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Abstract: Auxiliary variables are essential for specifying programs in Hoare Logic. They
are required to relate the value of variables in different states. However, the axioms and rules
of Hoare Logic turn a blind eye to the rôle of auxiliary variables. We stipulate a new struc-
tural rule for adjusting auxiliary variables when strengthening preconditions and weakening
postconditions. Courtesy of this new rule, Hoare Logic is adaptation complete, which ben-
efits software re-use. This property is responsible for a number of improvements. Relative
completeness follows uniformly from the Most General Formula property. Moreover, con-
trary to common belief, one can show that Hoare Logic subsumes VDM’s operation decom-
position rules in that every derivation in VDM can be naturally embedded in Hoare Logic.
Furthermore, the new treatment leads to a significant simplification in the presentation for
verification calculi dealing with more interesting features such as recursion or concurrency.
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1 Introduction

Hoare Logic is a verification calculus which relates imperative programs with two assertions,
both (first-order) logical formulae. These assertions are interpreted aspredicates on stateswhere
free variables denote the value of program variables in a specific state. Variables for which no
counterpart appears as a program variable in the program under consideration then take on the
rôle of auxiliary variables. They are required to relate the value of program variables indifferent
states.

In practice, auxiliary variables are essential ingredients for specifying properties about im-
perative programs [Vic91]. Nevertheless, the axioms and rules in Hoare Logic do not support the
rôle of auxiliary variables. This is a known deficiency and has been overcome in other frame-
works e.g., specification logic [Rey82] and the Vienna Development Method (VDM) [Jon90].

In our opinion, the rôle of auxiliary variables in Hoare Logic has been underestimated. We
stipulate a new structural rule for adjusting auxiliary variables when strengthening preconditions

∗This is an extended version of [Sch97].
†formerly Schreiber
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and weakening postconditions. This alone leads to adaptation completeness. One may adapt
arbitrary satisfiable specifications. As a consequence,

• we clarify how to uniformly establish completeness as a corollary of Gorelick’s Most Gen-
eral Formula (MGF) theorem [Gor75] which focusses on deriving a specific correctness
formula. One may adapt the MGF specification to an arbitrary specification in a single
step.

• We can show that, contrary to common belief, Hoare Logic subsumes VDM’s operation
decomposition rules in that every derivation in VDM can be naturally embedded in Hoare
Logic.

• The Hoare Logic presentation for recursive procedures can be simplified significantly.
Specifically, we are able to show that Sokołowski’s calculus [Sok77] is sound and com-
plete if one replaces Hoare’s rule of consequence with ours. Apt’s remedy of adding three
further structural rules had led to a complete but unsound system [Apt81, AdB90].

• Similar simplifications seem possible for verification calculi dealing with concurrency.
Considering two standard motivating examples, we demonstrate that Owicki and Gries’
elimination rule for auxiliary variables [OG76a] is redundant in our approach. With our
method, auxiliary variables have to be dealt with at the level of assertions only.

The overview of this paper is as follows: Hoare Logic and the concepts of soundness, relative
completeness and adaptation completeness are briefly introduced in Sect. 2.

In Sect. 3, we discuss the rôle of auxiliary variables in Hoare Logic. As our main contribution,
we stipulate an improved rule of consequence which allows us to modify auxiliary variables
while strengthening preconditions and weakening postconditions. The section concludes with a
proof of adaptation completeness.

In sections 4–7, we illustrate the benefits of our new approach. In Sect. 4, we present a
language independent completeness proof as a corollary of the MGF property. In Sect. 5, we es-
tablish that every operation decomposition rule can be simulated in Hoare Logic. In Sect. 6, we
review the development of verification calculi for imperative programs with recursive (parame-
terless) procedures in the setting of total correctness. Our treatment of auxiliary variables leads
to a significant simplification. We turn our attention to calculi for concurrent programs in Sect. 7.
By way of examples, we show that, with our more principled treatment of auxiliary variables,
Owicki and Gries’ elimination rule for auxiliary variables does not seem to be required.

In Sect. 8, we comment on conducting machine-checked soundness and completeness proofs
with the help of an interactive proof assistant.

2 Hoare Logic

For the purpose of this section, we consider a (very) simple imperative programming language
merely considering of assignments, sequential composition, conditionals and loops.
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Definition 2.1 (Syntax of Programs) Imperative programs S: prog are defined by the BNF
grammar S::= x:= e | S1; S2 | if b then S1 elseS2 | while b do S where x is a program variable,
e an expression and b a boolean expression.

We assume that sequential composition is left-associative. Furthermore, we employbegin and
end in our concrete syntax to clarify precedence.

We describe the meaning of imperative programs with the help of a structural operational
semantics. In Sec. 2.2, assertions are introduced. We then present Hoare Logic. This includes a
semantic account and a set of axioms and rules for deriving correctness formulae. Soundness and
completeness relate these two views of Hoare Logic. Finally, in Sect. 2.6 we turn our attention
to adaptation completeness.

2.1 Semantics of Imperative Programs

We employ structural operational semantics to axiomatise the meaning of an imperative pro-
gramming language. In contrast to denotational semantics, operational semantics avoids more
intricate concepts such as least fixpoints. Operational semantics relates a program with its initial
and final state. A stateσ : Σ maps program variables to values. Evaluation of terms eval(σ)(e) is
defined in the standard way.

Definition 2.2 (Structural Operational Semantics) The operational semantics is defined as

the least relation.
. - .⊆ Σ×prog×Σ satisfying

σ
x:= e - σ [x 7→ eval(σ)(e)]

σ
S1 - η η

S2 - τ

σ
S1; S2 - τ

σ
S1 - τ

σ
if b then S1 elseS2- τ

providedeval(σ)(b) = true .

σ
S2 - τ

σ
if b then S1 elseS2- τ

providedeval(σ)(b) = false .

σ
while b do S- σ providedeval(σ)(b) = false .

σ
S - η η

while b do S- τ

σ
while b do S- τ

providedeval(σ)(b) = true .
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2.2 Assertions

Traditionally, assertions are considered to be simply formulae of first-order logicp : L, which
are interpreted in the usual way, except that the value of variables is determined by a state.
Semantically, assertions denote sets on states[[p]]⊆ Σ. We write[[p]](σ) to denote thatp is valid
when all variables are interpreted according to the stateσ. For convenience, we only consider
standard interpretations.

Example 2.1 (Syntax and Semantics of Assertions)The formula y≥ 0 denotes the set of states
in which the value of the program variable y is positive.

2.3 Semantics and Derivability of Hoare Logic

Hoare Logic is a verification calculus for deriving correctness formulae of the form{p}S{q}
for assertionsp, q and programsS. We consider total correctness. Intuitively{p}S{q} specifies
that, providedS is executed in a state such that the preconditionp holds, it terminates in a
state where the postconditionq holds. We distinguish between the semantics of a correctness
formulae|=Hoare{p} S{q} (which formalises the above intuition) and the notion of deriving a
correctness formulaèHoare{p} S{q} (which is employed in order to verify concrete programs).
Again, we omit the issue of non-standard interpretations.

Definition 2.3 (Semantics of Hoare Logic for Total Correctness)

|=Hoare{p} S{q} ⊆ L×prog×L

def= ∀σ · [[p]](σ)⇒∃τ ·σ S - τ∧ [[q]](τ) .

It is more challenging to capture total correctness for non-deterministic behaviour. It is com-
mon practice to then only consider partial correctness. Termination is assumed to have been
established by other means.

Definition 2.4 (Semantics of Hoare Logic for Partial Correctness)

|=Hoare{p} S{q} ⊆ L×prog×L

def= ∀σ,τ ·
(
[[p]](σ)∧σ

S - τ
)
⇒ [[q]](τ) .

Based on work by Floyd [Flo67], Hoare [Hoa69] proposed a syntax-directed proof system
for deriving correctness formula. For every construct of the imperative programming language,
Hoare Logic provides a rule which allows one to decompose a program. Programs mentioned in
the premisses are strict subprograms of the programs mentioned in the conclusions. Unlike the
operational semantics, this also holds for loops. One also needs a structural rule to strengthen
the precondition and weaken the postcondition in a proof obligation. This is particularly useful
when one wants to apply the rule for loops as the precondition must remain invariant with respect
to the body of the loop.
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Definition 2.5 (Derivability of Hoare Logic Correctness Formulae) A verification calculus for
Hoare Logic is defined as the least relation`Hoare{.} . {.} ⊆ L×prog×L satisfying

`Hoare{p[x 7→ e]} x:= e{p} (HAssign)

`Hoare{p} S1 {r} `Hoare{r} S2 {q}
`Hoare{p} S1; S2 {q}

(HSeq)

`Hoare{p∧b} S1 {q} `Hoare{p∧¬b}S2 {q}
`Hoare{p} if b then S1 elseS2 {q}

(HCond)

∀t : W· `Hoare{p∧b∧u = t} S{p∧u< t}
`Hoare{p}while b do S{p∧¬b} where(W,<) is well-founded. (HLoop)

`Hoare{p1} S{q1}
`Hoare{p}S{q} provided p⇒ p1 and q1⇒ q. (HCons)

2.4 Soundness

If a system is unsound, deriving a property for a particular program within the formal system
does not guarantee that the program actually fulfils the property. Formally, one needs to show that
whenever a correctness formulae`Hoare{p}S{q} is derivable, the proposition|=Hoare{p}S{q}
holds.

Theorem 2.1 (Soundness)The verification calculus introduced in Def. 2.5 is sound.

Proof by induction on the derivation of̀Hoare{p} S{q} [Kle98a]. �

2.5 Completeness

In an incomplete formal system, one may only verify a strict subset of all true formulae. A naive
definition of completeness is bound to fail in the context of verification calculi. On the one hand,
if the chosen underlying logical language is too weak, e.g., pure first-order logic together with
the boolean constantsfalseandtrue, some intermediate assertions cannot be expressed. Hence,
derivations cannot be completed. On the other hand, if the logical language is too strong, e.g.
Peano Arithmetic, it itself is already incomplete and the verification calculus inherits incomplete-
ness.

To avoid this problem, Cook has proposed that one investigatesrelative completenessin an
attempt to separate the reasoning about programs from the reasoning about the underlying logical
language [Coo78]. Two concessions are made:

1. One only considers expressive (first-order) logics in the sense of Sect. 2.5.1 below.

5



2. Furthermore, the formal system is augmented by a theory1 of first-order logic. Whenever
a rule is protected by a first-order logic side-condition, the rule is already applicable when
the side-condition is an element of the theory, and not only when the side-condition is itself
derivable.

2.5.1 Expressiveness

One must be able to express the weakest precondition2.

Definition 2.6 (Weakest Precondition) Let S be an arbitrary program and∆ ⊆ Σ be a set of
states.

wp(S,∆) def=
{

σ
∣∣ ∃τ · (σ S - τ

)
∧ (τ ∈ ∆)

}
Expressiveness amounts to closure under weakest precondition.

Definition 2.7 (Expressiveness)The logic L is expressive relative to the programming lan-
guageprog if and only if for arbitrary programs S: prog and postconditions q: L the logic
contains a formula p: L which characterises the weakest precondition i.e.,

[[p]] = wp
(
S, [[q]]

)
2.5.2 A Model Theoretic View of Side Conditions

Furthermore, rules of the verification calculus may be applied in a derivation if the logical side-
condition is valid rather than derivable. In particular, completeness no longer compares a proof-
theoretic with a model-theoretic account. Thus, instead of the consequence rule (HCons), one
needs to consider

`Hoare{p1} S{q1}
`Hoare{p} S{q} provided

(
∀σ · [[p⇒ p1]](σ)

)
∧
(
∀τ · [[q1⇒ q]](τ)

)
.

With the modified proof system, completeness amounts to showing that, whenever the proposi-
tion |=Hoare{p} S{q} holds, the correctness formulae`Hoare{p} S{q} is derivable.

Theorem 2.2 (Completeness)The verification calculus introduced in Def. 2.5 is (relative) com-
plete.

Proof by induction on the structure ofS [Kle98a]. We discuss a refined proof technique in
Sect. 4. �

1the set of all valid as opposed to derivable formulae
2For partial correctness, one needs to instead consider the weakest liberal precondition [Cou90].
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2.6 Adaptation Completeness

For programming in the large, adaptation completeness is a desirable feature [Zwi89]. Whenever,
irrespective of the details of the programS, two correctness formula{p1} S{q1} and{p}S{q}
are equivalent, one would like toderive`Hoare{p}S{q} from`Hoare{p1} S{q1} and vice versa.
Taking software reuse seriously, imagine that`Hoare{p1} S{q1} has been derived as part of
the verification in a project. It is conceivable that in another project, one needs the equivalent
correctness formulàHoare{p}S{q}. Unless the verification calculus is adaptation complete,
one may be forced to rebuild̀Hoare{p} S{q} from scratch. Of course in the new derivation
one would benefit from analysing the first derivation, but such a methodology is nevertheless
undesirable. Ideally, a verification calculus ought to support arbitrary adaptations of satisfiable
specification.

Definition 2.8 (Satisfiable Specification) A specification〈p,q〉 : L×L is satisfiable if there ex-
ists a program S such that|=Hoare{p}S{q}.

In the setting ofpartial correctness, every specification is trivially satisfied by an always diverg-
ing program.

Definition 2.9 (Adaptation Completeness) Given assertions p1, q1, p, q such that〈p1,q1〉 is
satisfiable and

∀S: prog · |=Hoare{p1} S{q1}⇒ |=Hoare{p}S{q} ,

a formulation of Hoare Logic is adaptation complete if, and only if, for an arbitrary program S,
one may close the derivation

`Hoare{p1} S{q1}···
`Hoare{p} S{q}

(1)

Pragmatically, one requires adaptation completeness under the additional constraint that some
(auxiliary) variables can only occur in assertions but not programs. This is the subject of the
following section.

3 Auxiliary Variables

Consider the specification

{true} S{y = x!} (2)

wherex, y are program variables andS is a yet to be implemented imperative programs. This
is not an adequate specification for the factorial function. The postcondition relates merely
the value of program variables in thefinal state. One cannot state that the inputx ought to
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remain invariant. Hoare Logic does not support input/output specifications. Hence, the pro-
gramS

def= x:=0; y:=1 also satisfies specification (2). Auxiliary variables come (almost) to the
rescue. These are simply program variables which only occur in assertions. In the precondition
they freeze the value of other program variables so that in the postcondition one may refer to the
initial value of program variables.

Let X andY be further program variables. In Hoare Logic, we may paraphrase the above
correctness formula (2) as

{X = x} S{y = X!} .

It is a convention that auxiliary variables do not occur in programs. Unfortunately, this cannot be
stated as part of the correctness formula. Thus, problems arise when the program to be verified
is not fully given. This is for example the case when one wants to

• develop programs hand-in-hand with their proofs of correctness [Gri81, Mor90, BM93],

• consider free procedures which are specified with respect to pre- and postcondition, but for
which one does not consider a concrete implementation [Tar85], or

• verify programs which invoke recursive procedures.

This is a well known deficiency and has been overcome in several other systems. In specification
logic [Rey82], as part of the correctness formula, one may explicitly state that a program does
not interfere with auxiliary variables. For example, an adequate specification for the factorial
function could be stated by

`SL ∀X · {X = x} S{y = X!}∧S#X .

Another solution is the VDM formalism [Jon90, JS90]. In the postcondition one may employ
hooked program variables↼−x to refer to the value of program variables in the initial state e.g.,

`VDM {true} S{y =↼−x !} .

3.1 A New Rule of Consequence

Our main contribution is to stipulate a new rule of consequence for Hoare Logic which allows one
to modify auxiliary variables when strengthening preconditions and weakening postconditions.
Assume thatS is a program about which we only know that the program variableX does not
occur in it. Then, the two specifications

{X = x} S{X = x} (3)

and

{X = x+ 1} S{X = x+ 1} (4)

where all variables denote integer values both assert that the programS leavesx invariant.
Whenever one can derive (3), one can derive (4) and vice versa. Nevertheless, the consequence
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rule (HCons) does not allow one to derive (4) from (3) or vice versa, as one would have to show
x = x+ 1.

The traditional presentation of Hoare Logic is not adaptation complete in the presence of
auxiliary variables. This causes problems in verifying recursive procedures, see Sect. 6. In a
nutshell, similar to an inductive step, during the verification of a recursive procedure, one needs to
unroll the recursive call and can exploit the correctness formula before unrolling. Unfortunately,
the hypothesis only matches modulo shifts of auxiliary variables reminiscent of the difference
between (3) and (4).

Consider the following rule of consequence

`Hoare{p1} S{q1}
`Hoare{p} S{q} if ∀Z · ∀x· p⇒∃Z1 ·

(
p1 [Z 7→ Z1]∧ (∀x·q1 [Z 7→ Z1]⇒ q)

)
.

(HCons*)

wherex is a list of all program variables andZ is a list of all auxiliary variables. We clarify
the precise meaning of the side-condition later in this section. As an example, in inferring (4)
from (3), the side condition amounts to

∀X · ∀x·X = x+ 1⇒∃Z1 ·
(
Z1 = x∧ (∀x·Z1 = x⇒ X = x+ 1)

)
. (5)

Thus, employing the new rule of consequence, the two correctness formulae (3) and (4) are
inter-derivable because the side condition (5) is satisfied forZ1 = X−1.

The consequence rule (HCons*) is strictly stronger than (HCons). The side condition is more
liberal in two respects:

• It suffices to show that the postcondition has been weakened under the additional assump-
tion that the precondition of the conclusion holds. This idea has been borrowed from
VDM’s rule of consequence [Acz82b, Jon90].

• One may adjust the auxiliary variables in the premiss. Their value may depend on the
value of auxiliary variables in the conclusion and the value of all program variables in the
initial state.

In the sequel, we annotate derivations with HCons to denote that an inference is sanctioned
by Hoare’s original version (and thus, also, the stronger version HCons*). In contrast, HCons*
signals that the inference is only possible with the stronger version.

In the above side-condition, one only substitutesauxiliary variables. This highlights that
auxiliary variables and program variables deserve to be treated differently. At the syntactic level,
one ought to (formally) distinguish between program variables and auxiliary variables. One
could for example enforce that program variables have to start with a lower-case letter, whereas
auxiliary variables must start with an upper-case letter. To be well-formed, programs may only
refer to program variables [HM96].

Technically, it is more elegant to distinguish between program variables and auxiliary vari-
ables at the semantic level, too. Following a proposal by Apt and Meertens [AM80], we interpret
assertions relative to an (arbitrary) domain of auxiliary variables and the state space. It is straight-
forward to revise the above definitions. In particular, semantics of Hoare Logic amounts to
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Definition 3.1 (Revised Semantics of Hoare Logic for Total Correctness)

|=Hoare{p} S{q} ⊆ L×prog×L

def= ∀Z · ∀σ · [[p]](Z,σ)⇒∃τ ·σ S - τ∧ [[q]](Z,τ) .

For the purpose of investigating completeness, the new rule of consequence (HCons*) states

`Hoare{p1} S{q1}
`Hoare{p} S{q}

if ∀Z · ∀σ · [[p]](Z,σ)⇒∃Z1 ·
(

[[p1]](Z1,σ)∧
(
∀τ · [[q1]](Z1,τ)⇒ [[q]](Z,τ)

))
. (6)

However, this rule does not lead to adaptation completeness.

Example 3.1 ([Mor]) It is not possible to derive

`Hoare{Z1 = 0∨Z1 = 1} S{x 6= Z1}
`Hoare{true} S{x 6= 0∧x 6= 1}

because the side condition of(6) is equivalent tofalse.

In choosing the adapted auxiliary variableZ1, one needs to additionally interrogate the value of
program variables in the final state. This can be achieved by the following version.

`Hoare{p1} S{q1}
`Hoare{p} S{q}

if ∀Z · ∀σ · [[p]](Z,σ)⇒∀τ · ∃Z1 ·
(

[[p1]](Z1,σ)∧
(
[[q1]](Z1,τ)⇒ q(Z,τ)

))
. (7)

Theorem 3.1 (Adaptation Completeness for Total Correctness)The consequence rule(7)en-
sures adaptation completeness.

Proof Given |=Hoare{p1} S∗ {q1} for some programS∗ and

∀S: prog · |=Hoare{p1} S{q1}⇒ |=Hoare{p} S{q} , (8)

we show that the rule of consequence (7) allows one to derive

`Hoare{p1} S{q1}
`Hoare{p} S{q} (9)

for an arbitrary programS.
Assume that the side condition is not fulfilled i.e.,

∃Z · ∃σ · [[p]](Z,σ)∧
(
∃τ · ∀Z1 · ¬[[p1]](Z1,σ)∨

(
[[q1]](Z1,τ)∧¬[[q]](Z,τ)

))
. (10)
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Consider the particular interpretation for auxiliary variablesZ, initial stateσ and final stateτ
given by (10). Our strategy is to reach a contradiction by instantiating (8) with a particular
programS′ such that for every inputσ′ (includingσ),

∀Z1 · [[p1]](Z1,σ′)⇒∃τ ·σ′
S′ - τ∧ [[q1]](Z1,τ) , (11)

yet there is no final stateτ which satisfies

σ
S′ - τ∧ [[q]](Z,τ) . (12)

We distinguish between two cases:

∀Z1 · ¬[[p1]](Z1,σ): We construct the programS′ as follows. On inputσ, diverge (thus, (12) can-
not hold). Otherwise, behave likeS∗. Forσ′ = σ, (11) is fulfilled becausep1 is universally
false. For other inputs, (11) amounts to a special case of the hypothesis (9).

∃Z1 · [[p1]](Z1,σ): This time, for inputσ, the new programS′ should terminate with outputτ. It
otherwise simulatesS∗.

To see that (11) holds forσ′ = σ, we transform the second conjunctive clause of (10) into

∀Z1 · [[p1]](Z1,σ)⇒ [[q1]](Z1,τ)∧¬[[q]](Z,τ) . (13)

For other inputs, (11) amounts again to a special case of the hypothesis (9).

As there is a specific witness forZ1 such that[[p1]](Z1,σ), we may appeal to (13) to con-
clude¬[[q]](Z,τ). Hence, (12) cannot hold.

�

In the sequel, we are content with the weaker version of the consequence rule (6). The prob-
lematic issue raised in Example 3.1 does not surface in any of the soundness and completeness
proofs, nor in any of the other examples considered in this paper and the author’s thesis [Kle98a].

Theorem 3.2 (Adaptation Completeness for Partial Correctness)For partial correctness, the
rule of consequence

`Hoare{p1} S{q1}
`Hoare{p} S{q}

if ∀Z · ∀σ · [[p]](Z,σ)⇒∀τ · (∀Z1 · [[p1]](Z1,σ)⇒ [[q1]](Z,τ))⇒ [[q]](Z,τ). (14)

ensures adaptation completeness.

Proof Similar to the case for total correctness [Mor, Hof97]. �
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4 Most General Formula

An immediate benefit of the new treatment is that completeness can be established directly from
the MGF theorem by adapting assertions with the help of the consequence rule. This is easier
than the direct proof because it avoids having to cater for arbitrary assertions. In other words,
instead of directly deriving

|=Hoare{p} S{q}⇒ `Hoare{p}S{q}

(by induction onS), one considers the stronger property`HoareMGFHoare(S) for which induction
(also onS) goes through more easily. In particular, the direct proof cannot be applied when one
considers recursive procedures, because the induction hypotheses are not strong enough.

The propositioǹ HoareMGFHoare(S) asserts that, provided that one only considers input
states in which the programS terminates, one mayderivea correctness formula in which the
postcondition relates all inputs with the appropriate outputs according to the underlying opera-
tional semantics of the programming language. At the semantic level,|=HoareMGFHoare(S) holds
trivially.

Definition 4.1 (MGF for Total Correctness)

MGFHoare(S) def= {p} S{q} where[[p]](Z,σ) def= σ
S - Z and[[q]](Z,τ) def= Z = τ.

At the syntactic level, the postcondition of the MGF can be described by the formula
^

x∈VAR

X = x .

It is considerably more difficult to devise a syntactic version of the precondition. If the assertion
language is Peano Arithmetic, this construction involves encoding computations with the help of
Gödel numbers [dB80]. However, in any case, the logicL must be able to express this assertion.
This is guaranteed by the definition of expressiveness since[[p]] = wp

(
S, [[q]]

)
.

Theorem 4.1 (MGF) For an arbitrary program S, one may derivèHoareMGFHoare(S).
Proof by induction on the structure ofS[Kle98a]. �

Corollary 4.1 (Completeness of Hoare Logic) For any precondition p, program S and post-
condition q, whenever|=Hoare{p}S{q} holds, theǹ Hoare{p}S{q} is derivable.

It is instructive to study the completeness proof in order to appreciate the rôle of the main the-
orem 4.1. In particular, the same proof goes through regardless of the programming language
features involved.

Proof Let Sbe a program andp,q be assertions. Given|=Hoare{p} S{q} i.e.,

∀Z · ∀σ · [[p]](Z,σ)⇒∃τ ·σ S - τ∧ [[q]](Z,τ) (15)

12



we need to establish̀Hoare{p} S{q}. By the consequence rule (6), we may directly infer`Hoare

{p} S{q} from the MGF, triggering the side condition

∀Z · ∀σ · [[p]](Z,σ)⇒∃Z1 ·
(
(σ

S - Z1)∧ (∀τ · τ = Z1⇒ [[q]](Z,τ))
)
. (16)

Clearly, (15) implies (16). �

5 Hoare Logic Subsumes VDM

In the Vienna Development Method (VDM), assertions are objects of a logic of partial functions.
In the postcondition one may employhookedprogram variables↼−x to refer to the value of the
program variable in the initial state. Thus, the meaning of a postcondition is determined by both
the initial and the final state:

Definition 5.1 (Semantics of VDM Correctness Formulae for Total Correctness)

|=VDM {p}S{q} ⊆ L×prog× (L∪↼−L )

def= ∀σ · [[p]](σ)⇒∃τ ·σ S - τ∧ [[q]](σ,τ)

VDM encompasses two orthogonal methods:

1. refining abstract objects into concrete data types available in the programming language,
and

2. refining correctness formulae, which allows one to decompose programs.

We will only consider VDM’s operation decomposition rules [Acz82a, Acz82b, Jon90], see
Fig. 1. Soundness and completeness has been machine-checked [Kle98a].

In the traditional understanding of Hoare Logic, assertions characterisepredicateson states.
VDM is more flexible in that postconditions may, in addition to the final state, also refer to the
initial state. In that respect, one may argue that VDM subsumes Hoare Logic.

However, we question such a view, because, pragmatically, in Hoare Logic, one uses auxiliary
variables to relate output to input. Thus, one may choose anarbitrary reference point. Specifi-
cally, any VDM correctness formula{p} S{q} can be embedded in Hoare Logic{ppq}S{pqq}.
As the domain for auxiliary variables, we choose the state spaceT = Σ. In the preconditionppq,
in addition to assertingp, one freezes all program variables to ensure that the initial state is
the point of reference. In postconditions, hooked variables can simply be replaced by auxiliary
variables:

Definition 5.2 (Embedding VDM assertions in Hoare Logic)

[[ppq]](Z,σ) def= Z = σ∧ [[p]](σ)

[[pqq]](Z,τ) def= [[q]](Z,τ)
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`VDM {true} x:= e

x =↼−e ∧
^

v∈VAR\{x}
v =↼−v

 (VDMAssign)

`VDM {p1} S1 {p2∧ r1} `VDM {p2} S2 {r2}
`VDM {p1} S1; S2 {r1◦ r2}

(VDMSeq)

`VDM {p∧b} S1 {q} `VDM {p∧¬b} S2 {q}
`VDM {p} if b then S1 elseS2 {q}

(VDMCond)

`VDM {p∧b}S{p∧sofar}
`VDM {p} while b do S{p∧¬b∧ (sofar∨Vv∈VAR v =↼−v )}

where sofar is transitive and well-founded. (VDMLoop)

`VDM {p1} S{q1}
`VDM {p}S{q} providedp⇒ p1 and↼−p ⇒ q1⇒ q (VDMCons)

Figure 1: VDM’s Operation Decomposition Rules

`VDM {p1} r := r ∗x {q1}
VDMCons

`VDM {p2} r := r ∗x {q3} `VDM {p1} y:= y−1{q4}
VDMSeq

`VDM {p2} r := r ∗x; y:=y−1 {q5}
VDMCons

`VDM {p2} r := r ∗x; y:=y−1 {q6}

p1≡ true pp1q≡ R= r ∧X = x∧Y = y∧ true

p2≡ 0< y pp2q≡ R= r ∧X = x∧Y = y∧0< y

q1≡ r =↼−r ∗↼−x ∧x =↼−x ∧y =↼−y pq1q≡ R= r ∗X∧X = x∧y = Y

q2≡ 0< y∧q1 pq2q≡ 0< y∧pq1q
q3≡ p1∧q2 pq3q≡ pp1q∧pq2q
q4≡ r =↼−r ∧x =↼−x ∧y =↼−y −1 pq4q≡ R= r ∧X = x∧Y = y−1

q5≡ q2◦q4 pq5q≡ pq2q◦pq4q
q6≡ 0≤ y∧↼−r ∗↼−x ↼−y = r ∗xy∧y<↼−y pq6q≡ 0≤ y∧R∗XY = r ∗xy∧y<Y

Figure 2: Derivation in VDM
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For examples of syntactic embeddings, see Fig. 2.
By appealing to soundness and completeness, it is evident that for every derivation in VDM,

one can reconstruct a proof of the corresponding correctness formula in Hoare Logic:

Theorem 5.1 (Embedding VDM Correctness Formulae in Hoare Logic) Let p and q be as-
sertions and S an arbitrary program. Whenever`VDM {p} S{q} is derivable, we may also
establish̀ Hoare{ppq} S{pqq}.
Proof Assumè VDM {p} S{q}. By soundness of VDM, we have

∀σ · [[p]](σ)⇒∃τ ·σ S - τ∧ [[q]](σ,τ)

which is equivalent to

∀Z · ∀σ ·
(
Z = σ∧ [[p]](σ)

)
⇒∃τ ·σ

S - τ∧ [[q]](Z,τ) .

Hence, by completeness of Hoare Logic, we may derive`Hoare{ppq}S{pqq}. �
In the standard approach to Hoare Logic, this embedding isnot compositionalbecause Hoare
Logic is not adaptation complete. In general, to simulate a VDM derivation for a correctness
formula`VDM {p} S{q} in Hoare Logic`Hoare{ppq}S{pqq}, one cannot simply embed all
nodes in the tree and reconstruct the derivation with the rules of Hoare Logic. Instead, one needs
to analyse the complete original derivation to design appropriate leaves in the Hoare Logic proof
tree.

Example 5.1 Employing VDM’s rule of consequence, one may infer

`VDM {p1} r := r ∗x {q1}
`VDM {p2} r := r ∗x {q2}

whereas in Hoare Logic, Hoare’s rule of consequence doesnotsanction the derivation

`Hoare{pp1q} r := r ∗x {pq1q}
`Hoare{pp2q} r := r ∗x {pq2q}

.

In order to derive

`Hoare{pp2q} r := r ∗x {pq2q} , (17)

the leaf needs to already refer to y in the precondition. In a successful derivation, one can start
with `Hoare{pq2q [r 7→ r ∗x]} r := r ∗ x {pq2q}. Employing the rule of consequence yields the
desired(17). In particular,

`Hoare{pp1q} r := r ∗x {pq1q}

is not part of the derivation.
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5.1 A Natural Embedding

However, due to adaptation completeness, a compositional translation does exist in the new treat-
ment of auxiliary variables in Hoare Logic. More precisely, every correctness formula{p}S{q}
is reflected in the corresponding Hoare Logic translation as{ppq}S{pqq}. Furthermore, the
new derivation is glued together with the help of the new consequence rule.

An axiom in VDM `VDM {p} S{q} is embedded as an instance of the corresponding axiom
in Hoare Logic, followed by an application of the new consequence rule to produce

`Hoare{ppq} S{pqq} .

If the VDM derivation employs one of the syntax-directed rules, we

1. embed all the premisses in Hoare Logic (induction step).

2. We modify (some of the) embedded premisses with the help of the new consequence rule.

3. We apply the corresponding syntax-directed rule in Hoare Logic

4. We (possibly) apply the new rule of consequence to the conclusion from step 3.

VDM’s consequence rule can be simulated by our rule of consequence (but not Hoare’s).
As an example, the derivation in Fig. 3 simulates the VDM derivation from Fig. 2. We refer

to [Kle98a] for the technical details of the translation in the general case.

`Hoare{pr
1} r := r ∗x {pq1q}

HCons
`Hoare{pp1q} r := r ∗x {pq1q}

HCons*
`Hoare{pp2q} r := r ∗x {pq3q}

`Hoare
{

py
1

}
y:=y−1 {pq4q}

HCons
`Hoare{pp1q} y:= y−1{pq4q}

HCons*
`Hoare{pq2q} y:= y−1 {pq5q}

HSeq
`Hoare{pp2q} r := r ∗x; y:= y−1 {pq5q}

HCons
`Hoare{pp2q} r := r ∗x; y:= y−1 {pq6q}

pr
1≡ r ∗x = R∗X∧X = x∧Y = y

py
1≡ R= r ∧X = x∧y−1 = Y

Figure 3: Simulating a VDM Derivation in Hoare Logic

We should emphasise that our argument that Hoare Logic subsumes VDM reflects thein-
tendeduse of both systems. Of course, one could mirror Hoare Logic derivations in VDM by
also employing auxiliary variables. But notice that one would then have to also improve VDM’s
rule of consequence to simulate our version for Hoare Logic. VDM is not adaptation complete
in the presence of auxiliary variables.
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5.2 VDM versus Hoare Logic

There is a one-to-one correspondence between the rules of Hoare Logic and VDM’s operation de-
composition rules. According to Theorem 5.1, specifications in VDM correspond to a particular
class of specification in Hoare Logic, in which the auxiliary variables are devoted to freezing the
values of all program variables prior to execution. The additional flexibility available in Hoare
Logic is to blame for the more elaborate consequence rule, whereas the hard-wired perspective
between pre- and postconditions in VDM is responsible for a more complicated sequential rule.
In the light of our new approach to Hoare Logic, it would be interesting to compare the two ver-
ification calculi Hoare Logic and VDM in case studies of practical interest. VDM’s contribution
in data reification is orthogonal and can also be applied on top of derivations in Hoare Logic.

6 Recursive Procedures

In this section, we show that our new approach to auxiliary variables leads to a significantly
simpler sound and complete verification calculus for recursive procedures in the setting of total
correctness. Specifically, it is an improvement over America and de Boer’s [AdB90] system. Our
new rule of consequence subsumes their four structural rules.

We restrict our attention to a single parameterless procedure. LetS0 denote the body of
the procedure. Invoking the procedure can be achieved unambiguously with a constructorcall.
Parameter passing is an orthogonal issue [Mor88, Kle98a]. An extension to multiple procedures
is straightforward [Kle98a].

Example 6.1 (Factorial) The body of a recursive procedure computing the factorial of x is
given by

S0
def= if x = 0 then y:= 1

else beginx:= x−1; call; x:= x+ 1; y:= y∗x end

Notice that the argument x and the result y are not parameters, but global variables. Clearly,
x plays the rôle of a call-by-value parameter. The procedure ensures that its value remains
invariant. Similarly, the variable y is a designated call-by-name parameter.

We first consider procedures without recursion. We then move on to recursive procedures
without worrying about termination. Finally, we present the development of Hoare Logic for
recursive procedures in the setting of total correctness.

6.1 Partial Correctness

Without recursion, deriving a correctness formula is easy. Whenever one encounters a procedure
invocation, one has to proceed by instead analysing the procedure body i.e.,

`Hoare{p}S0 {q}
`Hoare{p} call {q} .
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This rule would however lead to infinite derivations whenS0 calls itself. Induction comes to the
rescue. Let us first omit the issue of termination. We may simply assume`Hoare{p} call {q} to
concludè Hoare{p} S0 {q} [Hoa71] i.e.,

{p} call {q} `Hoare{p} S0 {q}
`Hoare{p} call {q} .

This rule introduces a fundamental change in deriving correctness formulae. Derivations are
now to be considered with respect to a context. Instead of a Hilbert-style calculus, Hoare Logic
now amounts to a Gentzen-style sequent calculus3. All other rules need to be revised to preserve
contexts, see Fig. 5.

Olderog [Old81] has observed that one does not need to cater for arbitrary contexts. It suffices
to appeal to the rule for recursive procedures onlyonce in a derivation. Thus, contexts can
be restricted to at most one correctness formulae for each procedure body. We need only one
structural rule to inspect contexts,

Γ `Hoare{p}S{q} provided{p} S{q} ∈ Γ.

In our scenario of a single procedure declaration, the context is either empty or contains a single
correctness formula{p} call {q}.

6.2 Total Correctness

To guarantee termination, one needs to introduce a termination measure on states. For recursive
procedures, one can guarantee progress if recursive procedure invocations are only permitted in
strictly smaller states with respect to a termination measure. Sokołowski [Sok77] suggests

∀n : N · {p(n)} call {q} `Hoare{p(n+ 1)}S0 {q}
`Hoare{∃n : N · p(n)} call {q} provided¬p(0). (18)

He claims to establish soundness and completeness, but, as Apt [Apt81] points out, merely
adding such a rule for procedure invocations in a setting with Hoare’s consequence rule does
not lead to a complete system. Unlike logic, where finding valid formulae which cannot be
derived is often somewhat esoteric, a different story has to be told for the notion of (relative)
completeness in verification calculi. Sokołowski’s system is seriously incomplete in that it is
difficult to come up with any non-contrived correctness formula of a recursive procedure which
can be derived. One cannot establish the correctness of the factorial algorithm from Exa. 6.1,
0Hoare{X = x} call {y = X!}. One cannot even show thatx remains invariant,

0Hoare{X = x} call {X = x} .

3In a Gentzen-style presentation, one may express the adaptation completeness condition (1) more concisely by
{p1} S{q1} `Hoare{p} S{q}.
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The rule of consequence is too weak to reconcile the required step in its derivation

`Hoare{n = x+ 1∧X = x} call {X = x}
···

`Hoare{n = x+ 1∧X = x+ 1} call {X = x+ 1}
. (19)

Apt added three more rules to be able to modify auxiliary variables in correctness formulae
dealing with recursive procedures, see Fig. 4. These additional rules close the gap and one may
derive (19). Unfortunately, despite Apt’s “proof” to the contrary, one may also derive invalid
correctness formulae [AdB90].

Γ `Hoare{p} call {q}
Γ `Hoare

{
p
[
Z 7→Y

]}
call

{
q
[
Z 7→Y

]}
whereZ∩ free(S0) = /0 andY∩ free(S0) = /0. (Substitution)

{p} call {q}
{p∧ r} call {q∧ r} wherefree(r)∩ free(S0) = /0. (Invariance)

Γ `Hoare{p} call {q}
Γ `Hoare

{
∃Z · p

}
call {q}

whereZ∩ free(S0,q) = /0. (Elimination)

Figure 4: Apt’s Additional Structural Rules

America and de Boer’s remedy consists of distinguishing different kinds of (auxiliary) vari-
ables. In particular, the universally quantified counter variable of the procedure invocation rule
must not occur in the list of variablesY andZ in the Substitution and Elimination rules of Fig. 4.
Moreover, America and de Boer have shown that, with these modifications, one obtains a sound
and complete verification calculus.

In our opinion, this is not an ideal solution. With such a set of rules, using Hoare Logic to
derive properties of even simple programs appears to be unnecessarily complicated.

6.3 No Need for Further Structural Rules

It is at best a questionable strategy to patch an incomplete system by adding lots of new rules.
One needs to address the source of the problem and not merely its symptoms. The derivation (19)
cannot be completed because auxiliary variables are not adequately supported in Hoare Logic.
We are able to show that Sokołowski’s calculus is sound and complete if one replaces Hoare’s
rule of consequence with ours. In particular, none of the other troublesome structural rules
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introduced by Apt are required. The soundness and completeness proofs have been machine-
checked [Sch97].

Without procedures, completeness is not threatened because a mismatch of auxiliary vari-
ables such as (19) can always be reconciled by rebuilding the complete derivation. One may
compensate by readjusting the auxiliary variables accordingly in the leaves of the proof tree.
Whenever an axiom e.g., (HAssign), is encountered one instead chooses an equivalent version
where auxiliary variables have been shifted. Such a patch cannot be applied in the presence of
rule (18). It also introduces an axiom i.e.,{p(n)} call {q} for somen : N, but, unlike the axiom
for an assignment, the pre- and postcondition is bound by thespecificassertions of a correctness
formula in the derivation.

In particular, completeness could be achieved in the standard presentation by integrating our
new consequence rule in the procedure invocation rule. We will discuss a similar rule in Sect. 6.5.
However, we think that pragmatically, it is better to provide an improved consequence rule.

6.4 Proving Termination by Well-Founded Induction

In practice, Sokołowski’s rule (18) it is too cumbersome to apply, because of the requirement
that the termination measure decreases by exactly one. We have therefore extended (18) to an
arbitrary well-founded measure

∀t : W · {∃u : W · p(u)∧u< t} call {q} `Hoare{p(t)} S0 {q}
`Hoare{∃t : W · p(t)} call {q}

where(W,<) is well-founded.

The verification calculus remains sound and complete.

Theorem 6.1 (Soundness and Completeness)The set of verification rules for recursive proce-
dures summarised in Fig. 5 is sound and complete.

Proof Soundness is established by induction on the derivation ofΓ `Hoare{p} S{q}. Com-
pleteness (for empty contexts) follows as a corollary of the MGF. Machine-checked proofs are
documented in the author’s thesis [Kle98a]. �

6.5 Rules of Adaptation

Among the additional rules to add in order to retain completeness for imperative programs
dealing with recursive procedures, a rule of adaptation has been considered by various authors
[Hoa71, Mor, LGH+78, GL80]. In general, rules of adaptation are of the form

Γ `Hoare{p1} S{q1}
Γ `Hoare{p}S{q}

for arbitrary assertionsp1,q1,q, and particular proposals for the adapted preconditionp. Ideally,
the rule should be left-maximal [Dah92] i.e., provided the specification〈p1,q1〉 is satisfiable, the
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{p} call {q} `Hoare{p} call {q}

Γ `Hoare{p[x 7→ e]} x:=e{p}

Γ `Hoare{p}S1 {r} Γ `Hoare{r} S2 {q}
Γ `Hoare{p}S1; S2 {q}

Γ `Hoare{p∧b} S1 {q} Γ `Hoare{p∧¬b} S2 {q}
Γ `Hoare{p} if b then S1 elseS2 {q}

∀t : W ·Γ `Hoare{p∧b∧u = t} S{p∧u< t}
Γ `Hoare{p}while b do S{p∧¬b} where(W,<) is well-founded.

∀t : W · {∃u : W · p(u)∧u< t} call {q} `Hoare{p(t)} S0 {q}
`Hoare{∃t : W · p(t)} call {q}

where(W,<) is well-founded.

Γ `Hoare{p1} S{q1}
Γ `Hoare{p} S{q}

if ∀Z · ∀σ · [[p]](Z,σ)⇒∀τ · ∃Z1 ·
(

[[p1]](Z1,σ)∧
(
[[q1]](Z1,τ)⇒ q(Z,τ)

))
.

Figure 5: New Set of Hoare Logic Rules for Recursive Procedures
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preconditionp should be the weakest possible so that

∀S· |=Hoare{p1} S{q1}⇒ |=Hoare{p}S{q}

holds. Since the rules of consequence (14) and (7) (for partial and total correctness, respectively),
are solely responsible for adaptation completeness, it is straightforward to synthesise an optimal
rule of adaptation. For partial correctness, one obtains4

[[p]](Z,σ) def= ∀τ ·
(
∀Z1 · [[p1]](Z1,σ)⇒ [[q1]](Z1,τ)

)
⇒ [[q]](Z,τ) .

For total correctness, one gets

[[p]](Z,σ) def= ∀τ · ∃Z1 · [[p1]](Z1,σ)∧ ([[q1]](Z1,τ)⇒ [[q]](Z,τ)) .

Previously, rules of adaptation have not been considered in the setting of total correctness.

7 Concurrency

Verifying concurrent programs is challenging. Programs may execute in parallel while accessing
the same memory5. For tackling concurrency, it is well known that auxiliary variables are essen-
tial to design a complete verification calculus in the style of Hoare Logic [OG76a, Cli81, Sou84,
Sti88]. Correctness formulae need to be extended to explicitly record information about the status
of all other programs running in parallel within the same state space. This is accomplished with
the help of auxiliary variables e.g., one could record computation histories in auxiliary variables
[Sou84].

Is this orthogonal to our approach to auxiliary variables? Employing two standard examples
[AO91], we motivate that our rule of consequence might subsume Owicki’s structural rule to
deal with auxiliary variables for concurrency. We first consider disjoint parallel programs. The
second example involves parallel programs with shared data. Finally, we sketch how our new
treatment of auxiliary variables may also simplify the presentation of compositional verification
calculi for concurrent programs.

7.1 Disjoint Parallel Programs

To decompose programs running in parallel, Hoare [Hoa75] introduces the rule

{pi} Si {qi} for i ∈ {1, . . . ,n}
{Vn

i=1 pi} S1 ‖ . . . ‖ Sn {
Vn

i=1qi}
wherefree(pi,qi)∩change(Sj) = /0 for i 6= j . (HPar)

4This version is originally due to Morris [Mor]. A more elaborate version has been published by Olderog
[Old83].

5We make the usual assumptions that boolean expressions and assignments are evaluated or executed as atomic
actions.
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In a scenario, where the only other structural rule is Hoare’s original rule of consequence, the set
of verification rules for concurrent programs is seriously incomplete. Consider the correctness
formula

{x = y} x:=x+ 1 ‖ y:= y+ 1{x = y} (20)

For (HPar) to be applicable, one needs to adapt specifications to fulfil the non-interference side-
condition. Adaptation completeness is crucial. In the case of (20) one needs to introduce an
auxiliary variable to untangle the dependencies. More precisely, in the derivation of Fig. 6, the
auxiliary variableZ has been introduced to capture the value of the variablesx andy in the initial
state. This is a traditional input/output specification which is not adequately supported in the
standard Hoare Logic presentation. With Hoare’s version of the consequence rule, one cannot
derive (20).

`Hoare{x = Z} x:= x+ 1 {x = Z+ 1} `Hoare{y = Z} y:= y+ 1{y = Z+ 1}
HPar

`Hoare{x = Z∧y = Z} x:=x+ 1 ‖ y:= y+ 1{x = Z+ 1∧y = Z+ 1}
HCons*

`Hoare{x = y} x:= x+ 1 ‖ y:=y+ 1 {x = y}

Figure 6: Auxiliary Variables Avoid Interference

Previous approaches have been more cumbersome. Auxiliary variables are seen as a neces-
sary evil that cannot be avoided for dealing with concurrency. Typically, the only rule for dealing
with auxiliary variables is an elimination rule. This approach has been put forward by Owicki
and Gries [OG76a]. In the process of verification, one needs to even include program segments
dealing with auxiliary variables. For deriving the correctness formula (20), they suggest to first
establish

`Hoare{x = y} Z :=x; [x:=x+ 1 ‖ y:=y+ 1] {x = y}

and then eliminate assignments to auxiliary variables with the new structural rule

`Hoare{p} S{q}
`Hoare{p} S∗ {q} (21)

where for some set of auxiliary variablesA of Swith free(q)∩A = /0, the programS∗ is obtained
from Sby deleting all assignments to the variables inA.

7.2 Parallel Programs with Shared Variables

In the Owicki-Gries approach [OG76a], auxiliary take on a new rôle in the setting or parallel
programs with shared variables. In addition to relating the value of program variables at various

23



states during the execution, they also record the computation history. Employing one of the stan-
dard examples in this area [AO91], we show that, courtesy of our stronger rule of consequence,
it suffices to introduce auxiliary variables as reference points during the computation.

For parallel programs sharing variables, the side-condition of (HPar) is too strong. Instead of
a syntactic check, the following rule due to Owicki and Gries allows an analysis of whether all
parallel components preserve assertions .

{pi} Si {qi} for i ∈ {1, . . . ,n}
{Vn

i=1 pi} S1 ‖ . . . ‖ Sn {
Vn

i=1qi}
provided the set{{pi}Si {qi} | i ∈ {1, . . . ,n}} is interference free. (OGPar)

The (subtle) details of interference freedom are not important for the purpose of this paper.
Suffice to say that in the particular case ofn = 2 whereS1 andS2 are both atomic statements e.g.,
assignments, the side condition triggers the two proof obligations`Hoare{p1∧q2} S1 {q2} and
`Hoare{p2∧q1} S2 {q1}.

Consider the two programsS1≡ x:= 0 andS2≡ x:= x+ 2 running in parallel. Depending
on the order of execution, the value ofx in the final state could be either 0 or 2. We show in
Fig. 7 that{true} S1 ‖ S2 {x = 0∨x = 2} is derivable with the help of (OGPar) and our rule of
consequence. As an auxiliary variableX, we capture the value of the program variablex in the
state before executingS2.

`Hoare{q1 [x 7→ 0]} S1 {q1}
HCons

`Hoare{true} S1 {q1}
`Hoare{q2 [x 7→ x+ 2]} S2 {q2}

HCons
`Hoare{x = X} S2 {q2}

OGPar
`Hoare{true∧x = X} S1 ‖ S2 {q1∧q2}

HCons*
`Hoare{true} S1 ‖ S2 {x = 0∨x = 2}

with q1≡ x = 0∨X = 0 andq2≡ x = X + 2∨x = 0.

Figure 7: Auxiliary Variables and Concurrent Programs with Shared Variables

It is essential to employ the new rule of consequence (HCons*). It triggers the side condition

∀x· ∃X ·x = X∧∀x·
(
(x = 0∨X = 0)∧ (x = X + 2∨x = 0)

)
⇒ (x = 0∨x = 2) .

Previously, the above program could only be derived by modifying the program itself and
taking advantage of the rule for eliminating auxiliary variables (21). Specifically, one needed to
consider an equivalent program in which a flagDONE gets set immediately afterS2 has been
executed [AO91]:

`Hoare{true} DONE:= false; beginS1 ‖ 〈S2; DONE:= true〉 end{x = 0∨x = 2}

where〈S2; DONE:= true〉 denotes an atomic region. Then, all assignments to the auxiliary
variableDONEare eliminated by appealing to the rule (21).
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Encouraged by the new derivations of Fig. 6 and 7, it seems plausible that a more principled
treatment of auxiliary variables would lead to simpler presentations of Hoare Logic for concur-
rent programs. However, at present, we do not have a definite result. In particular, we do not see
how to arrive at

`Hoare{x = 0} x:=x+ 1 ‖ x:= x+ 1 {x = 2}

without the elimination rule (21) [OG76b]. We suspect that modifications need to be made to the
rule of parallel composition (OGPar) itself to reflect the rôle of auxiliary variables. Stølen [Stø91]
has already demonstrated that one can design a complete verification calculus for concurrent
programs and shared variables without having to modify the program text. We return to Stølen’s
contribution in the following section.

7.3 Compositionality

Owicki and Gries’ rule for parallel composition (OGPar) is not compositional. To guarantee
interference freedom, depending on the details ofS1 andS2, one needs to generate further cor-
rectness formulae and check their derivability. This can be avoided by annotating correctness
formulae by rely and guarantee conditions [Sti88]. Then, as a necessary criterion for parallel
composition of two programs, the rely conditions of one must be guaranteed by the guarantee
conditions of the other. Hoare’s rule of consequence and Owicki and Gries’ elimination rule for
auxiliary variables are lifted to this generalisation. It seems plausible that a version of our new
rule of consequence as the only structural rule would simplify presentations of compositional
verification calculi for concurrency. Stirling writes

“A major disadvantage of both the original Owicki-Gries system and its refor-
mulation here is the need for the auxiliary variable rule.”

Finally, we would like to remark on Stølen’s approach [Stø91]. This differs from Stirling’s
calculus in two respects:

1. The elimination rule for auxiliary variables is more sophisticated. Like our new rule of
consequence, one only needs to deal with auxiliary variables at the level ofassertions.

2. Specifications are written in VDM format. Specifically, the precondition denotes a unary
predicate and the postcondition a binary predicate on the state space.

Again, it seems plausible that our rule of consequence subsumes Stølen’s (four) structural rules.
Further improvements are likely. Stølen employs auxiliary variables and assertions in VDM
format. We have shown in Sec. 5 that this is redundant. VDM correctness formulae are merely a
special case of Hoare Logic correctness formulae with auxiliary variables.
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8 On Developing Proofs on a Machine

We have taken advantage of the proof assistant LEGO [Pol94] to interactively develop machine-
checked soundness and completeness proofs. With computer-aided proof systems, one attains a
high-level of confidence concerning the correctness of machine-checked proofs e.g., in LEGO,
less than 200 lines of SML code are responsible for checking that a given derivation is correct.
Today’s proof tools are sufficiently advanced to be of significant help in investigating meta-theory
of verification calculi. In our opinion, soundness and completeness are difficult concepts which
have to be tackled by appealing to intricate induction principles. A computer-aided proof system
is very good at managing such tasks. For example, employing the system Isabelle, Nipkow has
uncovered a bug in Winskel’s completeness proof for Hoare Logic [Nip98].

Conducting formal proofs at a level that they can be checked by a machine requires that all
aspects and all details must be thoroughly investigated. In our formalisation, we have taken the
liberty of omitting the issue of representingsyntaxfor expressions and assertions. Since the
semantics of assertions has been characterised with the help of the proof tool’s native higher-
order logic, expressiveness was trivially guaranteed. This issue is explored in more detail in
[Kle98b].

9 Conclusions

In Hoare Logic, assertions characterise predicates on states. Therefore, one cannot directly spec-
ify input/output behaviour. In actual examples, one employs auxiliary variables as additional
points of reference. This crucial rôle of auxiliary variables has been underestimated in previous
presentations of axioms and rules for Hoare Logic.

As our main contribution, we stipulate a new structural rule. It allows to adjust auxiliary vari-
ables while strengthening preconditions and weakening postconditions. The new rule subsumes
all other previously suggested structural rules. Courtesy of this rule, one may adapt arbitrary
satisfiable specifications. This leads to a number of improvements:

• We were able to show that, contrary to common belief, VDM’s operation decomposition
rules are more restrictive than Hoare Logic in that every derivation in VDM can be natu-
rally embedded in Hoare Logic.

• One may derive completeness as a corollary of Gorelick’s Most General Formula theorem.
The proof works for arbitrary language features.

• We gain a significantly simpler presentation for Hoare Logic dealing with recursive proce-
dures. No further structural rules are required.

• Similar simplifications seem possible for Hoare Logic dealing with concurrency.

Further work is required to substantiate the last claim. We have so far only been able to show
that two of the standard examples in the area of concurrency can be derived without the need
for any further structural rules. It seems likely that rules for parallel composition need to be
redesigned in the light of the more principled approach to auxiliary variables.
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