rule from the static semantics. If the phrase involves a recursive
call followed by either a second recursive call, or an appeal to unification, both
of which return a substitution, then Property 8.6 ensures that the derivation
constructed from the first call also gives rise to a valid derivation under this
additional substitution.

8.2 Type Inference Issues

Now that we have reviewed type inference for ML, let us consider the main issues
that arise when we attempt to adapt algorithmW to Core-ML with Higher-Order
Modules.

The Problem with Interleaving Core-ML Type Inference
with Modules Type Checking

At first glance, we might be tempted to think that the tasks of performing type
inference for Core-ML and type checking for Modules are orthogonal, i.e. that we
can get away with the simple-minded approach of interleaving Core type infer-
ence and Modules type checking, alternating between (a variant) of algorithm W
and the type checker for Higher-Order Modules presented in Chapter 5. Such an
algorithm would invoke type inference when entering a Core expression, revert-
ing back to type checking when entering a Modules subphrase, and so on. The
following examples demonstrate that this approach cannot be made to work.

First, consider this perfectly legal function of type int→ int:

λi.(struct val x = + i 1 end).x

Here i must be assigned the simple type int for the example to type check.
Moreover, this type can only be inferred by examining the Core expression + i 1

within the module expression struct val x = + i 1 end. Clearly the type
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checker responsible for the module expression must feed this information back
to the Core type inference algorithm.

Now suppose we adopt the interleaving algorithm. W proceeds by assigning
a fresh type variable ′a to i and then calls the Modules type checker to calculate
the type of the projection (struct val x = + i 1 end).x. The type checker
descends into the module expression and ultimately calls W on the expression
+ i 1. This returns the type int and substitution [int/′a]. Since the type checker
for Modules, by its very design, has no idea what to do with this substitution let’s
assume it just throws it away. It still knows that x has type int and returns this
as the type of the projection (struct val x = + i 1 end).x. So far so good.
However, because the substitution was discarded,W reports the “principal” type
of the complete phrase as ∀′a.′a → int. Not only is this incorrect, it’s not even
sound. We can now apply this expression to an argument of arbitrary type: if
we apply it to another function, we obtain the sad example of trying to add a
function to an integer.

In this example, the approach of ignoring the inferred substitution is flawed
because it fails to ensure that the function’s domain is consistent with (every)
use of its argument. A sound algorithm cannot discard inferred substitutions.
Indeed, we will revise our type checking algorithm for module expressions so that
it not only checks that phrase are well-typed, but also propagates and accumulates
substitutions returned by recursive calls to Core-ML type inference.

Unfortunately, this argument applies to all of the phrase classes of the Modules
language. For instance, consider the phrase:

λi.(struct type t = (struct type u = int; val x = + i 1 end).u;

val y = 1

end).y

Here, the type of i is determined by a Core-ML phrase occurring within the type
phrase (struct type u = int val x = + i 1 end).u. Clearly, the algorithm
used to determine the denotation of a type phrase must also be modified to
support type inference.

Worse still, consider the phrase:

λi.(struct val x = i end \ sig val x:int end).x
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Figure 8.5

functor(A:sig type a:0; val a:a end)
struct val x = λi.((functor(B:sig type b:0; val b:b end)

struct val y = λj. if true then i
else A.a

end)
struct type b = int; val b = 1 end).y

end

It is easy to see that it has type int → int. However, the fact that i must have
type int is determined neither by the structure expression
struct val x = i end, nor by the signature expression sig val x:int end.
Instead, it is forced by the requirement that the type of the module
struct val x = i end must match the signature sig val x:int end. Thus
the algorithm for computing matching realisations between module types must
also be modified to support type inference.

Remark 8.2.1. The previous examples all hinge on the use of generalised projec-
tions to construct phrases in which a λ-bound Core-ML identifier, whose type
must be inferred, appears free in a module expression. It is plausible that any
measure taken to enforce the property that all module expression are closed with
respect to λ-bound identifiers will ensure that it is safe to adopt the interleaving
algorithm sketched above. Possibly one of the simplest fixes is to syntactically
restrict module projections to paths in the sense of Leroy [28, 29]. However, this
restriction is too strong to be acceptable in First-Class Modules, the extension
of Core-ML with package types, so we prefer to tackle the more general problem
of inferring types for module phrases containing free λ-bound identifiers directly.
Finding a solution to this problem will make it straightforward to adapt type-
inference to First-Class Modules.

Parameters and Scope

A separate issue concerns the need to ensure that type inference does not violate
the side conditions on type variables required by so many of the static semantic
rules of Modules.

Consider the type inference problems posed by the (contrived) examples in
Figures 8.5, 8.6, 8.7, and 8.8. The first three differ only in the branches of the
innermost conditional construct. We shall assume that a conditional expression
can be classified only if both of its branches have the same type. Some of these
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Figure 8.6

functor(A:sig type a:0; val a:a end)
struct val x = λi.((functor(B:sig type b:0; val b:b end)

struct val y = λj. if true then i
else B.b

end)
struct type b = int; val b = 1 end).y

end

Figure 8.7

functor(A:sig type a:0; val a:a end)
struct val x = λi.((functor(B:sig type b:0; val b:b end)

struct val y = λj. if true then i
else j

end)
struct type b = int; val b = 1 end).y

end

Figure 8.8

functor(A:sig type a:0; val a:a end)
struct val x = λi.((functor(B:sig type b:0; val b:b end)

struct val y = λj. pair
(if true then i else j)
(if true then j else B.b)

end)
struct type b = int; val b = 1 end).y

end
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phrases are well-typed, others are not. What is common to all of the phrases is
that the body of the outer functor must be parametric in the type A.a, and the
body of the inner functor must be parametric in both the type A.a and the type
B.b.

Suppose we are trying to construct classifications for these module expressions.
Let α be the type parameter denoted by the type A.a, and β be the one denoted
by the type B.b. Let u and u ′ be the simple types that need to be inferred for
i and j, respectively. To ensure that the variables α and β are really treated
as parameters representing arbitrary types, the side conditions on the functor
introduction rule require that α does not occur in the context of the outer functor,
and that β does not occur in the context of the inner functor. In particular, this
means that we must ensure the condition β 6∈ FV(u), since the inner functor is in
the scope of the declaration of i. On the other hand, α may occur both in u and
u ′, because i and j are declared within the scope of A. Similarly, β may occur in
u ′, since j is declared within the scope of B. In each example, the difficulty lies
in choosing u and u ′ in a way that makes the conditional expression type-check,
without violating the side condition β 6∈ FV(u).

Example 8.5 can be classified since we can choose u = α and independently
choose an arbitrary type for u ′.

Example 8.6, on the other hand, cannot be classified since the conditional
expression requires u = β , violating β 6∈ FV(u). It should be rejected by a sound
typing algorithm.

Example 8.7 can be classified provided we choose u = u ′, for some choice of
u ′ such that β 6∈ FV(u ′): since u ′ is permitted but not required to contain β , we
are free to choose any such u ′.

Contrast this last example with Example 8.8. Although the first conditional
requires u = u ′, the second also requires that u ′ = β ; any attempt to satisfy
both equations violates the side condition that β 6∈ FV(u). This phrase cannot
be classified, and should be rejected by a sound typing algorithm.

Now suppose that we try to use algorithm W to infer the types of i and j.
Note that we carried out the above discussion using linguistic meta-variables u
and u ′, describing generic choices of u and u ′ as solutions to equations between
types. Algorithm W carries out a similar analysis using simple type variables
as syntactic meta-variables and computing most general solutions to equations
between types by unification. Unfortunately, we also had to enforce side con-
ditions on parameters but neither algorithm W, nor the underlying unification
algorithm, address this issue. In each of the examples, W would simply assign
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“fresh” simple type variables ′a and ′b to i and j, unify them as required, but
fail to check the side condition on β . As a result, it would deem that all of the
examples above are well-typed, even though some of them are not: algorithm W
is not sound in this setting.

Note that type variables α ∈ TypVar are not the only kind of variable that can
play the role of parameters in typing derivations. The Core-ML rules (C-4) and
(C-5), relating, respectively, definable types and value types to their denotations,
both introduce simple type variables into derivations. These variables, too, must
be treated as parameters with definite scopes. Moreover, they must never be
confused with those simple type variables used as meta-variables during type
inference. In particular, they must be prevented from occurring in the domain of
any inferred substitution.

To respect the static semantics of Modules we will design a modified unification
algorithm that keeps track of the relative scopes of parameters and meta-variables,
using this information to ensure that any side-conditions on parameters are never
violated by unification. In turn, we will have to design our Modules type checker
and Core-ML type inference algorithm to perform some additional bookkeeping,
beyond that undertaken by algorithm W: to set the scene for any appeals to
unification, each algorithm will need to record the scope and role of every type
variable that is introduced during its execution.

8.3 Type Inference for Core-ML with Higher-
Order Modules

In this section, we shall design a type inference algorithm for Core-ML with
Higher-Order Modules that addresses the issues identified in Section 8.2.

8.3.1 Unification of Core-ML Simple Types

At a more abstract level, a class of unification problems is determined by a set
of terms supporting both a notion of substitution and an underlying equivalence
on terms. For a given class of problems, an instance of the unification problem
is a pair of terms drawn from the set of terms. The unification problem is to
construct a (preferably principal) substitution that equates the terms according
to the underlying equivalence, provided such a substitution exists.

The class of unification problems encountered in algorithm W is particularly
simple:
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• The terms to be unified are simple types constructed from a reduced gram-
mar of first-order type variables and the function space between types.

• The equivalence between simple types is purely syntactic.

• Every simple type variable occurring in a unification problem posed by W
is in fact a meta-variable that is game for substitution.

The simplicity means that it is possible to use Robinson’s [50] algorithm for first-
order, syntactic unification.

In Core-ML, the class of unification problems is more difficult. The difficulty
arises from the additional structure in the notion of simple type, and from the
context dependent role and scope of type variables:

• The terms to be unified are simple types constructed from an extended
grammar including applications of type names ν ∈ TypNam , and, by im-
plication, definable types d ∈ DefTyp , and types τ ∈ Typ . Since all of these
may themselves contain free simple type variables, the unification algorithm
must be extended to these semantic objects.

• The equivalence between simple types is tempered by the equivalence on
type names. Unification must take into account the notions of
α, η-equivalence of type names, and, by implication, of definable types and
types.

• Certain simple type variables ′a ∈ SimTyp and all type variables α ∈
TypVar must be treated as parameters and cannot be affected, or their
scopes violated, by unification.

Although our class of unification problems is more complex than for algorithm
W, it remains within the family of first-order unification problems: even though
simple types may contain terms with higher-order structure, the meta-variables
that are actually game for substitution are restricted to first-order variables ran-
ging over simple types.

To respect the scope of parameters, we will use a first-order variant of Miller’s
more general algorithm for performing higher-order unification under a mixed
prefix of quantifiers [40]. Our unification algorithm will take one additional ar-
gument, called the prefix to the unification problem. The prefix sets the scene
for the unification algorithm by declaring the role and scope of any variables
occurring within the terms to be unified.

As in [40], a prefix is simply a sequence of distinct universally and existentially
quantified variables:
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Figure 8.9 Prefixes
Q ∈ Prefix ::= ε empty prefix

| Q∃′a simple type meta-variable
(provided ′a 6∈ V(Q))

| Q∀′a simple type parameter
(provided ′a 6∈ V(Q))

| Q∀α type parameter
(provided α 6∈ V(Q))

Definition 8.7 (Prefixes). Figure 8.9 defines the set of prefixes Q ∈ Prefix .
All variables declared in a prefix are required to be distinct.

We let V(Q) ⊆ SimTypVar ∪ TypVar denote the set of all variables declared
in the prefix Q; E(Q) ⊆ SimTypVar denote the set of variables declared existen-
tially in Q; U(Q) ⊆ SimTypVar ∪ TypVar denote the set of variables declared
universally inQ. Intuitively, E(Q) describes the set of meta-variables in Q; U(Q)
describes the set of parameters in Q.

We will often write a prefix in the form of a pattern Q∃′aQ′ denoting the
concatenation of two prefixes Q∃′a and Q′, for some unique Q and Q′.2 We will
make similar use of the patterns Q∀′aQ′ and Q∀αQ′.

In the prefix Q∃′aQ′ (Q∀′aQ′, Q∀αQ′), Q′ is the scope of the declared vari-
able.

The notation Q∃̄{′a0, . . . , ′an−1} abbreviates (Q∃′a0 · · · )∃′an−1 (in some fixed
enumeration of type variables). The abbreviations Q∀̄{′a0, . . . , ′an−1} and
Q∀̄{α0, . . . , αn−1} are analogous.

A semantic object o is Q-closed, written formally as Q ` o closed, if, and
only if, all of its free variables are declared in Q.

The informal meaning of a prefix as a declaration of variables is as follows. A
universal quantifier declares that its bound variable is to be treated as a “con-
stant” that is not available for substitution. Because constants do not usually
have scope, we prefer to call universally bound variables parameters. An exist-
ential quantifier declares that its bound variable is a meta-variable and, unlike
a parameter, available for substitution. Intuitively, if ′a is a meta-variable then
any simple type u substituted for ′a may contain any of the parameters in scope
at the declaration of ′a but none of the parameters declared within the scope of
′a. Concretely, if ′a is declared in the prefix Q∃′aQ′, then any simple type u
substituted for ′a may contain any of the parameters declared to the left of ′a

2This notation is unambiguous since a variable may be declared at most once in a prefix.
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Figure 8.10 The definition of Q ` σ valid.

Q ` σ valid

Q ` ε valid (Q-1)

Q ` σ valid
Q∃′a ` σ valid (Q-2)

Q ` σ valid ′a 6∈ Dom(σ) ∀′b ∈ E(Q).′a 6∈ FTVS(σ(′b))
Q∀′a ` σ valid

(Q-3)

Q ` σ valid ∀′b ∈ E(Q).α 6∈ FV(σ(′b))
Q∀α ` σ valid (Q-4)

in Q but none of the parameters declared to the right of ′a in Q′. There is no
restriction on the meta-variables that u may contain.

Example 8.3.1. For instance, the prefix ∀α∃′a∀β∃′b declares ′a and ′b as meta-
variables and α and β as parameters. A valid substitution term for ′a may contain
a free occurrence of α, but not of β ; a valid substitution term for ′b may contain
either. Notice that this prefix encodes the side-conditions on parameters arising
from the examples in Figures 8.5 through 8.8.

More formally, a prefix determines a set of allowable, or valid, substitutions:

Definition 8.8 (Q-Substitutions). For a given prefix Q and a substitution σ,
we shall say that σ is a Q-substitution if, and only if, the relation Q ` σ valid,
defined in Figure 8.10, holds.

It is possible to relate Q-substitutions, according to their generality:

Definition 8.9 (Q-Generality). For a fixed prefix Q, a Q-substitution σ is
more general than another Q-substitution σ1, written σ �Q σ1, if, and only if,

∃σ2.σ2 ◦ σ = σ1.

We can now define our refined notion of unification problems and their solu-
tions:

Definition 8.10 (Q-Unification Problems and (Most General) Q-Unifiers).

A Q-unification problem is a triple consisting of a prefix Q and two Q-closed
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semantic objects, o and o ′, drawn from the same set of semantic objects. In par-
ticular, we assume that either o, o ′ ∈ SimTyp, o, o ′ ∈ DefTypk, o, o ′ ∈ TypNamκ,
or o, o ′ ∈ Typκ, i.e. that o and o ′ must have the same kind.

• A Q-unifier of o and o ′ is a Q-substitution σ such that σ(o) = σ(o ′). A
Q-unifier of o and o ′ is a solution to the Q-unification problem posed by o
and o ′.

• A most general Q-unifier of o and o ′ is a Q-unifier σ of o and o ′ such that,
for every other Q-unifier σ1 of o and o ′, σ �Q σ1. A most general Q-unifier
of o and o ′ is a principal solution to the Q-unification problem posed by o
and o ′.

A Q-Unification Algorithm

In this section we will present a deterministic algorithm for constructing a most
general Q-unifier for a given Q-unification problem. The input to the algorithm
is a valid Q-unification problem, presented as a triple consisting of a prefix Q
and two appropriate Q-closed semantic objects o and o ′. The output, if any, is a
most general Q-unifier for the problem. This algorithm is designed to satisfy the
following property (cf. Theorem 8.4), whose verification is left to future work:

Property 8.11 (Correctness of Q-Unification). ProvidedQ, o and o ′ define
a valid Q-unification problem then:

Termination The appeal Q ` o = o ′ ↓ terminates either in success, returning
a substitution, or failure.

Soundness If Q ` o = o ′ ↓ σ then Q ` σ valid and σ(o) = σ(o ′).

Completeness If σ1(o) = σ1(o ′) with Q ` σ1 valid, then, for some σ,
Q ` o = o ′ ↓ σ with σ �Q σ1.

To express the algorithm, we need to define an additional operation that
updates a prefix Q to take into account the effect of applying an intermediate
Q-substitution:

Definition 8.12 (Substitution in a Prefix).

( ) ∈ (Prefix × Subst )→ Prefix

σ(ε) def= ε

σ(Q∃′a) def= (σ(Q))∃̄(FTVS(σ(′a)) \ V(σ(Q)))

σ(Q∀′a) def= (σ(Q))∀′a
σ(Q∀α) def= (σ(Q))∀α
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Intuitively, if σ is a Q-substitution then σ(Q) is a prefix that declares the
same set of parameters, and in the same relative order, as Q. Moreover, any
variable ′a that is not a parameter of Q, but occurs in the image under σ of
a meta-variable of Q, is declared as a meta-variable in σ(Q) with the following
properties: (a) for every meta-variable ′b of Q such that ′a ∈ FTVS(σ(′b)), the
scope of ′a in σ(Q) contains all of the parameters originally declared within the
scope of ′b in Q; (b) ′a is declared within the scope of as many parameters as
possible without violating property (a). Syntactically speaking, this means that
(a) for every meta-variable ′b of Q such that ′a ∈ FTVS(σ(′b)), ′a is existentially
quantified to the left of any parameters originally declared to the right of ′b; (b)
′a is existentially quantified as far to the right as possible without violating (a).

The formal motivation for defining substitution in a prefix is the following
lemma:

Lemma 8.13 (Composition). Let σ1 be a Q-substitution. Then, for any other
substitution σ2, σ2◦σ1 is aQ-substitution if, and only if, σ2 is a σ1(Q)-substitution.

The forward direction of this lemma can be used to prove the soundness of our
unification algorithm: namely, that the composite substitutions returned by the
algorithm are valid for the original prefix of the unification problem. The reverse
direction can be used to prove completeness: updating the prefix in recursive calls
does not exclude valid unifiers.

The following properties allow us to show that the unification algorithm only
invokes itself on valid unification problems in recursive calls; and that it returns
a valid substitution for the original prefix in rules that extend the current prefix
with new parameters.

Properties 8.14.

1. If Q ` o closed, Q ` σ valid, and ∀′a ∈ E(Q).FV(σ(′a)) ⊆ U(Q) then
σ(Q) ` σ(o) closed.

2. If Q∀′a ` σ valid then Q ` σ valid.

3. If Q∀α ` σ valid then Q ` σ valid.

We can now present our unification algorithm:

Unification of Simple Types Q ` u = u ′ ↓ σ

Q∀′aQ′ ` ′a = ′a ↓ ∅ (U-1)
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Q∃′aQ′ ` ′a = ′a ↓ ∅ (U-2)

(U-1),(U-2) A simple type variable, whether a parameter or a meta-variable,
unifies with itself under the empty substitution.

Q∃̄E(Q′) ` u closed
Q∃′aQ′ ` ′a = u ↓ [u/′a] (U-3)

Q∃̄E(Q′) ` u closed ∀′b ∈ E(QQ′).u 6≡ ′b
Q∃′aQ′ ` u = ′a ↓ [u/′a] (U-4)

(U-3),(U-4) The rules are almost symmetric. Assuming that u is Q∃′aQ′-closed,
the premise Q∃̄E(Q′) ` u closed merely requires that none of the paramet-
ers declared within the scope of the meta-variable ′a occur free in u, and
that ′a does not occur free in u. The former ensures that [u/′a] is a Q∃′aQ′-
substitution as well as a unifier. The latter is just the occur check that we
already encountered in Rules (R-2) and (R-3) of Robinson’s algorithm. The
side condition ∀′b ∈ E(QQ′).u 6≡ ′b on Rule (U-4) ensures that only Rule
(U-3) applies in the special case that both types are distinct meta-variables.
This side condition plays the same role as the second side condition of Rule
(R-3).

Q ` u1 = u ′1 ↓ σ1 σ1(Q) ` σ1(u2) = σ1(u ′2) ↓ σ2

Q ` u1 → u2 = u ′1 → u ′2 ↓ σ2 ◦ σ1 (U-5)

(U-5) To unify two function spaces, we first attempt to unify their domains to
obtain a Q-substitution σ1. Provided this succeeds, we then attempt to
unify σ1(u2) and σ1(u ′2) with respect to the updated prefix σ1(Q). Note
that revising the prefix ensures that σ2 is a σ1(Q)-substitution and thus
that σ2 ◦ σ1 is a Q-substitution (cf. Lemma 8.13 (Composition)).

Q ` ν = ν ′ ↓ σ

∀i ∈ [k].
(
σ̄(Q) ` σ̄(ui) = σ̄(u ′i) ↓ σi where σ̄ ≡ (σ(i−1) ◦ . . . σ0 ◦ σ)

)
Q ` ν (u0, . . . , u(k−1)) = ν ′(u ′0, . . . , u ′(k−1)) ↓ σ(k−1) ◦ . . . σ0 ◦ σ

(U-6)
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(U-6) To unify two type name applications, we first attempt to unify their type
names, and then iteratively attempt to unify their corresponding arguments.
Each subsequent appeal to the algorithm must take into account the substi-
tutions returned by previous appeals. The rule only applies when the two
type names both have the same number of arguments and are thus of the
same kind (unification must fail otherwise).

Unification of Definable Types Q ` d = d ′ ↓ σ

∀i ∈ [k].′a i 6∈ V(Q)∪ {′a0, . . . , ′a(i−1)}
Q∀̄′a0, . . . , ′a(k−1) ` u = {′bi 7→ ′a i|i ∈ [k]} (u ′) ↓ σ
Q ` Λ(′a0, . . . , ′a(k−1)).u = Λ(′b0, . . . , ′b(k−1)).u ′ ↓ σ (U-7)

(U-7) To unify two definable types, we first rename the formal arguments of one
to coincide with the formal arguments of the other and declare them as fresh
parameters in the prefix. The premise ∀i ∈ [k].′a i 6∈ V(Q)∪ {′a0, . . . , ′a(i−1)}
together with the assumption that Λ(′b0, . . . , ′b(k−1)).u ′ is Q-closed ensures
that this renaming does not capture any free variables of
Λ(′b0, . . . , ′b(k−1)).u ′. We then unify the bodies in the extended prefix.
Observe that, because the parameters are declared to the right of any meta-
variable in Q, the parameters are prevented from occurring in the image
of any meta-variable under σ. Moreover, being parameters, they cannot
occur in the domain of σ. It is easy to reason that, under these conditions,
if σ is a unifier of u and {′bi 7→ ′a i|i ∈ [k]} (u ′) then σ is also a unifier of
Λ(′a0, . . . , ′a(k−1)).u and Λ(′b0, . . . , ′b(k−1)).u ′. Note also that the rule ap-
plies only when the two definable types take the same number of arguments
and are thus of the same kind (unification must fail otherwise).

Unification of Type Names Q ` ν = ν ′ ↓ σ

Q∀αQ′ ` α = α ↓ ∅ (U-8)

(U-8) A type variable must be declared as a parameter. It unifies with itself
under the empty substitution.

ν, ν ′ ∈ TypNamκ

Q ` ν = ν ′ ↓ σ1

σ1(Q) ` σ1(τ ) = σ1(τ ′) ↓ σ2

Q ` ν τ = ν ′ τ ′ ↓ σ2 ◦ σ1 (U-9)
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(U-9) To unify two type applications we proceed essentially as in rule (U-6).
However, we need to first ensure that the type names in the left and right
hand sides are of the same kind (unification must fail if they are not).

Unification of Types Q ` τ = τ ′ ↓ σ

α 6∈ V(Q) Q∀α ` τ = [α/β ] (τ ′) ↓ σ
Q ` Λα.τ = Λβ.τ ′ ↓ σ (U-10)

(U-10) In a manner similar to Rule U-7, to unify two type abstractions, we first
rename the formal argument of one to coincide with the argument of the
other and declare it as a fresh parameter in the prefix. The premise α 6∈
V(Q) together with the assumption that Λβ.τ ′ is Q-closed ensures that
this renaming does not capture any free variables of Λβ.τ ′. We then unify
the bodies in the extended prefix. Declaring the parameter to the right of
any meta-variables in Q prevents it from occurring in their image under σ.
Under these conditions, it is easy to reason that if σ is a unifier of τ and
[β/α] (τ ′) then σ is also a unifier of Λα.τ and Λβ.τ ′.

Q ` ν = ν ′ ↓ σ
Q ` ν = ν ′ ↓ σ (U-11)

(U-11) If both types are type names, we simply unify the type names.

α 6∈ V(Q) Q∀α ` τ = ν α ↓ σ
Q ` Λα.τ = ν ↓ σ (U-12)

α 6∈ V(Q) Q∀α ` ν α = τ ↓ σ
Q ` ν = Λα.τ ↓ σ (U-13)

(U-12),(U-13) These rules are symmetric. If one of the types is an abstraction,
but the other is a type name, then unification does not immediately fail,
for there may be a unifier that makes the two terms η-equivalent. (Re-
call that Definition 5.2 requires that we identify any type of the form
Λα.ν α ∈ TypNamκ→κ′ with its η-contraction ν , provided α 6∈ FV(ν) and
ν ∈ TypNamκ→κ′ .) Note that, provided ν is Q-closed, the first premise
ensures that α does not occur in FV(ν). Hence Λα.ν α is an η-expansion
of ν . Our algorithm proceeds in the recursive call by declaring the shared
parameter and unifying the body of the original abstraction with the body
of the η-expansion. This trick for dealing with η-equivalence is inspired by
Coquand’s algorithm for testing conversion in Type Theory [12].
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Q ` d = d ′ ↓ σ

Q ` d = d ′ ↓ σ (U-14)

(U-14) If both types are definable types, we simply unify the definable types.

Q ` d = η(ν) ↓ σ
Q ` d = ν ↓ σ (U-15)

Q ` η(ν) = d ↓ σ
Q ` ν = d ↓ σ (U-16)

(U-15),(U-16) These rules are symmetric and similar to Rules (U-12) and (U-13).
If one of the types is a definable type, but the other is a type name, then
unification does not immediately fail, for there may be a unifier that makes
the two terms η-equivalent. (Recall that Definition 5.2 requires that we
identify any type name with its η-expansion as a definable type.) In the
recursive call, we first η-expand the type name to obtain a definable type,
and then unify the two definable types.

Example 8.3.2. For example, consider the problem of finding a most general
∀α∃′a∀β∃′b-unifier of ′a → ′b and ′b → ′a. The corresponding appeal to the
algorithm:

∀α∃′b ` ′b closed
∀α∃′a∀β∃′b ` ′a = ′b ↓ [′b/′a]

(U-3) ∀α∃′b∀β ` ′b = ′b ↓ ∅ (U-2)

∀α∃′a∀β∃′b ` ′a → ′b = ′b → ′a ↓ [′b/′a]
(U-5)

returns the substitution [′b/′a]. It is easy to see that [′b/′a] is a ∀α∃′a∀β∃′b-unifier
of ′a → ′b and ′b → ′a, since [′b/′a](′a → ′b) = ′b → ′b = [′b/′a](′b → ′a) and
β 6∈ FV([′b/′a](′a)). To see that it is a most general unifier, consider any other
∀α∃′a∀β∃′b-unifier σ1 of ′a → ′b and ′b → ′a. Then we must have σ1(′a) = σ1(′b)
with β 6∈ FV(σ1(′a)). Let σ2 = σ1, then it is easy to see that σ2 ◦ [′b/′a] = σ1, i.e.
[′b/′a] �∀α∃′a∀β∃′b σ1.

Example 8.3.3. Now consider the problem of finding a most general ∀α∃′a∀β∃′b-
unifier of ′a → ′b and ′b → β . The corresponding appeal to the algorithm:

∀α∃′b ` ′b closed
∀α∃′a∀β∃′b ` ′a = ′b ↓ [′b/′a]

(U-3)
∀α ` β closed fails
∀α∃′b∀β ` ′b = β ↓ (U-3)

∀α∃′a∀β∃′b ` ′a → ′b = ′b → β ↓ (U-5)

fails to return a substitution, because the condition ∀α ` β closed does not
hold at the root of the rightmost recursive call. But this is fine, since there is
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no ∀α∃′a∀β∃′b-unifier of ′a → ′b and ′b → β . Suppose, to the contrary, that
there was such a unifier σ. Then we must have σ(′a → ′b) = σ(′b → β) with
β 6∈ FV(σ(′a)). This just means that σ(′a) = σ(′b) and σ(′b) = β . But then
FV(σ(′a)) = {β} which contradicts β 6∈ FV(σ(′a)).

8.3.2 Value Type Enrichment modulo Unification

In Rule (M-4) of the signature matching algorithm (Definition 5.25), we implicitly
assumed the existence of a decidable test for determining whether one value type
enriches another, i.e. for checking whether the relation v � v ′ holds between
two value types of the generic Core language. For Core-ML, Definition 3.28
defines v � v ′ to hold if, and only if, “every simple type generalised by v ′ is
also generalised by v”. This definition is intuitive, but the infinitary condition
prevents it from directly yielding a decision procedure.

Fortunately, it can be shown that v enriches v ′ if, and only if, v generalises
a generic instance of v ′ [55]. Formally, letting v ≡ ∀′a0, . . . , ′a(m−1).u and v ′ ≡
∀′b0, . . . , ′b(n−1).u ′, where we insist that {′b0, . . . , ′b(n−1)} ∩ FTVS(v) = ∅, then
v � v ′ if, and only if, v � u ′, i.e. there exists a substitution σ with Dom(σ) =
{′a0, . . . , ′a(m−1)} such that σ(u) = u ′.

Moreover, since we can w.l.o.g. also assume that
{′a0, . . . , ′a(m−1)} ∩ FTVS(u ′) = ∅, we can easily decide whether v � u ′ by look-
ing for a unifier σ with Dom(σ) = {′a0, . . . , ′a(m−1)} such that σ(u) = σ(u ′) = u ′.
Thus the test for v � v ′ can be posed as the following Q-unification problem.
SetQ to be the prefix that declares all the free variables of v and v ′ as parameters.
Then v � v ′ if, and only if, u and u ′ have a
Q∀̄{′b0, . . . , ′b(n−1)}∃̄{′a0, . . . , ′a(m−1)}-unifier. Clearly, this can be decided by
a corresponding appeal to our unification algorithm.

It is not difficult to argue that, in the more general case, where Q declares
some of the simple type variables free in v and v ′, not as parameters, but as meta-
variables, then the successful appeal Q∀̄{′b0, . . . , ′b(n−1)}∃̄{′a0, . . . , ′a(m−1)} `
u = u ′ ↓ σ can be used to obtain a most general Q-substitution σ′ such
that σ′(v) � σ′(v ′), by choosing σ′ = σ \ {′a0, . . . , ′a(m−1)}.

This idea is embodied in the following algorithm which we shall need shortly.
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Value Type Matching Q ` v � v ′ ↓ σ

∀i ∈ [n].′bi 6∈ V(Q) ∪ {′b0, . . . , ′b(i−1)}
∀i ∈ [m].′ai 6∈ V(Q)∪ {′b0, . . . , ′b(n−1)} ∪ {′a0, . . . , ′a(i−1)}
Q∀̄{′b0, . . . , ′b(n−1)}∃̄{′a0, . . . , ′a(m−1)} ` u = u ′ ↓ σ

Q ` ∀′a0, . . . , ′a(m−1).u � ∀′b0, . . . , ′b(n−1).u ′ ↓ σ \ {′a0, . . . , ′a(m−1)}
(V-1)

It is designed to satisfy the following property, whose verification is left to
future work:

Property 8.15 (Correctness of Value Type Matching). For any prefix Q
and Q-closed value types v and v ′:

Termination The appeal Q ` v � v ′ ↓ terminates either in success, returning
a substitution, or failure.

Soundness If Q ` v � v ′ ↓ σ then Q ` σ valid and σ(v) � σ(v ′).

Completeness If σ1(v) � σ1(v ′) with Q ` σ1 valid, then, for some σ,
Q ` v � v ′ ↓ σ with σ �Q σ1.

Example 8.3.4. Unlike the rules of the unification algorithm, that can at most
declare additional parameters in recursive calls, the algorithm for value type
matching can declare additional meta-variables before invoking unification. For
instance, consider the derivation:

Q∃̄E(Q′∃′c1∃′c2) ` ′c1 → ′c2 closed ∀′d ∈ E(QQ′∃′c1∃′c2).′c1 → ′c2 6≡ ′d
Q∃′aQ′∃′c1∃′c2 ` ′c1 → ′c2 = ′a ↓ [′c1 → ′c2/′a]

(U-4)

Q∃′aQ′ ` ∀′b1, ′b2.′b1 → ′b1 � ∀∅.′a ↓ [′c1 → ′c2/′a]
(V-1)

The recursive call to unification extends the prefix with two new meta-variables
′c1 and ′c2.

This derivation is sound because:

[′c1 → ′c2/
′a](∀′b1,

′b2.
′b1 → ′b2) ≡ ∀′b1,

′b2.
′b1 → ′b2

� ∀∅.′c1 → ′c2

≡ [′c1 → ′c2/
′a](∀∅.′a)

Notice that updating the original prefix Q∃′aQ′ by the substitution [′c1 → ′c2/′a]
returns the modified prefix Q∃′c1∃′c2Q′ that declares not one but two fresh meta-
variables ′c1 and ′c2, whose declarations replace the single declaration of ′a.
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8.3.3 Matching modulo Unification

In Chapter 5 we presented an algorithm for “matching” one module type against
another. Provided suitable conditions hold of the inputs P , R, O and O′, the
appeal ∀P .∀R ` O � O′ ↓ produces as output a unique matching realisation ϕ
if, and only if, O � ϕ (O′). In the context of Core-ML type inference, we can en-
counter matching problems in which both O and O′ contain meta-variables, intro-
duced by the type inference algorithm. In this situation, the matching problems
we need to solve are more general. In particular, the typical matching problem
will be to find both a substitution σ and a realisation ϕ such σ(O) � ϕ (σ(O′)).
Clearly, the algorithm ∀P .∀R ` O � O′ ↓ as it stands is not appropriate.
Fortunately, we can adapt it to the more general setting.

Our generalised matching algorithm, that combines the search for a substitu-
tion with the construction of a matching realisation, is derived from the match-
ing algorithm in Chapter 5. Successful appeals to the algorithm have the form
Q.∀R ` O � O′ ↓ σ, ϕ. The four arguments Q, R, O and O′ play essentially
the same role as in the original algorithm, except that the first has been gen-
eralised from a set of type variables P to a prefix Q. The algorithm outputs
both a substitution σ and, as before, a realisation ϕ. Intuitively, the matching
algorithm constructs a most general Q-substitution σ and realisation ϕ such that
σ(O) � ϕ (σ(O′)) (provided they exist).

In the original algorithm, the first argument P merely records the set of type
variables, other than R, allowed to occur free in the objects O and O′. In the
generalised algorithm, Q subsumes the role of P . Like P , Q records the set of
type variables, other than R, allowed to occur free in both objects O and O′,
by declaring these variables as parameters. However, it also sets the scene for
any unification problems encountered during matching by declaring the role and
scope of any simple type variable occurring free in O and O′.

To see how the algorithm is derived from the algorithm in Chapter 5 we shall
compare the original rule, Rule (M-2):

t ∈ Dom(S) S(t) = τ ∀P .∀R ` S � S ′ ↓ ϕ
∀P .∀R ` S � t = τ ,S ′ ↓ ϕ
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with its generalisation, Rule (M-2):

t ∈ Dom(S)
S(t), τ ∈ Typκ

Q∀̄R ` τ closed
Q ∀̄R ` S(t) = τ ↓ σ1

σ1(Q).∀R ` σ1(S) � σ1(S ′) ↓ σ2, ϕ

Q.∀R ` S � t = τ ,S ′ ↓ σ2 ◦ σ1, ϕ

In the generalised rule, the original test for type equivalence, S(t) = τ , has been
replaced by a test for unifiability, expressed by the three premises:

S(t), τ ∈ Typκ

Q∀̄R ` τ closed

Q ∀̄R ` S(t) = τ ↓ σ1

Of these, the first premise merely states that the two type components are of
the same kind, which is a necessary precondition on the inputs to the unification
algorithm3. The second premise ensures that the type τ is closed with respect to
the variables allowed to occur free in S(t). This premise discriminates between
applications of this rule and Rule (M-3)4. The third premise, the appeal to
the unification algorithm, is the generalisation proper of the original premise
S(t) = τ . If the components can be unified, the unifier σ1 is applied to the
structures S and S ′ before proceeding with the recursive call. The result, if any,
is a second substitution σ2 and matching realisation ϕ such that σ2(σ1(S)) �
ϕ (σ2(σ1(S))). The most general substitution for the original problem is obtained
by composing σ2 and σ1. The matching realisation is just the realisation ϕ.

The only other rule that can actually contribute to the final substitution
returned by matching, rather than merely propagating substitutions obtained
from recursive calls, is Rule (M-4), the generalisation of Rule (M-4). The rule
determines whether the corresponding value component of the left-hand structure
enriches the value component of the right-hand structure, modulo some most
general substitution. This is decided by an appeal to the algorithm Q ` v � v ′ ↓

of the preceding section.
The remaining rules are straightforward adaptations of the corresponding ori-

ginals: each rule has been altered to propagate the additional substitution from
3In the original rule, this premise is implicit because Definition 5.2 stipulates that type

equivalence is only defined on types of the same kind.
4In the original rule, this premise is implicit because two types can only be equivalent if they

contain the same free variables.
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the output of one recursive call to the inputs of the next, and to return the
appropriate composite substitution and realisation, taking care to apply any in-
tervening substitution to a previously computed component of this realisation.
(The result of applying a substitution to a realisation is defined in the obvious
way: σ(ϕ) def= {α 7→ σ(ϕ (α)) | α ∈ Dom(ϕ)}.)

Structure Matching Q.∀R ` S � S ′ ↓ σ, ϕ

Q.∀R ` S � εS ↓ ∅, ∅ (M-1)

t ∈ Dom(S)
S(t), τ ∈ Typκ

Q∀̄R ` τ closed
Q ∀̄R ` S(t) = τ ↓ σ1

σ1(Q).∀R ` σ1(S) � σ1(S ′) ↓ σ2, ϕ

Q.∀R ` S � t = τ ,S ′ ↓ σ2 ◦ σ1, ϕ (M-2)

α 6∈ V(Q)∪ R
t ∈ Dom(S)
S(t), (α β0 · · · βn−1) ∈ Typκ

FV(S(t)) ∩R ⊆ {βi|i ∈ [n]}
Q.∀R ` S � [Λβ0 · · · βn−1.S(t)/α] (S ′) ↓ σ, ϕ

Q.∀R ` S � t = α β0 · · · βn−1,S ′ ↓ σ, (σ([Λβ0 · · · βn−1.S(t)/α]) | ϕ)
(M-3)

x ∈ Dom(S) Q ∀̄R ` S(x) � v ↓ σ1 σ1(Q).∀R ` σ1(S) � σ1(S ′) ↓ σ2, ϕ

Q.∀R ` S � x : v ,S ′ ↓ σ2 ◦ σ1, ϕ
(M-4)

X ∈ Dom(S)
Q.∀R ` S(X) �M ↓ σ1, ϕ
σ1(Q).∀R ` σ1(S) � ϕ (σ1(S ′)) ↓ σ2, ϕ′

Q.∀R ` S � X :M,S ′ ↓ σ2 ◦ σ1, (σ2(ϕ) | ϕ′) (M-5)

Functor Matching Q.∀R ` F � F ′ ↓ σ, ϕ

N ∩ (V(Q)∪R ∪M ) = ∅
M ∩ (V(Q)∪ R) = ∅
(Q ∀̄R ∪M ).∀∅ ` MM �MN ↓ σ1, ϕ′

σ1(Q).∀R ∪M ` ϕ′ (σ1(M′
N )) � σ1(M′

M ) ↓ σ2, ϕ

Q.∀R ` ∀N .MN →M′
N � ∀M .MM →M′

M ↓ σ2 ◦ σ1, ϕ
(M-6)
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Module Matching Q.∀R `M �M′ ↓ σ, ϕ

Q.∀R ` S � S ′ ↓ σ, ϕ

Q.∀R ` S � S ′ ↓ σ, ϕ (M-7)

Q.∀R ` F � F ′ ↓ σ, ϕ
Q.∀R ` F � F ′ ↓ σ, ϕ (M-8)

The generalised matching algorithm is designed to satisfy the following prop-
erty (cf. Theorems 5.26 (Termination), 5.32 (Soundness) and 5.33 (Complete-
ness)), whose verification is left to future work:

Property 8.16 (Correctness of Matching). On inputs Q, R, O and O′, where
P ≡ U(Q) ∩ TypVar and for any Q such that ∀P ∪R ` O Gnd, ∀P .∃Q .∀R `
O′ Slv, Q∀̄Q ∪R ` O closed and Q∀̄Q ∪R ` O′ closed, the matching al-
gorithm has the following properties:

Termination The appeal Q.∀R ` O � O′ ↓ , terminates either in success,
returning a substitution and realisation, or failure.

Soundness If Q.∀R ` O � O′ ↓ σ, ϕ then Q∀̄Q ∪R ` σ valid, Dom(ϕ) = Q
and σ(O) � ϕ (σ(O′)).

Completeness If σ1(O) � ϕ1 (σ1(O′)), where Q∀̄Q ∪R ` σ1 valid, Dom(ϕ1) =
Q and Reg(ϕ1) ∩R = ∅, then, for some σ, ϕ and σ2,
Q.∀R ` O � O′ ↓ σ, ϕ with σ2 ◦ σ = σ1 and σ2(ϕ) = ϕ1.

8.3.4 A Type Inference Algorithm

With suitable algorithms for unification and matching in hand, we can now
present the type inference algorithm for Core-ML with Higher-Order Modules.

Our algorithm has essentially the same form as W, except that it takes an
additional argument, the current prefix Q. Intuitively, given a prefix Q, a Higher-
Order Modules context C, and a phrase p, the algorithm, if it succeeds, returns
a pair consisting of a semantic object o and a Q-substitution σ. If p is a term
phrase, then o is the principal classification of the phrase in the most general,
inferred context σ(C). Similarly, if p is a type phrase, then o is the denotation of
the phrase in the most general, inferred context σ(C).

To ease the presentation, we shall first define the inference judgements for
Core-ML and then for Higher-Order Modules. Although the intended correctness
properties of the inference judgements are stated separately, they must, of course,
be proven simultaneously, since the judgements are defined by mutual induction.
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8.3.4.1 Type Inference for Core-ML

The inference judgements for Core-ML are designed to satisfy the following prop-
erty (cf. Theorem 8.5), whose verification is left to future work:

Property 8.17 (Correctness of Core-ML Type Inference).

For any prefix Q and context C such that ` C Gnd and Q ` C closed:

Termination:

• The appeal Q.C ` u ↓ , terminates either in success, returning a
simple type and substitution, or failure.

• The appeal Q.C ` d ↓ , terminates either in success, returning a
definable type and substitution, or failure.

• The appeal Q.C ` v ↓ , terminates either in success, returning a
value type and substitution, or failure.

• The appeal Q.C ` e ↓ , to monomorphic type inference terminates
either in success, returning a simple type and substitution, or failure.

• The appeal Q.C ` e ↓ , to polymorphic type inference terminates
either in success, returning a value type and substitution, or failure.

Soundness:

• If Q.C ` u ↓ u, σ, then Q ` σ valid and σ(C) ` u . u.

• If Q.C ` d ↓ d , σ, then Q ` σ valid and σ(C) ` d . d .

• If Q.C ` v ↓ v , σ, then Q ` σ valid and σ(C) ` v . v.

• If Q.C ` e ↓ u, σ, then Q ` σ valid and σ(C) ` e : u.

• If Q.C ` e ↓ v , σ, then Q ` σ valid and σ(C) ` e : v.

Completeness:

• If σ1(C) ` u . u1 with Q ` σ1 valid then for some u, σ and σ2,
Q.C ` u ↓ u, σ with σ2 ◦ σ = σ1 and σ2(u) = u1.

• If σ1(C) ` d . d1 with Q ` σ1 valid then for some d , σ and σ2,
Q.C ` d ↓ d , σ with σ2 ◦ σ = σ1 and σ2(d ) = d1.

• If σ1(C) ` v . v1 with Q ` σ1 valid then for some v, σ and σ2,
Q.C ` v ↓ v , σ with σ2 ◦ σ = σ1 and σ2(v) = v1.
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• If σ1(C) ` e : u1 with Q ` σ1 valid then for some u, σ and σ2,
Q.C ` e ↓ u, σ with σ2 ◦ σ = σ1 and σ2(u) = u1.

• If σ1(C) ` e : v1 with Q ` σ1 valid then for some v, σ and σ2,
Q.C ` e ↓ v , σ with σ2 ◦ σ = σ1 and σ2(v) = v1.5

Denotation Inference Rules

The rules for inferring the denotations of Core-ML type phrases are straightfor-
ward adaptations of their counterparts in the static semantic of Core-ML (cf.
Section 3.2.3). Each rule has been altered to propagate the additional substitu-
tion from the output of one recursive call to the inputs of the next, and to return
the appropriate denotation and composite substitution, taking care to apply any
intervening substitution to a previously computed component of the denotation.

Simple Types Q.C ` u ↓ u, σ

C(′a) = u
Q.C ` ′a ↓ u, ∅ (C-1)

Q.C ` u ↓ u, σ1 σ1(Q).σ1(C) ` u′ ↓ u ′, σ2

Q.C ` u→ u′ ↓ σ2(u)→ u ′, σ2 ◦ σ1 (C-2)

Q.C ` do ↓ d , σ
∀i ∈ [k]. (σ(i−1) ◦ . . . σ0 ◦ σ)(Q).(σ(i−1) ◦ . . . σ0 ◦ σ)(C) ` ui ↓ ui, σi
σ(k−1) ◦ . . . σ0(d ) ≡ Λ(′a0, . . . , ′ak−1).u
σ̄ ≡ {′a i 7→ σ(k−1) ◦ . . . σ(i+1)(ui) | i ∈ [k]}

Q.C ` do(u0, . . . , uk−1) ↓ σ̄ (u), σ(k−1) ◦ . . . σ0 ◦ σ
(C-3)

The denotations of definable types and value types are inferred in a similar
manner: fresh simple type variables are chosen to represent the bound variables
of the phrase. These are declared as parameters in the current prefix Q before
inferring the denotation of the body. Declaring the parameters within the scope of
all variables in Q (and, by implication, in C) ensures that these variables remain
fresh for the inferred context σ(C), respecting the side-conditions of Rules (C-4)
and (C-5).

5The reason that we can state σ2(v) = v1 rather than just σ2(v) � v1, as in the completeness
property for algorithm W (Theorem 8.5), is because the Core-ML judgement σ1(C) ` e : v1
already requires that the derived type v1 is principal for e in σ1(C) (cf. Rule (C-10)), while the
corresponding ML judgement σ1(C) ` e : v1 does not (cf. Rule (ML-6)).
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Definable Types Q.C ` d ↓ d , σ

∀i ∈ [k].′a i 6∈ V(Q)∪ {′a0, . . . , ′ai−1}
Q∀̄{′a0, . . . , ′ak−1}.C[′a0 = ′a0] · · ·[′ak−1 = ′ak−1] ` u ↓ u, σ

Q.C ` Λ(′a0, · · · , ′ak−1).u ↓ Λ(′a0, · · · , ′ak−1).u, σ
(C-4)

Value Types Q.C ` v ↓ v , σ

∀i ∈ [n].′a i 6∈ V(Q)∪ {′a0, . . . , ′ai−1}
Q∀̄{′a0, . . . , ′an−1}.C[′a0 = ′a0] · · ·[′an−1 = ′an−1] ` u ↓ u, σ

Q.C ` ∀′a0, · · · , ′an−1.u ↓ ∀′a0, · · · , ′an−1.u, σ
(C-5)

Classification Inference Rules

The rules for inferring the monomorphic types of Core-ML phrases closely follow
the rules of algorithm W. The main difference is this: where our presentation
of W employed the informal notion of generating “fresh” simple type variables,
without specifying how fresh is actually fresh enough, we use the current prefix
to determine adequate “freshness”.

(Monomorphic) Values Q.C ` e ↓ u, σ

C(i) = u
Q.C ` i ↓ u, ∅ (C-6)

′a 6∈ V(Q) Q∃′a.C[i : ′a] ` e ↓ u ′, σ
Q.C ` λi.e ↓ σ(′a)→ u ′, σ \ {′a} (C-7)

Q.C ` e ↓ u, σ1

Q′ ≡ σ1(Q)∃̄(FTVS(u) \ V(σ1(Q)))
Q′.σ1(C) ` e′ ↓ u ′, σ2

Q′′ ≡ σ2(Q′)∃̄(FTVS(u ′) \ V(σ2(Q′)))
′a 6∈ V(Q′′)
Q′′∃′a ` σ2(u) = u ′ → ′a ↓ σ3

Q.C ` e e′ ↓ σ3(′a), (σ3 ◦ σ2 ◦ σ1) \ {′a} (C-8)

Q.C ` vo ↓ ∀′a0, . . . , ′an−1.u, σ
∀i ∈ [n].′ai 6∈ V(σ(Q)) ∪ {′a0, . . . , ′a i−1}

Q.C ` vo ↓ u, σ (C-9)
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In Rule (C-7), inferring the type of a function λi.e, we represent the unknown
type of the formal argument i as a variable ′a that is chosen to be fresh for the
current prefix Q (cf. the premise ′a fresh in Rule (W-2)). Before inferring the
type of the function body, ′a is recorded as a meta-variable that is declared within
the scope of all the variables in the current prefix Q. In this way, any parameter
declared within the scope of ′a, while inferring the type of the body, will be
prevented from occurring in the inferred context σ(C[i : ′a]) ≡ σ(C)[i : σ(′a)]. On
the other hand, any parameter that already occurs in the context, and therefore
cannot have a side-condition that prevents it from occurring in the additional
assumption . . .[i : σ(′a)] , is free to do so.

A minor complication of our algorithm, that is not apparent in the informal
description of W,6 stems from the need to keep track of any fresh meta-variables
that may appear in the inferred type of a subexpression, without having been
declared in the prefix used to check that expression. These variables arise as the
result of eliminating polymorphism. The generation of fresh meta-variables is
particularly evident in Rule (C-9), classifying a value occurrence, but also arises
from the inherent polymorphism of λ-abstraction and function application. To
illustrate the phenomenon, let’s just consider Rule (C-9). Much like Rule (W-4)
that eliminates the polymorphism of an identifier in algorithmW, this rule gener-
ates new meta-variables by returning a “fresh” instance of the value occurrence’s
polymorphic type. The problem is that, although these variables are chosen to be
fresh with respect to the current prefix Q, we have no explicit means of recording
this fact in the output of the rule. The trick is to leave this book-keeping step not
to the rule itself, but to any rule that might have invoked it in a recursive call.
Rule (C-8) illustrates the idea. After inferring the pair u and σ1 for the function
e, but before inferring the type of the argument e′, any simple type variable that
occurs free in u but is not already declared in the updated prefix σ1(Q) is as-
sumed to be a “fresh” meta-variable, introduced within the scope of all variables
in σ1(Q). These fresh variables are first collected and then declared in the ex-
tended prefix Q′ ≡ σ1(Q)∃̄(FTVS(u) \ V(σ1(Q))). Only then does the algorithm
proceed with the second recursive call, using the updated prefix and the modified
context σ1(C) to infer the type u ′ of the argument e′. Similar bookkeeping steps
are need to account for any fresh meta-variables in u ′. These are recorded in
Q′′, before continuing with the final appeal to unification. As in Rule (W-3), the
appeal to unification ensures that the domain of the function e is equivalent to
the type of the argument e′. However, unlike Rule (W-3), the most general uni-

6precisely because it is implicit in the informal notion of generating “fresh” variables.
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fier that equates these types must also respect the side conditions on parameters
encoded in the prefix.

Finally, the principal value type of an expression is obtained by quantifying
over all those variables that remain “fresh” for the prefix σ(Q) in the inferred
simple type u:

(Polymorphic) Values Q.C ` e ↓ v , σ

Q.C ` e ↓ u, σ
{′a0, . . . , ′an−1} ≡ FTVS(u) \ V(σ(Q))

Q.C ` e ↓ ∀′a0, . . . , ′an−1.u, σ (C-10)

8.3.4.2 Type Inference for Higher-0rder Modules

The inference judgements for Higher-Order Modules are designed to satisfy the
following correctness property, whose verification is left to future work:

Property 8.18 (Correctness of Higher-Order Modules Type Inference).

For any prefix Q and context C such that ` C Gnd and Q ` C closed:

Termination:

• The appeal Q.C ` B ↓ , terminates either in success, returning a
signature and a substitution, or failure.

• The appeal Q.C ` S ↓ , terminates either in success, returning a
signature and a substitution, or failure.

• The appeal Q.C ` do ↓ , terminates either in success, returning a
definable type and a substitution, or failure.

• The appeal Q.C ` b ↓ , terminates either in success, returning an
existential module type and a substitution, or failure.

• The appeal Q.C ` m ↓ , terminates either in success, returning an
existential module type and a substitution, or failure.

• The appeal Q.C ` vo ↓ , terminates either in success, returning a
value type and a substitution, or failure.

Soundness:

• If Q.C ` B ↓ L, σ, then Q ` σ valid and σ(C) ` B . L.
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• If Q.C ` S ↓ L, σ, then Q ` σ valid and σ(C) ` S . L.

• If Q.C ` do ↓ d , σ, then Q ` σ valid and σ(C) ` do . d .

• If Q.C ` b ↓ X , σ, then Q ` σ valid and σ(C) ` b : X .

• If Q.C ` m ↓ X , σ, then Q ` σ valid and σ(C) ` m : X .

• If Q.C ` vo ↓ v , σ, then Q ` σ valid and σ(C) ` vo : v.

Completeness:

• If σ1(C) ` B . L1 with Q ` σ1 valid then for some L, σ and σ2,
Q.C ` B ↓ L, σ with σ2 ◦ σ = σ1 and σ2(L) = L1.

• If σ1(C) ` S . L1 with Q ` σ1 valid then for some L, σ and σ2,
Q.C ` S ↓ L, σ with σ2 ◦ σ = σ1 and σ2(L) = L1.

• If σ1(C) ` do . d1 with Q ` σ1 valid then for some d , σ and σ2,
Q.C ` do ↓ L, σ with σ2 ◦ σ = σ1 and σ2(d ) = d1.

• If σ1(C) ` b : X1 with Q ` σ1 valid then for some X , σ and σ2,
Q.C ` b ↓ X , σ with σ2 ◦ σ = σ1 and σ2(X ) = X1.

• If σ1(C) ` m : X1 with Q ` σ1 valid then for some X , σ and σ2,
Q.C ` m ↓ X , σ with σ2 ◦ σ = σ1 and σ2(X ) = X1.

• If σ1(C) ` vo : v1 with Q ` σ1 valid then for some v, σ and σ2,
Q.C ` vo ↓ v , σ with σ2 ◦ σ = σ1 and σ2(v) = v1.

The rules for inferring the denotations and classifications of Modules phrases
are straightforward adaptations of their counterparts in the static semantic of
Higher-Order Modules (cf. Section 5.5). Each rule has been altered to propagate
the additional substitution from the output of one recursive call to the inputs of
the next, and to return the appropriate semantic object and composite substitu-
tion, taking care to apply any intervening substitution to a previously computed
component of the semantic object. Whenever a static semantic rule requires the
introduction of type variables that are fresh for the inferred context, the corres-
ponding inference rule simply generates variables that are fresh with respect to
the current prefix, records them as parameters declared within the scope of all
currently declared variables and then proceeds with type inference. The only in-
ference rules that can make a genuine contribution to the substitution returned,
rather than merely propagating the results of recursive calls, are those that re-
quire an appeal to the generalised signature matching algorithm, i.e. the rules
for functor application (Rule (H-19)), curtailment (Rule (H-20)) and abstraction
(Rule (H-21)).
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Remark 8.3.1. Observe that the denotation rule for functor signatures ( Rule
(H-7)) is ambiguous in the sense that it does not uniquely determine the enu-
meration of the functor’s ∀-bound type variables, but the choice of enumeration
affects the order in which the signature’s Λ-bound type variables are paramet-
erised by the functor’s ∀-bound type variables. A similar observation applies to
the classification rule for functors (Rule (H-18)): it does not uniquely determine
the enumeration of the functor’s ∀-bound type variables, but the choice of enu-
meration affects the order in which the functor body’s ∃-bound abstract types
are skolemised by the functor’s ∀-bound type variables. These ambiguities are
inconsequential, since the choice of enumeration does not alter the functional de-
pendencies captured by the parameterised and skolemised variables. The source
of the ambiguity is our design decision that semantic objects ΛP .M, ∀P .M→ X ,
and ∃P .M bind finite sets of type variables that, being sets, do not admit fixed
enumerations. We could easily remove the ambiguity by replacing the use of finite
sets of variables in these binding constructs by the use of finite lists of variables,
so long as we revise the static semantics accordingly. Rather than reformulate
the static semantics, we let type inference Rules (H-7) and (H-18) be just as
non-deterministic in the enumeration of bound type variables, so that any static
semantic derivation that exploits a particular enumeration admits a correspond-
ing type inference derivation that exploits the same enumeration. This allows
us to give a simple statement of the completeness of type inference. The type
inference rules are deterministic in all other respects.

Denotation Inference Rules

Signature Bodies Q.C ` B ↓ L, σ

Q.C ` d ↓ d , σ1 σ1(Q).(σ1(C))[t = d ] ` B ↓ ΛP .S, σ2

P ∩ FV(σ2(d )) = ∅ t 6∈ Dom(S)
Q.C ` type t = d; B ↓ ΛP .t = σ2(d ),S, σ2 ◦ σ1

(H-1)

Q∀αk.C[t = ακ] ` B ↓ ΛP .S, σ αk 6∈ V(Q)∪ P t 6∈ Dom(S)
Q.C ` type t : k; B ↓ Λ{αk} ∪ P .t = αk,S, σ

(H-2)

Q.C ` v ↓ v , σ1 σ1(Q).σ1(C)[x : v ] ` B ↓ ΛP .S, σ2

P ∩ FV(σ2(v)) = ∅ x 6∈ Dom(S)
Q.C ` val x : v; B ↓ ΛP .x : σ2(v),S, σ2 ◦ σ1

(H-3)
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Q.C ` S ↓ ΛP .M, σ1

P ∩ V(σ1(Q)) = ∅ (σ1(Q)∀̄P).(σ1(C))[X :M] ` B ↓ ΛP ′.S, σ2

P ′ ∩ (P ∪ FV(σ2(M))) = ∅ X 6∈ Dom(S)
Q.C `module X : S; B ↓ ΛP ∪ P ′.X : σ2(M),S, σ2 ◦ σ1

(H-4)

Q.C ` εB ↓ Λ∅.εS, ∅ (H-5)

Signature Expressions Q.C ` S ↓ L, σ

Q.C ` B ↓ L, σ
Q.C ` sig B end ↓ L, σ (H-6)

Q.C ` S ↓ ΛP .M, σ1

P ∩ V(σ1(Q)) = ∅ P = {ακ0
0 , . . . , α

κn−1
n−1 }

(σ1(C)∀̄P).(σ1(C))[X :M] ` S′ ↓ ΛQ .M′, σ2

Q ′ ∩ (P ∪ FV(σ2(M)) ∪ FV(ΛQ .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}

Q.C ` funsig(X:S)S′ ↓ ΛQ ′.∀P .σ2(M)→ [Q ′/Q ] (M′), σ2 ◦ σ1

(H-7)

Type Occurrences Q.C ` do ↓ d , σ

t ∈ Dom(C) C(t) = τ

Q.C ` t ↓ η̂(τ ), ∅ (H-8)

Q.C ` m ↓ ∃P .S, σ t ∈ Dom(S) S(t) = τ P ∩ FV(τ ) = ∅
Q.C ` m.t ↓ η̂(τ ), σ

(H-9)

Classification Inference Rules

Structure Bodies Q.C ` b ↓ X , σ

Q.C ` d ↓ d , σ1 σ1(Q).(σ1(C))[t = d ] ` b ↓ ∃P .S, σ2

P ∩ FV(σ2(d )) = ∅ t 6∈ Dom(S)
Q.C ` type t = d; b ↓ ∃P .t = σ2(d ),S, σ2 ◦ σ1

(H-10)
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Q.C ` e ↓ v , σ1 σ1(Q).(σ1(C))[x : v ] ` b ↓ ∃P .S, σ2

P ∩ FV(σ2(v)) = ∅ x 6∈ Dom(S)
Q.C ` val x = e; b ↓ ∃P .x : σ2(v),S, σ2 ◦ σ1

(H-11)

Q.C ` m ↓ ∃P .M, σ1 P ∩ V(σ1(Q)) = ∅
(σ1(Q)∀̄P).σ1(C)[X :M] ` b ↓ ∃P ′.S, σ2

P ′ ∩ (P ∪ FV(σ2(M))) = ∅ X 6∈ Dom(S)
Q.C `module X = m; b ↓ ∃P ∪ P ′.X : σ2(M),S, σ2 ◦ σ1

(H-12)

Q.C ` m ↓ ∃P .M, σ1 P ∩ V(σ1(Q)) = ∅
(σ1(Q)∀̄P).σ1(C)[X :M] ` b ↓ ∃P ′.S, σ2 P ′ ∩ P = ∅

Q.C ` local X = m in b ↓ ∃P ∪ P ′.S, σ2 ◦ σ1

(H-13)

Q.C ` εb ↓ ∃∅.εS, ∅ (H-14)

Module Expressions Q.C ` m ↓ X , σ

X ∈ Dom(C) C(X) =M
Q.C ` X ↓ ∃∅.M, ∅ (H-15)

Q.C ` m ↓ ∃P .S, σ X ∈ Dom(S) S(X) =M
Q.C ` m.X ↓ ∃P .M, σ (H-16)

Q.C ` b ↓ X , σ
Q.C ` struct b end ↓ X , σ (H-17)

Q.C ` S ↓ ΛP .M, σ1

P ∩ V(σ1(Q)) = ∅ P = {ακ0
0 , . . . , α

κn−1
n−1 }

(σ1(Q)∀̄P).(σ1(C))[X :M] ` m ↓ ∃Q .M′, σ2

Q ′ ∩ (P ∪ FV(σ2(M)) ∪ FV(∃Q .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}

Q.C ` functor(X : S)m ↓ ∃Q ′.∀P .σ2(M)→ [Q ′/Q ] (M′), σ2 ◦ σ1

(H-18)
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Q.C ` m ↓ X , σ1

σ1(Q).σ1(C) ` m′ ↓ ∃P ′.M′′, σ2

σ2(X ) ≡ ∃P .∀Q .M′→M
P ∩ V(σ2 ◦ σ1(Q)) = ∅
P ′ ∩ (V(σ2 ◦ σ1(Q)) ∪ P) = ∅
Q ∩ (V(σ2 ◦ σ1(Q)) ∪ P ∪ P ′) = ∅
((σ2 ◦ σ1(Q))∀̄(P ∪ P ′)).∀∅ ` M′′ �M′ ↓ σ3, ϕ

Q.C ` m m′ ↓ ∃P ∪ P ′.ϕ (σ3(M)), σ3 ◦ σ2 ◦ σ1 (H-19)

Q.C ` m ↓ X , σ1

σ1(Q).σ1(C) ` S ↓ ΛP ′.M′, σ2

σ2(X ) ≡ ∃P .M
P ∩ P ′ = ∅
(P ∪ P ′) ∩ V(σ2 ◦ σ1(Q)) = ∅
((σ2 ◦ σ1(Q))∀̄P).∀∅ ` M �M′ ↓ σ3, ϕ

Q.C ` m � S ↓ ∃P .ϕ (σ3(M′)), σ3 ◦ σ2 ◦ σ1 (H-20)

Q.C ` m ↓ X , σ1

σ1(Q).σ1(C) ` S ↓ ΛP ′.M′, σ2

σ2(X ) ≡ ∃P .M
P ∩ P ′ = ∅
(P ∪ P ′) ∩ V(σ2 ◦ σ1(Q)) = ∅
((σ2 ◦ σ1(Q))∀̄P).∀∅ ` M �M′ ↓ σ3, ϕ

Q.C ` m \ S ↓ ∃P ′.σ3(M′), σ3 ◦ σ2 ◦ σ1 (H-21)

Value Occurrences Q.C ` vo ↓ v , σ

x ∈ Dom(C) C(x) = v
Q.C ` x ↓ v , ∅ (H-22)

Q.C ` m ↓ ∃P .S, σ x ∈ Dom(S) S(x) = v P ∩ FV(v) = ∅
Q.C ` m.x ↓ v , σ

(H-23)

8.4 Type Inference for Core-ML with First-Class
Modules

Let us briefly consider adapting the algorithms of the preceding section to First-
Class Modules, the extension of Core-ML with package types presented in Chapter
7. There are two issues we need to address:
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1. the extension of the Q-unification algorithm to deal correctly with the uni-
fication of package types <∃P .M> ∈ SimTyp, in a way that respects the
equivalence in Definition 7.1.

2. the extension of the Core-ML type inference judgements to handle the ad-
ditional Core-ML phrases for specifying, introducing and eliminating values
with package types.

Fortunately, all of the machinery we shall need has already been defined.

8.4.1 Extending the Unification Algorithm

Our unification algorithm must be able to unify simple types up to the equivalence
in Definition 7.1. Recall that this definition essentially identifies package types
up to re-orderings of components.

Given a unification problem defined by Q, u and u ′, we need only consider the
additional case where either one or both of the simple types is a package type. If
only one is a package type, and the other is anything but a meta-variable, then
unification must fail. If the other is a meta-variable, then the case is already
covered by the algorithm’s existing rules (Rule (U-3) or Rule (U-4)).

The only case that remains is the one where u and u ′ are both package types.
Let u ≡ <∃P .M> and u ′ ≡ <∃P ′.M′>. We want to construct the most general
Q-substitution σ such that σ(<∃P .M>) and σ(<∃P ′.M′>) are equal “up to”
the equivalence of Definition 7.1.

Intuitively, in the special case where the two package types contain none of
the meta-variables in Q, then unification reduces to a test for equivalence that,
expanding Definition 7.1, can be checked by verifying the conditions:

• P ′ ∩ FV(∃P .M) = ∅ and M′ � ϕ (M) for some ϕ with Dom(ϕ) = P ; and
symmetrically:

• P ∩ FV(∃P ′.M′) = ∅ and M� ϕ′ (M′) for some ϕ′ with Dom(ϕ′) = P ′.

In other words, the two package types are equivalent if, and only if, each is a
generic instance of the signature determined by the other. In the sketched proof
of Conjecture 7.2, we argued that these conditions could be verified by two sym-
metric appeals to our original matching algorithm of Chapter 5. (Recall that the
well-formedness condition on package types ensures that the corresponding signa-
tures ΛP .M and ΛP ′.M′ are both solvable ( ` ΛP .M Slv and ` ΛP ′.M′ Slv).)

In the more general case, where <∃P .M> and <∃P ′.M′> may contain meta-
variables declared in Q, this argument suggests that we can perform a test for
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equivalence modulo unification using our generalised matching algorithm. As-
suming that <∃P .M> and <∃P ′.M′> are Q-closed, we want to obtain a most
general Q-substitution σ such that σ(<∃P .M>) and σ(<∃P ′.M′>) are equi-
valent. W.l.o.g. we can also assume that (P ∪ P ′) ∩ V(Q) = ∅ and P ∩ P ′ = ∅.
Given that <∃P .M> and <∃P ′.M′> are Q-closed, these conditions ensure that
P ′ ∩ FV(∃P .M) = ∅ and P ∩ FV(∃P ′.M′) = ∅. In the first appeal to the
generalised matching algorithm, we treat variables in P ′ as generic paramet-
ers and determine the most general Q∀̄(P ′ ∪ P)-substitution σ1 and realisation
ϕ such that σ1(M′) � ϕ (σ1(M)) with Dom(ϕ) = P . In a second appeal,
we determine the most general σ1(Q)∀̄(P ∪ P ′)-substitution σ2 and realisation
ϕ′, such that σ2(σ1(M)) � ϕ′ (σ2(σ1(M′))) with Dom(ϕ′) = P ′. Since en-
richment is closed under substitution, applying σ2 to the first relation we ob-
tain σ2(σ1(M′)) � σ2(ϕ (σ1(M))). Since σ2 is a σ1(Q)∀̄(P ∪ P ′)-substitution
and σ1(M) is σ1(Q)∀̄(P ∪ P ′)-closed, σ2(σ1(M′)) � σ2(ϕ (σ1(M))) can be re-
expressed as σ2 ◦ σ1(M′) � ϕ′′ (σ2 ◦ σ1(M)), where ϕ′′ is the realisation ϕ′′

def=
σ2(ϕ). By the definition of σ2 ◦ σ1, σ2(σ1(M)) � ϕ′ (σ2(σ1(M′))) can be re-
expressed as σ2 ◦ σ1(M) � ϕ′ (σ2 ◦ σ1(M′)). We can then verify the conditions of
Definition 7.1 to show that<∃P .σ2 ◦ σ1(M)> is equivalent to<∃P ′.σ2 ◦ σ1(M′)>.
Since the parameters in P and P ′ cannot occur in the images of σ1 and σ2, it fol-
lows that σ2 ◦ σ1(<∃P .M>) = σ2 ◦ σ1(<∃P ′.M′>), i.e. that σ2◦σ1 is a Q-unifier
of u and u ′. Furthermore, it is not difficult to reason that σ2◦σ1 is a most general
Q-unifier of u and u ′; and that if either of the above appeals to matching fails,
then u and u ′ do not have a Q-unifier.

This idea is captured by extending the unification algorithm with the following
rule:

Q ` u = u ′ ↓ σ

(P ∪ P ′) ∩ V(Q) = ∅
P ∩ P ′ = ∅
Q∀̄P ′.∀∅ ` M′ �M ↓ σ1, ϕ
(σ1(Q))∀̄P .∀∅ ` σ1(M) � σ1(M′) ↓ σ2, ϕ′

Q ` <∃P .M> = <∃P ′.M′> ↓ σ2 ◦ σ1 (H-24)

Remark 8.4.1. Clearly, adding this rule means that the proofs of termination,
soundness and completeness of our unification and matching algorithms must now
be carried out simultaneously. Even though it is easy to motivate and describe
the extension, it is by no means obvious that the properties of the original, strat-
ified, algorithms are preserved: we have tied the knot and made them mutually
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recursive.

For instance, one of the challenges is to devise a decreasing measure on unific-
ation problems that establishes termination. The measure traditionally used for
first-order unification relies on the fact that the unification algorithm cannot in-
troduce new meta-variables during its execution. This property no longer holds in
the extended algorithm since it may indirectly invoke Rule (V-1) and, in Example
8.3.4, we demonstrated how this rule can increase the set of new meta-variables.

8.4.2 Extending the Type Inference Algorithm

It remains to extend the inference judgements of Core-ML with the three addi-
tional inference rules dealing with package types. Rules (P-1), (P-2) and (P-3)
are straightforward adaptations of the corresponding static semantic rules, Rules
(P-1), (P-2) and (P-3):

Denotation Inference Rules Q.C ` u ↓ u, σ

Q.C ` S ↓ ΛP .M, σ
Q.C ` <S> ↓ <∃P .M>, σ (P-1)

Inferring the denotation of the type phrase <S> is easy: we simply infer
the denotation of the signature S, derive the corresponding package type and
propagate the substitution from the recursive call.

Classification Inference Rules Q.C ` e ↓ u, σ

Q.C ` m ↓ X , σ1

σ1(Q).σ1(C) ` S ↓ ΛP .M, σ2

σ2(X ) ≡ ∃P ′.M′

P ′ ∩ V(σ2 ◦ σ1(Q)) = ∅
P ∩ (V(σ2 ◦ σ1(Q)) ∪ P ′) = ∅
((σ2 ◦ σ1(Q))∀̄P ′).∀∅ ` M′ �M ↓ σ3, ϕ

Q.C ` pack m as S ↓ <∃P .σ3(M)>, σ3 ◦ σ2 ◦ σ1 (P-2)

Inferring the classification of the phrase pack m as S requires an appeal to the
matching algorithm, and is similar to inferring the classification of an abstraction
(Rule (H-21)).
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Q.C ` e ↓ u, σ1

Q′ ≡ σ1(Q)∃̄(FTVS(u) \ V(σ1(Q)))
Q′.σ1(C) ` S ↓ ΛP .M, σ2

σ2(Q′) ` u = <∃P .M> ↓ σ3

σ3(<∃P .M>) ≡ <∃P ′.M′> P ′ ∩ V(σ3 ◦ σ2(Q′)) = ∅
(σ3 ◦ σ2(Q′)∀̄P ′).(σ3 ◦ σ2 ◦ σ1)(C)[X :M′] ` e′ ↓ u ′, σ4

P ′ ∩ FV(u ′) = ∅
Q.C ` open e as X : S in e′ ↓ u ′, σ4 ◦ σ3 ◦ σ2 ◦ σ1 (P-3)

In Rule (P-3), we can observe that the presence of the explicit signature in
the elimination phrase open e as X : S in e′ means that the simple type of e
is uniquely determined up to unifiability with <∃P .M>. Since this is the only
phrase that eliminates package types, the type inference algorithm never needs
to make uneducated guesses about the encapsulated, higher-order type structure
of value expressions that are actually used as packages. We conjecture that this
explicitly typed elimination construct preserves the principal typing property, i.e.
that every typable expression has a principal type.

8.5 Conclusion

In this chapter, we took a detailed look at the problem of combining type infer-
ence for Core-ML and type checking of Higher-Order Modules. After reviewing
ML type inference, we gave counter-examples that illustrated how the naive ap-
proach of interleaving ML’s type inference algorithm W with the Modules type
checker of Chapter 5 fails to be sound. We used these examples to motivate the
design of an integrated algorithm, similar in spirit to W but, by necessity, more
complex. Although we stated the key correctness properties that the algorithms
are designed to satisfy, the proof of these properties must be left to future work.
The main obstacle to proving these properties is simply the sheer number of cases
to consider.

To alleviate this deficiency, we have aimed for a clear presentation of the
concepts underlying the algorithms, building on the more solid foundations of
Chapter 5 and taking inspiration from the well-known properties of ML and
its type inference algorithm. This leaves us in the unsatisfactory but probably
unavoidable situation of relying on our engineering judgement to assess the cor-
rectness of the algorithms.

However, empirical evidence does support our claim of correctness. The al-
gorithms, including the extension to First-Class Modules, are implemented in the
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prototype interpreter accompanying this thesis [52]. The algorithms behave cor-
rectly on a small but representative range of tests that includes all of the examples
in this thesis.
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Chapter 9

Conclusion

We conclude this thesis with a summary of our achievements (Section 9.1), a
comparison with related research (Section 9.2), and directions for further work
(Section 9.3).

9.1 Summary

The Standard ML Modules language has been both the subject and the source
of much of the recent research into the type-theoretic foundations of module lan-
guages. Despite these efforts, a proper type-theoretic understanding of the static
semantics of Modules has not emerged. Such an understanding offers two poten-
tial benefits: Type Theory provides us with a rational basis for analysing existing
features of the language, and for synthesising new features by generalisation.

In Chapter 2, we reviewed how the existing type-theoretic accounts of Stand-
ard ML, based on a syntactic reduction to standard constructs from Type The-
ory, are largely unsatisfactory. The more successful type-theoretic alternatives to
Standard ML Modules (cf. Section 2.3.3), although extending its capabilities con-
siderably, have resorted to introducing non-standard constructs with unpleasant
meta-theoretic properties. We consequently could discern no distinct advantage
in abandoning the existing semantics of Standard ML, provided its main aspects
could be explained and extended directly by analogy with Type Theory.

Thus we undertook the work in this thesis with two main objectives. The first
was to provide a better, more type-theoretic formulation of the existing static
semantics of Modules. The second was to use this formulation as the rational
basis for designing proper extensions of Modules.

In Chapter 3 we gave a stylised presentation of the existing static semantics
of Standard ML. We took great pains to separate the semantics of the Core and
Modules, distilling the essence of Modules and making precise the extent to which
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each of Core and Modules depends on the other. This effort was motivated by
the desire to ensure that both the syntax and semantics of Modules were more
amenable to generalisation, and to permit applications of Modules to different
Core languages. Examining the semantics we found no evidence to support the
often made claim that a type-theoretic model of Modules requires first-order de-
pendent types. Aside from the operational use of the state of type variables to
implement type generativity, the type structure of Modules is easily explained
by resorting to the simpler, second-order notions of type parameterisation (for
signatures), universal quantification over types (for functors), and subtyping (for
enrichment).

In Chapter 4 we presented a new, more declarative static semantics for Mod-
ules, based on classifying structures using existentially quantified types. Our
main objective was to first explain and then eliminate the state of type vari-
ables maintained by the generative classification judgements of Chapter 3. By
proving the equivalence of the two semantics, we showed that type generativity
is nothing more than a procedural implementation of existential quantification
over types. In presenting the new semantics, we also adopted some clarifying
notational changes, stressing the role of signatures as parameterised types, and
functors as polymorphic functions.

In Chapter 5, we extended the Modules language of Chapter 3 to higher-
order, using the revised semantics in Chapter 4 as our starting point. Functors
were given the status previously enjoyed only by structures: they could now be
defined as components of structures, specified as functor arguments and returned
as functor results. We were able to present the semantics of Higher-Order Modules
as a natural generalisation of the definitions underlying the first-order language of
the preceding chapters. The crucial ideas of introducing higher-order realisations
and of generalising the enrichment relation to functors, by combining polymorphic
subsumption with contravariant enrichment, were adapted and reworked from the
original proposals of Biswas [3]. The applicative semantics for functor generativity
was inspired by our own results in Chapter 4. We also addressed the practical
concern of type-checking Modules by providing, and proving correct, a sound
and complete algorithm for signature matching. The algorithm is similar to, but
simpler than, the one proposed by Biswas.

In Chapter 6 we briefly discussed the foundations of a separate compilation
system for Modules. Using our revised semantics, we were able to analyse why the
traditional approach to separate compilation in Standard ML fails. We managed
to identify an alternative notion of compilation unit that satisfies the requirements
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of separate compilation. Although acceptable in practice, from a theoretical per-
spective this solution is only partial. After analysing the problem, we suggested
appropriate modifications to the syntax and semantics, and formalised these ideas
in a skeletal higher-order modules calculus. We sketched a proof of the adequacy
of these modifications.

In Chapter 7 we turned our attention to a particular Core language, Core-
ML, and relaxed the stratification between Core and Modules. We obtained a
language with first-class modules and gave examples of programs exploiting them.
Our approach is novel in maintaining the distinction between Core and Modules.
Instead of amalgamating the features of both in a single language, we provide
constructs for packing Module values as Core values and opening Core values as
Module values, allowing programs to alternate between Modules and Core level
computation. Our ability to define a simple notion of first-class module directly
contradicts the claims made by Harper and Mitchell [20]: their analysis implies
that Standard ML is incompatible with first-class modules.

In Chapter 8 we considered the type inference problem posed by Core-ML in
the presence of both higher-order and first-class modules. We reviewed the clas-
sical, unification-based type inference algorithm for ML, the language on which
Core-ML is founded. We discussed why a naive combination of the type checker
for Modules with the traditional type inference algorithm for ML is inadequate.
We designed a suitably generalised unification algorithm, and presented a de-
rived, hybrid type inference algorithm that integrates type checking of Modules
with type inference for Core-ML. We stated correctness properties of these al-
gorithms but left their verification to future work.

Throughout this thesis, our approach has been to use concepts from type
theory as a guideline for reformulating and generalising the existing semantics
of Modules. An important practical benefit of this approach is that our exten-
sions to the language can readily be integrated with the existing definition and
implementations of Standard ML.

9.2 Comparison with Related Work

9.2.1 The Adequacy of MacQueen’s Type-Theoretic Ana-
logy

The existing type-theoretic accounts of Standard ML Modules are rooted in an
informal analogy, due originally to MacQueen, relating structures to nested pairs,
signatures to dependent products, functors to functions, and functor signatures
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to dependent function spaces. This analogy was first expressed in MacQueen’s
language DL [35], elaborated in Harper and Mitchell’s XML [20], and ultimately
refined to account for the phase distinction in Harper, Mitchell and Moggi’s HML
[21]. Certain aspects of this analogy, in particular the reliance on first-order
dependent types, can still be found in the type-theoretic alternatives to Standard
ML, namely Leroy’s Modules [28, 31, 29], Harper and Lillibridge’s translucent
sums calculus [18] and its descendants [33, 53, 22].

Having familiarised ourselves with the static semantics of Modules, we are now
in a good position to assess the adequacy of MacQueen’s analogy. Fundamental
to MacQueen’s argument is the tenet that signatures are the types of structures.
In MacQueen’s interpretation, the specification of a type component within a
signature binds an existentially quantified type variable, while the definition of
a type component within a structure introduces an existential quantifier. This
is consistent with MacQueen’s tenet, since it means that the type of a structure
is indeed a signature. To account for the transparency of type definitions, Mac-
Queen argues that the existential quantifier must have the strong interpretation
of Section 2.2.6. In this way, Standard ML’s ability to project the actual type
component from a structure is interpreted as the ability to project the type wit-
ness from a term of strong existential type, i.e. the dot-notation is modeled by
existential elimination.

Remark 9.2.1. Before we start with our examples, we should point out that Mac-
Queen uses pairing instead of naming to group components into structures. For
the examples of this section, we shall ignore this discrepancy, since it isn’t central
to the argument.

Example 9.2.1. Let’s illustrate MacQueen’s analogy with an example. We will use
the informal notation [[p]] to denote MacQueen’s interpretation of the Modules
phrase p. For instance, the signature:

S def= sig type t : 0; val x : t end

is interpreted as the strong existential type:

[[S]] def= Σα:0.α

According to the static semantics of Modules, the denotation of the signature
S is:

` S . Λ{α}.(t = α,x : α).

Let’s define L to abbreviate this semantic signature:

L def= Λ{α}.(t = α,x : α).
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Let’s compare S’s denotation L with MacQueen’s interpretation [[S]]. From
L we can see that the function of the type specification in S is not to declare
a quantified type component: instead, it simultaneously introduces a new type
parameter α, and declares a type component t = α denoting this parameter.
Notice that the denotation of this type component, although represented by a
formal type variable, is explicit in the body (t = α,x : α) of L. On the other
hand, in the type [[S]] the existential quantifier ensures that the denotation of the
type component is hidden: [[S]] tells us only the first component of a pair of type
[[S]] is some type of kind 0, without revealing which type.

Despite these differences, let’s continue to develop MacQueen’s analogy. The
structure:

s def= struct type t = int; val x = 1 end

is interpreted as pairing the type int with the term 1 to introduce a value of
existential type, for instance:

[[s]] def= 〈int, 1〉 as Σα:0.α.

Notice that the type of this pair is indeed the existential type [[S]], since

` 〈int, 1〉 as Σα:0.α : Σα:0.α

we have:
` [[s]] : [[S]],

which is consistent with MacQueen’s interpretation of signatures as types.
According to the static semantics of Modules, the semantic object of the

structure s is:
` s : ∃∅.(t = int,x : int).

Let’s define X to abbreviate the semantic object of s:

X def= ∃∅.(t = int,x : int)

Now let’s compare the type [[S]] of [[s]] with the semantic object X of the structure
s. The empty existential quantifier of X is irrelevant. What is pertinent is that
the denotation of the type component, i.e. int, is apparent in the semantic object
X , while it is hidden in the type [[S]]. This distinction is crucial because it means
that the denotation of s’s type component can be determined by simple inspection
of the semantic object X :

` s : ∃∅.(t = int,x : int)
t ∈ Dom(t = int,x : int)
(t = int,x : int)(t) = int

` s.t . int

331



On the other hand, to determine the denotation of [[s]]’s type component, accessed
using the first projection Fst [[s]], we have to inspect the term [[s]] itself, not just
its type [[S]]. Only by expanding the definition of [[s]] can we derive:

` Fst (〈int, 1〉 as Σα:0.α) : 0
` Fst (〈int, 1〉 as Σα:0.α) = int : 0

and hence:
` Fst ([[s]]) = int : 0.

At first, this difference seems insignificant, since X must also be obtained by
“inspecting” (i.e. classifying) s. However, suppose the structure expression s is
not in the canonical form of a structure body, but, for the sake of argument,
a functor application. Then we can still determine its semantic object and the
denotation of its type component statically without dynamically reducing the
functor application. In MacQueen’s approach, the functor application in s is
interpreted as a corresponding function application in [[s]]. Now, because the
function application [[s]] is not in the canonical form of a pair, the application must
first be dynamically reduced to a pair to discover its type component. Although
the effect of having a transparent type component is similar in both cases, the
mechanisms used to achieve this effect are clearly completely different: static
typing on the one hand, dynamic reduction on the other.

MacQueen’s interpretation of functors as functions is an extension of the in-
terpretation of signatures as types: because the argument signature of a functor
is interpreted as a type, it makes sense that the functor itself be modeled as a
function on elements of this type. The need to type functions using first-order uni-
versal quantification, i.e. dependent function spaces, follows from the fact that the
argument signature may contain existentially quantified, and thus opaque, type
components. To see why, consider a function defined with respect to a formal
argument whose type is a strong existential. The type of the function’s body
may mention the argument’s type component, expressed as a projection from the
argument. However, because the argument is merely formal, i.e. a variable, it
cannot be reduced to a pair and the dependency of the function’s range on its
argument cannot be eliminated. The only way to account for the dependency in
the function’s type is to use first-order universal quantification of the function’s
argument over its range.

Example 9.2.2. Continuing Example 9.2.1, consider the functor:

F def= functor(X : S)struct val y = X.x end

≡ functor(X : sig type t : 0; val x : t end)struct val y = X.x end.
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In MacQueen’s interpretation, this corresponds to a λ-abstraction, taking a
term of existential type as an argument, and projecting its second component.

[[F]] def= λX:[[S]].Snd X

≡ λX:(Σα:0.α).Snd X.

The body of this function has type:

X : Σα:0.α ` Snd X : Fst X

Moreover, since X is canonical, but not in the form of a pair, the type Fst X
may not be simplified any further. Hence the dependency of the body’s type on
the term X cannot be removed and the function must be given the first-order
universally quantified type:

` λX:(Σα:0.α).Snd X : ∀X:(Σα:0.α).Fst X,

i.e.
` [[F]] : ∀X:[[S]].Fst X.

Let’s compare the type of [[F]] with the semantic object that is assigned to the
functor F according to the static semantics of Modules:

` F : ∃∅.∀{α}.(t = α,x : α)→ (y : α).

Again, the existential quantification is irrelevant. What is pertinent is that
the range of the functor shows no first-order dependency on the functor argument:
instead, it has a second-order dependency on a universally quantified type vari-
able. What MacQueen interprets as a dependent function on a dependent domain,
can be understood as a polymorphic, non-dependent function on a non-dependent
domain.

It is revealing to compare the derivation of the function’s type:

X:[[S]] ` Snd X : Fst X
` λX:[[S]].Snd X : ∀X:[[S]].Fst X

with the derivation of the functor’s semantic object:

` S . Λ{α}.(t = α,x : α)
X : (t = α,x : α) ` struct val y = X.x end : ∃∅.(y : α)

` functor(X : S)struct val y = X.x end : ∃∅.∀{α}.(t = α,x : α)→ (y : α)

Contrast the classification of the function body with the classification of the
functor body. Unlike the specified type [[S]] of the function argument, neither
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the signature S, nor its denotation Λ{α}.(t = α,x : α), is used directly as the
type of the functor argument. Instead, the signature is used in an ancillary role,
to specify the family of argument types Λ{α}.(t = α,x : α), indexed by α. The
functor’s term argument X is assumed to have the type (t = α,x : α), which
is a generic member of this family. Intuitively, discharging the functor’s term
parameter X yields a monomorphic function of type (t = α,x : α) → (y : α).
Discharging the functor’s type parameter α yields a polymorphic function of type
∀{α}.(t = α,x : α)→ (y : α). The derivation combines both these steps into
one.

We can also see the difference between dependent functions and functors by
comparing how they are applied. For example, the type of the application of the
function [[F]] to the actual argument [[s]] is obtained by a first-order substitution,
substituting the term [[s]] for the quantified term variable X in the range of [[F]]:

` [[F]] : ∀X:[[S]].Fst X ` [[s]] : [[S]]
` [[F]] [[s]] : [[[s]]/X] (Fst X).

On the other hand, consider the classification of the corresponding functor ap-
plication according to the static semantics of Modules:

` F : ∃∅.∀{α}.(t = α,x : α)→ (y : α)
` s : ∃∅.(t = int,x : int)
(t = int,x : int) � [int/α] (t = α,x : α)

` F s : ∃∅.[int/α] (y : α).

The semantic object of the application is obtained by a second-order substitution,
substituting the type int for the quantified type variable α in the functor range.
Conceptually, this derivation implicitly combines the following two steps. In the
first step, an appropriate instance of the polymorphic functor is chosen, obtaining
a monomorphic function of type (t = int,x : int)→ (y : int). In the second step,
this monomorphic function is applied to an argument in its domain, returning a
result of type (y : int).

Finally, in MacQueen’s interpretation a structure containing a substructure is
modeled as a nested pair of terms. The type of a pair is a cross-product. Again,
the need to type pairs using first-order existential quantification, i.e. dependent
cross products, follows from the fact that the first component of a product may
contain existentially quantified, and thus opaque, type components. For instance,
consider wanting to express a function taking a pair, whose first component is
a pair of a type and a term, and whose second component is a term of this
type. Note that the first component corresponds to a substructure with a type
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component. We need to express the domain of our function as a cross product of
a strong existential and some second type. Since the strong existential type does
not reveal the identity of its type component, the only way to express this second
type is by projection from the term inhabiting the strong existential. This means
that the second component of a cross product must be allowed to depend on the
term inhabiting its first component. Thus we need dependent cross products, i.e.
first-order existential quantification over terms.

Example 9.2.3. Suppose we are trying to write a functor with the argument sig-
nature:

S′ def= sig structure Y : S; val y : Y.t end

≡ sig structure Y : sig type t : 0; val x : t end; val y : Y.t end.

Notice how the type of y is specified in terms of the type component of the
substructure Y.

To be consistent with MacQueen’s interpretation of signatures as types, this
signature must correspond to the type of a nested pair, consisting of a term Y
of type [[S]], itself pairing a type with a term, together with another term of this
type. Because the implementation of Y’s type component is hidden in [[S]], the
only way to refer to it is by projection from the term Y, yielding the first-order
existential type:

[[S′]] def= ∃Y:[[S]].Fst Y

≡ ∃Y:(Σα:0.α).Fst Y

Let’s compare this type with the actual denotation of the signature S′:

` sig structure Y : S; val y : Y.t end . Λ{α}.(Y : (t = α,x : α),y : α).

Observe that the apparent first-order dependency of the type of y on the term Y

has been eliminated in favour of a second-order dependency on the type parameter
α: since α explicitly represents the denotation of Y’s type component, we can
express the type of y without referring to Y.

In summary, by examining the actual semantics of Modules, we can see little
evidence to support the claim that Standard ML’s type structure is based on
first-order dependent types.

9.2.2 Leroy’s Modules and Harper and Lillibridge’s Trans-
lucent Sums

In a sense, Leroy’s module calculi [28, 31, 29], Harper and Lillibridge’s translucent
sums calculus [18] and its descendants [33, 53, 22] are refinements of the analogy
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proposed by MacQueen. While abandoning MacQueen’s use of the strong ex-
istential, they still interpret signatures as types. Moreover, because signatures
can declare opaque type components, they also need to resort to the use of first-
order dependent types. We will focus on Leroy’s work, but the other systems are
similar, and the comments in this section apply to all of them.

In MacQueen’s approach, the type of a structure cannot reveal the denota-
tions of its type components: the transparency of the structure’s type components
is achieved by inspection of the structure itself, violating the phase distinction.
Like MacQueen, Leroy interprets signatures as the types of structures. However,
by enriching the notion of signature to allow a mixture of opaque and manifest
type declarations, Leroy can account for transparency, while preserving the phase
distinction. Type components with opaque declarations are abstract. Type com-
ponents with manifest declarations are transparent. In this way, the denotation of
a structure’s type component can be determined by inspection of the structure’s
signature, as long as the component has a manifest declaration in that signature.

Remark 9.2.2. Leroy use syntactic type phrases, not semantic objects, to classify
term phrases. For instance, the classification judgement for module expressions
has the form C ` m : S, relating the module expression m to a syntactic signature,
where C is a context mapping identifiers to syntactic type phrases. Because our
syntax of type phrases is almost identical to Leroy’s, we shall employ it when
presenting examples in his semantics.

Example 9.2.4. Continuing with Example 9.2.1, in Leroy’s calculus, the structure
s is assigned the signature:

` s : sig type t = int; val x : int end.

Observe that t is declared to be manifestly equal to int in the type of s.

Leroy defines a context-dependent subtyping relation on signatures, written
C ` S ⊆ S′, that, in a sense, combines our separate notions of enrichment and
realisation in a single relation.

Example 9.2.5. In Leroy’s semantics, one can derive:

` sig type t = int; val x : int end ⊆ sig val x : int end,

reflecting the fact that, in our semantics, any semantic structure matching (the
denotation of) the signature on the left also matches (the denotation of) the
signature on the right by virtue of enrichment.

Furthermore, in Leroy’s semantics, one can also derive:

` sig type t = int; val x : int end ⊆ sig type t : 0; val x : t end,
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reflecting the fact that, in our semantics, any semantic structure matching the
signature on the left also matches the signature on the right by virtue of a real-
isation. Notice, however, that the realisation is left implicit in Leroy’s subtyping
judgement.

Using his subtyping relation, Leroy can interpret Standard ML’s abstraction
phrase s \ S as a coercion to a supertype.

Example 9.2.6. For instance, combining the typing judgement:

` s : sig type t = int; val x : int end,

with the subtyping judgement:

` sig type t = int; val x : int end ⊆ sig type t : 0; val x : t end,

one can derive the signature of the abstraction:

` s \ sig type t : 0; val x : t end : sig type t : 0; val x : t end.

It’s interesting to compare this with the semantic object of the abstraction in our
semantics:

` s \ sig type t : 0; val x : t end : ∃{α}.(t = α,x : α).

In Leroy’s semantics, the abstract type is represented by the opaque type compon-
ent t, consequently the type of x depends on the component t. In our semantics,
the abstract type has an independent representation as a quantified type variable,
the denotation of t is apparent, and there is no dependency of x’s type on the
identifier t. We will shortly see why the existence of an independent representa-
tion for the abstract type is significant.

Unfortunately, having combined the notions of enrichment and realisation into
a single subtyping relation, Leroy can no longer account for the effect of merely
curtailing a structure by a signature, forcing him to abandon the curtailment
phrase. Recall that the semantics of abstraction and curtailment differ only in
the treatment of the matching realisation. In an abstraction, the actual realisa-
tion is effectively forgotten and may be left implicit. In a curtailment, however,
the actual realisation is required since it must be preserved. The problem with
Leroy’s definition of subtyping is that it leaves realisations implicit, accommod-
ating abstractions, but ruling out a direct semantics for curtailment phrases.

Leroy needs dependent function spaces (i.e. functor signatures) to describe the
types of functors. As in MacQueen’s DL, the need for dependent function spaces
arises from the use of signatures as types, coupled with the fact that signatures
can contain opaque type components.
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Example 9.2.7. In Leroy’s system the body of the functor F from Example 9.2.2
has the signature:

X : sig type t : 0; val x : t end ` struct val y = X.x end : sig val y : X.t end.

Since the type component of X is declared opaquely in the context, the type
occurrence X.t cannot be simplified any further. Hence the dependency of the
body’s type on the term X cannot be removed, and the functor F must be given
a dependent type that is conveniently expressed using the dependent syntax of
functor signatures1:

` F : funsig(X:sig type t : 0; val x : t end)sig val y : X.t end.

Although functors have dependent types, Leroy must avoid performing first-
order substitution when typechecking functor applications; this is because the
syntax of types is not closed under the substitution of module expressions for
module identifiers. He does this by adopting a novel elimination rule: a functor
may only be applied if it can first be given a non-dependent supertype using a
covariant subtyping rule.

Example 9.2.8. In Leroy’s system, to type the application F s we first need to
determine a supertype for F that is both non-dependent and has the type of s
as its domain. To this end, we can show that the original, dependent functor
signature:

funsig(X:sig type t : 0; val x : t end)sig val y : X.t end

is a subtype of the non-dependent supertype:

sig type t = int; val x : int end→ sig val y : int end

by the following reasoning. First, observe that the domain of the supertype is a
subtype of the original domain:

` sig type t = int; val x : int end ⊆ sig type t : 0; val x : t end.

Second, under the more informative assumption that X belongs to this subdo-
main, we can show that the original range is a subtype of the supertype’s range:

X : sig type t = int; val x : int end ` sig val y : X.t end ⊆ sig val y : int end.
1Note that, although their syntax is the same, functor signatures play a different role in

Leroy’s semantics: in Leroy’s semantics, a functor signature is a type classifying terms; in our
system, a functor signature denotes a parameterised type.
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Note that to establish this last judgement we need to exploit the fact that, in the
subdomain, X’s type component is manifestly equal to int. Finally, combining
these two facts, the subtyping rule for functor signatures derives:

` funsig(X:sig type t : 0; val x : t end)sig val y : X.t end ⊆
sig type t = int; val x : int end→ sig val y : int end.

By the subsumption rule, we can now derive that F also has the non-dependent
type:

` F : sig type t = int; val x : int end→ sig val y : int end.

Clearly, the structure s is in F’s domain, since:

` s : sig type t = int; val x : int end.

Moreover, because the range of F no longer depends on the element of F’s domain,
the application F s can be assigned the result signature:

` F s : sig val y : int end,

using the standard elimination rule for non-dependent functions, i.e. without hav-
ing to substitute the term s into F’s range.

Unfortunately, using the subtyping trick to eliminate dependencies doesn’t
always work well, and sometimes doesn’t work at all. The success of the trick
relies crucially on the pre-condition that every abstract type, declared in the
domain of the functor and propagated to its range, is declared manifestly in the
signature of the actual argument.

Example 9.2.9. Here’s an example in which the trick works, but with a counter-
intuitive result. Consider the application F (s \ S). Recall that its argument has
an opaque signature:

` (s \ S) : sig type t : 0; val x : t end.

Now the only applicable, non-dependent supertype that we can find for the functor
is:

` F : sig type t : 0; val x : t end→ sig end.

Applying F with this type yields:

` F (s \ S) : sig end.
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Observe that the value component y has disappeared from the result. Now com-
pare this signature with the semantic object assigned to the term:

` F (s \ S) : ∃α.(y : α)

In our semantics, the value component is still available. Of course, in this ex-
ample, the value component is useless because there are no operations that can
manipulate this value. However, it is easy to construct larger examples where the
result is a full-blown abstract data type together with useful operations.

We can explain this difference in behaviour as follows. In Leroy’s calculus,
the only way to represent an abstract type is as a reference to an opaque type
component of a structure, i.e. either as a type identifier, or as the projection of
a type identifier from a path of structure identifiers declared in the context. The
problem with the functor application above is that it propagates an abstract type
from the context of the functor body, in which it has a syntactic representation,
to the context of the functor application, in which it does not. Consequently, any
reference to the anonymous abstract type in the result type must be removed. In
this case, the reference is removed by forgetting the y-component of the result.

In our semantics, an abstract type, whether denoted by a type component or
not, retains an independent semantic representation as an existentially quantified
type variable. Indeed, examining the semantic object of the application we can
see that the existentially quantified variable does not appear as the denotation of
a type component. However, we can still use it to describe the type of the value
component y. Of course, for the reasons we discussed in Chapter 6, the type of the
application fails to have a syntactic description in our semantics, causing problems
with separate compilation. In Leroy’s system, the type of the application does
have a complete syntactic description, but the type is less informative.

Example 9.2.10. Here is an example where the trick doesn’t work at all. Let’s
define the curried functor:

G ≡ functor(X : sig type t : 0; val x : t end)

functor(Y : sig val y : X.t end)struct end,

with type:

` G : funsig(X:sig type t : 0; val x : t end)

funsig(Y:sig val y : X.t end)sig end.

The problem arises when we try to type the partial application G (s \ S). In
the previous example, the application of F to (s \ S), we could remove the de-
pendency of F’s range on its domain by forgetting the y-component evincing the
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dependency. We could do this because the declaration of y occurs in a covariant
position in F’s range. However, in the application of G, the dependency cannot
be removed because the declaration of y occurs in a contravariant position in G’s
range. In Leroy’s semantics, the application is rejected as ill-typed.

We would argue that this behaviour is counter-intuitive: the application can-
not be typed, even though the signature of the actual argument is a subtype of
the functor’s domain. Indeed, in our semantics, the application does have a type:

` G (s \ S) : ∃{α}.∀∅.(y : α)→ ().

Again, notice how the existentially quantified type variable is used to represent an
abstract type that, being anonymous, cannot be accounted for in Leroy’s system.

Even if we accept the behaviour in the previous examples, there is a more
serious problem with Leroy’s approach. In some situations, a functor may have
too many non-dependent supertypes, without a principled way to choose between
them. Leroy’s semantics lacks the principal typing property. From a practical
perspective, this means that a programmer cannot always rely on the type-checker
determining a type commensurate with her expectations.

Example 9.2.11. This example illustrates the absence of principal types. Let’s
define the higher-order functor:

H ≡ functor(X : sig type t : 0; val x : t end)

functor(Y : sig type u : 1 end)struct type v = Y.u(X.t) end,

which has type:

` H : funsig(X:sig type t : 0; val x : t end)

funsig(Y:sig type u : 1 end)sig type v = Y.u(X.t) end

Now consider the partial application of H to the abstraction (s \ S). As in the
previous examples, to type this application we need to remove the dependency of
H’s range on the identifier X. In other words, we need to find a supertype of

funsig(Y:sig type u : 1 end)sig type v = Y.u(X.t) end, (?)

that doesn’t mention X. The contra-variant subtyping rule gives us two ways in
which to proceed.

The obvious solution is to replace the range of the functor signature by a
supertype not depending on X:

funsig(Y:sig type u : 1 end)sig type v = Y.u(X.t) end

⊆ funsig(Y:sig type u : 1 end)sig type v : 0 end.
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The less obvious solution is to replace the domain of the functor signature by
a subtype that enables us to eliminate the dependency in the range. In particular,
if we choose some definable type Λ′a.u, such that neither X nor ′a occur in u, then
we can replace the opaque declaration of u by a manifest declaration equating u

with Λ′a.u. Exploiting this equation then allows us to remove the dependency in
the range:

funsig(Y:sig type u : 1 end)sig type v = Y.u(X.t) end

⊆ funsig(Y:sig type u = Λ′a.u end)sig type v = Y.u(X.t) end

≡ funsig(Y:sig type u = Λ′a.u end)sig type v = u end.

The problem is that these solutions are totally unrelated: neither is a subtype
of the other, nor is there a non-dependent supertype of (?) that is a subtype of
both. So which do we choose?

In our semantics, the application is given the unique and thus principal type:

` H (s \ S) : ∃{α}.∀{β}.(u = β)→ (v = (β α)).

Notice how the anonymous abstract type is represented by the type variable α.
In Leroy’s system, the anonymous type can’t be represented and must be elimin-
ated. Recast in our system, the first solution we gave corresponds to preserving
the functor’s polymorphism but narrowing its range; while the second solution
corresponds to restricting the functor’s polymorphism but preserving its range.

9.2.3 Leroy’s applicative functors

In Chapter 5 we gave a semantics for applicative functors. The terminology is
borrowed from Leroy, who has proposed an applicative version of his own module
calculus [29]. Although similar in spirit, the two notions of applicative functor
are subtly different.

Roughly speaking, in our semantics, functors are applicative in the sense that
two different applications of the same functor at the same realisation yield equi-
valent abstract types. In Leroy’s semantics, two different applications of the same
functor path to the same argument path yield equivalent abstract types.

The consequences of this difference in semantics are best illustrated by ex-
ample. Let’s define the following functor:

F def= functor(X : sig type t : 0; val x : t end)X \ sig type t : 0; val x : t end.

Observe that F introduces an abstract type in its body.
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Figure 9.1 An example illustrating the difference between our notion of applic-
ative functors and Leroy’s.

module F = F;

module X = struct type t = int; val x = 1 end;
module Y = X;
module Z = struct type t = int; val x = 2 end;
module U = struct type t = bool; val x = true end;

module A1 = F X;
module A2 = F X;
module B = F Y;
module C = F Z;
module D = F U;

In our applicative semantics, F has the following semantic object:

` F : ∃{α}.∀{β}.(t = β,x : β)→ (t = (α β),x : (α β)),

where α represents the abstract argument-result type dependency of F. Intuit-
ively, α represents this dependency as a function of the argument’s type com-
ponent. If we bind the module expression F to a module identifier F, then the
existential quantifier is eliminated, and the type of F is recorded in the context
as the assumption:

. . . ,F : ∀{β}.(t = β,x : β)→ (t = (α β),x : (α β)), . . .

for a fixed, but abstract, dependency α.
In Leroy’s applicative semantics, the type of F is:

` F : funsig(X:sig type t : 0; val x : t end)sig type t : 0; val x : t end.

If we bind this module expression to a module identifier F, then its type is simply
recorded in the context as the assumption:

. . .F : funsig(X:sig type t : 0; val x : t end)sig type t : 0; val x : t end, . . .

However, each occurrence of the module identifier F will be given the same
strengthened type:

F : funsig(X:sig type t : 0; val x : t end)sig type t = (F X).t; val x : t end.

Intuitively, the projection (F X).t denotes the argument-result type dependency
of F as a function of its entire argument, X, not merely as a function of X’s type
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Figure 9.2 The example of Figure 9.2(b) in our semantics and in Leroy’s.

module b
∀{β}.(t=β,x:β)→(t=(α β ),x:(α β ))
F = F;

module b
(t=int,x:int)
X = struct type t = int; val x = 1 end;

module b
(t=int,x:int)
Y = X;

module b
(t=int,x:int)
Z = struct type t = int; val x = 2 end;

module b
(t=bool,x:bool)
U = struct type t = bool; val x = true end;

module b
(t=(α int),x:(α int))
A1 = F X;

module b
(t=(α int),x:(α int))
A2 = F X;

module b
(t=(α int),x:(α int))
B = F Y;

module b
(t=(α int),x:(α int))
C = F Z;

module b
(t=(α bool),x:(α bool))
D = F U;

(a) The example of Figure 9.1, annotated with semantic objects
according to our applicative semantics of Chapter 5.

module b
funsig(X:sig type t:0;val x:t end)sig type t:0;val x:t end
F = F;

module b
sig type t = int;val x:int end
X = struct type t = int; val x = 1 end;

module b
sig type t = int;val x:int end
Y = X;

module b
sig type t = int;val x:int end
Z = struct type t = int; val x = 2 end;

module b
sig type t = bool;val x:bool end
U = struct type t = bool; val x = true end;

module b
sig type t = (F X).t;val x:t end
A1 = F X;

module b
sig type t = (F X).t;val x:t end
A2 = F X;

module b
sig type t = (F Y).t;val x:t end
B = F Y;

module b
sig type t = (F Z).t;val x:t end
C = F Z;

module b
sig type t = (F U).t;val x:t end
D = F U;

(b) The example of Figure 9.1, annotated with types according
to the applicative semantics of Leroy.
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component. Note that Leroy’s strengthening operation corresponds to a form of
existential elimination.

In Figure 9.1, we define such a functor F, some sample argument structures
X, Y, Z and U, and the structures A1, A2, B, C and D resulting from the
application of F to these arguments. The difference between our notion of applic-
ative functor and Leroy’s is illustrated by the equalities that hold between the
type components of A1, A2, B, C and D.

In our semantics, the set of type components:

{A1.t,A2.t,B.t,C.t,D.t}

is partitioned into two disjoint equivalence classes:

{A1.t,A2.t,B.t,C.t} {D.t}

corresponding, respectively, to the representative denotations (α int) and (α bool).

Figure 9.2(a) clearly shows why this is the case. In the definitions of A1, A2,
B, and C, the parameter β of F is realised by the same type int, because each
actual argument of F implements the type component t as int. Consequently,
in each definition, the resulting type component receives the same denotation
(α int). In the definition of D, on the other hand, the functor must be applied
with a different realisation (β is realised by bool), and the resulting type com-
ponent receives the distinct denotation (α bool).

In Leroy’s semantics, the set is partitioned into four disjoint equivalence
classes:

{A1.t,A2.t} {B.t} {C.t} {D.t}

corresponding, respectively, to the representative type projections (F X).t, (F Y).t,
(F Z).t, and (F U).t.

Figure 9.2(b) shows why this the case, by revealing the types assigned to each
module identifier in Leroy’s semantics. The type components of A1 and A2
are equivalent because, in both definitions, the functor F is applied to the same
path X (in a generative semantics, the type components of A1 and A2 would be
distinct). The remaining type components are all distinct, because in every case,
the functor is applied to a different path.

This raises the question of which behaviour is preferable. One argument in
favour of Leroy’s semantics, and against ours, is that the type C.t should be
distinct from A1.t (as well as A2.t and B.t) because the arguments of the ap-
plications F X and F Z differ on their implementation of the value component
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x. This behaviour can be important if the interpretation of the abstract type re-
turned by F depends on the value of its argument’s x-component. For instance,
if F returned an abstract data type of finite sets, where each set is represented
uniquely as a sorted list of elements, and x is the comparison function used to
sort the elements, then it is desirable that different choices of x result in distinct
abstract types. An opposing argument, against Leroy’s semantics and in favour
of ours, is that applying a functor to a structure on one occasion, and a renaming
of that structure on another, shouldn’t affect the compatibility of the resulting
types. Note that Y is merely a renaming of X, but the abstract types returned
by F X and F Y are distinct in Leroy’s semantics; they are equivalent in ours.

9.3 Further Research

We close by considering some directions for further research.

In order to simplify the presentation of Modules, we have chosen to omit
Standard ML’s facility for defining signature identifiers abbreviating (the denota-
tions) of signature expressions. For our theoretical study of Modules, this omission
is insignificant, since an occurrence of a signature identifier can always be replaced
by an in-line expansion of its definition. However, for programming convenience,
signature abbreviations should be supported, since they drastically reduce syn-
tactic clutter. With the introduction of signature definitions, it also makes sense
to consider adding syntactic support for qualifying a signature expression’s de-
notation by further instantiation and coalescing of its type parameters. Signature
abbreviations and a form of signature qualification are supported in our imple-
mentation [52]. Both can be described as simple extensions of the syntax and
static semantics presented in this thesis.

One obvious omission of this thesis is the definition of a dynamic semantics
for Modules. It is straightforward to define an untyped, call-by-value semantics
in the style of Standard ML [43, 44, 37]. A dynamic semantics would enable
us to state and attempt to prove a type soundness theorem for the language:
that well-typed programs do not “go wrong”. Most importantly, this work would
complete the semantic justification for First-Class Modules that we sketched in
Section 7.4.1.

We need to develop a proof of correctness for the type inference and unific-
ation algorithms of Chapter 8. In the absence of a proof, what justification do
we have for believing in their correctness? Strictly speaking, none. However,
we have striven to obtain a declarative description of the algorithms that clearly
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reveals their roots in the verified algorithms for ML type inference and the veri-
fied algorithms of Chapter 5. This should at least increase our confidence in
the algorithms. What’s more, empirical evidence gained with our prototype im-
plementation supports the conjecture that the algorithms are correct, but also
suggests that a more efficient implementation is required. One benefit of our
declarative description is that it should make the verification task easier, at least
in principle. In practice, the major obstacle for a human prover is the number
of cases to be considered; for a mechanical prover, the number of details to be
formalised. Finally, we should point out that we expect the termination proof for
the unification algorithm to be more difficult in the presence of first-class mod-
ules: the need to perform matching on value types causes the introduction of new
unification variables during unification, foiling the measure traditionally used to
establish termination of ordinary first-order unification.

From the perspective of Type Theory, it would be nice to give a more conclus-
ive demonstration that Modules can be understood without resorting to depend-
ent types. We strongly believe that it is possible to use the ideas in this thesis
to define a type-directed translation from Modules (especially with Core-ML as a
core language) into a standard type theory based on the simply-typed λ-calculus
with higher-order parameterised types, universal and existential quantification
over types, and records. Since the standard type theories combining all of these
features are explicitly typed, the main difficulty will lie in defining a transla-
tion that makes the implicit manipulation of quantifiers and modules subtyping
explicit, in a coherent manner. The problem is exacerbated by the applicative
semantics of higher-order functors, since the implicit skolemisation of existential
types requires the equivalent of an axiom of choice.

One distinguishing aspect of our work is that it maintains the distinction
between syntactic type phrases and semantic objects. Although this can be cri-
ticised as ugly, it also offers an advantage: our framework is readily compatible
with the extension to Standard ML’s original notion of structure generativity and
structure sharing. Although this feature has been removed in the revised se-
mantics of Standard ML, it is still of interest, since sharing of structures is a
stronger property than mere sharing of types: it provides a static guarantee of
the identity of values. Indeed, the existing semantics of structure generativity
is closely related to the semantics of type generativity. We believe that our ex-
planation of type generativity can be adapted to give a treatment of structure
generativity as existential quantification over static structure names. Moreover,
the idea of adopting an applicative semantics of type generativity to support
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higher-order functors should carry over to structure generativity as well, prom-
ising a treatment of structure generativity in the higher-order case. Traditionally,
the major difficulty presented by the semantics of structure sharing lies in de-
termining the principal denotation of a signature that is qualified by structure
sharing constraints. However, this problem is very similar to the one encountered
in determining the principal denotation of a signature that is qualified by type
sharing constraints. In the latter case, it is known that the problem of ensuring
principality becomes trivial if type sharing constraints are abandoned in favour
of definitional type specifications in signatures. It is very plausible that structure
sharing constraints may also be replaced by a simpler form of specification that
eliminates the principality problem.

Finally, in order to make our results widely available we need to transfer them
to both the full definition of Standard ML and to an existing implementation.
Unfortunately, Standard ML’s Core is a much richer language than Core-ML.
Moreover, the actual semantics of Standard ML does not separate the treatment
of Modules and Core as rigorously as we do. The main difficulty in transfer-
ring our results to Standard ML’s semantics lies in separating the essential from
the non-essential interactions between Standard ML’s Core and Modules. Non-
essential interactions are those that succumb to alternative treatments directly
in the semantics of the Core. The facility for defining mutually recursive types
and mutually recursive functions fall in this class, since these can be accounted
for by other means using n-ary fixed-point operators. Other interactions may re-
quire proper extensions to the Modules language presented here. The distinction
between definable types admitting equality and ordinary definable types may be
one such feature. While the distinction itself can be encoded in the notion of
Core kind, Standard ML also permits a definable type admitting equality to be
regarded as one that does not. Accommodating this form of subsumption requires
a notion of subkinding on definable types, which we have not addressed.
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[14] Judicaël Courant. An applicative module calculus. In TAPSOFT’97, LNCS.
Springer-Verlag, April 1997.

[15] Haskell Curry and Robert Feys. Combinatory Logic, volume 1. North Hol-
land, 1958.

[16] Luis Manuel Martins Damas. Type Assignment in Programming Languages.
PhD thesis, Department of Computer Science, University of Edinburgh, April
1985.

[17] N. G. deBruijn. Lambda calculus notation with nameless dummies: a tool
for automatic formula manipulation with application to the Church-Rosser
theorem. Indag. Mathematics, 34, 1972.

[18] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In 21st ACM Symp. Principles of Prog. Lang.,
1994.

[19] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Tech-
nical Report ECS-LFCS-86-2, Laboratory for Foundations of Computer Sci-
ence, University of Edinburgh, May 1986.

[20] Robert Harper and John C. Mitchell. On the type structure of Standard
ML. In ACM Trans. Prog. Lang. Syst., volume 15(2), pages 211–252, 1993.

[21] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules
and the phase distinction. Technical Report ECS-LFCS-90-112, Department
of Computer Science, University of Edinburgh, April 1990.

[22] Robert Harper and Chris Stone. An Interpretation of Standard ML in
Type Theory. Technical Report CMU-CS-97-147, School of Computer Sci-
ence,Carnegie Mellon University, June 1997.

350



[23] James G. Hook and Douglas J. Howe. Impredicative Strong Existential Equi-
valent to Type:Type. Technical Report TR 86-760, Department of Computer
Science,Cornell University, June 1986.

[24] William Howard. The formulae-as-types notion of construction. In J. Hind-
ley and J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic.
Academic Press, 1980.

[25] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Com-
puter Science, 1:27—57, 1975.

[26] Mark P. Jones. Using parameterized signatures to express modular structure.
In Proc. 23rd Symp. Principles of Prog. Lang. ACM Press, 1996.

[27] Stefan Kahrs, Donald T. Sannella, and Andrzej Tarlecki. The Definition
of Extended ML: A gentle introduction. Theoretical Computer Science,
173:445—484, 1997.

[28] Xavier Leroy. Manifest types, modules, and separate compilation. In Proc.
21st Symp. Principles of Prog. Lang., pages 109–122. ACM Press, 1994.

[29] Xavier Leroy. Applicative functors and fully transparent higher-order mod-
ules. In Proc. 22nd Symp. Principles of Prog. Lang., pages 142–153. ACM
Press, 1995.

[30] Xavier Leroy. A modular module system. Technical Report RR n◦ 2866,
INRIA, Rocquencourt, April 1996.

[31] Xavier Leroy. A syntactic theory of type generativity and sharing. Journal
of Functional Programming, 6(5):1—32, September 1996.

[32] Xavier Leroy. The Objective Caml system, documentation and user’s guide,
1997. Available at http://pauillac.inria.fr/ocaml/.

[33] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module
Systems. PhD thesis, School of Computer Science, Carnegie Mellon Uni-
versity, May 1997.

[34] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, Depart-
ment of Computer Science, University of Edinburgh, June 1990.

[35] David MacQueen. Using dependent types to express modular structure. In
13th ACM Symp. on Principles of Prog. Lang., 1986.

351



[36] David MacQueen and Mads Tofte. A semantics for higher-order functors. In
Donald Sannella, editor, Programming Languages and Systems - ESOP ’94,
volume 788 of LNCS. Springer Verlag, 1994.

[37] Savi Maharaj and Elsa Gunter. Studying the ML Module System in HOL.
The Computer Journal, 36(5), 1993.

[38] James McKinna and Robert Pollack. Pure Type Sytems formalized. In
Proc. Int’l Conf. on Typed Lambda Calculi and Applications, Utrecht, pages
289–305, 1993.

[39] Dale Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Computation,
2/4:497 – 536, 1991.

[40] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Compu-
tation, 14:321 – 358, 1992.

[41] Robin Milner. A theory of type polymorphism in programming languages.
Journal of Computer and System Sciences, 17:348–375, 1978.

[42] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,
1991.

[43] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[44] Robin Milner, Mads Tofte, and Robert Harper. The Revised Definition of
Standard ML. MIT Press, 1996.

[45] John C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[46] John C. Mitchell and Gordon D. Plotkin. Abstract types have existen-
tial type. ACM Transactions on Programming Languages and Systems,
10(3):470–502, July 1988.

[47] Jan Nicklish and Simon Peyton Jones. An exploration of modular programs.
In The Glasgow Workshop on Functional Programming, 1996.

[48] Larry Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

352
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