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Abstract

The problem of learning universally quantified function free first order Horn
expressions is studied. Several models of learning from equivalence and member-
ship queries are considered, including the model where interpretations are examples
(Learning from Interpretations), the model where clauses are examples (Learning
from Entailment), models where extentional or intentional background knowledge
is given to the learner (as done in Inductive Logic Programming), and the model
where the reasoning performance of the learner rather than identification is of in-
terest (Learning to Reason). We present learning algorithms for all these tasks for
the class of universally quantified function free Horn expressions. The algorithms
are polynomial in the number of predicate symbols in the language and the number
of clauses in the target Horn expression but exponential in the arity of predicates
and the number of universally quantified variables. We also provide lower bounds for
these tasks by way of characterising the VC-dimension of this class of expressions.
This shows that apart for the dependency on the number of variables our algorithms
are essentially optimal.

1 Introduction

We study the problem of exactly identifying first order Horn expressions using Angluin’s
(1988) model of exact learning. Much of the work in learning theory has dealt with learning
of Boolean expressions in propositional logic. Early treatments of relational expressions
were given by Valiant (1985) and Haussler (1989), but only recently more attention was
given to the subject in framework of Inductive Logic Programming (see e.g. Muggleton
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& De Raedt, 1994; Cohen, 1995a, 1995b). It is clear that the relational learning prob-
lem is harder than the propositional one and indeed except for very restricted cases it is
computationally hard (Cohen, 1995b). To tackle this issue in the propositional domain
various queries and oracles that allow for efficient learning have been studied (Valiant,
1984; Angluin, 1988). In particular, propositional Horn expressions are known to be learn-
able in polynomial time from equivalence and membership queries (Angluin, Frazier, &
Pitt, 1992), and from entailment queries (Frazier & Pitt, 1993). In the relational domain,
queries have been used in several systems (e.g. Shapiro, 1983; Sammut & Banerji, 1986;
De Raedt & Bruynooghe, 1992; Muggleton & Buntine, 1992) and results on learnability in
the limit were derived for some (e.g. Shapiro, 1983; De Raedt & Bruynooghe, 1992). More
recently Reddy and Tadepalli (1997, 1998) considered the use of equivalence and member-
ship queries and have shown that Horn definitions (where all clauses have the same unique
positive literal), and acyclic Horn expressions are learnable.

In this paper we show that function free universally quantified Horn expressions are
exactly learnable in several models of learning from equivalence and membership queries.
One distinction between the learning models is concerned with the notion of examples. The
natural generalisation of the setup studied in propositional logic suggests that examples
are interpretations of the underlying language. That is, a positive example is a model of
the expression being learned. Another view suggests that a positive example is a sentence
that is logically implied by the expression, and in particular Horn clauses have been used
as examples. These two views have been called learning from interpretations and learning
from entailment respectively (De Raedt, 1997) and were both studied before.

Another aspect of the learning models is the use of background knowledge in the process
of learning. This idea has been formalised in Inductive Logic Programming (ILP) where the
background knowledge is given to the learner as a logical expression in the same language as
that of the target expression being learned (Muggleton & De Raedt, 1994). The background
knowledge may be extensional that is a set of ground facts, or intentional where it may
include arbitrary expressions in the language. Finally, the framework of Learning to Reason
has been suggested for the study of systems that learn their knowledge in order to reason
with it about the domain in question. Instead of finding an expression equivalent to the
domain description, the learner is expected to learn some representation with which it can
perform the reasoning correctly as long as the reasoning queries of interest belong to a
restricted class of expressions.

We present algorithms for all these tasks with respect to universally quantified function
free Horn expressions. Our method follows closely the results from the propositional domain
(Angluin et al., 1992; Frazier & Pitt, 1993) generalising these by finding appropriate first
order constructs. Thus one contribution of the paper is in lifting the results to the first order
domain and developing the appropriate algorithms. Another contribution is in developing
techniques for converting learning algorithms from one model to another, thus clarifying
the some of the relationships between the various models. Finally, we characterise the
VC-dimension of the class under consideration; this is a combinatorial parameter known
to provide a lower bound for the complexity of learning (Blumer, Ehrenfeucht, Haussler, &
Warmuth, 1989; Maass & Turán, 1992). The result shows that in several of the parameters
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the complexity of our algorithm is essentially optimal.
To illustrate the complexity of the algorithms consider the Horn expression (exact

definitions for the various notions appear in the next sections)

∀x1, x2, x3,

(p1(x1, x2)p2(x1, x3)→ p1(x2, x1)) ∧
(p3(x3, x1)p1(x3, x1)→ p4(x3)).

The language includes |P | = 4 predicates p1, . . . , p4 each of arity at most a = 2, and the
expression has k = 3 universally quantified variables, and m = 2 clauses. Our algorithm
learns this class of expressions with query complexity polynomial in m, |P |, ka, kk, n where
n is the size (number of objects) in the examples it sees, and time complexity polynomial
in the above parameters and nk. The lower bound for the number of queries following from
the VC-dimension is Ω(m|P |ka).

Our results are derived by first considering the case of learning from interpretations.
We describe two slightly different algorithms (with different proofs of correctness) that
perform this task. Algorithms for other tasks are then constructed from the solution of
this task. One of the main results of the paper is concerned with deriving one of the
basic algorithms. In doing that we use a variant of the standard semantics where each
universally quantified variable in an expression must be bound to a unique element. We
show that in this setting the number of equivalence queries is polynomial in k (rather than
kk) whereas the running time and membership queries are as above. Thus in this model
the number of equivalence queries the algorithm makes is essentially optimal. Our learning
algorithm uses pairings of examples, an operation that is a variant of direct products (that
have been used before for learning (Horvath, Sloan, & Turán, 1997)). A similar modified
semantics has been considered before by Haussler (1989). In fact our result can also be
seen as extending Haussler’s positive result (that shows the learnability of a single clause)
in having more than one clause in the expression though restricting the clauses to be Horn.
Another interesting aspect of the modified semantics is that it can be used to derive a
learning algorithm for a more expressive language (under the normal semantics) allowing
an arbitrary number of equalities in the clauses, as in

(p2(x1, x3)p3(x2, x1)→ p4(x2) ∨ (x1 = x2))

thus going somewhat beyond the pure Horn case.
While this paper concentrates on function free expressions, extending the results to

more expressive languages in clearly of interest. One such result for range restricted Horn
expressions (where the way function symbols are used in clauses is restricted) has been
recently developed using a reduction to the function free case (Khardon, 1998).

The rest of the paper is organised as follows. Section 2 gives preliminary definitions and
details. Section 3 presents some simple examples that motivate the construction developed
in Section 4 where the result on learning with the special semantics is proved. Section 5
extends this result for other learning models, and Section 6 characterises the VC dimension
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of the class. Section 7 develops the second basic algorithm showing how the propositional
algorithm can be used more directly in the first order domain. Finally Section 8 concludes
with a brief discussion.

2 Preliminaries

2.1 First Order Horn Expressions

We consider a subset of the class of universally quantified expressions in first order logic.
The learning problems under consideration assume a pre-fixed known and finite signature
of the language. Constants or other function symbols are not allowed in the language.
That is, the signature is a finite set of predicates P each with its associated arity. In
addition a set of variables x1, x2, x3, . . . is used to construct expressions.

Definitions of first order languages can be found in standard texts (e.g. Chang &
Keisler, 1990; Lloyd, 1987); here we briefly introduce the necessary constructs. A positive
literal is predicate applied to a set of variables, that is, p(X) where p ∈ P and X is a
set of variables of an appropriate size (the arity of p). A negative literal is obtained by
adding the negation symbol to a positive literal, e.g. p(X). A clause is a disjunction of
literals where all variables in the clause are (implicitly) universally quantified. A Horn
clause has at most one positive literal; a Horn clause is said to be definite if it has precisely
one positive literal. A Horn expression is a conjunction of Horn clauses. Note that any
clause can be written as c = (∧

n∈Negn) → (∨
p∈Posp) where Neg and Pos are the sets of

negative and positive literals of C respectively. When doing so we will refer to (∧
n∈Negn)

as the antecedent of c and to (∨
p∈Posp) as the consequent of c.

Definition 1 Let C = (∧
n∈Negn)→ (∨

p∈Posp) be a clause, then C is range restricted1 if
every variable that appears in Pos also appears in Neg.

Note that since the expressions of interest are function free, range restricted clauses
have non-empty antecedents.

Definition 2 Let H(P ) be the set of (function free) Horn expressions over signature P ,
H(P )− the set of expressions inH(P ) in which all clauses are range restricted, and HD(P )−

the set of expressions in H(P )− in which all clauses are definite.

For example, (p(x, y) → q(x) ∨ q(y)) is not Horn and not in any of the classes above
although it is range restricted, (p(x, y)→ q(z)) and q(x) are in H(P ) but not in H(P )−,
(p(x, y) ∨ p(y, z)) is in H(P )− but not in HD(P )−, and (p(x, y)→ q(x)) is in HD(P )−.

1This restriction has been used before by several authors. Unfortunately, in a previous version of this
paper it was called “non-generative” while in other work it was called “generative” (Muggleton & Feng,
1992). The term “range-restricted” was used in database literature (see e.g. Minker, 1988).
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Definition 3 Let H(P,=) be the language H(P ) extended so that clauses can have any
number of literals of the form (xi = xj), or (xi 6= xj) where xi, xj are variables that appear
in relational literals in the clause.

The class H(P,=) goes somewhat beyond Horn expressions if equalities are considered
as positive literals. An example clause in H(P,=) appears in the introduction.

2.2 Examples

An example is an interpretation I of the predicates in P (Lloyd, 1987). It lists a set of
domain elements and the truth values of all instantiations of predicates on these elements.
The extension of a predicate in I is the set of positive instantiations of it that are true
in I . The size of an interpretation is the sum of sizes of extensions of predicates in it. If
the arity of all predicates is bounded by a constant a then the size of the extension of an
example is polynomial in the number of domain elements.

Examples of this form have been used by Haussler (1989) and are motivated by the sce-
nario of acting in structural domains (e.g. Khardon, 1996; Reddy, Tadepalli, & Roncagli-
olo, 1996; Reddy & Tadepalli, 1997). They are also used in the non-monotonic form of
ILP (De Raedt & Dzeroski, 1994). In structural domains, domain elements are objects in
the world and an instantiation describes properties and relations of objects. We therefore
refer to domain elements as objects. For convenience we assume a standard way of naming
objects, as a list of natural numbers.

For example, for the language of expressions given in the introduction, I may have the
extension {p1(1, 2), p1(3, 5), p2(1, 5), p4(2)} for the set of objects {1, 2, 3, 4, 5}. Notice that
no positive fact holds in I for the object 4.

2.3 Semantics

Note that the classes of expressions were defined syntactically. We attach a concept to
each expression by defining appropriate semantics. Since the paper discusses two different
semantics, an expression may be mapped to two different concepts under these. When the
chosen semantics is not clear from the context we would specify which concept is meant.
For the meantime we define a single semantics, the standard one (Chang & Keisler, 1990;
Lloyd, 1987).

Let l(X) be a literal, I an interpretation and θ a mapping of the variables in X to
objects in I . The ground literal l(θ(X)) is obtained from l(X) by substituting variables in
it according to θ. A ground positive literal p(θ(X)) is true in I if and only if it is in the
extension of the relevant predicate. A ground equality literal θ(xi = xj) is true in I if and
only if θ maps xi and xj to the same object. A ground negative literal is true in I if and
only if its negation is not.

A clause C ∈ H(P ) is true in an interpretation I if for all substitutions θ of variables in
C to objects in I at least one of the literals in C(θ) is true in I . An expression T ∈ H(P )
is true in I if all clauses C in T are true in I . The terms (1) T is true in I , (2) I is a
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positive example for T , (3) I satisfies T , (4) I is a model of T , and (5) I |= T , have the
same meaning. Let T1, T2 ∈ H(P ) then T1 implies T2, denoted T1 |= T2, if every model of
T1 is also a model of T2.

2.4 Parametrising the Concept Class

The languages defined above can be further parametrised by restricting the number of
(universally quantified) variables in each clause. Denote the respective classes where the
number of variables is bounded by k, by Hk(P ),Hk(P )−,Hk

D(P )−, and Hk(P,=).
For T ∈ Hk(P,=), one can test whether I |= T by enumeration in time O(nk) if I has

n objects. In general even evaluating a single clause on a single interpretation is NP-Hard
if k is not bounded, and recent results suggest that it is not likely to have an algorithm
polynomial in n even for small non-constant values of k (Papadimitriou & Yannakakis,
1997). We will thus assume that k is constant whenever such evaluation needs to be
performed. Note that this restriction does not limit the size of clauses to be constant but
instead longer clauses must reuse the same variables repeatedly. Similar restrictions have
been previously used by Haussler (1989).

Other assumptions that ensure tractability, e.g. determinacy (Dzeroski, Muggleton, &
Russell, 1992), have been used before but we do not address such restrictions here.

2.5 The Learning Model

The learning model uses several forms of queries (Angluin, 1988; Frazier & Pitt, 1993). Let
H be a class under consideration, and let T ∈ H be the target expression. For Equivalence
Queries (EQ) the learner presents a hypothesis H ∈ H and the oracle returns “yes” if
H = T and otherwise it returns an interpretation I that is a counter example (I |= T and
I 6|= H or vise versa). For Membership Queries (MQ) the learner presents an interpretation
I and the oracle returns “yes” iff I |= T . In the learning model a target expression T ∈ H
is fixed and hidden from the learner. A learner interacts with the oracles and has to find
an expression H that is equivalent to T with respect to |=.

We also study oracles based on entailment where clauses serve as examples. Intuitively,
for Entailment Membership Queries, the learner presents C(θ(X)), a ground instance of a
clause C ∈ H (i.e. all variable are substituted to objects) and the oracle returns “yes” iff
T |= C(θ(X)). The above is however not well defined since the ground clause is not in the
language H(P ) and the models of T do not have an interpretation for the constants in C.
Precise definitions for entailment oracles as well as the ILP setting are given in Section 5.

2.6 Small Interpretations

The following lemmas indicate that we may restrict our attention to small interpretations.
Let I be an interpretation, and let A be a subset of the objects in I . Then I|A is the
interpretation induced from I by deleting the objects not in A and all the instantiated
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Table 1: The algorithm Prop-Horn: learn propositional Horn expressions using EQ and
MQ

1. Maintain an ordered set of interpretations S, initialised to ∅ and let H =
prop-cands(S).

2. Repeat until H = T :

• Ask an equivalence query to get a counter example in case H 6= T .

• On a positive counter example I (s.t. I |= T ) remove wrong clauses (s.t. I 6|= C)
from H.

• On a negative counter example I (s.t. I 6|= T ):

For i = 1 to m (where S = (s1, . . . , sm))
If J = si ∧ I is negative (use MQ),

and its size is smaller than that of si
then replace si with J , and quit loop.

If no si was replaced then add I as the last element of S.
After each negative counter example, recompute H as prop-cands(S).

predicates on these objects. Let Ik be the set of interpretations where the number of
objects is at most k.

Lemma 1 Let T ∈ Hk(P ) and let I be any interpretation. If I 6|= T then there is a set A
of objects of I such that
(1) |A| = k, I|A ∈ Ik, and I|A 6|= T
(2) ∀B ⊃ A, I|B 6|= T .

Proof: This follows since to falsify T a single substitution θ is sufficient and since T has
at most k variables it is sufficient to include in A the objects mentioned in θ. Clearly, any
superset B of A can falsify T using the same θ.

Lemma 2 Let T ∈ H(P ), and let I be any interpretation. If I |= T then for any set A of
objects of I, I|A |= T .

Proof: Assume I|A 6|= T . Then there is a substitution θ and a clause C in T such that
C is not true in I|A. Clearly C is not true in I under the same θ.

2.7 The Algorithm Prop-Horn

For reference, we describe the propositional algorithm by Angluin et al. (1992) which we
refer to later as Prop-Horn. We first define the basic operations of the algorithm. Let I be
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an interpretation, and let prop-ant(I) be the conjunction of all positive ground literals true
in I , and prop-neg(I) be the set of all positive ground literals that are false in I . The set
prop-cands(I) is the set of clauses {prop-ant(I)→ A | A ∈ prop-neg(I)} ∪ {prop-ant(I)}.
For a set of interpretations S, prop-cands(S) = ∪s∈Sprop-cands(s).

Let I1, I2 be interpretations with the same set of objects. The intersection of I1, I2 is
defined to have the same objects as in I1, I2, and the extension of predicates in the product
is defined to have the intersection of the positive ground literals in I1, I2. We denote the
intersection by I1 ∧ I2.

The algorithm is described in Table 1. The algorithm maintains an ordered set of “repre-
sentative” negative examples from which it builds its hypothesis by using the prop-cands()
operation that generates “candidate” clauses. A counter example either removes a wrong
clause, refines one of the current representative examples, or is otherwise added as a new
representative example. The correctness and efficiency of the algorithm follow by showing
that no two representative examples falsify the same clause in the representation for the
target expression T , and that each refinement makes progress is some measurable way
(Angluin et al., 1992).

3 Some Illustrative Examples

We discuss some simple examples in order to develop an intuition for the construction that
follows. The discussion here is informal and precise definitions appear in the sections that
follow.

Let the signature be P = {p1, . . . , p5} where all predicates are of arity 2. First recall
that our expressions are function free and hence cannot refer to constants or object names.
Therefore these names are not important and we can abstract them away from examples.
Consider the case where the target expression is the single clause

T = ∀x, y, z, (p1(x, y)∧ p2(y, z)→ p3(x, x)),

and the negative example (with domain {1, 2, 3})

I1 = {p1(1, 2), p2(2, 3), p4(2, 3)}.

In order to show that I1 6|= T we can substitute 1/x, 2/y, 3/z and satisfy the antecedent
in I1 while not satisfying the consequent. Therefore, we can find an approximation of the
antecedent of the clause simply by substituting back each variable to its corresponding
object in I1. This yields p1(x, y) ∧ p2(y, z) ∧ p4(y, z). Notice that the literals in this
antecedent are a superset of the true set of literals in T . Assuming that we have a way
of finding out what the right consequent is (we will later simply try all possibilities) this
process yields the clause (p1(x, y)∧ p2(y, z)∧ p4(y, z)→ p3(x, x)). Once this is done all we
need to do is somehow omit the extra literal p4(y, z) to get the correct clause.

This process may encounter a problem when used with

I2 = {p1(1, 2), p2(2, 2), p4(2, 3)}.
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In this case, the resulting clause is (p1(x, y)∧p2(y, y)∧p4(y, z)→ p3(x, x)) and we see that
the variables y, z in the original clause have been unified into a single variable y in the
resulting clause. The cause of this is the fact that the substitution 1/x, 2/y, 2/z showing
that I2 6|= T maps the same object to both y and z.

These two problems, extra literals and unified variables, may be solved by using several
negative examples of the same clause and the direct product construction. Consider the
two negative examples

I3 = {p1(1, 2), p2(2, 2), p4(2, 3)}
I4 = {p1(a, a), p2(a, b), p5(b, c)}.

Each of these interpretations will generate an extra literal and both unify variables; I3

unifies y, z and I4 unifies x, y. The domain of the direct product I3 ⊗ I4 is the Cartesian
product of those of I3 and I4, namely, {1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c}. An atom p(αβ, γδ)
is true in the product if its projections p(α, γ) and p(β, δ) are true in the corresponding
interpretations. Thus the extension of predicates in the product is

I3 ⊗ I4 = {p1(1a, 2a), p2(2a, 2b)}.

When a clause is generated from this interpretation we get the target clause exactly.
A slightly modified example shows that products may also generate new extra literals.
Consider the two negative examples

I5 = {p1(1, 2), p1(1, 3), p2(2, 2), p4(2, 3)}
I6 = {p1(a, a), p1(a, b), p2(a, b), p5(b, c)}.

The product has the same domain as above and the extension of predicates is

I5 ⊗ I6 = {p1(1a, 2a), p1(1a, 2b), p1(1a, 3a), p1(1a, 3b), p2(2a, 2b)}.

Clearly, the size of the product may be as large as the product of the sizes of the original
interpretations. If using products several times the size may increase exponentially.

A final observation is that (even if the product is large) there is a small number of
domain elements in the product which are of interest. These are the elements participating
in a falsifying substitution for the clause. Namely, in the last product these are 1a, 2a, 2b.
We could in principle project out other domain elements and all information about them
and still retain the necessary information, as in

(I5 ⊗ I6)|{1a,2a,2b} = {p1(1a, 2a), p1(1a, 2b), p2(2a, 2b)},

where some of the extra literals (but not all) are removed. Note that the two remaining
p1() atoms are versions of the same atom in I5.

It is not easy, however, to find the right set of domain elements; an example in the next
section shows that it is also not guaranteed to actually decrease the size of the interpre-
tations (i.e. remove extra literals) which was our original aim. We also show in the next
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section that projection is guaranteed to be useful in case the original interpretations did
not unify variables. We call such a projection a pairing of the interpretations. Consider
the two negative examples

I7 = {p1(1, 2), p1(1, 3), p2(2, 3), p4(2, 3)}
I8 = {p1(a, b), p1(a, c), p2(b, c), p5(b, c)}.

The product has the same domain as above and the extension of predicates is

I7 ⊗ I8 = {p1(1a, 2b), p1(1a, 2c), p1(1a, 3b), p1(1a, 3c), p2(2b, 3c)}.

We can project this interpretation on {1a, 2b, 3c} to get

(I7 ⊗ I8)|{1a,2b,3c} = {p1(1a, 2b), p1(1a, 3c), p2(2b, 3c)}.

The main difference from the previous example is that the projection set corresponds to a
1-1 matching of the domain elements of I7, I8. This guarantees that none of the atoms gets
duplicated in the resulting projected product and its size is never larger than the original
interpretations – a fact that is used in proving that our algorithm converges.

As the examples illustrate, extra literals may be removed by products or their projec-
tions. Examples which generate unified variables are harder to deal with since projections
of their products may increase the size of the interpretations. Our treatment below simply
rules out this situation by defining a new semantics where different variables in a clause
must be bound to different domain elements in interpretations. This in turn allows us to
design an algorithm for the task. Later we show that this is not too bad a restriction since
we can use the resulting algorithm to solve the original problem as well.

Finally, note that we only discussed the case with a single clause. A further level
of complication arises when there is more than one clause. Intuitively, the algorithm
below approximates each clause in the target expression using negative examples for that
clause. Naturally, the algorithm also needs to find out which clause a negative example
corresponds to, and make sure that a single clause is not approximated several times by
different examples. These aspects are dealt with formally in the next section.

4 Unique Substitution Semantics

Motivated by the discussion above we define an alternative semantics forcing different
variables in a clause to be bound to different domain elements in interpretations. The
approach we take is similar to the one by Haussler (1989) where (translated to our setting)
it is shown that a single universally quantified clause is learnable from equivalence and
membership queries. The result that follows shows that in this model Horn expressions
are also learnable. Thus we extend the result in having more than one clause but restrict
the clauses to be Horn.
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Definition 4 Let I be an interpretation and C ∈ H(P ) be a clause with variables in X.
We say that C is d-true in I (and I is a d-model of C), and denote it by I |=d C if for all
1-1 substitutions θ that map each variable to a distinct object in I, C(θ(X)) is true in I,
where the semantics for ground clauses remains as before.

For T ∈ H(P ) where T is a conjunction of clauses, T is d-true in I if and only if all
clauses in T are d-true in I.

Notice that if the number of objects in I is smaller than the number of variables in
C then I is positive for C. Caution must be taken with the use of standard inference
rules when using this definition because of the shift in semantics (e.g. Modus Ponens must
preserve the number of objects in its conclusion). For our purposes it suffices to note that
if C2 can be obtained from C1 by adding literals to it, and T |=d C1 then T |=d C2. Note
also that Lemma 1 and Lemma 2 hold in this model as well. We modify the learning model
accordingly so that equivalence and membership queries evaluate interpretations according
to |=d. Denote these modified oracles by EQ|=d and MQ|=d.

The new semantics define the notion of d-falsifying a clause. Similarly, we say that
I d-covers a clause if its antecedent is satisfied in I by a 1-1 substitution that maps all
variables of C. Note that this requires that I has enough objects to be mapped to the
variables of C.

A Direct Product is an operation on interpretations that is well known for character-
ising Horn expressions. Products have been used before for learning and they are closely
related to least general generalisations (Plotkin, 1970; Horvath & Turán, 1995; Horvath
et al., 1997). Let I1, I2, . . . , Ij be interpretations. The direct product of I1, I2, . . . , Ij de-
noted ⊗(I1, I2, . . . , Ij) is an interpretation. The set of objects in ⊗(I1, I2, . . . , Ij) is the
set of tuples (a1, a2, . . . , aj) where ai is an object in Ii. The extension of predicates in
⊗(I1, I2, . . . , Ij) is defined as follows. Let p be a predicate of arity l and let (c1, . . . , cl) be
a l-tuple of elements of ⊗(I1, I2, . . . , Ij), where ci = (ai1, ai2, . . . , aij). Then p(c1, . . . , cl) is
true in ⊗(I1, I2, . . . , Ij) if and only if for all 1 ≤ q ≤ j, p(a1q , a2q, . . . , alq) is true in Iq. In
words, p(c1, . . . , cl) is true if and only if component-wise p is true on the original tuples
generating (c1, . . . , cl) in the corresponding interpretations. When j = 2 we also denote
⊗(I2, I2) by I1 ⊗ I2. Examples for products were given in the previous section.

Products are important since they exactly characterise the class of Horn expressions.
Of interest in the current context is the fact that, for propositional expressions, products
become the intersection operation used by the algorithm Prop-Horn. The following theorem
is essentially due to McKinsey (1943). Related results were developed by Horn (1951) and
greatly expanded in model theory (Chang & Keisler, 1990).

Theorem 3 (McKinsey, 1943) A universally quantified first order expression is equiva-
lent (under |=) to a universally quantified first order Horn expression if and only if its set
of models is closed under direct products.
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For |=d McKinsey’s theorem does not hold. A product of two d-models of T may not
be a d-model of T .2 However, a simpler operation we call pairing can be used instead of
products and it does not increase the size of the interpretations.

Let I1, I2 be interpretations, a pairing of I1, I2 is an interpretation induced from I1⊗ I2

by a subset of the objects that corresponds to a 1-1 matching of the objects in I1 and I2.
The number of objects in a pairing is equal to the smaller of the number of objects in I1, I2.
Thus a pairing is not unique and one must specify the matching of objects used to create
it. Similar to products we can define k-wise pairings.

An operation similar to pairing has been recently discussed by Geibel and Wysotzki
(1997) in the context of learning relational decision trees. The effort there is to reduce
the size of the least general generalisation of clauses which is a basic operation used to
construct the node tests in the tree.

Lemma 4 Let T ∈ H(P ). Then the set of d-models of T is closed under pairings.

Proof: Let I1, I2 be d-models of T , and C a clause in T . Assume that a pairing I d-
falsifies C and consider a substitution θ = (θ1, θ2) such that C is falsified by I with respect
to θ, where θ1, θ2 are the corresponding substitutions mapped to elements of I1, I2. Since
a pairing is 1-1, both θ1 and θ2 are 1-1. We therefore get that the antecedent of C is true
in I1 w.r.t. θ1, and similarly for I2, θ2. Moreover, for at least one of I1, I2 the consequent
of C is false under the respective substitution. We get that at least one of I1, I2 d-falsifies
the clause.

Corollary 5 If J is a pairing of I1 and I2, and J d-falsifies C ∈ H(P ) then at least one
of I1, I2 d-falsifies C, and both d-cover C.

The following lemma shows that for range restricted clauses, pairings characterise Horn
expressions, namely the class H(P )−. This fact is however not needed for our result that
establishes learnability of H(P ).

Lemma 6 Let T be a conjunction of universally quantified first order range restricted
clauses. If the set of d-models of T is closed under pairings then T is equivalent (under
|=d) to an expression in H(P )− (i.e. it is Horn).

Proof: The proof adapts the technique of McKinsey (1943) to the current setting. Let
T = ∀X,C1∧C2∧. . .∧Cs and assume that C = C1 is not Horn, namely it has j > 1 positive
literals, so that C = ¬P1 ∨ . . .∨¬Pm ∨ Pm+1 ∨ . . .∨ Pm+j . Define j “Horn-Strengthening”
(Selman & Kautz, 1996) clauses for C each including one of the positive literals of C, so
that for 1 ≤ i ≤ j, C i = ¬P1 ∨ . . . ∨ ¬Pm ∨ Pm+i.

We claim that for some i, T |=d C i and therefore T can be rewritten as T = ∀X,C i ∧
C2∧ . . .∧Cs. In this way all the non-Horn clauses of T can be replaced with Horn clauses.

2For example let T = (p1(X, Y ) → p2(X)), I1 = {p1(1, 1)}, and I2 = {p1(a, b), p2(a)}. Both I1 and I2
are positive but their product {p1(1a, 1b)} is negative.
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Table 2: The algorithm A1: Learn H(P ) under |=d using EQ|=d and MQ|=d

1. Maintain an ordered set of interpretations S, initialised to ∅ and let H =
rel-cands(S).

2. Repeat until H ≡d T :

(a) Ask an equivalence query to get a counter example in case H 6≡d T .

(b) On a positive counter example I (s.t. I |=d T ) remove wrong clauses (s.t.
I 6|=d C) from H.

(c) On a negative counter example I (s.t. I 6|=d T ):

i. Minimise the number of objects in I while still negative – (use MQ).
ii. For i = 1 to m (where S = (s1, . . . , sm))

For every pairing J of si and I

If J is negative (use MQ) and it has less objects than si or its size is smaller
than that of si then

A. (Optional Step) Minimise the number of objects in J while still neg-
ative – (use MQ).

B. Replace si with J .
C. Quit loop (Go to Step 2(c)iv)

iii. If no si was replaced then add I as the last element of S.
iv. Let j be the index of the updated si or the added example (i.e. m+ 1).

Update H by removing clauses generated by the previous sj (if a replace)
and adding the clauses in rel-cands(sj) to it.

To prove the claim assume that for all i, T 6|=d C i and let Ii be a d-model of T which
is not a d-model of C i (which exists since T 6|=d C i). Let I be a j-pairing induced from
⊗(I1, . . . , Ij) by the objects used in θ = (θ1, . . . , θj) where θi is the substitution for Ii
which falsifies C i. For this note that since T is range restricted, all the variables of a clause
appear in all versions C i of that clause and hence all θi’s have the same variables.

We get that with respect to θ all negative literals of C are true in I (since the component-
wise literals must be true in order to falsify C i), but for the positive literals at least one
of the components is false (e.g. for Pm+i the component corresponding to Ii must be false
in order to falsify C i). We therefore get that I 6|=d C, which contradicts the fact that the
d-models of T are closed under pairings.

The learning algorithm A1, described in Table 2, is similar in structure to Prop-Horn.
The algorithm generalises this scheme by using pairing (instead of intersection) and other
appropriate operations. In particular, let prop-ant(I), prop-neg(I) and prop-cands(I) be
as defined in Section 2.7, and letX be a set of variables in 1-1 correspondence to the objects
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of I . Then, rel-ant(I), rel-neg(I) and rel-cands(I) are derived from their propositional
counterparts by substituting objects with their corresponding variables from X.

The algorithm maintains an ordered set S of negative interpretations. These are used
to generate the hypothesis by using rel-cands(si) for each si ∈ S. On a positive counter
example wrong clauses (that are falsified by the example) are removed from H.

On a negative counter example the algorithm first minimises the number of objects in
the counter example. This can be done greedily by removing one object at a time and
asking a membership query. By Lemma 1 and Lemma 2 this yields a correct counter
example that has at most k objects. The algorithm then tries to find a pairing of this
counter example with one of the interpretations si in S that results in a negative example
J which has an extension smaller than that of si, or a smaller number of objects. This is
done by trying all possible matchings of objects in the corresponding interpretations and
appealing to a membership query oracle. The first si for which this happens is replaced
with the resulting pairing (after an optional step minimising the number of objects in J
which is performed as above). In case no such pairing is found for any of the si, the
minimised counter example I is added to S as the last element. Note that the order of
elements in S is used in choosing the first si to be replaced, and in adding the counter
example as the last element. These are crucial for the correctness of the algorithm. Finally,
note that the algorithm does not need to know the value of k.

The analysis of the algorithm follows the line of argument by Angluin et al. (1992)
establishing that similar properties hold in the more general case. Intuitively, the argument
shows that a negative counter example will be “caught” by the first si that d-covers a clause
d-falsified by it. This guarantees that two elements of S do not d-falsify the same clause
of T (since if this happens some previous counter example must not have been caught),
and hence yields a bound on the size of S. Since in each step some measurable progress is
made, bounds on the number of queries can be derived.

Lemma 7 Let I be a negative counter example after the minimisation of the number of
objects (in Step 2(c)i). Assume that the algorithm tests si (in Step 2(c)ii). If there is a
clause C ∈ H(P ) such that T |=d C, si d-covers C, and I d-falsifies C, then the algorithm
replaces si.

Proof: Assume the conditions of the lemma hold. Fix C, and let θ1 be a substitution
showing that si d-covers C, and θ2 a substitution showing that I d-falsifies C. Then J , the
pairing of the objects that are bound to the same variables in θ1, θ2 (this can be done since
θ1, θ2 are 1-1), d-falsifies C with respect to θ = (θ1, θ2). Therefore J is negative for T .

Since I 6|=d C and since its number of objects has been minimised, the number of objects
in I is exactly the number of variables in C. It follows that either I has less objects than
si (in which case so do all the pairings and si is replaced) in which case we are done, or I
and si have exactly the same number of objects. Assume therefore that the latter is the
case; we argue that the pairing J has a smaller extension than that of si. To observe that
notice first that a pairing cannot increase the number of positive literals.

Furthermore, consider the clause in rel-cands(si) that corresponds to C and denote it
by β. The clause β can be obtained as follows. Since si d-covers C there is a 1-1 mapping
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from objects in si to variables in C (this is the inverse of θ1) so that by following this
mapping we can obtain the antecedent of C as a subset of rel-ant(si). To get β, assume
this mapping of variables is used, and pick the element of rel-cands(si) that has the same
consequent as C. There are two cases: if the consequent of C is already in rel-ant(si) then
β is trivially true (it has the consequent as part of the antecedent). This happens if si
d-covers but does not d-falsify C. In this case we may assume that β is in H. In the other
case, when the consequent of C is not in rel-ant(si), β is indeed in rel-cands(si). The next
argument holds in both cases.

Since β can be obtained from C by adding literals to it we have that T |=d β and
therefore it is not removed from H by any positive counter example. We also know that
since I is a negative counter example it is positive for β. Note that, since C and β have
the same variables, θ2 can be used for β as well. It follows that β is not falsified by I with
respect to θ2. Now, since I falsifies C under θ2 it must be the case that the consequent of
C is false in I under θ2 and since the consequent is the same in C and β the same holds
for β. We therefore get that the antecedent of β is not true in I with respect θ2, or in
other words there is a literal l(X) in β such that l(θ2(X)) is false in I . The literal l(X)
was generated by l(θ1(X)) in si. Since the pairing J matches objects according to the
variables they are bound to we get that, while l(θ1(X)) is in si, l(θ(X)) is not in J where
θ = (θ1, θ2), and thus J has a smaller extension.

Example 1 The following example shows that Lemma 7 does not hold under the normal
semantics, thus motivating the change in semantics. The lemma shows that under the
stated conditions there is a pairing of si and I that passes the test in Step 2(c)ii. In
particular it has a smaller extension than si. Consider

T = ∀x, y, z, (p1(x, y)p2(y, z)→ p3(x)) ∧ (p2(x, y)p1(y, z)→ p3(x)).

Let
I1 = {p1(1, 2), p1(2, 2), p2(2, 2), p3(2)},

then s1
1 = I1 (denoting versions of s by superscript), and assuming we know how to get the

consequent
H = (p1(x, y)p1(y, y)p2(y, y)p3(y)→ p3(x)).

Let
I2 = {p1(b, b), p2(a, b), p2(b, b), p3(b)},

then

s1
1 ⊗ I2 = {p1(1b, 2b), p1(2b, 2b), p2(2a, 2b), p2(2b, 2b), p3(2b)}.

If we try to minimise the number of objects in the counter example we have two options,
omitting either 1b or 2a. If we omit 2a then

s2
1 = {p1(1b, 2b), p1(2b, 2b), p2(2b, 2b), p3(2b)}
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which is isomorphic to s1
1 so the algorithm makes no progress. If we omit 1b then

s2
1 = {p1(2b, 2b), p2(2a, 2b), p2(2b, 2b), p3(2b)}

which is a dual case. In either case the size is the same as that of s1
1. In addition if the

algorithm replaces si with a pairing of the same size then it may be tricked into an infinite
loop: by using I3 = I1 we get that s2

1 ⊗ I3 is isomorphic to s1
1 ⊗ I2.

Lemma 8 At all times in the algorithm, for all k, i such that k < i, and for all C ∈ H(P )
such that T |=d C, if si d-falsifies C then sk does not d-cover C.

Proof: We argue by induction on the construction of S. The claim clearly holds for
the empty set. For the inductive step, assume the claim does not hold; we show that a
contradiction arises. Let I be the last counter example, and let C be the clause that exists
if the claim does not hold.

Consider first the case where I = si is appended. But in this case I d-falsifies C, and
by Lemma 7 sk is replaced if tested.

Clearly we only need to argue about cases where either si or sk are replaced. Consider
next the case where sk is replaced by J . By Lemma 2 if the optional Step 2(c)iiA is taken,
then if J d-falsifies C then it did so also before the minimisation. By Corollary 5, since J
d-falsifies C, sk d-covers C, and this contradicts the inductive assumption.

Consider next the case where si is replaced by J . Again, if J d-falsifies C then it did
so also before the optional step. Therefore (again by Corollary 5) both si and the counter
example I , d-cover C, and at least one d-falsifies C. If si d-falsifies C we get a contradiction
to the inductive assumption. If I d-falsifies C then by Lemma 7 sk is replaced if tested.

Theorem 9 The class H(P ) is learnable (under |=d) by the algorithm A1 using EQ|=d and
MQ|=d . For T ∈ Hk(P ) with m clauses, the algorithm makes at most EN +EP equivalence
queries and (2n + mkk)EN membership queries, where EN ≤ m(α + k), EP ≤ ENα, n is
the largest number of objects in any of the counter examples, and α = |P |ka where a is the
bound on arity of predicates. The running time of the algorithm is polynomial in the above
bounds and nk.

Proof: Since all elements of S are negative, each d-falsifies at least one clause of T . By
Lemma 8, no two elements d-falsify the same clause of T and hence at any time S has at
most m elements.

Every negative counter example either reduces the number of objects in some si, or
reduces the size of some si, or introduces a new element si. The size of any I with at most
k objects is bounded by |P |ka, and each si has at least one and at most k objects. The
number of negative counter examples EN is therefore bounded by m(α+ k).

After each negative counter example the algorithm updates H by changing the clauses
of a single sj. Since the number of possible consequents is bounded by α this produces at
most α wrong clauses. Since every positive counter example removes at least one wrong
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clause from H, there are at most ENα positive counter examples. This derives the bound
on the number of equivalence queries.

For the membership queries notice that for each negative counter example we need
at most 2n queries for reducing the number of objects, and at most mkk queries to test
pairings.

Considering the running time, the operations on negative examples are polynomial in
the above bounds. For a positive counter example I the algorithm has to evaluate each
clause in H on I , and this can be done in time O(nk), since clauses in H have at most k
variables.

By careful recording we can make sure that each consequent in rel-cands(si) is removed
only once and in this way reduce the number of positive counter examples. This can be
done since if AB → C is not implied by T (and it is removed), then clearly A→ C is not
implied by T . It can be seen that for a fixed i, the antecedents of clauses in rel-cands(si)
are subsets of previous antecedents. Hence once a consequent is removed for si, as a result
of a positive counter example, it need not be generated again when updating H. Hence
EP can be reduced to mα. This idea is discussed in detail for the propositional case in
(Angluin et al., 1992).

5 Extensions

In this section we apply Theorem 9 to other settings. In doing so we omit the exact bounds
which can be easily derived. A related discussion and comparison of various models of
learning when queries are not allowed is given by De Raedt (1997).

5.1 Normal Semantics

We can apply the theorem to the normal semantics since expressions in Hk(P ) under |=d

can simulate expressions in Hk(P ) under |=.

Lemma 10 For every T ∈ Hk(P ) with m clauses there is an expression U(T ) ∈ Hk(P )
with at most mkk clauses such that for all interpretations I, I |= T if and only if I |=d U(T ).

Proof: We construct U(T ) from T by considering every clause separately. For a clause
C in T with j variables generate a set of clauses U(C). To do that, consider all partitions
of the j variables; each such partition generates a clause by assigning a single new variable
to all variables in a single class. This covers all possibilities of unifying various subsets of
variables of C to each other. The number of such clauses is equal to the number of partitions
of a j element set (the Bell number Bj) that is obviously bounded by jj . The required
U(T ) is the conjunction of all clauses generated for all clauses of T . The construction
makes sure that all possible ways to falsify a clause C in T by a non-unique substitution
are covered by a unique substitution for one of the clauses of U(C). It is easy to check
that the claim follows.
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Table 3: The algorithm A2: Learn H(P ) under |= using EQ and MQ

• Run algorithm A1 using EQ and MQ instead of EQ|=d and MQ|=d.

• The hypothesis H of A1 can be interpreted according to |=.

• Modify the treatment of positive counter examples in A1. On counter example I ,
remove a clause C from H if I 6|= C.

Hence the algorithm working under |=d can simply interact with oracles working ac-
cording to |= and still learn the same class. Moreover, the algorithm can be modified so
that it uses hypotheses can be interpreted according to |= rather than |=d. For this the
hypothesis itself need not be changed syntactically. Instead the same expression is used
with respect to |=. If this is done then negative counter examples (I 6|= T and I |= H) re-
main counter examples since I 6|=d U(T ) (by Lemma 10) and I |=d H (since I |= C implies
I |=d C). For positive counter examples (I |= T and I 6|= H), we have that I |=d U(T )
(by Lemma 10) but it may be the case that I |=d H and I is not a counter example. To
handle this the algorithm needs to be modified to evaluate clauses according to |= when
removing clauses on a positive counter example. We call this modified algorithm A2; the
modifications are summarised in Table 3.

Naturally, it must be verified the the theorem still holds. For this note that the only
place where the hypothesis is used is in the proof of Lemma 7, where we must argue that
β is not removed from the hypothesis. In this case we know that the antecedent of β is a
superset of the antecedent of a clause in U(T ) and their consequent is identical. It follows
that T |= β. Therefore, I |= T implies I |= β and β is not removed by the modified process.

Corollary 11 The class H(P ) is learnable (under |=) by the algorithm A2 using EQ and
MQ.

5.2 Using Equality

As we now show another advantage of |=d is that it allows for an easy incorporation of
equalities and inequalities relative to |=. In particular Hk(P ) under |=d can simulate
Hk(P,=) under |= hence yielding a learning result for H(P,=) under |=.

Lemma 12 For every T ∈ Hk(P,=) with m clauses there is an expression U∗(T ) ∈ Hk(P )
with at most mkk clauses such that for all interpretations I, I |= T if and only if I |=d

U∗(T ).

Proof: We first show that for each T ∈ H(P,=) there is an expression G equivalent to
T under |= such that no clause in G includes inequalities and G has the same number of
clauses as T . (Hence inequalities are in some sense useless.) To get G from T consider
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each clause separately. For each inequality (xi 6= xj) in a clause C replace all occurrence
of xi and xj in C by xmin{i,j} and remove the inequality from C. Repeat this until there
are no more inequalities in C.

Now, if I 6|= T then there is a substitution θ and a clause C that is falsified by it.
Consider any inequality in C. Since the inequality is not satisfied, θ maps both its variables
to the same object. Hence all the variables of C re-mapped to a single variable in G are
mapped to a single object by θ. Since we kept one of these variables as the representative,
all the literals in the corresponding clause of G have the same value under θ and hence it
is falsified by I .

On the other hand if I 6|= C ′ for a clause C ′ in G then one can extend the substitution
to cover variables of the corresponding clause C in T by mapping all the variables unified
in the generation of C ′ to the same object. Clearly, I falsifies all literals that are retained
in C ′ under this substitution. By construction it also falsifies the inequalities, and hence
falsifies C.

We next construct U∗(T ) from G by considering every clause separately. For a clause
C in G generate set of clauses U∗(C). Consider a clause C in G and the clauses U(C) as
generated in Lemma 10 ignoring equalities and inequalities. Now consider a positive literal
(xi = xj) in the clause C. The clause is satisfied under any substitution in which xi and xj
are mapped to the same object. Hence we can remove from U(C) all those clauses where
xi and xj were mapped to the same variable. This can be repeated for all equalities in
C to generate U∗(C). The conjunction of all clauses in U∗(C) for all C in G constitutes
U∗(T ).

Assume I 6|= G for some I . Thus some clause C in G is falsified by I under some
substitution θ. Partition the variables of C according to the objects they are mapped to
in θ, generating a clause from this partition as in the generation of U(C). We claim that
the resulting clause C∗ has not been removed from U∗(C). This is true since all equalities
in C are not satisfied and thus their variables are mapped to distinct objects. Hence C∗ is
falsified by I under the substitution induced from θ (which is 1-1 for its variables), implying
I 6|=d C∗.

Finally, assume I 6|=d U∗(T ) for some I . Thus some clause C ′ in U∗(T ) is falsified by
I under some substitution θ mapping distinct variables to distinct objects. Let C be the
clause that generated C ′, and extend θ to variables of C by using the inverse mapping of
the variable partition used when generating C ′ from C. We claim that I falsifies C under
the extended substitution. For this first observe that all literals in C not involving equality
are falsified since they have the same values as in C ′ under θ. Consider next an equality
(xi = xj) in C. All elements of U(C) in which xi and xj are mapped to the same variable
have been removed from U∗(C). It follows that xi and xj are mapped to different variables
in C ′ and since θ maps each variable of C ′ to a unique object the equality is falsified. Hence
all literals of C are falsified, and I 6|= G.

Here again, the hypothesis of the algorithm can be converted into an expression in
the class being learned. This time there is no need to modify the algorithm, but the
hypothesis is syntactically modified. In particular, this can be done by adding equalities

19



Table 4: The algorithm A3: Learn H(P,=) under |= using EQ and MQ

• Run algorithm A1 using EQ and MQ instead of EQ|=d and MQ|=d.

• The hypothesis H of A1 is modified syntactically by adding equalities on all variables
used in the clauses. It can be interpreted according to |=.

on all the variables in all clauses. That is (p(x, y)p(y, z) → q(z)) (under |=d) will be
translated to (p(x, y)p(y, z) → q(z) ∨ (x = y) ∨ (x = z) ∨ (y = z)) or equivalently to
(p(x, y)p(y, z)(x 6= y)(x 6= z)(y 6= z) → q(z)). This is summarised as algorithm A3 in
Table 4

Corollary 13 The class H(P,=) is learnable (under |=) by the algorithm A3 using EQ
and MQ.

5.3 Entailment Queries

For learning from entailment (Frazier & Pitt, 1993) examples are clauses in the language.
Here we use ground clauses as examples. This seems natural and corresponds to what is
done in inductive logic programming. It is easy to see that the same ideas apply if examples
are universally quantified clauses.

In the following, we modify the signature of the language so as to include an infinite
number of constant symbols (as the natural numbers) in direct correspondence with the
possible names of domain elements in the interpretations; thus the signature is (P,N),
and in all interpretations the domain is a subset of N .3 The expressions in H(P ) still do
not include constant symbols. We need however to accommodate the constant symbols in
the interpretations for (P,N). Let I be an interpretation for the signature P and assume
that the domain is a subset of the natural numbers. Then I is converted into IN , an
interpretation for (P,N), by letting the domain be N and mapping each constant i to the
object i. The extension of predicates is the same as in I . Clearly, no atom p(. . . , i, . . .)
such that i is not in the domain of I is true in IN . Similarly, from an interpretation IN for
(P,N) we get an interpretation I for P by omitting all objects that do not appear in the
extension of any predicate in IN . Note that the operations above are not complementary
since an interpretation I for P may include objects that do not appear in the extension of
any predicate.

Lemma 14 Let T be a conjunction of range restricted clauses over P .

1. For every interpretation I for P , I |= T if and only if IN |= T .

2. For every interpretation IN for (P,N), IN |= T if and only if I |= T .
3Clearly, any other generic set of names can be used as long as constants and object names are equated.
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Proof: For range restricted clauses all variables in a clause appear in the antecedent.
Therefore objects that do not appear in the extension of any atom in an interpretation
cannot participate in a falsifying substitution (since otherwise the antecedent is falsified).
Such objects can therefore be added or removed without changing the truth value of T in
the interpretation.

Since the semantics does not change we use I and assume that the corresponding
conversion is done whenever needed. We can now define the learning model. For Entailment
Membership Queries (EntMQ), the learner presents C(θ(X)), a ground instance of a clause
C ∈ H (i.e. all variable are substituted to constants) and the oracle returns “yes” iff
T |= C. For Entailment Equivalence Queries (EntEQ) the learner presents a hypothesis
H ∈ H and the oracle returns “yes” if H = T and otherwise it returns a ground clause c
that is a counter example (T |= c and H 6|= c or vise versa).

We first observe that membership queries can be replaced with entailment queries.
Recall that prop-cands(I) is the propositional operation of Section 2.7.

Lemma 15 Let I be an interpretation and T ∈ H(P )−. Then I 6|= T if and only if for
some c ∈ prop-cands(I), T |= c.

Proof: Clearly, for all c ∈ prop-cands(I) the antecedent of c is satisfied by I and its
consequent is not, and therefore I 6|= c. Hence, if T |= c, then I 6|= T .

For the other direction assume I 6|= T . Therefore it falsifies some clause C of T under
some substitution θ. Consider c′ = C(θ(X)) the ground instance of C obtained by following
θ. Clearly, I 6|= c′, and therefore its antecedent is true in I (and therefore is a subset of
prop-ant(I)), and its consequent is not. Now consider the clause c whose antecedent
is prop-ant(I) and whose consequent is identical to the consequent of c′. Then c is in
prop-cands(I) and T |= C |= c′ |= c.

Therefore when the algorithm presents a membership query we can ask a sequence of
entailment queries and answer “no” if and only if one of them is implied by T . Moreover,
if entailment queries are available we can make sure when creating a hypothesis that its
clauses are always implied by T . This can be done by asking an entailment query for
each of the clauses in rel-cands(si). Since clauses in rel-cands() are universally quantified
they must be translated to ground clauses if we want to use EntMQ. This can be done
by substituting an arbitrary distinct constant for every variable in the clause. Note that
by performing this we avoid the nk dependence in the running time (needed for positive
counter examples). These modifications are summarised as Algorithm A4 in Table 5.

Corollary 16 The class H(P )− is learnable (under |=) by the algorithm A4 using EQ and
EntMQ.

For EntEQ notice that if T |= H and c is a counter example clause for H then it is the
case that T |= c and H 6|= c. Namely, only one type of counter examples is encountered.
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Table 5: The algorithm A4: Learn H(P )− under |= using EQ and EntMQ

• Run algorithm A2 simulating its oracles as needed and modified as follows.

• Modify the hypothesis generation step of A2. For each clause that A2 intends to
include in the hypothesis, if C 6∈ H(P )− then do not include C. Otherwise, include
C only if T |= C.

To test this, substitute an arbitrary distinct constant for every variable in C to get
C(θ). Use EntMQ to test whether T |= C(θ). Include C in H if the answer is “yes”.

• Calls to the oracle EQ are treated as in A2.

• On a call to MQ with interpretation I answer “no” if and only if for some c ∈
prop-cands(I), T |= c (use EntMQ to test this).

Lemma 17 Let T,H ∈ HD(P )−. If T |= H and c is a counter example clause for H then
an interpretation I such that I 6|= T and I |= H can be found in time O(|H||P |nkna) where
n is the number of objects in c.

Proof: Let I be an interpretation that includes the objects in c, and where the extension
of predicates includes precisely the positive literals in the antecedent of c. The idea (Frazier
& Pitt, 1993; Reddy & Tadepalli, 1998) is to compute the “closure” of I with respect to
H. Clearly, I 6|= T . If I |= H then we are done. Otherwise, we can find a clause C of H
falsified by I under a substitution θ. Let the ground consequent of C(θ(X)) be γ; add γ
to I and repeat the process until I |= H. This must eventually happen since all clauses in
H are definite and H is satisfied by the interpretation that has all ground atoms true. We
claim that I satisfies the conditions of the lemma.

Since H 6|= c, the consequent of c is never added to I (since forward chaining is sound)
and hence I 6|= T . On the other hand, by the construction I |= H. It only remains to
observe that the number of iterations is bounded by the maximum size of an interpretation
with n objects.

The above process is similar to the use of the chase procedure to decide on uniform
containment of database queries (Sagiv, 1988). The lemma implies that EntEQ can be
used to simulate EQ if we restrict the hypothesis to include only clauses in HD(P )−. The
modifications are summarised as Algorithm A5 in Table 6.

Corollary 18 The class HD(P )− is learnable (under |=) by the algorithm A5 using EntEQ
and EntMQ.

5.4 Inductive Logic Programming

Both interpretations and clauses were used as examples in ILP and the results above are
therefore relevant to this area. The main other feature incorporated into ILP models is
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Table 6: The algorithm A5: Learn HD(P )− under |= using EntEQ and EntMQ

• Run algorithm A4 simulating its oracles as needed and modified as follows.

• Modify the hypothesis generation step of A4. For each clause that A4 intends to
include in the hypothesis, include C if and only if C ∈ HD(P )−.

• Calls to the oracle EntMQ are treated as in A4.

• On a call to EQ with modified hypothesis H, first call EntEQ with H. On a counter
example c (such that T |= c and H 6|= c) run the procedure of Lemma 17 to generate
an interpretation I and present I as a counter example to A4.

the use of background knowledge. The background knowledge B is an expression over the
signature (P,N) which is known to the learner before the learning session. A distinction has
been made between extensional background knowledge where B is a conjunction of positive
ground literals, and intentional background knowledge where B may include general Horn
expressions. We show that both types can be handled by our algorithm in the case of
learning from entailment.

We consider the setting as defined by Cohen (1995b). In this setting, an example is
meant as a positive example for some concept in the world (which is the consequent in
some clause in T ). In particular an example is a pair (E,D) such that D (for Description)
is a conjunction of positive ground literals and E is a single positive ground literal. An
example (E,D) is a positive example for T with respect to B if and only if T ∧B∧D |= E.
Since this is equivalent to T ∧B |= (D→ E) we see that a positive ILP example is similar
to an example clause.

We modify the learning model accordingly. The target T ∈ HD(P )− and the back-
ground knowledge B are fixed by an adversary. The target is hidden from the learner but
B is given to the learner. For a ILP equivalence oracle (ILPEQ), the learner presents a
hypothesis H, and the oracle returns “yes” if and only if T ∧ B is equivalent to H ∧ B.
Otherwise it returns a ILP counter example, namely, a pair (E,D) which is positive for
one of T or H but not the other. A ILP membership oracle (ILPMQ) for B and T when
presented with a pair (E,D) answers “yes” if and only if T ∧B |= (D → E).

For the extensional case, the idea is to run the same algorithm but modify the examples
slightly. Since T ∧B |= (D → E) if and only if T |= (B ∧D → E), a ILP counter example
(E,D) can be turned into a clause c = (B ∧ D → E) which is a counter example for H.
The use of EntEQ is therefore straightforward.

For EntMQ a clause c can be seen as a pair corresponding to c = (D → E); the only
problem one needs to get around in order to apply Corollary 18 is the fact that B is part of
the problem specification and thus we need to make sure that B does not effect the answers
to our queries. Namely, we want to have T |= (D → E) if and only if T ∧ B |= (D → E).
This can be done by using distinct new object names in the queries (that do not appear
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Table 7: The algorithm A6: Learn HD(P )− under |= relative to an extensional background
knowledge using ILPEQ and ILPMQ.

• Run algorithm A5 simulating its oracles as needed.

• On a call to EntEQ with hypothesis H, first call ILPEQ with H. On a counter
example (E,D) (such that T ∧ B |= (D → E) and H ∧ B 6|= (D → E)), present
c = (B ∧D → E) to A5 as a counter example.

• On a call to EntMQ with clause c, rename the constants in c so that none of them
appears in B to get c′ = (D → E). Present (E,D) to ILPMQ and return the same
answer to A5.

in B). The resulting algorithm A6 is summarised in Table 7.

Corollary 19 The class HD(P )− is learnable (under |=) relative to an extensional back-
ground knowledge by the algorithm A6 using ILPEQ and ILPMQ.

For intentional background knowledge in HD(P )− the idea is to have the algorithm
learn the expression T ∧ B ∈ HD(P )−. The background knowledge can be incorporated
into the algorithm by using the clauses in B to initialise the set S of interpretations the
algorithm uses. For each clause C, we generate an interpretation sC from its antecedent by
substituting a unique object to each variable. Let the set of interpretations so generated
be S0. Clearly, the clause C is in rel-cands(sC). However, since the order of elements in S
is important, we must take care when using these interpretations. The solution we present
uses one of the previous learning algorithms as a subroutine that automatically adapts to
this requirement.

The learning algorithm A7 runs in two phases. In the first phase it uses A4 as follows.
On an EntMQ for the clause c = (D → E), it presents (E,D) to ILPMQ and answers
accordingly. On a EQ with hypothesis H, it evaluates H on all the interpretations in S0.
If for some s ∈ S0, s |= H, then s is returned to A4 as a counter example. Otherwise the
algorithm moves to the second phase.

In the second phase it runs A5 but using the set S resulting from the first phase to
initialise the set S of A5. EntMQ are dealt with as in the first phase. On an EntEQ with
hypothesis H, the algorithm presents H to ILPEQ to get a counter example (E,D) that
it returns as a counter example c = (D → E) to A5. The algorithm is summarised in
Table 8.

It is easy to see that after the first phase and throughout the second one the hypothesis
of the algorithm will satisfy H |= B and T ∧B |= H. Therefore the complexity of learning
in the second stage is bounded by the complexity of learning T alone in the case with no
background knowledge. The number of EntMQ in the first phase can be bounded using
the number of counter examples in this phase (which is at most the number of clauses in
B) and the analysis as above.
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Table 8: The algorithm A7: Learn HD(P )− under |= relative to an intentional background
knowledge using ILPEQ and ILPMQ.

1. Compute S0 from the clauses of B.

2. Run algorithm A4 simulating its oracles as needed and restricting the hypothesis to
HD(P )−.

• On a call to EntMQ with clause c = (D → E) present (E,D) to ILPMQ and
return the same answer to A4.

• On a call to EntEQ with hypothesis H, evaluate H on interpretations in S0; if
an interpretation I ∈ S0 such that I |= H is found then return it as a counter
example to A4. Otherwise go to Step3.

3. Run algorithm A5 initialising S to be the same as in the last stage of A4, and
simulating its oracles as needed.

• On a call to EntMQ with clause c = (D → E) present (E,D) to ILPMQ and
return the same answer to A5.

• On a call to EntEQ with hypothesis H, first call ILPEQ with H. On a counter
example (E,D) (such that T ∧B |= (D → E) and H ∧B 6|= (D → E)), present
c = (D→ E) to A5 as a counter example.

Corollary 20 The class HD(P )− is learnable (under |=) relative to an intentional back-
ground knowledge by the algorithm A7 using ILPEQ and ILPMQ.

Clearly, both kinds of background knowledge can be combined though this does not
allow for clauses that include both variables and constants.

5.5 Learning to Reason

We next show that the algorithm for learning from entailment is robust in the sense that if
the target expression is not Horn then it will find a Horn expression which is as close to it
as possible. In fact we show that the algorithm is a Learn to Reason algorithm (Khardon
& Roth, 1997) with respect to the class HD(P )−. This is formalised using the notion of
least upper bounds that were introduced by Selman and Kautz (1996) and discussed by
various authors (e.g. Frazier & Pitt, 1993; Khardon & Roth, 1996; Del Val, 1996).

Definition 5 Let G,H be classes of first order expressions over the signature P . An
expression T ∈ H is the least upper bound of G ∈ G in H, if (1) G |= T , and (2) for all
T ′ ∈ H such that G |= T ′, it is the case that G |= T |= T ′.
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In the following we fix G to be the class of expressions composed of conjunctions of range
restricted clauses, and H to be HD(P )−. By Lemma 14, this allows us to use the signature
(P,N) without modifying the semantics. Since HD(P )− is closed under conjunctions it is
easy to see that the least upper bound is well defined and unique. We modify the learning
model so that the target expression is in G but examples are (ground clauses) in H. For
EntMQ, the learner presents C(θ(X)), a ground instance of a clause C ∈ HD(P )− (i.e. all
variable are substituted to constants) and the oracle returns “yes” iff T |= C(θ(X)). For
EntEQ, the learner presents a hypothesis H ∈ H(P )− and the oracle returns “no” if there
is a clause C ∈ H(P )− and a substitution θ such that T |= C(θ(X)) and H 6|= C(θ(X)) or
vise versa. In this case it returns such a ground clause as a counter example. Otherwise it
returns “yes”. Notice that it may be the case that G 6= H but there is no counter example in
H(P )− and the oracle returns “yes”. We denote this restricted oracle by EntEQ[HD(P )−].

Theorem 21 Given access to EntMQ and EntEQ[HD(P )−] and for any target expression
G ∈ G, algorithm A5 will find an expression H ∈ HD(P )− that is equivalent (under |=) to
the least upper bound of G in HD(P )−.

Proof: Let T be the least upper bound. The theorem follows by observing that the
oracles behave as if the algorithm was learning T . In particular, by the definition of least
upper bounds, for any C ∈ HD(P )−, G |= C if and only if T |= C, and hence EntMQ are
answered correctly according to T . For EntEQ, recall that the algorithm makes sure that
G |= H where H is the hypothesis. Therefore, counter examples are such that G |= c and
H 6|= c. Now since T is the least upper bound G |= T |= c, and c is a counter example for
T as well.

This result can be translated into an “on-line” learning scenario where the learner uses
its hypothesis to reason about the world (as expressed by G). When it makes a mistake it
finds a counter example clause that it can use to refine its hypothesis. Our result implies
that even if G is not Horn, and despite the fact that we do not have an algorithm to
learn G, the learning algorithm can learn a representation that supports correct reasoning
with respect to G for all expressions in HD(P )−. Results of this type were previously
developed for propositional logic and called Learning to Reason; Theorem 21 generalises
the Learning to Reason result for propositional Horn expressions (Theorem 7.1 in Khardon
& Roth, 1997). Finally, we note that since our analysis in Section 4 discussed clauses C
such that T |= C rather than clauses in the expression T , a similar claim can be made for
learning from interpretations under a suitable restriction of EQ.

6 A Lower Bound

In this section we characterise the Vapnik-Chevonenkis dimension (VC-Dim) of H(P ). It is
known that the VC-Dim of a concept class is a lower bound for the number of equivalence
and membership queries when learning this class (Maass & Turán, 1992). The following
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theorem thus shows that Ω(m|P |ka) queries are necessary; the only scope for improvement
is therefore in the factor kk.

We start with the necessary definitions (Blumer et al., 1989; Maass & Turán, 1992).
Let A be a set, B ⊆ 2A, and S ⊆ A. Then ΠB(S) = {B ∩ S | B ∈ B} is the set of subsets
of S that can be obtained by intersection with elements of B. If |ΠB(S)| = 2|S| then we
say that B shatters S. Finally, VC-Dim(B) is the size of the largest set shattered by B (or
∞ if arbitrary large sets are shattered).

In our case A is the set of interpretations, and B is the class H(P ) interpreted under
|=. Let Hk(P )[m] be the class of expressions in Hk(P ) with at most m clauses.

Theorem 22 If |P | ≥ 2(k + 1 + logm) and all predicates in P have arity a then VC-
Dim(Hk(P )[m]) = Θ(m|P |ka).

Proof: Let α = |P |ka, and fix any k variables; the number of positive literals generated
by predicates in P with these variables is at most α. The number of antecedents is thus
bounded by 2α and the number of consequents by α. Therefore,

|Hk(P )[m]| ≤
m∑
i=1

(
α2α

i

)
≤ (

eα2α

m
)m = O(2αm)

and VC-Dim(Hk(P )[m]) ≤ log(|Hk(P )[m]|) = O(αm).
For the lower bound we assume for simplicity that there are k + 1 + logm unary

predicates, L0, L1, . . . , Lk, N1 . . . , Nlogm, and the rest of the predicates are of arity a.
We first show that Hk(P )[1] can shatter a set S of size Ω(α). The domain in all

interpretations in S is {1, . . . , k}, and in all interpretations the extension of L1, . . . , Lk is
precisely L1(1), . . . , Lk(k) and L0, N1, . . . , Nlogm have an empty extension.

Let Q be the set of ground atoms that can be generated by the non-unary predicates
in P over the domain {1, . . . , k}. Each interpretation in S will omit exactly one element
of Q. Note that |S| = |Q| and that if |P | ≥ 2(k + 1 + logm) then |Q| ≥ 1

2 |P |ka.
To see that this set of interpretations is shattered by Hk(P )[1] note that using the

conjunction L1(x1) ∧ . . . ∧ Lk(xk) in the antecedent of a clause we can make sure that in
any falsifying substitution xi is bound to i for all i.

Let S be a subset of the interpretations to be rejected (falsified) by a single clause.
The required clause is of the form C → L0(x1), where C is the conjunction of all atoms
that are true in all elements of S where element i is substituted with the variables xi.
By construction this includes the conjunction L1(x1) ∧ . . . ∧ Lk(xk). Now, for each s ∈ S
the antecedent is falsified by s using the obvious substitution, and therefore the clause
is falsified by s. For s 6∈ S the clause is not falsified since the atom of Q missing in s
appears in the antecedent of the clause (with the corresponding variables substituted for
the objects).

For Hk(P )[m], we replace each of the interpretations above with m interpretations.
This is done by using the N() predicates to give a label between 0 and m − 1 to each
generated interpretation. In particular, for each 0 ≤ i ≤ m− 1 generate an interpretation
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by adding exactly one of the atoms Nj(1), Nj(2) for each j according to the binary encoding
of i. Now, given a set S to be rejected, first divide it into m subsets according to the label.
Each subset can be rejected using the clause as above where we add the encoding of the
label to the antecedent.

7 Using the Propositional Algorithm

In this section we show that the algorithm Prop-Horn can be applied more directly to the
relational learning problem. The resulting algorithm is similar to A2. The result here
is slightly less good than the one using A2 both in terms of the class learnable which is
H(P )− and the mistake bound (only slightly worse). It may be of interest however since
the proof is different and is based essentially on a reduction to the propositional case.

We first show that if the domain is fixed then H(P )− can be simulated by propositional
expressions. In order to relate interpretations to the standard propositional setting we
assume a fixed number of objects k, and object names 1, 2, . . . , k. For each predicate
r() of arity a we create ka propositional variables r(1,...,1), . . . , r(k,...,k), corresponding to all
instantiations of r() over objects in {1, 2, . . . , k}. An interpretation I corresponds to an
assignment of values in {0, 1} to the propositional variables in a natural way. Namely,
for a tuple A of a objects in {1, . . . , k}, the propositional variable rA is assigned 1 if and
only if r(A) ∈ I . When discussing propositional expressions and the propositional learning
algorithm we implicitly assume that this translation is used.

Let T be a universally quantified Horn expression on a set of variablesX = (X1, . . . , Xk)

T = ∀X, C1(X) ∧ C2(X) ∧ . . . ∧ Cm(X).

Let θ1, . . . , θkk be an enumeration of all possible mappings of k variables to objects in an
interpretation with domain {1, . . . , k}. Consider the propositional expression

Tp = C1(θ1(X))C1(θ2(X)) . . . C1(θkk(X))
C2(θ1(X))C2(θ2(X)) . . . C2(θkk(X))
. . .

Cm(θ1(X))Cm(θ2(X)) . . . Cm(θkk(X)),

where we have omitted the conjunction symbols. For I ∈ Ik define inflate(I) to be the
interpretation with the same extension as I but where the number of objects is exactly k.
Namely to get inflate(I) we add new “phantom” objects to I . As in Lemma 14 we have:

Lemma 23 Let T ∈ Hk(P )−, I ∈ Ik, and let Tp be the propositional version of T described
above. Then the following conditions are equivalent:
(1) I 6|= T
(2) inflate(I) 6|= T
(3) inflate(I) 6|= Tp.
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Proof: Clearly (1) implies (2) and (3) since the falsifying substitution in I suffices. Now
(3) implies (2) since the clause falsified in Tp supplies the falsifying substitution for T . To
see that (2) implies (1) notice that phantom assignments do not change the truth value
of range restricted clauses. For any θ that maps a variable to a phantom object, and any
clause C that uses this variable, C(θ(X)) is true since the antecedent of C is false.

Lemma 23 suggests that H(P )− can be learned by using the propositional algorithm
directly. The learning algorithm will use the propositional hypothesis of Prop-Horn and
will adapt the number of objects in counter examples to be exactly k by using membership
queries to reduce the number of objects (relying on Lemma 1 and Lemma 2) or using
inflate() to set the number of objects to k (relying on Lemma 23). This however does
not quite work if arbitrary examples rather than examples in Ik are used since Tp is not
guaranteed to be correct on these. We next show that this difficulty can be overcome by
adapting the algorithm to use a first order hypothesis.

Assume first that T ∈ Hk(P )− and the algorithm knows the correct value of k. The
algorithm A8 runs Prop-Horn using Ik as the domain and simulating its oracles while
interacting with the first order oracles. The algorithm uses Prop-Horn’s set of interpreta-
tions S to generate its own hypothesis, H = ∧si∈Srel-cands(si). (In fact, only only range
restricted clauses in rel-cands() need to be included in the hypothesis.) Initially S = ∅
and H is true on any interpretation.

When Prop-Horn asks a membership query (after computing the intersection of x with
an element si ∈ S) the queries are passed directly to the membership oracle and answered
in the same way.

When Prop-Horn asks an equivalence query the algorithm recomputes H as H =
∧si∈Srel-cands(si) and asks an equivalence query. Given a positive counter example the
algorithm evaluates all clauses in H on it, and removes any clause falsified by I from H.

Given a negative counter example if it has more than k objects the algorithm first finds
a subset of objects that is sufficient as a counter example. This can be done (as in A2)
greedily by removing one object at a time and asking a membership query. By Lemma 1
and Lemma 2 this yields a correct counter example that has at most k objects. Let I be
the minimal counter example found; the algorithm renames the objects of I using names
in {1, 2, . . . , k}, and presents x = inflate(I) to Prop-Horn as a counter example.

Note that Prop-Horn’s hypothesis is never evaluated (and hence need not be generated).
Its computation is restricted to computing intersections and asking membership queries.
These in fact can be incorporated into A8. Finally, the algorithm can be adapted for the
case when the value of k is not known. This is discussed in the proof of the following
theorem. The algorithm is summarised in Table 9.

Theorem 24 The class H(P )− is learnable (under |=) by the algorithm A8 using EQ and
MQ. For T ∈ Hk(P )− with m clauses, the number of queries is polynomial in m, |P |, ka, kk, n,
and the time complexity is polynomial in the above parameters and nk, where n is the largest
number of objects in the counter examples.
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Table 9: The algorithm A8: Learn H(P )− using EQ and MQ (propositional version).

1. Let k = 1.

2. Run algorithm Prop-Horn with domain {1, . . . , k} simulating its oracles as needed.

3. On a call to EQ (propositional with fixed k) with the set S generating Prop-Horn’s
hypothesis, compute rel-cands(S) as a hypothesis. Present H to EQ to get a counter
example I .

• if I is a positive counter example (I |= T ) then remove wrong clauses (s.t.
I 6|= C) from H.

• If I is a negative counter example, then minimise the number of objects in I
using MQ (as in A2). If I has at most k objects then return inflate(I) as a
counter example to Prop-Horn.
Otherwise, let k = max{2k, number of objects in I} and restart Step 2.

4. On a call to MQ (propositional with fixed k) with interpretation I , present I to MQ
and answer in the same way.

We first show that if entailment queries are also allowed then the algorithm can be
used to learn the class H(P )−. For this we modify algorithm A8 as follows. The set
rel-clauses(I) is the set of clauses {C ∈ rel-cands(I) | T |= C}. Given a set S of
interpretations, rel-clauses(S) can be computed by appealing to an entailment oracle (as
before by substituting constants to variables). Notice that since si 6|= T , si falsifies at
least one of the clauses of T and hence rel-clauses(si) is not empty. The hypothesis of the
algorithm is now computed by H = ∧si∈Srel-clauses(si).

Lemma 25 The class H(P )− is learnable (under |=) by the modified A8 algorithm using
EQ, MQ, and EntMQ. For T ∈ Hk(P )− with m clauses, the algorithm is polynomial in
m, |P |, ka, kk, n, where n is the largest number of objects in the counter examples.

Proof: Note that by the use of the entailment oracle we are guaranteed that at all times
T |= H, and therefore a counter example is such that I 6|= T and I |= H.

Lemma 23 identifies a target expression Tp for the learning problem for Prop-Horn.
The correctness and complexity bound follow from those of Prop-Horn if we can show that
the simulation is correct. It suffices to show that (1) the membership queries are answered
correctly according to Tp, (2) if Prop-Horn asks an equivalence query and if H 6= T then
the algorithm will present a counter example x to Prop-Horn, and (3) x is indeed a counter
example for the internal hypothesis of Prop-Horn and the target expression Tp. Part (1)
follows immediately by Lemma 23.

For (2) note that if H 6= T then a counter example for H is returned, and some x is
passed to Prop-Horn. Note also that as argued above the reduced interpretation I is a
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counter example for H and using Lemma 23 again we get that x is a counter example for
H.

For (3), we claim that h the internal hypothesis of Prop-Horn is satisfied by x, and thus
x is a counter example. Here we only consider clauses c such that Tp |= c, and therefore
have Tp |= h. Since the internal hypothesis is never created we may assume a modified
version of Prop-Horn that appeals to an entailment oracle and includes only correct clauses
in its hypothesis. This modified version is obviously correct and suffices for the current
argument.

Assume x falsifies h. Then one of the clauses c in h is falsified. Let si be the inter-
pretation that generated c and let C be the corresponding clause of H. Clearly, there is a
substitution θ, the inverse of the one used for the generation of C, so that C is falsified by
x, contradicting the fact that x is a counter example for H.

The time complexity of the algorithm is similar to that of A2. The number of queries
is governed by the query complexity of Prop-Horn which is polynomial in the number of
propositional variables and the size of Tp. The latter is O(mkk) where T ∈ Hk(P )− has m
clauses.

Lastly, consider the case where k is not known. We start with k = 1 and run as
before unless we find that a counter example cannot be minimised to have k objects. We
then increase k to be the maximum of 2k and the number of objects in I , where I is the
counter example, and restart the algorithm. Correctness follows since as long as we do not
meet counter examples that are too large, the propositional learning problem simulates the
learning of T when restricted to interpretations of size k. (Essentially the construction of
Tp can be generalised to have ik substitutions when considering i objects.) We therefore
have at most log k iterations where in each iteration the complexity is bounded as before.

Finally, to prove the theorem we show that entailment queries are not needed:

Proof: [Proof of Theorem 24] The modified A8 algorithm uses Prop-Horn as a black
box. The role of Prop-Horn is however reduced to manipulating the set S. Namely,
the hypothesis need not be generated. The manipulation of S consists of computing the
intersection of two interpretations and in asking membership queries to decide on the
update.

In the previous lemma entailment queries were used to ensure that we always get nega-
tive counter examples. When using the hypothesis H = ∧si∈Srel-cands(si), the algorithm
may get positive counter examples, that are used to remove wrong clauses from H. This
can be done in time O(nk) for each clause in H. Since the number of wrong clauses in
H is bounded by the size of the sets rel-cands(si) the same bounds follow (essentially the
entailment queries are traded for positive counter examples).
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8 Concluding Remarks

We have shown that universally quantified function free Horn expressions are learnable in
several models of exact learning from queries. This includes learning from interpretations,
learning from entailment, learning with intensional or extensional background knowledge
and learning to reason. The most expressive class shown learnable allows for an arbitrary
number of equalities to appear in the expressions thus going slightly beyond pure Horn
expressions.

The algorithms presented are polynomial in the number of predicate symbols in the
language and the number of clauses in the target Horn expression but exponential in the
arity of predicates and the number of universally quantified variables. We also derived
lower bounds for these tasks by way of characterising the VC-dimension of this class of
expressions. This shows that apart for the dependency on on the number of variables our
algorithms are essentially optimal.

In order to develop the results we introduced the unique substitutions semantics and
the pairing operation that enabled us to control the size of generalised clauses. The pairing
operation as well as the operations of omitting one object at a time from interpretation
while using MQ can be seen as refined forms of minimising the size of interpretations or the
relevant clauses. A “fine grain” minimisation by omission of one atom at a time is used in
the propositional domain for example by Angluin (1988) for learning monotone DNF, and
for relational problems by Reddy and Tadepalli (1997, 1998). Work by Aizenstein and Pitt
(1995) indicates that this may not always be successful. Our work identifies more “coarse
grain” minimisation steps that are safe for function free expressions.

The application of these ideas in a practical ILP system would require an interactive
setting where membership queries are answered. Some work in ILP included systems
with similar requirements (Sammut & Banerji, 1986; Muggleton & Buntine, 1992) and
our results can be applied in these scenarios. Clearly, finding heuristics for reducing the
number of queries is an important step in this direction.

There are several natural questions as for improvements of these results. These include
for example allowing constants and function symbols in the learned expressions, improving
the complexity or proving better lower bounds, and allowing for alternation of quantifiers.
Another aspect concerns the learning model. Shapiro’s (1983) system introduced the model
inference problem, where a learner is trying to find a logic program corresponding to
an “intended interpretation”. There are subtle differences between this requirement and
the ones studied in this paper. In addition the set of queries available to the learner is
also different. Clarifying these aspects will be of interest. Finally, some connections of
the problems studied here to work in database theory have been mentioned and further
exploration of these may prove useful.

When considering function symbols in the language it is important to make sure that
learned expressions are useful in the sense that computations with them are decidable and
efficient. Some progress in this direction was recently made, showing that a natural gener-
alisation of range restricted expressions, where every term that appears in the consequent
of a clause also appears in its antecedent, is learnable (Khardon, 1998).
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