

Direct models for the computational
lambda-calculus

Carsten Führmann
car@dcs.ed.ac.uk

Technical Report ECS–LFCS–98-400
Department of Computer Science

University of Edinburgh

December 2, 1998

Abstract: We give direct categorical models for the computational lambda-
calculus. By ‘direct’ I mean that the model consists of one category together with
operators on objects and morphisms for modelling type and program constructors,
respectively. Moggi’s λC-models, for example, are not direct, because the category of
program denotations is constructed as the Kleisli category of a monad. We call our
models ‘direct λC-models’. The main result is, loosely speaking, that each λC-model
generates a direct λC-model, and each direct λC-model arises in this way. We shall
make this precise by showing that the category of direct λC-models is reflective in
the category of λC-models. From this we shall deduce that we can replace λC -models
by direct λC-models without losing or gaining generality. We shall also see that the
category of direct λC-models is equivalent to the category of λC-models that fulfil
the equalizing requirement. Moreover, we shall see that we can describe our direct
λC-models with universally quantified equations, which helps reasoning about pro-
grams and models. Finally, we shall see that direct λC-models reveal two kinds of
well-behaved programs which are not obvious from λC -models.

1 Introduction

Cartesian-closed categories validate the β-law, which is false for realistic call-by-value pro-
gramming languages. (For example, if ⊥ is a looping program, then (λx.λy.y)⊥ 1 6= 1 in
a call-by-value language.) By contrast, the theory of Moggi’s λC-models [Mog88], which
is called the computational lambda-calculus, has only equations which are operationally
true for a range of realistic call-by-value programming languages. A λC-model is a cat-
egory C with finite products together with a strong monad T and T -exponentials—that
is, for all objects A and B, an exponential of TB by A. Environments Γ and types A of
the computational lambda-calculus denote objects [[Γ]] and [[A]], respectively, in the Kleisli
category CT . A sequent Γ `M : A denotes a morphism [[Γ]] - [[A]] in CT , which in C is

1

a morphism [[Γ]] - T [[A]]. There is a simple example with C = Set and a certain monad
T such that, for each set A, we have TA = {⊥}∪{xay : a ∈ A}. Then CT is isomorphic to
the category of sets and partial functions, where ⊥ serves as ‘undefined’. In general, the
monad T can be seen as a parameter that depends on the computational effect—there are
lifting monads (partiality), state monads, continuations monads, and so on. (You can find
the term formation rules and Moggi’s semantics of the computational lambda-calculus in
appendix A.)

Cartesian-closed categories are direct models, by which I mean that the objects and
morphisms of the cartesian-closed category give the denotations for types and programs,
respectively. λC-models are not direct, because the category of program denotations is
constructed as the Kleisli category of a monad.

Another approach to semantics of call-by-value languages are Freyd categories
(see [PT98, PT97]). A Freyd category consists of a category C with finite products, a sym-
metric premonoidal category K, and an identity-on-objects strict symmetric premonoidal
functor F : C - K. (I shall explain symmetric premonoidal categories in this article.)
The type and program denotations are objects and morphisms, respectively, of K. Freyd
categories are not direct because of the auxiliary category C. As we shall see, λC-models
are equivalent to closed Freyd categories [PT98]. A closed Freyd category is a Freyd cat-
egory F a G : K - C together with Kleisli exponentials—that is, for each object A an
adjunction F (−)⊗ A a A ⇒ (−) : K - C. By ‘equivalent’ I mean an equivalence of
categories between an obvious category of λC-models and an obvious category of closed
Freyd categories. (Some vital parts of this equivalence occur in the work of John Power
and Edmund Robinson, for example [PR97].)

In this article we define direct models for the computational lambda-calculus. We call
these direct λC-models. I found them by analysing Hayo Thielecke’s⊗¬-categories [Thi97a,
Thi97b], which are direct models for call-by-value languages with higher-order types and
continuations. (Roughly speaking, continuations bring the power of jumps into functional
programming.) As we shall see, ⊗¬-categories are direct λC-models with extra structure.

Loosely speaking, the main result in this article is that each λC-model generates a
direct λC-model, and each direct λC-model arises in this way. We shall make this precise
by showing that the category of direct λC-models is reflective in the category of λC-models.
From this we shall deduce that we can replace λC-models by direct λC-models without
losing or gaining generality.

The direct λC-models are algebraic, by which I mean that we can describe them with
universally quantified equations. (If this is not clear enough now, it will become clearer
later in this article.) This has some benefits, two of which are

• We can do all reasoning by replacing subexpressions along the axioms.

• We have a simple meta-theory—for example, we can form the free model generated
by a set of operators and equations, adjoin indeterminates, and so on.

As we shall see in section 5, direct λC-models reveal two kinds of well-behaved programs
which are not obvious from λC-models: thunkable programs and central programs.

2

We define the direct λC-models by giving structure in three steps:

direct λC-models
thunk -force-⊗-categories

thunk -force-categories

(I took the names thunk and force, which stand for certain natural transformations, from
⊗¬-categories.) The hierarchy of direct models corresponds to the following hierarchy by
means of three reflections, one at each level:

λC-models
cartesian computational models

monads

2 thunk-force-categories

I shall now describe thunk -force-categories and their relation to monads. As we shall see,
each monad generates a thunk -force-category, and every thunk -force-category arises in this
way. We shall see also that a thunk -force-category has exactly that part of the structure
of its generating monad that we need for semantics.

Definition 1. A thunk -force-category is

• A category K

• A functor L : K - K

• A transformation1 thunk : Id - L

• A natural transformation force : L
·- Id

such that thunkL is a natural transformation L
·- L2, and

Id
thunk- L Id

thunk- L L
thunkL- L2

@
@
@
@id R

@
@
@
@id R

L

thunk
?thunkL- L2

Lthunk
?

Id

force
?

L

Lforce
?

Example. The category Pfn of sets and partial functions. For a set A, we define LA =
{⊥} ∪ {xay : a ∈ A}. For a partial function f : A ⇀B, we define Lf : LA - LB as
the total function that sends

1by a transformation from a functor F : C - D to a functor G : C - D, I mean a map that
sends each object A of C to an arrow FA - GA

3

• xay to xfay if f is defined for a

• xay to ⊥ if f is not defined for a

• ⊥ to ⊥
We define thunkx = xxy and force : LA ⇀A as the partial function that sends xay to
a and is undefined for ⊥. As you can easily check, this is a thunk -force-category.

Note that thunk -force-categories are algebraic. Note also that L forms a comonad on
K with thunkL as the comultiplication and force as the counit.

Definition 2. Tf is defined as the obvious category whose objects are the thunk -force-
categories, and whose morphisms are functors that strictly preserve L, thunk , and force.

Definition 3. Monad is defined as the obvious category such that an object is a category
C together with a monad on C, and a morphism is a functor that strictly preserves the
monad data (which are: the endofunctor, the multiplication, and the unit).

So we consider monads as categories with algebraic structure. Now we turn to the main
result for monads and thunk -force-categories. To help understanding the result, let’s recall
what a reflection is. In [Lan71] on page 87, Mac Lane writes

A left adjoint to an inclusion functor (of a full subcategory) is called a reflection

We adopt the slightly more general definition by Johnstone [Joh92]:

A reflection is an adjunction for which the counit map εB is an isomorphism
for all B. (This is equivalent to saying that [the right adjoint] G is full and
faithful . . . —see [Mac Lane 1971], p. 88, Theorem 1.)

If there is a reflection with a right adjoint C - D, then I write C �D.

Theorem 4. There is a reflection

Tf � Monad

To prove the theorem, we define an intermediate category Adj , which is—as we shall
see—equivalent to Monad .

Definition 5. A Kleisli adjunction is an adjunction whose left adjoint is the identity
on objects. The category Adj is defined as follows. Objects are Kleisli adjunctions. A
morphism from F a G : K - C to F ′ a G′ : K ′ - C ′ is a pair of functors
h : C - C ′ and H : K - K ′ such that h strictly preserves the unit, H strictly
preserves the counit, and

C
h - C ′ C

h - C ′

K

F

? H - K ′

F

?

′

K

G

6

H - K ′

G

6
′

4

You can easily check the following: If the two squares in definition 5 commute, then h
preserves the unit if and only if H preserves the counit, and either is equivalent to saying
that h and H together strictly preserve the adjunction iso.

Lemma 6. The construction of the Kleisli category extends to an equivalence

Monad ' Adj

Proof. For an object C = (C, T) of Monad , the required adjunction is the well-known
adjunction FT a GT : CT - C like in [Lan71]. Thus we get an obvious functor Kleisli :
Monad - Adj For a Kleisli adjunction F a G : K - C of Adj with unit η and counit ε,
the required monad has the functor GF : C - C, the unit η and the multiplicationGεF .
Thus we get an obvious functorX : Adj - Monad Trivially, we haveXKleisli = IdMonad .
Now we prove that KleisliX ∼= IdAdj . Suppose that F a G : K - C is a Kleisli
adjunction. Applying KleisliX yields FT a GT : CT - C, where T is the monad induced
by the adjunction F a G. So we have the unique comparison functor ! : CT - K like
in [Lan71], page 144, theorem 2, where ! is called L. For all objects A we have !A = A,
and for all elements f of CT (A,B), which is equal to C(A,GB), we have !f = f [where
[is the obvious iso C(A,GB) ∼= K(FA,B). Because F is the identity on objects, ! is an
isomorphism of categories (proving this is left as an exercise). Let EFaG = (IdC , !). As
you can easily check, EFaG is an iso from FT a GT to F a G. It remains to prove that E
is natural in F a G. This is left as an exercise.

The next definition is the key to proving theorem 4:

Definition 7. A morphism f : A - B of a thunk -force-category K is called thunkable
if

A
thunk- LA

B

f

? thunk- LB

Lf

?

ΘK is the subcategory of K determined by all objects and the thunkable morphisms.

In Pfn, as you can easily check, the thunkable morphisms are the total functions.

Proof of theorem 4. By lemma 6 it is enough to prove a reflection Tf � Adj . We shall
define a reflection

Tf
i -
>�
j

Adj

5

First we define i. Suppose that K is a thunk -force-category, and that inc is the inclusion
ΘK - K. As you can easily check, we have a Kleisli adjunction

ΘK
inc-
⊥�
L

K

with unit thunk and counit force. Let iK be this adjunction. Now for the morphism part
of i. Suppose that H : K - K ′ is a morphism of thunk -force-categories. Because H
strictly preserves L and thunk , H preserves thunkable morphisms. So H has a restriction
h : ΘK - ΘK ′. Let iH = (h,H). This is obviously a morphism of Adj .

Now we define j. Suppose that F a G : K - C, with unit η and counit ε, is a Kleisli
adjunction. Now we define

L =def FG

thunk =def Fη

force =def ε

and let j(F a G) = (K,L, thunk , force). As you can easily check, j(F a G) is a thunk -
force-category. The morphism part of j is obvious.

As you can easily check, ji = IdTf . Therefore we define the counit ji - IdTf of the
reflection as the identity on IdTf .

Now for the unit of the reflection. Suppose that F a G : K - C is a Kleisli
adjunction. Then ij(F a G) is the adjunction inc a L : K - ΘK. Suppose that f is
a morphism of C. Then the square expressing that Ff is thunkable is the image of the
square f ; η = η;GFf under F . So F has a corestriction to ΘK. We define UFaG = (F :
C - ΘK, IdK). As you can easily check, UFaG is a morphism from F a G : K - C
to ij(F a G). As you can check by simple arrow chasing, UFaG is natural in F a G.

It remains to check the triangular identities of the reflection. Because the counit is the
identity, we need to check only that UiK = Id iK and jUFaG = Id j(FaG). Checking these
two equations is straightforward.

We shall now see that Moggi’s semantics of the computational lambda-calculus uses the
monad only via the generated L, thunk , and force. Suppose that C is a λC-model whose
monad is T = (T, µ, η). Let K be the thunk -force-category that results from sending C
through the right adjoint of the reflection Monad � Tf . So

K = CT

L = FTGT

thunk = FT η

forceA = idCTA

6

As you can easily check, these for equations translate Moggi’s two semantic rules of the
computational lambda-calculus that use only T , µ, and η, into

[[Γ ` M : A]] = f : Γ - A

[[Γ ` [M] : TA]] = Γ
thunk- LΓ

Lf- LA

[[Γ `M : TA]] = f : Γ - A

[[Γ ` µ(M) : A]] = Γ
f- LA

force- A

So thunk -force-categories have all the structure that we need from monads. Moreover,
thunk -force-categories don’t have more structure than we need, because L, thunk , and
force are denotable. For thunk and force, this is obvious. To see it for L, suppose that
x : A ` M : B denotes f : A - B. Then

y : LA ` [let x = µ(y) in M] : LB

denotes Lf , as becomes clear from the semantics of let in the next section. So we can
conclude that thunk -force-categories have exactly the structure that we need from a monad.

Because of the reflection Tf � Monad , thunk -force-categories correspond to a full sub-
category of Monad . We shall now see which subcategory.

Definition 8. A monad T with unit η fulfils the equalizing requirement if, for each ob-
ject A, ηA is an equalizer of ηTA and TηA. The category Monad eq is defined as the full
subcategory of Monad determined by the objects (C, T) such that T fulfils the equalizing
requirement.

Theorem 9. There is an equivalence of categories

Monad eq ' Tf

To prove this theorem, we use an intermediate category Adj eq .

Definition 10. Adj eq is defined as the full subcategory of Adj determined by the objects
F a G such that, if η stands for the unit, then for each object A, ηA is an equalizer of
ηGFA and GFηA.

Lemma 11. There is an equivalence of categories

Monad eq ' Adj eq

This follows directly from lemma 6.

Lemma 12. Suppose that F a G : K - C is a Kleisli adjunction with defining isomor-
phism] : K(FA,B) ∼= C(A,GB). Then an element f of K(A,B) is thunkable if and only
if

A
f] - GFB

GFB

f]

? GFη- GFGB

η

?

7

Proof. We apply the inverse of] to either path of the diagram. As you can easily check,
we get

A
Fη- FGA

B

f

?

Fη
- FGB

FGf

?

This is the square that states that f is thunkable.

Lemma 13. An object F a G : K - C of Adj is in Adj eq if and only if F is faithful
and every thunkable morphism of K is in the image of F .

Proof. Suppose that F a G : K - C is a Kleisli adjunction. For the ‘only if’, let F a G
be an object of Adj eq . Suppose that f is a thunkable element of K(A,B). By lemma 12,
we have f]; ηGFB = f];GFηB. Because ηB is an equalizer of ηGFB and GFηB, there is a
unique g : A - B such that g; ηB = f]. As you can easily check, the inverse [of] sends
the equation g; ηB = f] to Fg = f . So every thunkable morphism is the image under F
of exactly one morphism. Because all morphisms in the image of F are thunkable, F is
faithful.

Now for the ‘if’. Because η is natural, we have

ηB ; ηGFB = ηB;GFηB

for all objects B. Let g ∈ C(A, TB) such that

g; ηGFB = g;GFηB

We need a unique f ∈ C(A,B) such that f ; η = g. As you can easily check, [sends the
equation f ; η = g to Ff = g[. By lemma 12, g[is thunkable. So there is exactly one
solution f .

Proof of theorem 9. By lemma 11 it is enough to prove that Tf ' Adj eq . First we prove
that i : Tf - Adj has a corestriction to Adj eq . Suppose that K is a thunk -force-category.
By definition iK is equal to inc a L : K - ΘK. This, by lemma 13, is an object of
Adj eq . It remains to prove that the unit U of the reflection Tf � Adj restricts to an iso
IdAdj eq

∼= ij. Because UFaG:K - C = (F : C - ΘK, IdK), this amounts to proving
that F : K - ΘK is an iso. This follows directly from lemma 13.

3 thunk-force-⊗-categories

In this section, we shall define thunk -force-⊗-categories—the direct models that correspond
to cartesian computational models. Our definition of thunk -force-⊗-categories depends on

8

symmetric premonoidal categories. The latter generalise symmetric monoidal categories in
that the product ⊗ does not have to be a bifunctor, but only a functor in either argument.
We shall now introduce symmetric premonoidal categories by means of binoidal categories.
(For more on symmetric premonoidal categories, see [PR97].)

Definition 14. A binoidal category is

• A category C

• For each object A, a functor A⊗ (−) : C - C

• For each object B, a functor (−)⊗B : C - C

such that for all objects A and B

(A⊗ (−))(B) = ((−)⊗B)(A)

For the joint value, we write A⊗B, or short AB.

Definition 15. A morphism f : A - A′ of a binoidal category is called central if for
each g : B - B′

AB
fB- A′B

AB′

Ag
? fB′- A′B′

A′g
?

AB
fB- A′B

AB′

Ag
? fB′- A′B′

A′g
?

The centre of a binoidal category is the subcategory of all objects and central morphisms.

Definition 16. A symmetric premonoidal category is

• A binoidal category C

• An object I of C

• Four natural isomorphisms A(BC) ∼= (AB)C, IA ∼= A, AI ∼= A, and AB ∼= BA
with central components that fulfil the coherence conditions known from symmetric
monoidal categories.

The symmetric monoidal categories are the symmetric premonoidal categories that have
only central morphisms. As you can easily check, the natural associativity implies that
A⊗ (−) and (−)⊗ A preserve central morphisms. Therefore

Proposition 17. The centre of a symmetric premonoidal category is a symmetric
monoidal category.

9

Definition 18. Suppose that C and D are symmetric premonoidal categories. Then a
functor from C to D is strict symmetric premonoidal if it sends central morphisms to such
and strictly preserves the multiplication, the unit, and the four structural isomorphisms.

Definition 19. A thunk -force-⊗-category K is

• A thunk -force-category K

• A symmetric premonoidal structure on K

• Finite products on ΘK that agree with the symmetric premonoidal structure.

such that ΘK is a subcategory of the centre.

Example. We continue our example Pfn. Because ΘPfn = Set the finite products are
obvious. For f : A ⇀A′ and g : B - B′ we define f ⊗ g : A⊗A′ - B ⊗B′ as the
partial function that sends (a, b) to (f(a), g(b)) if f is defined for a and g is defined for b,
and is undefined for (a, b) otherwise.

Obviously a thunk -force-⊗-category is a Freyd category with C = ΘK and the inclusion
ΘK - K as F . Now we add three rules to our semantics of λC-terms, which so far has
rules for µ and [−] (let δ be the diagonal of the cartesian product of ΘK):

[[x1 : A1, . . . , xn : An ` xi : Ai]] = πi : A1 ⊗ · · · ⊗An
- Ai

[[Γ `M : A]] = f : Γ - A [[Γ ` N : B]] = g : Γ - B

[[Γ ` (M,N) : A ∗B]] = Γ
δ- Γ⊗ Γ

f ⊗ Γ- A⊗ Γ
A⊗ g- A⊗B

[[Γ `M : A]] = f : Γ - A [[Γ, x : A ` N : B]] = g : Γ⊗ A - B

[[Γ ` let x = M in N : B]] = Γ
δ- Γ⊗ Γ

Γ⊗ f- Γ⊗A g - B

We shall now define two useful concepts for thunk -force-⊗-categories. (For an object A of
a thunk -force-⊗-category K, let !A : A - I be the unique element of (ΘK)(A, I).)

Definition 20. Suppose that f : A - B is morphism of a thunk -force-⊗-category. f is
copyable if,

A
δ - AA

B

f

? δ- BB

f

?

f

10

f is discardable if

A
! - I

B

f

? ! - I

id
?

The next proposition has two purposes. First, it helps checking that a structure is a
thunk -force-⊗-category. Second—as we shall see—it implies that thunk -force-⊗-categories
are algebraic.

Proposition 21. Suppose that K is a thunk-force-category together with a binoidal prod-
uct, an object I, and transformations δA : A - AA and !A : A - I. Then K deter-
mines a thunk -force-⊗-category if and only if

1. The components of thunk are central, and all morphisms of the form Lf are central.

2. All morphisms of the form A⊗ thunk, thunk ⊗A, A⊗Lf , and Lf ⊗A are thunkable.

3. The components of thunk, and all morphisms of the form Lf , are copyable and
discardable.

4. The components of δ and ! are thunkable.

5. δ and ! determine a comonoid.

6. We have

AB
δ- (AB)(AB)

@
@
@
@id R

AB

ππ′

?

where

π = AB

A!- AI ∼= A

π′ = AB
!B- IB ∼= B

Proof. First we check the ‘only if’. Conditions 1, 2 and 3 hold because the components of
thunk are in ΘK, and all morphisms of the form Lf are in ΘK. The remaining conditions
are obvious.

Now for the ‘if’. Condition 1 implies that all thunkable morphisms are central. To see
this, let f ∈ ΘK(A,B). Then for every g ∈ K(A′, B′) we have

A⊗ g; f ⊗B′ = A⊗ g; f ⊗B′; thunk ⊗B′; force ⊗B′

= A⊗ g; thunk ⊗B′;Lf ⊗B′; force ⊗B′

= thunk ⊗ A′;Lf ⊗ A′;LB ⊗ g; force ⊗B′

= f ⊗ A′; thunk ⊗ A′;LB ⊗ g; force ⊗B′

= f ⊗ A′;B ⊗ g; thunk ⊗B′; force ⊗B′

= f ⊗ A′;B ⊗ g

11

Condition 2 implies that ΘK is closed under ⊗. To see this, let f ∈ ΘK(A,B). Then

A⊗ f ; thunk = A⊗ f ; thunk ;L(A⊗ thunk);L(A⊗ force)
= A⊗ f ;A⊗ thunk ; thunk ;L(A⊗ force)
= A⊗ thunk ;A⊗ Lf ; thunk ;L(A⊗ force)
= A⊗ thunk ; thunk ;L(A⊗ Lf);L(A⊗ force)
= A⊗ thunk ; thunk ;L(A⊗ force);L(A⊗ f)
= thunk ;L(A⊗ thunk);L(A⊗ force);L(A⊗ f)
= thunk ;L(A⊗ f)

So ΘK and ⊗ together determine a binoidal subcategory of the centre. In particular, ⊗
determines a bifunctor ΘK × ΘK - ΘK. Condition 3 implies that every thunkable
morphism is copyable and discardable (the proof is left as an exercise). The remaining
conditions imply that ΘK together with⊗, I , δ, and ! is a category with finite products (the
proof is left as an exercise). Every category with finite products determines a symmetric
monoidal category (see [Lan71], p. 159). Because the symmetric monoidal product of ΘK
agrees with the binoidal product on K, the symmetric monoidal structure on ΘK extends
to a symmetric premonoidal structure on K.

You can easily express all conditions in proposition 21 by equations that are all-quantified
over hom-sets. So we have the following corollary:

Corollary 22. thunk-force-⊗-categories are algebraic.

Now we turn to generalising theorem 4, which states that there is a reflection Monad �

Tf . We shall define a category Tf⊗ of thunk -force-⊗-categories, and a category Ccm of
computational cartesian models, and prove that there is a reflection Tf ⊗ � Ccm.

Definition 23. Tf⊗ is defined as the obvious category formed by the thunk -force-⊗-
categories and the functors that strictly preserve all operators.

Note that it is not obvious that morphisms of thunk -force-⊗-categories preserve central
maps. For suppose that F : K - K ′ is a morphism of thunk -force-⊗-categories, and
f is a central morphism of K. That f is central means that f commutes in the sense of
definition 15 with all morphisms g of K. Therefore, Ff commutes with all morphisms of
the form Fg. But K ′ may have morphisms that are not in the image of F . Fortunately,
we have the following proposition:

Proposition 24. Suppose that K is a thunk-force-⊗-category. A morphism f ∈ K(A,A′)
is central if for all B ∈ Ob(K)

A⊗ LB f ⊗ LB- A′ ⊗ LB

A⊗B

A⊗ forceB
? f ⊗B - A′ ⊗B

A′ ⊗ forceB
?

12

Proof. Let g ∈ K(B,B′). Then g = thunk ; force; g = thunk ;Lg; force. Because thunk and
Lg are thunkable and therefore central, they commute with f . Because f commutes with
force too, f commutes with g.

Because morphisms of thunk -force-⊗-categories preserve force, morphisms of thunk -force-
⊗-categories preserve central morphisms. So we get the following corollary:

Corollary 25. Morphisms of thunk-force-⊗-categories are strict symmetric premonoidal
functors.

Definition 26. Ccm is defined as the obvious category formed by cartesian computational
models and the morphisms of Monad that strictly preserve the finite products and the
strength.

Theorem 27. There is a reflection

Tf⊗ � Ccm

To prove this, we use an intermediate category. First we describe its objects.

Definition 28. A I-closed Freyd category consists of a category C with finite products, a
symmetric premonoidal category K, and an adjunction F a G : K - C such that F is
an identity-on-objects strict symmetric premonoidal functor.

We call them I-closed Freyd categories because in a Freyd category F : C - K the
functor F has a right adjoint if and only if F (−) ⊗ I has a right adjoint, and therefore
I-closed Freyd categories herald closed Freyd categories.

Definition 29. The category IcFreyd is defined as follows. The objects are the I-closed
Freyd categories. A morphism from F a G : K - C to F ′ a G′ : K ′ - C ′ is a pair
(h,H) that consists of a functor h : C - C ′ that strictly preserves finite products, and
a strict symmetric premonoidal functor H : K - K ′ such that (h,H) is a morphism of
Kleisli adjunctions.

Lemma 30. There is a reflection

Tf⊗ � IcFreyd

Proof. We extend the reflection j a i : Tf - Adj to a reflection j a i : Tf ⊗
- IcFreyd . First we show that i extends to a functor Tf ⊗ - IcFreyd. Let K

be a thunk -force-⊗-category. By definition, iK is the adjunction inc a L : K - ΘK.
This is obviously an I-closed Freyd category. For a morphism H : K - K ′ of thunk -
force-⊗-categories, iH : iK - iK ′ is obviously a morphism of I-closed Freyd categories.

Now we show that j extends to a functor IcFreyd - Tf⊗. Let f a G : K - C
be an I-closed Freyd category, where η is the unit and ε is the counit. By definition, for
j(F a G) is K together with L = FG, thunk = Fη, and force = ε. For each object A, let
δA and !A be the images under F of the diagonal A - AA and the unique arrow A - 1,

13

respectively. With proposition 21 we prove that the thunk -force-category K together with
⊗, 1, δ, and ! determines a thunk -force-⊗-category. Condition 1 of proposition 21 holds
because F , which is a strict symmetric premonoidal functor, preserves central morphisms,
and thunk and Lf are in the image of F . Condition 4 holds because all morphisms in the
image of F are thunkable, as you can easily check. Condition 2 holds because

A⊗ thunk = FA⊗ Fη = F (A⊗ η)
A⊗ Lf = FA⊗ FGf = F (A⊗ f)

Condition 3 holds because all morphisms in the image of F are copyable and discardable,
as you can easily check. Checking the remaining conditions is straightforward—I leave it
away here. Checking that j sends morphisms of I-closed Freyd categories to morphisms of
thunk -force-⊗-categories is straightforward—I leave it away here.

As you can easily check, we have ji = IdTf⊗. We define the counit ji - IdTf⊗ as
the identity. Now for the unit. Let’s recall the unit U of the reflection Tf � Adj : For a
Kleisli adjunction F a G, we have UFaG = (F : C - ΘK, IdK). It remains to prove
that, if F a G is an I-closed Freyd category, then UFaG forms a morphism of I-closed
Freyd categories. This amounts to checking that F : C - ΘK strictly preserves finite
products, which is obvious. The naturality of the unit, and the triangular equations, follow
from the corresponding results for the reflection Tf � Adj .

Lemma 31. The construction of the Kleisli category forms an equivalence

Ccm ' IcFreyd

Proof. By lemma 6, we have functors Kleisli : Monad - Adj and X : Adj - Monad
that form an equivalence. First we extend Kleisli to a functor Ccm - IcFreyd . Let
C = (C, T) be a computational cartesian model, where T = (T, µ, η) and t is the strength.
We need a symmetric premonoidal structure in CT . For objects A and B, let

A⊗B =def A×B

For an object A and element f of CT (B,B′), which is equal to C(B, TB′), let

A⊗ f =def A×B A× f- A× TB′ t- T (A×B′)

and f ⊗ A symmetrically. Now ⊗ forms a symmetric premonoidal structure on CT such
that FT a GT : CT - C is an I-closed Freyd category (The proof is left as an exercise,
as well as the proof that this gives a functor Ccm - IcFreyd).

Now we extend X to a functor X : IcFreyd - Ccm. Let F a G : K - C be an
I-closed Freyd category with iso] : K(FA,B) ∼= C(A,GB) and counit ε. By definition, X
takes the I-closed Freyd category to (C, T), where T = (GF,GεF, η). What we still need
is the strength t : A× TB - T (A×B). Let

t =def (A⊗ ε)]

14

This gives us a computational cartesian model (the proof is left as an exercise, as well as
the proof that this gives a functor X : Ccm - IcFreyd).

To see that the two extended functors are inverse up to natural iso, it is enough to
check that the two natural isos in the proof of lemma 6 preserve the new structure. The
proof is left as an exercise).

Proof of theorem 27. By composition of the reflections Tf ⊗ � IcFreyd and IcFreyd '
Ccm.

Theorem 32. Moggi’s semantics of the computational lambda-calculus in a λC-model C
agrees with the semantics in the thunk-force-⊗-category generated by C.

Proving this amounts to checking the semantic rules for variables, pairs, and let . Checking
this is left as an exercise.

Let Ccmeq be the full subcategory of Ccm determined by the computational cartesian
models whose monad fulfils the equalizing requirement. The following theorem follows
directly from theorems 9 and 27:

Theorem 33. There is an equivalence of categories

Ccmeq ' Tf⊗

4 Direct λC-models

Finally, we shall define direct λC-models—the direct models that correspond to λC-models.

Definition 34. A direct λC-model is a thunk -force-⊗-category K together with, for each
object A, a functor A⇒ (−) : K - ΘK and an adjunction

λ : K(B ⊗ A,C) ∼= (ΘK)(B,A⇒ C)

Example. For Pfn, we define

A⇒ (−) = Pfn(A,−) : Pfn - Set

(recall that ΘPfn = Set). λ is obvious.

A direct λC-model K is obviously a closed Freyd category with C = ΘK and F as the
inclusion. We write apply for the counit (A⇒ B)⊗ A - B of the Kleisli exponentials,
and pair for the unit A - B ⇒ (A ⊗ B). Here come the remaining two rules of our
semantics of the computational lambda-calculus in direct λC-models.

[[Γ, x : A `M : B]] = f : Γ⊗ A - B

[[Γ ` λx : A.M : A⇒ B]] = λf : Γ - A⇒ B

15

[[Γ `M : A⇒ B]] = f : Γ - A⇒ B [[Γ ` N : A]] = g : Γ - A

[[Γ `MN : B]] = Γ
δ - ΓΓ

fΓ- (A⇒ B)Γ
(A⇒ B)g- (A⇒ B)A

apply- B

The next proposition helps checking that a structure is a direct λC-model. We shall need
the proposition in later proofs.

Proposition 35. Suppose that K is a thunk -force-⊗-category together with a functor A⇒
(−) : K - K, a natural transformation apply : (A⇒ B)A

·- B, and a transformation
pair : B - A⇒ (BA). Then for each object A there is an adjunction A⊗ (−) a A ⇒
(−) : K - ΘK with unit pair and counit apply if and only if

1. All components of pair are thunkable., and all morphisms of the form A ⇒ f are
thunkable.

2. pair is natural for all components of thunk, and for all morphisms of the form Lf .

3. We have

AB
pairB- (B ⇒ (AB))B B ⇒ A

pair- B ⇒ ((B ⇒ A)B)
Q
Q
Q
Q
Q
Q
Q
Q

id
s

Q
Q
Q
Q
Q
Q
Q
Q

id
s

AB

apply

?
B ⇒ A

B ⇒ apply

?

Proof. The ‘only if’ is obvious. The non-obvious part of the ‘if’ is to prove that condition 2
implies that pair is natural for all thunkable morphisms. To see this, let f : A - A′ be
a thunkable morphism, and B an object for which we consider the adjunction (−) ⊗B a
B ⇒ (−). Then

f ; pair = f ; pair ;B ⇒ (thunkB);B ⇒ (forceB)
= f ; thunk ; pair ;B ⇒ (forceB)
= thunk ;Lf ; pair ;B ⇒ (forceB)
= pair ;B ⇒ (thunkB);B ⇒ ((Lf)B);B ⇒ (forceB)
= pair ;B ⇒ (fB);B ⇒ (thunkB);B⇒ (forceB)
= pair ;B ⇒ (fB)

Because thunk -force-⊗-categories are algebraic, and all conditions in proposition 35 are
algebraic, we have the following corollary:

Proposition 36. Direct λC-models are algebraic.

16

Definition 37. We define three categories as follows:

• DλC is defined as the obvious category formed by direct λC-models and the mor-
phisms of thunk -force-⊗-categories that preserve Kleisli exponentials.

• λC is defined as the obvious category formed by λC-models and the morphisms of
computational cartesian models that preserve T -exponentials.

• CFreyd is defined as the obvious category formed by closed Freyd categories and
morphisms of I-closed Freyd categories that strictly preserve Kleisli exponentials.

Theorem 38. There is a reflection

DλC � CFreyd

Proof. We extend the reflection j a i : Tf ⊗ - IcFreyd to a reflection j a
i : DλC - CFreyd Extending i is obvious: For a direct λC -model K, iK is
inc a L : K - ΘK. Now for j. Let F a C : K - C be a closed Freyd category.
Let

A⇒′ (−) =def K
A⇒(−)- C

F- ΘK
pair ′ =def Fpair

apply ′ =def apply

With proposition 35 we prove that the new data determine the required adjunction. Con-
dition 1 holds because all morphisms of the form Fg are thunkable. Condition 2 holds
because, as you can easily check, pair ′ is natural for all morphisms of the form Fg. Check-
ing the remaining conditions of proposition 35 is very easy—I leave it away here.

Obviously we have ji = IdDλC . So it remains to check that the unit of the reflection
extends. This means checking that for each direct λC-model F a G : K - C, the
morphism of I-closed Freyd categories (F, IdK) into inc a L : K - ΘK preserves Kleisli
exponentials. Checking this is straightforward and left as an exercise.

Theorem 39. The construction of the Kleisli category forms an equivalence

CFreyd ' λC

Proof. By lemma 31 we have functors Kleisli : Ccm - IcFreyd and
X : IcFreyd - Ccm that form an equivalence of categories. First we extend Kleisli
to a functor λC - CFreyd . Let C be a λC-model whose monad is T = (T, µ, η) and
whose T -exponentials are determined by

λ : C(AB, TC) ∼= C(A, (TC)B)

Let C ′ be the full subcategory of C whose objects are those of the form TA. For f ∈
C ′(TA, TA′) and an object B, let

fB =def λ
(

(TA)B ×B ev- TA
f- TA′

)
17

As you can easily check, (−)A determines a functor C ′ - C. Let

A⇒ (−) =def (GT (−))A

Now we claim that λ determines a natural iso

λ : CT (FA⊗B,C) ∼= C(A,B ⇒ C)

What we must check is the naturality of λ. Checking this is straightforward—I leave it
away here.

Now we extend X to a functor CFreyd - λC . Suppose that F a G : K - C is a
direct λc-model, and] : K(FA,C) ∼= C(A,GC) is the obvious adjunction iso. By definition,
the computational cartesian model X(F a G) has the monad T = (GF,GεF, η). Let

(TB)A =def A⇒ B

ev =def apply]

This determines T -exponentials on C—checking this is left as an exercise. Checking the
morphism part of X is straightforward, so I leave it away here.

Obviously XKleisli : λC - λC doesn’t change T -exponentials. Therefore XKleisli =
IdλC .

It remains to prove that the components of the natural iso KleisliX ∼= Id IcFreyd pre-
serve Kleisli exponentials. Let F a G : K - C be a direct λc-model, and let
[: C(A,GB) ∼= K(FA,B) be the obvious natural iso. Applying KleisliX yields the
direct λc-model FT a GT : CT - C where T = (GF,GεF, η). The component of the
iso KleisliX ∼= Id IcFreyd at F a G is (IdC , !) where ! is the unique comparison functor
CT - K. Now we prove that (IdC , !) preserves Kleisli exponentials. For every object B
let B ⇒T (−) and B ⇒ (−) be the Kleisli exponential functors of FT a GT and F a G,
respectively, and let λT and λ be the natural isos for the respective Kleisli exponentials.
First we prove that

IdC(B ⇒T (−)) = !B ⇒!(−)

For an object A we get

IdC(B ⇒T A) = B ⇒T A = (TA)B = B ⇒ A = !B ⇒!A

For f ∈ CT (A,A′) we have

IdC(B ⇒T f) = (GT f)B = (G(f [))B

!B ⇒!f = B ⇒ f [

We prove that (G(f [))B = B ⇒ f [by checking

(TA)B ×B
ev- TA

(TA′)B ×B

(B ⇒ f [)×B
? ev- TA′

G(f [)
?

18

This is true because

(ev ;G(f [))[= F (ev ;G(f [)); ε = F (apply];G(f [)); ε
= F (η;Gapply ;G(f [)); ε = Fη;FGapply;FG(f [); ε
= thunk ;Lapply ;L(f [); force = thunk ; force; apply ; f [

= apply ; f [= F (B ⇒ f [)⊗B; apply
= F ((B ⇒ f [)×B); ev [= F ((B⇒ f [)×B);F ev ; ε
= F ((B ⇒ f [)×B; ev); ε = ((B ⇒ f [)×B; ev)[

It remains to prove that for each f ∈ CT (A×B,C)

IdC(λT f) = λ(!f)

We prove this by checking

(TC)B ×B ev- TC

�
�
�
�

f

�

A×B

λ(!f) ×B
6

This is true because

(λ(!f) ×B; ev)[= (λ(f [)×B; ev)[= F (λ(f [)×B); apply = F (λ(f [))⊗B; apply = f [

By composing the reflections DλC � CFreyd and CFreyd ' λC we get

Theorem 40. There is a reflection

DλC � λC

Theorem 41. Moggi’s semantics of the computational lambda-calculus in a λC-model C
is equal to the semantics in the direct λC-model generated by C.

Proving this amounts to checking the semantic rules for lambda abstraction and appli-
cation. Checking this is left as an exercise.

Let λC eq be the full subcategory of λC determined by the λC-models whose monads
fulfil the equalizing requirement. Let CFreydeq be the subcategory of CFreyd determined
by the closed Freyd categories whose induced monads fulfil the equalizing requirement The
following theorem follows directly from theorems 9, 38, and 39:

Theorem 42.

DλC ' CFreydeq ' λC eq

19

Proposition 43. Let K be a direct λC-model. Then L and I ⇒ (−) are naturally isomor-
phic, and we have

LA �
∼=

I ⇒ A LA
∼=- I ⇒ A

�
�
�
�λr �

A

force
?
�apply

I ⇒ AI

∼=
?

A

thunk
6

pair
- I ⇒ (AI)

6
∼=

Proof. As you can easily check, each thunk -force-category K has an adjunction

K(A,B) ∼= (ΘK)(A,LB)

with unit thunk and counit force. So we have a natural iso

(ΘK)(A,LB) ∼= K(A,B) ∼= K(A⊗ I, B) ∼= (ΘK)(A, I ⇒ B)

Checking the two diagrams is left as an exercise.

Therefore, the program transformation that replaces all occurrences of TA with I ⇒ A, all
occurrences of [M] with λx : I.M , and all occurrences of µ(M) with M∗ preserves meaning
up to natural isomorphism. So T , µ(−), and [−] are redundant. But we may want to keep
the three. To see this, note that we want to consider languages with many computational
effects. Therefore we may need models with one thunk -force-structure per computational
effect. So the codomain of λ is no longer obvious. In particular, the functor I ⇒ (−) may
not be isomorphic to the functor L of any computational effect.

5 Thunkable and central programs

By definition of a thunk -force-⊗-category, every thunkable morphism is central. The con-
verse does not hold: In Pfn, for example, every partial function is central, but only the
total functions are thunkable. As we shall see later, in ⊗¬-categories all central morphisms
are thunkable, but not all morphisms are central. Let’s see now when the denotation of a
program is thunkable and central, respectively. Suppose that K is a direct λC-model K,
and that Γ `M : A denotes f : Γ - A in K. Then, as you can easily check,

Γ ` let x = M in [y] : LA denotes Γ
f- A

thunk- LA

Γ ` [M] : LA denotes A
thunk- LA

Lf- LB

Now suppose that ∆ is an environment that doesn’t share variables with Γ, and ∆ ` N : B
denotes g : ∆ - B. Then the two sequents

Γ,∆ ` let x = M in let y = N in (x, y) : A ∗B
Γ,∆ ` let y = N in let x = M in (x, y) : A ∗B

20

denote, respectively,

Γ⊗∆
f ⊗∆- A⊗∆

A⊗ g- A⊗B

Γ⊗∆
Γ⊗ g- Γ⊗B f ⊗B- A⊗B

This directly implies the ‘only if’-part of the following proposition:

Proposition 44. Suppose that K is a direct λC-model. The denotation of Γ ` M : A in
K is central if and only if for every program ∆ ` N : B such that ∆ doesn’t share variables
with Γ,

Γ,∆ ` let x = M in let y = N in (x, y)
= let y = N in let x = M in (x, y) : A ∗B

Proof. The proof of the first claim is straightforward. The second claim requires some care.
If the denotation of Γ ` M : A is central, then obviously the equation in the statement
of the second claim holds. The converse is not obvious, because K may have morphisms
that cannot be denoted by any ∆ ` N : B. By lemma 24, f is central if it commutes with
g = forceB for all objects B. And forceB is denoted by z : TB ` µ(z) : B.

6 ⊗¬-categories as direct λC-models

The theory of ⊗¬-categories can be seen as an extension of the theory of direct λC-models.
The only extra operator is a functor

¬ : Kop - ΘK

This functor can model a unary type constructor cont like in SML of New Jersey. The
axioms for ¬ imply that

x⇒ y = ¬(x⊗ ¬y)

For a full definition of ⊗¬-categories, see [Thi97a, Thi97b]. ⊗¬-categories are alge-
braic, which was observed by Peter Selinger (his control categories and co control-
categories [Sel98] are algebraic, and the latter are ⊗¬-categories together with sums).
To my surprise I found that in a ⊗¬-category every central morphism is thunkable
(see [Füh98]).

7 A direction for further research

Direct λC-models may be a good basis for finding direct models for call-by-value program-
ming languages with several computational effects. I would like to keep the theories for
several computational effects algebraic, because

21

• We can do all reasoning by replacing subexpressions along the axioms.

• We can cope with changes of language features by simply adding and removing
operators and equations, respectively.

• We have a simple meta-theory—for example, we can form the free algebraic theory
generated by a set of operators and equations, adjoin indeterminates, and so on.

Acknowledgments. I am indebted to Hayo Thielecke, whose ⊗¬-categories were the main
inspiration for my analysis of direct models. Thanks a lot to John Power for explain-
ing to me premonoidal categories and more, and commenting on my work. Thanks to
Peter Selinger for many discussions, in particular for making me aware of the algebraicity-
criterion for models. Thanks to Stuart Anderson for commenting on several versions of
this article. And a historical remark: Recently, Alex Simpson made me aware of his 1993
LFCS Lab-Lunch talk ‘(Not very far) Towards algebraic semantics of programming lan-
guages’ [Sim93]. There he sketched what I call direct models. He had already found the
essence of my reflection theorem for monads (theorem 4). But there was no way to transfer
this to strong monads, because premonoidal categories had not yet emerged.

References

[Füh98] Carsten Führmann. Relating two models of continuations. submitted, November
1998.

[Joh92] Peter T. Johnstone. Stone Spaces. Cambridge studies in advanced mathematics.
Cambridge University Press, 1992.

[Lan71] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts
in Mathematics. Springer-Verlag, 1971.

[Mog88] E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-
LFCS-88-66, Edinburgh Univ., Dept. of Comp. Sci., 1988.

[PR97] John Power and Edmund Robinson. Premonoidal categories and notions of com-
putation. Mathematical Structures in Computer Science, 7(5):453–468, October
1997.

[PT97] John Power and Hayo Thielecke. Environments, continuation semantics and
indexed categories. In Proceedings TACS’97, volume 1281 of LNCS, pages 391–
414. Springer Verlag, 1997.

[PT98] John Power and Hayo Thielecke. Environments in Freyd categories and κ-
categories. submitted, 1998.

[Sel98] Peter Selinger. Control categories. http:// www.math.lsa.umich.edu/ ∼selinger/
papers.html, 1998.

22

[Sim93] Alex Simpson. Towards algebraic semantics of programming languages. Notes
for a talk at the LFCS Lab Lunch, March 1993.

[Thi97a] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis,
University of Edinburgh, 1997.

[Thi97b] Hayo Thielecke. Continuation semantics and self-adjointness. In Proceedings
MFPS XIII, Electronic Notes in Theoretical Computer Science. Elsevier, 1997.

23

A Moggi’s semantics of the λC-calculus

λC-calculus λC-model

x1 : A1, . . . , xn : An ` xi : Ai A1 × · · · × An
πi-Ai

η-TAi

Γ `M : A Γ
f-TA

Γ ` [M] : TA Γ
f-TA

η-TTA

Γ `M : TA Γ
f-TTA

Γ ` µ(M) : A Γ
f-TTA

µ-TA

Γ `M : A Γ
f-TA

Γ, x : A ` N : B Γ× A g-TB

Γ ` let x = M in N : B Γ
〈id, f〉-Γ× TA t-T (Γ×A)

Tg-TTB
µ-TB

Γ `M : A Γ
f-TA

Γ ` N : B Γ
g-TB

Γ ` (M,N) : A ∗B Γ
〈f, g〉-TA× TB ψ-T (A×B)

Γ, x : A `M : B Γ× A f-TB

Γ ` λx : A.M : A⇒ B Γ
λf-TBA

η-T ((TB)A)

Γ `M : A⇒ B Γ
f-(TB)A

Γ ` N : A Γ
g-TA

Γ `MN : B Γ
〈f, g〉-(TB)A × TA ψ-T ((TB)A × A)

T ev-TTB
µ-TB

24

B Direct semantics of the λC-calculus
λC-calculus direct λC-model

x1 : A1, . . . , xn : An ` xi : Ai A1 · · ·An
πi-Ai

Γ `M : A Γ
f-A

Γ ` [M] : TA Γ
thunk-LΓ

Lf-LA

Γ `M : TA Γ
f-LA

Γ ` µ(M) : A Γ
f-LA

force-A

Γ `M : A Γ
f-A

Γ, x : A ` N : B ΓA
g-B

Γ ` let x = M in N : B Γ
δ-ΓΓ

Γf-ΓA
g-B

Γ `M : A Γ
f-A

Γ ` N : B Γ
g-B

Γ ` (M,N) : A ∗B Γ
δ-ΓΓ

fΓ-AΓ
Ag-AB

Γ, x : A `M : B ΓA
f-B

Γ ` λx : A.M : A⇒ B Γ
λf-BA

Γ `M : A⇒ B Γ
f-BA

Γ ` N : A Γ
g-A

Γ `MN : B Γ
δ-ΓΓ

fΓ-BAΓ
BAg-BAA

apply-B

25

