
The sequentially realizable functionals∗

John Longley†

Abstract

We consider a notion of sequential functional of finite type, more gen-
erous than the familiar notion embodied in Plotkin’s language PCF. We
study both the “full” and “effective” partial type structures arising from
this notion of sequentiality. The full type structure coincides with that
given by the strongly stable model of Bucciarelli and Ehrhard; it has also
been characterized by van Oosten in terms of realizability over a certain
combinatory algebra.

We survey and relate several known characterizations of these type
structures, and obtain some new ones. We show that (in both the full and
effective scenarios) every finite type can be obtained as a retract of the
pure type 2, and hence that all elements of the effective type structure are
definable in PCF extended by a certain universal functional H . We also
consider the relationship between our notion of sequentially computable
functional and other known notions of higher-type computability.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Outline of the paper . 5
1.3 Acknowledgements . 6

2 A combinatory algebra for sequential computation 7
2.1 Construction of B and Beff. 7
2.2 Combinatory completeness . 10
2.3 Irredundant realizers . 13
2.4 A fixed point combinator . 14

3 Realizability models 15
3.1 Realizability models over B and Beff 15
3.2 The SR functionals . 16
3.3 Modified realizability . 18
∗LFCS Report ECS-LFCS-98-402. Submitted to Annals of Pure and Applied Logic.
†LFCS, Division of Informatics, University of Edinburgh, The King’s Buildings, Edinburgh

EH9 3JZ. Email: jrl@dcs.ed.ac.uk.

1

4 Concrete data structures 19
4.1 Basic definitions . 19
4.2 B as a universal object . 22
4.3 Sequential DCDSs and realizability 25

5 The hypercoherence model 27
5.1 An extensional collapse construction 27
5.2 Sequential algorithms and hypercoherences 30
5.3 Effectivity in hypercoherences . 32
5.4 The stable order . 33

6 A presheaf model 35
6.1 The Colson-Ehrhard characterization 35
6.2 A presheaf presentation . 36

7 A universal type 39
7.1 Call-by-value types . 39
7.2 Construction of H . 41
7.3 Properties of H . 45

8 Applications of universality 48
8.1 Hypercoherences revisited . 48
8.2 The category of retracts of type 2 51

9 PCF and universal functionals 53
9.1 Call-by-value PCF . 53
9.2 The language PCF+H . 56
9.3 Degrees of expressivity . 59
9.4 Types and universal functionals 61

10 Synthetic domain theory 66
10.1 Well-complete and replete objects 66
10.2 The Σ-order . 68

11 Notions of higher-type computability 70
11.1 General definitions . 70
11.2 Three notions of computability 72

12 Conclusions and further directions 76
12.1 Review of results . 76
12.2 The meaning of “sequentiality” 77
12.3 Game-theoretic models . 78
12.4 A programming language for SR functionals 80

2

1 Introduction

1.1 Background

The classic papers of Scott [51] and Plotkin [45] introduced the language for finite-
type computable functionals now widely known as PCF. These authors gave a
denotational semantics for this language using complete partial orders, and also
pointed out a certain mismatch between the language and its denotational model:
because of the “sequential” character of computations in PCF, there are elements
of the model (such as “parallel or”) that are in some sense computable but are
not definable by terms of PCF.

These early papers initiated a search for other denotational models that more
precisely clarified the nature of sequential computation, and in particular gave a
semantic characterization of a fully abstract model of PCF. This generated an
extensive body of research (see e.g. [6]), which culminated around 1993, when
several solutions to the full abstraction problem were announced [2, 21, 40, 41].

The general problem of understanding sequentiality is of both conceptual and
practical importance, given that most widely used deterministic programming
languages are sequential in character. Much of the study of sequentiality to
date has centred around PCF—indeed, it is sometimes implicitly assumed that
“sequential” computability is synonymous with PCF-computability, at least for
functionals of finite type. However, in their paper on game semantics for PCF
[21], Hyland and Ong make the following penetrating remarks:1

‘Persisting in the background of these developments is a deeper, more
philosophical question of whether there is such a thing as a canonical
notion of sequential computation at higher type. Clearly, the kind
of computation defined by PCF is at least a contender for such a
standard. But it seems to us that there is no compelling evidence
(yet) that PCF-style computation is the only acceptable notion of
higher-type sequentiality.’

‘In fact it is unclear whether there are various inequivalent notions of
higher-type sequentiality, all of them equally appealing; or whether
. . . there is just one notion under different guises.’

The purpose of the present paper is to investigate an alternative notion of
higher-type sequentiality, more generous than the PCF one. We will show that
this alternative notion is both mathematically compelling, in that it admits a
large number of prima facie independent characterizations, and computationally
appealing, in that it arises from a natural and intuitive concept of sequential
algorithm.

The class of functionals that we consider is not new. Its discovery is due in es-
sence to Bucciarelli and Ehrhard [9], who constructed a model of PCF involving a
category of domains and strongly stable functions. Ehrhard later showed that the
relevant part of this model could be more simply presented within the framework
of hypercoherences [15]. The strongly stable model was originally conceived as a

1See [21], pages 18–19, 15.

3

line of attack on the PCF full abstraction problem, and as a step towards a more
denotational understanding of certain features of the Berry-Curien sequential al-
gorithms model [5]. However, it has since turned out to be of considerable interest
in its own right. A crucial step was taken by Ehrhard [16], who showed that the
notion of strong stability admits a computational interpretation: every morphism
in the strongly stable model of PCF is “sequential” in the sense that it can be
computed by a Berry-Curien sequential algorithm. This line of investigation was
continued in [17], where Ehrhard showed that the strongly stable model is the
extensional collapse of the sequential algorithms model. Next, in the autumn of
1996, van Oosten [43] discovered a combinatory algebra embodying an appealing
notion of sequential computation, and showed that it yields a realizability model
that coincides with the strongly stable model at the finite types. Exactly the
same combinatory algebra was rediscovered independently by the present author
early in 1997, which gave rise to the investigation reported in the present paper.

A simple example may be helpful at this point. Let Σ = 1⊥ be the two-
element poset with ⊥ v >, and let ΣΣ be the set of monotone functions Σ→ Σ.
Consider the function F : ΣΣ → 2⊥ defined by

Fg =

 true if g⊥ = >
false if g⊥ = ⊥ but g> = >
⊥ otherwise.

Intuitively, F tells us whether a function g is able to return a result without
looking at its argument. The function F is strongly stable, and it is in some
sense sequentially computable. Indeed, the reader familiar with Standard ML
[38] (a sequential programming language!) may enjoy verifying that F can be
implemented as a function of type ((unit->unit)->unit)->bool, using either
exceptions or references. Likewise, one can implement F using control features
such the call/cc operator of Scheme [53], or the catch operator considered by
Cartwright and Felleisen [12]. Although these implementations make internal
use of non-functional features, in terms of their external behaviour they are per-
fectly “functional”, in the sense that given equal inputs they yield equal outputs
(provided these inputs are themselves functional). However, it is easily seen that
F is not sequentially computable in the PCF sense, since it is not monotone
with respect to the pointwise order. Thus F , although in some sense a functional
program, cannot be implemented within the functional fragment of ML.

In this paper the higher-type functionals in question will be called the sequen-
tially realizable (or SR) functionals, as distinguished from the PCF-sequential
functionals. In some sense, the SR functionals include all PCF-sequential func-
tionals, together with the above function F and “all things like it”. Indeed,
the SR functionals provide an answer to the question of how far one can travel
in a language such as PCF+catch without sacrificing the functional nature (i.e.
extensionality) of programs.

As with other classes of higher-type functionals, one may consider either the
full (continuous) partial type structure of SR functionals, or the effective type
structure that arises as its recursive analogue. These two finite type structures
will be our main objects of study. The full type structure coincides exactly with
that arising from Bucciarelli and Ehrhard’s strongly stable model; however, for

4

our present purposes we prefer the name sequentially realizable to strongly stable,
since (a) we wish to emphasize the computational aspect of these functionals;
and (b) the effective version of sequential realizability unfortunately does not
coincide with the effective version of strong stability (this point will be explained
in Section 5.3). The word realizable here should be understood in a rather loose
informal sense: the “realizers” in question might be either intensional objects in
a realizability model à la Hyland, sequential algorithms in the sense of Berry-
Curien, strategies in a game model, or programs in a language such as PCF+catch
or Standard ML.

1.2 Outline of the paper

The aims of the present paper are threefold. Firstly, we hope to provide evidence
that the notion of SR functional is in some sense a fundamental one. To this end,
we collect together a wide variety of characterizations of the (full and effective)
SR functionals, surveying various known descriptions and obtaining some new
ones. Secondly, we review some of the known results in a more conceptual light,
and point out some of the abstract relationships between existing constructions.
Thirdly, we study some intrinsic properties of the type structure of SR functionals:
for example, that every finite type is a retract of the pure type 2, and that every
element of the effective type structure is PCF-definable from a certain universal
functional H.

The rest of the paper is arranged as follows. In Section 2 we introduce van
Oosten’s combinatory algebra B, and its effective subalgebra Beff. We prove that
these are indeed combinatory algebras, and obtain some basic properties of them.
In Section 3 we construct realizability models from these combinatory algebras,
in particular the categories of modest sets over B and Beff. These categories give
rise to the full and effective SR functionals respectively, and will play a central
role in the rest of the paper.

In Sections 4–6 we survey several other characterizations of the SR functionals,
and examine the connections between them. In Section 4 we study the relation-
ship between B and the concrete data structures (CDSs) considered by Berry
and Curien. We show that B can be seen as a universal (sequential) CDS, and
that a good category of CDSs and sequential functions embeds fully in Mod(B).
We also show that sequential algorithms are essentially equivalent to realizers
in Mod(B). In Section 5 we study the hypercoherence model, and give a new
proof of van Oosten’s theorem that the partial type structure in Mod(B) coin-
cides with that in Bucciarelli and Ehrhard’s strongly stable model. Our proof
exploits the connection with sequential algorithms, and invokes Ehrhard’s result
[17] relating sequential algorithms to the strongly stable model. In Section 6 we
consider another characterization of the strongly stable model due to Colson and
Ehrhard [13], and recast this as a presheaf construction of the SR functionals.

Section 7 contains the central new result of the paper. In the type structure
of (full or effective) SR functionals, every finite type arises as a retract of the
pure type 2. The key to this result is the construction of a retraction 3 � 2,
which is inspired directly by the combinatory algebra B. The next two sections
present some applications of this result. In Section 8 we use it to give a fairly

5

simple (and more self-contained) alternative proof of van Oosten’s theorem, and
to show how one can obtain recursive types as retracts of 2. In Section 9 we show
that every effective SR functional is definable in the language PCF extended with
a single universal functional H of type level 3. The language PCF+H gives us
yet another handle on the SR functionals, yielding various new results. We also
prove a technical fact: there is no universal SR functional of an essentially simpler
type than that of H. Sections 7–9 are mostly independent of 4–6, except that
Sections 8.1 and 9.4 refer to the material on hypercoherences.

We then point out some of the connections between our results and other
ideas in semantics. In Section 10 we review our results from the standpoint of
synthetic domain theory. In Section 11 we consider the relationship between
sequential realizability and other possible notions of higher-type computability.
We show that, in a suitable precise sense, there can be no “ultimate” notion of
higher-type computability that subsumes all reasonable such notions. One may
interpret this latter fact as a kind of “anti-Church’s Thesis” for higher types.

We end the paper with a discussion of the significance of our results, and of
the claim that they embody a natural notion of “sequential” higher-type func-
tional. We also mention some avenues for further research, including the possible
applications of the SR functionals to programming language design.

In the present paper we study the SR functionals mainly from a “denotational”
point of view, touching only intermittently on the issue of how they might be
implemented operationally. This latter question could cover both the design
of particular syntactic systems (programming languages) for implementing the
SR functionals, and the use of games as an intensional-semantical setting for
modelling various operational paradigms. We will survey some of this territory
briefly in Section 12.3; a more detailed study of the SR functionals from an
operational perspective may appear in a subsequent paper.

1.3 Acknowledgements

I have benefited from discussions and correspondence with very many people,
including Samson Abramsky, Thomas Ehrhard, Mart́ın Escardó, Martin Hyland,
Jim Laird, Hanno Nickau, Luke Ong, Jaap van Oosten, Gordon Plotkin, Alex
Simpson and Thomas Streicher. I also thank Gail Kemp for moral support. This
research was funded by the EPSRC Research Grants GR/L89532 “Notions of
computability for general datatypes” and GR/J84205 “Frameworks for program-
ming language semantics and logic”.

6

2 A combinatory algebra for sequential compu-
tation

2.1 Construction of B and Beff.

We begin by describing the combinatory algebra B introduced by van Oosten in
[43]. We will follow van Oosten’s notation in certain respects.

Let N be the set of natural numbers (including 0), and let N⊥ = N t {⊥}.
We will identify partial functions N ⇀ N with total functions N→ N⊥; we write
NN
⊥ for the set of such functions.

As a first step, let us consider informally the possible behaviours of a “sequen-
tial” algorithm or strategy σ for computing a partial function F : NN

⊥ ⇀ N. Sup-
pose σ is presented with a function g : N→ N⊥ as an argument. There are three
possibilities: Firstly, σ might simply diverge, in which case F is the everywhere
undefined function. Secondly, σ might return a natural number straightaway, in
which case F is a constant function. Thirdly, σ might ask for the value of g on
some argument n, say. If g(n) is undefined, then σ can do nothing; however, if
g(n) returns an answer m, then the subsequent behaviour of σ may be conditional
on m. Indeed, for each value of m we have again the above three possibilities for
the behaviour of σ, and so on.

We may represent the behaviour of such a strategy σ as a (finite or infinite)
decision tree. This consists of a set of nodes, each carrying a label which may be
either a question ?n or an answer !n (n ∈ N). At each node, the children are
indexed by (a subset of the) natural numbers. The way in which such a decision
tree represents a strategy should be clear from Figure 1, which shows part of a
decision tree together with pseudocode for the corresponding part of the strategy.
(Decision trees of this kind will be very familiar to readers of e.g. [5, 12].)

Formally, we may identify the nodes of a decision tree with finite sequences of
natural numbers: the root node is the empty sequence ε, and the child m of the
node [m1, . . . ,mk] (if it exists) is the node [m1, . . . ,mk,m]. (This is the notation
we shall use for displaying finite sequences.) We write Seq(N) for the set of finite
sequences of natural numbers (including ε), and use α, β, . . . to range over Seq(N).
(Note that Roman letters will stand for natural numbers and Greek letters for
sequences.) We write m;α or α;m for the result of adjoining a new element at
the beginning or end of a sequence, and α; β for concatenation of sequences.

Likewise, we may identify the labels in a decision tree with elements of N+N,
where the left and right summands correspond to the tags ? and ! respectively.
This leads us to the following definition:

Definition 2.1 A decision tree is formally a partial function σ : Seq(N) →
N + N. The domain of σ is the set of nodes in the tree.

One might ask whether one ought also to impose hygiene conditions on σ: for
example, that the set of nodes of the tree is prefix-closed, and that labels !n may
appear only on leaves of the tree. In fact such conditions will not be necessary,
although trees that do not satisfy them will contain “dead” nodes that will never
be reached in any play of the strategy. Note also that the same question may

7

��
��
?5

��
��
!4 ��

��
?3 ��

��
?1 ...

��
��
!7 ��

��
?0 ...

�
�
�

�
�	

0

?

2
@
@
@
@
@R

3

�
�
�
��

0
A
A
A
AU

1

�
�

@
@.....

fn g =>
case g(5) of
0 => output 4

| 1 => diverge
| 2 => (case g(3) of

0 => output 7
| 1 => (case g(0) of ...)
...)

| 3 => (case g(1) of
=> diverge)

...

Figure 1: Part of a decision tree for a sequential strategy

be asked twice on the same path through the tree, and this too may give rise to
inaccessible nodes.

The key observation in the construction of B is that nodes and labels can
themselves be coded as natural numbers—that is, both Seq(N) and N +N admit
injections into N . Let 〈· · ·〉 : Seq(N)� N be some effective coding for nodes: for
example, take

〈ε〉 = 0, 〈m1, . . . ,mk〉 = 2m13m2 . . . pmk+1
k − 1,

where 〈m1, . . . ,mk〉 abbreviates 〈[m1, . . . ,mk]〉. Likewise, let [?, !] : N + N � N
be some effective coding for labels, for example:

?(n) = 2n, !(n) = 2n+ 1.

In general, we will require simply that these encoding operations are effective.
It is automatic that the images of these encodings are semidecidable subsets of
N, and that the corresponding decoding operations are effective. (The particular
codings given above are of course bijective, but this is not a necessary property
and we will not assume it below.)

Using these codings, we can represent a decision tree σ : Seq(N) ⇀ N + N
simply by a partial function f : N ⇀ N (i.e. by an element f ∈ NN

⊥). Explicitly,
we say f represents σ if for all α ∈ Seq(N) and l ∈ N + N we have

f(〈α〉) = [?, !](l) iff σα = l.

Clearly, every partial function f ∈ NN
⊥ represents a unique decision tree σf , and

for every decision tree σ there is a least partial function fσ that represents it.
If f represents σ, a play of σ against a function g may be viewed as a “dia-

logue” between f and g. Thus, the procedure for playing a strategy against
an argument gives rise to an operation | : NN

⊥ × NN
⊥ → N⊥. This operation is

intuitively sequentially computable; the following informal ML-style recursive
definition gives the idea. (A more formal definition in call-by-value PCF will be
given in Section 9.1.)

8

fun play f g α =
case f〈α〉 of

!n⇒ n
| ?n⇒ (case g(n) of m⇒ play f g (α;m))

fun | f g = play f g ε

A minor modification of this gives us an operation • : NN
⊥ × NN

⊥ → NN
⊥: in

effect, we use f to represent an infinite forest of decision trees rather than just a
single one.

fun • f g = (fn n⇒ play f g [n])

These ideas may be expressed more formally as follows:

Definition 2.2 (i) Let play : NN
⊥ × NN

⊥ × Seq(N) → N⊥ be the smallest partial
function such that, for all f, g ∈ NN

⊥, α ∈ Seq(N) and n,m ∈ N,

• if f〈α〉 = !n then play(f, g, α) = n,

• if f〈α〉 = ?n and g(n) = m then play(f, g, α) = play(f, g, (α;m)).

(ii) Let |, • be the operations defined by

f | g = play(f, g, ε), f • g = λn.play(f, g, [n]).

Let B be the applicative structure (NN
⊥, •).

Clearly the function play can be constructed by an iteration up to ω. As
usual, we take • to be left-associative in expressions such as f • g • h. By abuse
of notation, we sometimes write B for the underlying set NN

⊥.
As is observed in [43], the construction of B is reminiscent of Kleene’s second

model K2, the partial combinatory algebra for “function realizability” (see [25]).
In both cases, the elements are functions from N to N, and at each stage in the
application of f to g, f either returns a result or requests further information
about g. However, B differs from K2 in two respects: firstly, we use partial rather
than total functions on N; and secondly, at each stage f is allowed to specify the
particular piece of further information about g that it would like to see.

We will write v for the pointwise ordering on B. It is clear that (B,v) is a
CPO and that the functions play, | and • are monotone and continuous.

It is easy to check that if f, g ∈ NN
⊥ are partial recursive then so is f • g. This

justifies the following definition:

Definition 2.3 Let NN
⊥eff be the subset of NN

⊥ consisting of the partial recursive
functions, and let Beff be the applicative structure (NN

⊥eff, •). The elements of Beff

are called effective elements of B.

9

2.2 Combinatory completeness

The main result of this section is that B and Beff are both combinatory algebras:
in fact, there are elements k, s ∈ Beff such that for all x, y, z ∈ B we have

k • x • y = x, s • x • y • z = (x • z) • (y • z).

(The fact that B is a combinatory algebra was stated without proof in [43].)
Although the definition of application in B is fairly simple, the proof that it is

a combinatory algebra seems to require a significant effort, however it is tackled.
This is perhaps surprising: intuitively it seems fairly clear that for both k and s
there are sequential algorithms that mediate the appropriate interactions between
x, y, z. However, a direct definition of s in particular would be very cumbersome,
and it seems more illuminating to obtain k, s indirectly via Curry’s combinatory
completeness property. We use the following standard notions from the theory
of combinatory algebras (cf. [3, chapter 5]).

Definition 2.4 (i) Let V be an infinite supply of formal variables, and suppose
we also have a formal constant c for each element c ∈ B. The formal expressions
over B are freely constructed from variables and constants via formal juxtaposition
(a binary operation). If x0, . . . , xr are distinct variables, we write x0, . . . , xr ` e
to mean that e is a formal expression whose variables are among x0, . . . , xr.

(ii) A valuation ν for x0, . . . , xr associates to each xi an element ai = ν(xi) of
B. Formally, a valuation is an ordered list (x0 7→ a0, . . . , xr 7→ ar). If x0, . . . , xr `
e and ν is a valuation for x0, . . . , xr, we define the interpretation [[e]]ν of e relative
to ν inductively as follows:

• If c is a constant then [[c]]ν = c.

• If x is a variable then [[x]]ν = ν(x).

• If e1e2 is a juxtaposition then [[e1e2]]ν = [[e1]]ν • [[e2]]ν.

Our goal is to show the following: if x0, . . . , xr ` e then there exists f ∈ B such
that for all valuations ν = (x0 7→ a0, . . . , xr 7→ ar) we have f •a0• · · ·•ar = [[e]]ν.
As a first step, we prove an “uncurried” version of this, in which f takes the
arguments a0, . . . , ar all together rather than separately. As a means of lumping
arguments together, let us say that an element b ∈ B represents a valuation
(x0 7→ a0, . . . , xr 7→ ar) if b〈i, n〉 = ai(n) whenever 0 ≤ i ≤ r and n ∈ N .

Proposition 2.5 Suppose ~x ` e, where ~x abbreviates x0, . . . , xr. Then there is a
(canonical) element (Λ~x.e) ∈ B such that whenever ν is a valuation for ~x and b
represents ν, we have (Λ~x.e) • b = [[e]]ν. Moreover, if all the constants occurring
in e are effective then so is (Λ~x.e).

Proof By induction on the structure of e.

• For constants c ∈ B, let (Λ~x.c) be the (least) partial function f such that
for all n,m, c(n) = m implies f〈n〉 =!m. Clearly (Λ~x.c)•b = c for all b ∈ B.
Moreover, if c is effective then so is (Λ~x.c).

10

• For variables xi, let (Λ~x.xi) be the partial function f given by

f〈n〉 =?〈i, n〉, f〈n,m〉 =!m.

Clearly, if b represents (x0 7→ a0, . . . , xr 7→ ar) then (Λ~x.xi) • b = ai.
Moreover, (Λ~x.xi) is always effective.

• For juxtapositions e1e2, suppose f1 = (Λ~x.e1) and f2 = (Λ~x.e2). We will
construct f ∈ B such that for all b we have f • b = (f1 • b) • (f2 • b). Let
play1 : N×Seq(N)→ N⊥ and play2 : N×N×Seq(N)→ N⊥ be the smallest
partial functions satisfying the following conditions for all m, p, q, α, β, γ:

– If f1〈α〉 =?q then play1(〈α〉, ε) =?q
and play1(〈α〉, (m, γ)) = play1(〈α,m〉, γ).

– If f1〈α〉 =!(!p) then play1(〈α〉, ε) =!p.

– If f1〈α〉 =!(?q) then play1(〈α〉, γ) = play2(〈α〉, 〈q〉, γ).

– If f2〈β〉 =?q then play2(〈α〉, 〈β〉, ε) =?q
and play2(〈α〉, 〈β〉, (m, γ)) = play2(〈α〉, 〈β,m〉, γ).

– If f2〈β〉 =!p then play2(〈α〉, 〈β〉, γ) = play1(〈α, p〉, γ).

(Clearly play1, play2 can be constructed by simultaneous iteration.) Now
define f by f〈n;α〉 = play1(〈n〉, α). By some tedious inductions, it is
straightforward to verify that f has the desired property.

Set (Λ~x.e1e2) = f ; then (Λ~x.e1e2)•b = [[e1e2]]ν provided both (Λ~x.e1)•b =
[[e1]]ν and (Λ~x.e2) • b = [[e2]]ν. Moreover, it is easy to see that if both
(Λ~x.e1) and (Λ~x.e2) are effective then so is (Λ~x.e1e2). 2

The next step is to show that (Λ~x.e) can be transformed into a representation
of e that takes its arguments one at a time. Some further notation will be
helpful. If b, c ∈ B and i ∈ N, define b[c/xi] ∈ B as follows: if m = 〈i, n〉
for some n then b[c/xi](m) = c(n); otherwise b[c/xi](m) = b(m). Note that
if b represents (x0 7→ a0, . . . , xr 7→ ar) and 0 ≤ i ≤ r, then b[c/xi] represents
(x0 7→ a0, . . . , xi 7→ c, . . . , xr 7→ ar).

Proposition 2.6 Given any f ∈ B and i ∈ N, there is a (canonical) element
curryi(f) ∈ B such that for all b, c ∈ B we have curryi(f) • b • c = f • b[c/xi].
Moreover, if f is effective then so is curryi(f).

Proof Let play′ : N× Seq(N)× Seq(N)→ N⊥ be the smallest partial function
satisfying the following conditions for all m,n, p, q, α, β, γ:

– If f〈α〉 =!p then play′(〈α〉, ε, ε) =!(!p).

– If f〈α〉 =?〈i, n〉 then play′(〈α〉, ε, ε) =!(?n)
and play′(〈α〉, (m, β), γ) = play′(〈α,m〉, β, γ).

– If f〈α〉 =?q where ¬∃n. q = 〈i, n〉, then play′(〈α〉, β, ε) =?q
and play′(〈α〉, β, (m, γ)) = play′(〈α,m〉, β, γ).

11

Now define curryi(f) by curryi(f)〈〈n, β〉, γ〉 = play′(〈n〉, β, γ). It is straight-
forward to show that curryi(f) has the required property, and the effectivity
condition is obvious. 2

It now follows readily that B, Beff are combinatory algebras.

Theorem 2.7 (Combinatory completeness) (i) Suppose that x0, . . . , xr ` e.
Then there is an element (λ∗~x.e) ∈ B such that for all valuations ν = (~x 7→ ~a)
we have (λ∗~x.e) • a0 • · · · • ar = [[e]]ν. Moreover, if all constants appearing in e
are effective then so is (λ∗~x.e).

(ii) There exist k, s ∈ Beff such that for all x, y, z ∈ B we have k • x • y = x,
s • x • y • z = (x • z) • (y • z).

Proof (i) Define (λ∗~x.e) = (curry0(. . . (curryr(Λ~x.e)) . . .)) • (λn.⊥). Note that
for any ν = (~x 7→ ~a), the element (λn.⊥)[a0/x0] . . . [ar/xr] represents ν. So by
Propositions 2.6 and 2.5 we have

(λ∗~x.e) • a0 • · · · • ar = (Λ~x.e) • (λn.⊥)[a0/x0] . . . [ar/xr] = [[e]]ν.

The effectivity condition follows from those in Propositions 2.6 and 2.5.
(ii) Take k = (λ∗xy.x), s = (λ∗xyz.(xz)(yz)). 2

Remarks 2.8 (i) The construction of B can be carried out more generally start-
ing from any infinite set X equipped with injective coding functions Seq(X)� X
and X +X � X.

(ii) A combinatory algebra A closely related to B has recently been construc-
ted by Samson Abramsky, using ideas from Girard’s Geometry of Interaction and
the history-free games model of [2]. The construction of A makes use of coding
operations [L,R] : N + N� N and pair : N× N → N. The underlying set of A
is NN

⊥, and application is defined by the formula

f • g = L−1 ◦
⋃
r≥0

hr ◦ f ◦ L,

where h = f ◦R ◦ !g ◦R−1 and !g = pair ◦ (id× g) ◦ pair−1. Further details and
motivation are given in [32].

It turns out that A and B are equivalent in the sense of [31]. More particularly,
they have the same underlying set, and application in each is representable in
the other. It follows that A,B give rise to exactly the same category of modest
sets (see Section 3). However, the construction of A seems to be of independent
interest for several reasons—for instance, subject to some conditions on the coding
operations, one can identify a subalgebra Awb of well-bracketed strategies, which
yields a realizability model embodying the PCF notion of sequentiality (see [32]).

We will see in Section 4 that B and Beff are λ-algebras, though they are not
λ-models. An interesting question, suggested to us by Luke Ong, is whether one
can find a good syntactic calculus (such as an untyped λ-calculus with control
features or a suitable extension of combinatory logic) in which all the effective
elements of B are definable.

In the remainder of this section we establish some technical facts about B and
Beff which give further insight into their nature.

12

2.3 Irredundant realizers

We have already mentioned that our decision trees may contain redundancy in
that the same question may be asked more than once along a single path, and
may also contain inaccessible nodes for other reasons. We show here that any
decision tree may be “pruned” to yield an equivalent tree not suffering from any
of these kinds of redundancy, and that moreover this pruning operation may be
performed within B itself.

In fact we will consider two notions of irredundant element, according to
whether we are thinking of single decision trees or infinite forests.

Definition 2.9 (Irredundant elements) Let f be an element of B.
(i) f is |-irredundant if, for all α, β ∈ Seq(N),

• if f〈α〉 is defined then it is a question or an answer;

• if f〈α〉 is defined and β is a proper prefix of α then f〈β〉 is a question;

• if f〈α〉 is defined and β is a proper prefix of α then f〈β〉 6= f〈α〉.
(ii) f is •-irredundant if f〈ε〉 = ⊥ and fn is |-irredundant for each n, where

fn〈α〉 = f〈n;α〉.

The important facts about irredundant elements are given by the following:

Proposition 2.10 (i) To each f ∈ B we may associate a |-irredundant element
irr |(f) such that irr |(f) | g = f | g for all g, and if f is already |-irredundant then
irr |(f) = f . Moreover, there is an element irr| ∈ Beff such that irr| • f = irr |(f)
for all f .

(ii) Likewise, to each f ∈ B we may associate a •-irredundant irr•(f) such
that irr•(g) • g = f • g for all g, and if f is •-irredundant then irr•(f) = f .
Moreover, there is an element irr• ∈ Beff such that irr• • f = irr•(f) for all f .

Proof (i) The informal idea behind the construction of irr |(f) from f is clear:
we simply drop all inaccessible nodes of f , and omit all repetitions of previously
asked questions, knowing that they must receive the same answer as before. Thus,
to find out what irr |(f)〈m1, . . . ,ml〉 should be, we may engage in a dialogue with
f , using m1, . . . ,ml as a “script” giving the answers to the first l distinct questions
asked by f . Formally, we define irr |(f) to be the smallest partial function f0

such that f0〈m1, . . . ,ml〉 = f〈t1, . . . , tj〉 whenever the following conditions hold
for some q1, . . . , qj, r1, . . . , rl:

• f〈t1, . . . , ti−1〉 =?qi for 1 ≤ i ≤ j;
• r1, . . . , rl are the distinct elements of the sequence q1, . . . , qj in order of
appearance, and whenever qi = rh we have ti = mh;

• f〈t1, . . . , tj〉 is of the form !p or ?q where q 6∈ {q1, . . . , qj}.
It is routine to verify that irr |(f) | g = n iff f | g = n, that irr |(f) is |-irredundant,
and that if f is |-irredundant then irr |(f) = f .

It remains to show that there exists irr| ∈ Beff that computes irr |(f) from
f . Formally, let irr| be the least partial function satisfying the following for all
α = m1, . . . ,ml and β:

13

• If β =?q1, . . . , ?qj and r1, . . . , rk are the distinct elements of q1, . . . , qj in
order of appearance, where k ≤ l, then irr|〈〈α〉, β〉 =?〈mh(1), . . . ,mh(j)〉,
where each h(i) is determined by qi = rh(i).

• If β =?q1, . . . , ?qj contains exactly l distinct questions and u is of the form
!p or ?q where q 6∈ {q1, . . . , qj}, then irr|〈〈α〉, β, u〉 =!u.

Clearly irr| is effective, and it is easy to verify that irr| • f = irr |(f) for any f .
(ii) We may now define irr• ∈ Beff as the least partial function such that

• if irr|〈〈α〉, β〉 =?〈γ〉 then irr•〈n, α, β〉 =?〈n, γ〉;
• if irr|〈〈α〉, β〉 =!u, then irr•〈n, α, β〉 =!u,

and take irr•(f) = irr• • f . It is easy to see that irr•(f) has the required
properties. 2

There is an analogy here with the Scott graph model Pω [50]. In both B and
Pω we may identify a class of “canonical” realizers we may associate to each ele-
ment x a canonical element that represents the same endofunction, and moreover
this canonical element can be computed from x within the combinatory algebra
itself. However, there is an important difference: in Pω there is a unique canon-
ical element representing any given continuous function (namely its graph), but in
B there are usually many irredundant elements that represent a given sequential
function, corresponding to different sequential algorithms (cf. Section 4).

2.4 A fixed point combinator

In any combinatory algebra (A, ·), we say that an element y is a fixed point
combinator if y ·x = x ·(y ·x) for every x. It is well known that every combinatory
algebra has a fixed point combinator: for instance, we may define one by Curry’s
formula

y = (λ∗xy.y(xxy))(λ∗xy.y(xxy)).

On the other hand, for every x ∈ B we know that the function αx : y 7→ x • y is
continuous with respect to the CPO structure of B, so it has a least fixed point.

Perhaps surprisingly, there are fixed point combinators in B that do not always
compute the least fixed point. Our aim here is to show that there is one that
does. The combinator defined above would probably suffice, but it is easier to
show the required property for a more concretely defined element y.

Lemma 2.11 There is an element y ∈ Beff such that for all x ∈ B, y • x is the
least fixed point of αx.

Proof Let i = s •k •k, so that i •x = x for all x. Let y0 be the element ⊥ ∈ B
(i.e. the function λm.⊥), and define inductively yk+1 = s • i • yk. Since y0 ⊆ y1,
by induction we have yk ⊆ yk + 1 for every k. So take y =

⊔
yk. Since the yk

are effective uniformly in k, clearly y is effective.
Now take any x ∈ B. We have y0 • x = ⊥, and so by induction we have

yk • x = αkx(⊥) for each k. Since application is continuous, we have y • x =⊔
αkx(⊥), and this is the least fixed point of αx. 2

14

It follows immediately that if x ∈ Beff then the least fixed point of αx is also
an element of Beff. For the rest of the paper, y will denote the element of Beff

given by the above proof.

3 Realizability models

3.1 Realizability models over B and Beff

We now review the construction of the standard realizability models correspond-
ing to B and Beff. We will focus almost entirely on the categories of modest sets
over these combinatory algebras; these are full subcategories of the corresponding
realizability toposes, but in this paper we shall only occasionally refer to the lat-
ter. We will use the notation and terminology of [31], where further information
on realizability models may be found.

The following definition makes sense for any combinatory algebra (A, ·):

Definition 3.1 (Modest sets) (i) A modest set X over A consists of a set |X|
(called the underlying set of X) together with a function assigning to each x ∈ |X|
a non-empty set ‖x‖ ⊆ A (called the set of realizers for x), such that

a ∈ ‖x‖ ∧ a ∈ ‖x′‖ =⇒ x = x′.

We sometimes write ‖x‖X for ‖x‖ to avoid ambiguity.
(ii) Suppose X, Y are two modest sets over A. A function f : |X| → |Y | is said

to be tracked by r ∈ A if for all x ∈ |X| and a ∈ ‖x‖X we have r · a ∈ ‖fx‖Y .
A morphism f : X → Y is a function f : |X| → |Y | that is tracked by some
r ∈ A. We write Mod(A) for the category of modest sets over A and morphisms
between them.

Remarks 3.2 (i) The fact that Mod(A) is a category follows easily from the
combinatory completeness of (A, ·). It is easy to see that Mod(A) is equivalent
to the category PER(A) of partial equivalence relations on A.

(ii) Typically we are only interested in properties of modest sets up to iso-
morphism, and we will often switch freely between different representatives of the
same isomorphism class, using whichever is most convenient. We may think of
isomorphic modest sets as different presentations of essentially the same object.

One can think of a modest set X as a “datatype”, where for each value x ∈ |X|
we have a set ‖x‖ of “intensional representations” of x. The category of modest
sets turns out to have very good properties (for more details see [31]):

Proposition 3.3 The category Mod(A) is cartesian closed and regular, and it
has finite sums and a natural number object. 2

We recall the construction of exponentials in Mod(A). IfX and Y are modest
sets, then Y X is defined as follows: |Y X | is the set of morphisms f : X → Y ,
and ‖f‖YX is the set of elements r ∈ A that track f . It is easy to check that Y X

15

is indeed a modest set. The evaluation morphism Y X ×X → Y is the obvious
function |Y X | × |X| → |Y |.

We now identify some important structure in Mod(B) and Mod(Beff). (Note
at once that Mod(Beff) is a non-full subcategory of Mod(B).) For the terminal
object 1 in both categories, we may take |1| = {∗}, ‖ ∗ ‖ = {λm.⊥}. For the
natural number object N , we take |N | = N, ‖n‖ = {n}, where (n) : 0 7→
n, m + 1 7→ ⊥. It is easy to check that N (equipped with the obvious zero and
successor morphisms) is indeed a natural number object in both Mod(B) and
Mod(Beff).

Next we define a lift operation −⊥ on objects of Mod(B). Let up : B → B
be the function defined by

up(r)(0) = 0, up(r)(n+ 1) = r(n),

and for any object X, let X⊥ be the object given by

|X⊥| = |X| t {⊥}, ‖x‖X⊥ = {up(r) | r ∈ ‖x‖X}, ‖⊥‖X⊥ = {λn.⊥}.

The operation −⊥ clearly extends to a functor, and indeed a monad, on Mod(B),
which restricts well to a monad on Mod(B). In the case of N⊥, we will usually
work with the following simpler presentation: |N⊥| = N⊥, ‖x‖ = {x} (where
⊥ = λm.⊥). It is easy to check that this is isomorphic to the object given by the
definition of −⊥.

In both categories, the object NN
⊥ has a particularly simple presentation. This

will be very useful in Section 7 when we consider call-by-value PCF and various
extensions of it.

Proposition 3.4 (i) Let B be the “object of realizers” in Mod(B), defined by
|B| = NN

⊥, ‖f‖ = {f}. Then B ∼= NN
⊥ in Mod(B).

(ii) Let Beff be the object of realizers in Mod(Beff): |Beff| = NN
⊥eff, ‖f‖ = {f}.

Then Beff
∼= NN

⊥ in Mod(Beff). 2

Note that the operation • is representable in Beff by the element λ∗xy.xy.
Hence it is easy to see that the operation | is also representable in Beff in the
following sense: there is an element bar ∈ Beff such that for all f, g ∈ B and
x ∈ N⊥, bar • f • g = x iff f | g = x. It follows that in both Mod(B) and
Mod(Beff) there are morphisms dot : NN

⊥ ×NN
⊥ → NN

⊥ and bar : NN
⊥ ×NN

⊥ → N⊥
corresponding to • and | respectively.

3.2 The SR functionals

We are now ready to interpret the simple types in Mod(B). This will lead to
our definition of the sequentially realizable functionals, which are the primary
objects of study in this paper.

Definition 3.5 (Simple types) (i) The simple types (or finite types) are freely
generated from a single ground type 0 via the binary type constructor →:

σ := 0 | σ1 → σ2.

16

The pure types 0, 1, 2, . . . are defined by k + 1 = k → 0.
(ii) For each type σ, its interpretation in Mod(B) is the object [[σ]] given by

[[0]] = N⊥, [[σ1→ σ2]] = [[σ2]][[σ1]].

The interpretation [[σ]]eff in Mod(Beff) is defined analogously.

Note that the above gives the “call-by-name” interpretation of the simple
types, i.e. the one used for modelling the call-by-name version of PCF, as in [45].
We will content ourselves with this for the time being, but in Section 7 we shall
also consider the call-by-value interpretation.

The sequentially realizable functionals themselves are introduced via a general
notion of (abstract) type structure. For now, we choose a definition of type
structure that matches our call-by-name interpretation of types.

Definition 3.6 (i) A (call-by-name, partial) type structure T consists of the
following:

• a set T σ for each type σ, where T 0 = N⊥,

• for each σ, τ a total “application” function ·στ : T σ→τ × T σ → T τ .

(ii) The type structures R,Reff are defined by Rσ = |[[σ]]|, Rσ
eff = |[[σ]]eff|, with the

application functions given by the evaluation morphisms. We call the elements
of R the sequentially realizable (SR) functionals, and the elements of Reff the
effective SR functionals.

Clearly the type structures R,Reff are both extensional, in the sense that if
f · x = g · x for all x then f = g.

Remarks 3.7 (i) It should be clear already that both R and Reff are in some
sense models of PCF. One can easily exhibit realizers for the basic arithmetical
operations; application and abstraction are given by the CCC structure of the
category of modest sets; and for each type σ one can verify that the element
y ∈ Beff realizes fixed point operators Y ∈ R(σ→σ)→σ and Yeff ∈ R(σ→σ)→σ

eff . One
could prove directly at this stage that this gives adequate interpretations of PCF
in R and Reff, but we will defer a formal discussion of PCF until Section 9.

(ii) The reader may enjoy verifying that R2 and R2
eff also contain a non-

PCF-definable element F with the following specification (this is essentially the
example given in the Introduction):

Fg =

 0 if g⊥ = 0
1 if g⊥ = ⊥ but g0 = 0
⊥ otherwise.

Unfortunately, many of the basic properties of R and Reff are difficult to prove
directly from the above definitions. For instance, it will turn out that Reff can
be identified with a substructure of R (that is, there are inclusions Rσ

eff � Rσ

commuting with application), and that each Rσ is CPO with the ordering defined
by

f v g ⇔ ∃q ∈ ‖f‖, r ∈ ‖g‖. q v r,
We will defer the proofs of these facts until we have gathered more information
about these type structures.

17

3.3 Modified realizability

The construction given above will be the central one used in this paper. However,
we now briefly consider another realizability construction that also gives rise to
the SR functionals: the modified realizability model over B. The notion of mod-
ified realizability is due in essence to Kreisel [26]; modified realizability toposes
have been extensively studied e.g. in [20, 44]. For our purposes, it suffices to
consider a much smaller category, analogous to the category of modest sets.

In the following definition, A is any total combinatory algebra, and we suppose
moreover that we have an element 0 ∈ A such that 0 · a = 0 for all a ∈ A.
(The element 0 plays a technical role in the construction of modified realizability
toposes; it is not too important for the purposes of this paper.)

Definition 3.8 (Modified modest sets) (i) A modified modest set2 X over
a combinatory algebra A consists of a modest set X over A in the usual sense,
together with a subset PX ⊆ A (called the set of potential realizers for X) such
that 0 ∈ PX and ‖x‖ ⊆ PX for all x ∈ |X|.

(ii) Suppose X, Y are modified modest sets over A. A function f : |X| → |Y |
is said to be tracked in the modified sense by r ∈ A if r tracks f in the usual
sense, and furthermore for all a ∈ PX we have r·a ∈ PY . A morphism f : X → Y
is a function f : |X| → |Y | that is tracked in the modified sense by some r ∈ A.
We write mMod(A) for the category of modified modest sets.

Modified modest sets may be thought of as modest sets with some extra
“type information” built in: we may think of PX as giving a “type” for realizers
of elements of X. It is easy to show that mMod(A) is a cartesian closed category.
The exponential Y X is defined as follows: |Y X | is the set of morphisms X → Y
in mMod(A); ‖f‖YX is the set of elements r that track f in the modified sense;
and PYX is the set (PX ⇒ PY) (in general we write (A⇒ B) for the set {r | ∀a ∈
A. r • a ∈ B}).

In the case A = B or Beff, we may take 0 = λm.⊥. Both mMod(B) and
mMod(Beff) have a natural number object N which may be described as follows:
the underlying modest set of N is the object N described in Section 3.1, and
PN = {⊥, 0, 1, . . .}. Likewise, there is an obvious candidate for N⊥ in these
categories: the underlying modest set is N⊥, and PN⊥ = PN . This means that as
before we can give interpretations [[−]]m, [[−]]m,eff of the simple types in these
categories, and hence obtain type structures Rm, Rm,eff from them.

Proposition 3.9 For A = B or Beff, the interpretation of the simple types in
mMod(A) agrees with that in Mod(A). That is, for each type σ we have
U [[σ]]m = [[σ]] and U [[σ]]m,eff = [[σ]]eff. Hence Rm = R and Rm,eff = Reff.

Proof For simplicity, we just consider the case A = B; the effective case is
similar. First observe that the object N⊥ in mMod(B) is isomorphic to the

2Jaap van Oosten has pointed out to me that, in terms of the categorical properties of these
objects within the modified realizability topos, the term “discrete” is perhaps more appropriate
than “modest” in this context. However, here we will stick with the term “modest” to maintain
a sense of analogy with Section 3.1.

18

object N ′⊥ described as follows: the underlying modest set of N ′⊥ is again N⊥,
but PN ′⊥ is the whole of B. We can define an interpretation [[−]]′m of the simple
types using N ′⊥ instead of N ′, and hence obtain a type structure R′m; it is easy
to show by induction on types that R′m = Rm.

We now show by induction on σ that U [[σ]]′m = [[σ]] and P[[σ]]′m = B. The base
case is trivial by definition of N ′⊥. So suppose the hypotheses hold for σ and τ .
By the definition of exponentials we have P[[σ→τ]]′m = {r | ∀a ∈ B. r · a ∈ B} = B,
since B is total. It is now clear that U [[σ → τ]]′m = [[σ → τ]]. 2

Remark 3.10 Our category mMod(A) is restricted enough that it embeds
fully in both the modified realizability topos mRT(A) and Streicher’s category
MAss(A) of modified assemblies over A (see [54]). Both these embeddings pre-
serve the cartesian closed structure, but unfortunately (in the case A = B or Beff)
neither of them preserves the natural number object.

One reason for being particularly interested in our object N⊥ will become
apparent in Section 5. But we would also expect that in both mRT(B) and
MAss(B), the finite types over the true natural number object yield the SR
functionals.

4 Concrete data structures

In this section we consider the concrete data structures (CDSs) of Kahn and
Plotkin [22], together with the sequential algorithms and sequential functions
studied by Berry and Curien [5]. We will see that B itself be regarded as a
universal object for a certain class of CDSs. It follows that a certain category
of CDSs and sequential functions can be identified with a full subcategory of
Mod(B), and that moreover there is a strong connection between sequential
algorithms of cds and realizers in Mod(B).

4.1 Basic definitions

We begin by recalling some definitions from [5]. We refer the reader to this paper
or to the book [14] for further details and motivation.

Definition 4.1 A concrete data structure (CDS) M consists of the following:

• a countable set CM of cells;

• a countable set of VM of values;

• a set EM ⊆ CM × VM of events, such that for all c ∈ CM there is at least
one v such that (c, v) ∈ EM ;

• an enabling relation `M between finite subsets of EM and elements of CM ,
which is well-founded in the following sense: there is no infinite sequence
c0, c1, . . . of cells such that for each i there is a finite set t ⊆ EM such that
t `M ci and t contains some element (ci+1, v).

A state x of M is a subset of EM such that

19

• if (c, v) ∈ x and (c, v′) ∈ x then v = v′;

• if (c, v) ∈ x then there exists a finite set t ⊆ x such that t ` c.

We write (DM ,v) for the set of states of M ordered by inclusion. We also write
D0
M for the set of finite states of M .

If t ` c we say that t is an enabling of c. We say that c is filled in a state x if
(c, v) ∈ x for some v, and that c is accessible from x if c is not filled in x but x
contains an enabling of c.

The well-foundedness condition implies that any non-empty CDS has at least
one cell c such that ∅ ` c; such a cell is called initial. The second condition in
the definition of state ensures that every state is in some sense reachable. Note
that the poset of states is always a CPO.

We will restrict our attention mainly to CDSs with the following property:

Definition 4.2 A CDS is deterministic, or is a DCDS, if for any state x and
cell c, x contains at most one enabling of c.

Two different notions of morphism between DCDSs are of interest: the “ex-
tensional” notion of sequential function, and the more “intensional” notion of
sequential algorithm. Sequential functions are simply certain functions between
the relevant sets of states:

Definition 4.3 A sequential function f : M → M ′ between DCDSs is a mono-
tone and continuous function f : DM → DM ′ such that, for any x ∈ DM and any
c′ ∈ CM ′ accessible from f(x), if there exists a state y w x such that c′ is filled in
f(y), then there is a cell c ∈ CM accessible from x such that c is filled in all such
states y. Such a cell c is called a sequentiality index of f for c′ at x.

Note that the sequentiality index c need not be unique: indeed, a sequential
algorithm can be regarded as telling us at each stage which cell c is to be filled
next. Several equivalent definitions of sequential algorithm can be given; the
following definition (adapted from [14]) is in some sense intermediate between
the “concrete” and “abstract” definitions given in [5].

Definition 4.4 If M,M ′ are DCDSs, the DCDS N = M ′M is defined as follows:

• CN = D0
M × CM ′ (we will write the cell (x, c′) just as xc′).

• VN = CM+VM ′ (we denote the left and right inclusions by ?, ! respectively).

• Events of N are of two kinds:

– (xc′, ?c) ∈ EN iff c is accessible from x in M ;

– (xc′, !v′) ∈ EN iff (c′, v′) ∈ EM ′.

• Instances of the enabling relation of N are of two kinds:

– (yc′, ?c) `N xc′ iff x = y t {(c, v)} for some v;

20

– (x1c′1, !v
′
1), . . . , (xnc

′
n, !v

′
n) `N xc′ iff x = x1 ∪ · · · ∪ xn

and (c′1, v
′
1), . . . , (c

′
n, v

′
n) `M ′ c′.

A sequential algorithm a : M → M ′ is simply a state of M ′M . The application
operation · : DM ′M ×DM → DM ′ is defined by

a · x = {(c′, v′) | ∃y v x. (yc′, !v′) ∈ a}.

It is shown in [14] that if M and M ′ are CDSs [resp. DCDSs] then so is
M ′M . Moreover, for any sequential algorithm a : M → M ′ between DCDSs,
the mapping a∗ : x 7→ a · x : DM → D′M is a sequential function M → M ′.
Conversely, every sequential function between DCDSs is represented by at least
one sequential algorithm in this way. (Accordingly, we will sometimes say things
like “Let a∗ : M →M ′ be a sequential function”.)

Given sequential algorithms a : M →M ′ and b : M ′ →M ′′, their composition
ba : M →M ′′ may be defined directly (if somewhat opaquely) as follows.

– (xc′′, !v′′) ∈ ba iff for some y′ = {(c′1, v′1), . . . , (c′n, v′n)} and x1, . . . , xn ∈ D0
M

with x = x1 ∪ · · · ∪ xn, we have (xic′i, !vi) ∈ a for each i, and (y′c′′, !v′′) ∈ b.

– (xc′′, ?c) ∈ ba iff for some y′ = {(c′1, v′1), . . . , (c′n, v′n)}, x0, x1, . . . , xn ∈ D0
M

with x = x0 ∪ x1 ∪ · · · ∪ xn, and c′ ∈ CM ′, we have (xic′i, !vi) ∈ a for each
i ≥ 1, (y′c′′, ?c′) ∈ b and (x0c′, ?c) ∈ a.

This agrees with the indirect definition of composition given in [14, Section 2.6].
One can check that ba·x = b·(a·x), so composition for sequential algorithms agrees
with composition for sequential functions. We write SeqAlg for the category of
DCDSs and sequential algorithms. A major result of [5] is that SeqAlg is a
cartesian closed category, with the exponential M ′M defined as above. However,
it is well known that the category SeqFun of DCDSs and sequential functions is
not cartesian closed.

The following condition was recognized by Curien as defining an interesting
class of CDSs (see [14, Def. 2.1.10]):

Definition 4.5 A CDS M is called sequential if, for any cell d and any state x
such that d is not filled in x, if there exists a state y w x such that d is filled in
y, there is a cell c accessible from x such that c is filled in all such states y. Such
a cell c is called a sequentiality index of M for d at x. We write SSeqFun for
the category of sequential DCDSs with sequential functions, and SSeqAlg for the
category of sequential DCDSs with sequential algorithms.

We will sometimes implicitly assume that a sequential CDSM comes equipped
with a choice of sequentiality index cd,x for each d and x to which the above
conditions apply. Curien pointed out that sequential DCDSs are closed under
finite products and exponentials—that is, SSeqAlg is a sub-CCC of SeqAlg. In
fact, one can show that every sequential CDS is isomorphic to a sequential DCDS,
and so the categories of sequential CDSs and sequential DCDSs are equivalent.

21

Remark 4.6 The above definitions all have a fairly evident effective analogue.
For this, we need to work with CDSs M equipped with enumerations of CM and
VM—that is, identifications of CM and VM with (not necessarily r.e.) subsets of
N. An effective state of M is one that is given by a partial recursive function
CM ⇀ VM (more precisely, by a partial recursive function N ⇀ VM whose domain
is contained in CM). If M,M ′ are DCDSs, a sequential function f : M → M ′ is
effective if, for all effective states x ∈ DM and c′ ∈ CM ′ satisfying the conditions
of Definition 4.3, a sequentiality index of f for c′ at x can be recursively computed
from c′ and a recursive index for x (one need not assume that different indices for
x yield the same sequentiality index). An effective sequential algorithm M →M ′

is just an effective state of M ′M (note that enumerations for M,M ′ induce an
enumeration for M ′M in a standard way). One may then check, by a routine
effectivization of the standard proofs, that the effective sequential functions are
precisely the maps induced by effective sequential algorithms. Such functions
clearly map effective states to effective states.

We write SeqAlgeff [resp. SeqFuneff] for the category of enumerated DCDSs
and effective sequential algorithms [resp. functions]. It is clear that SeqAlgeff is
cartesian closed, with the same exponentials as SeqAlg.

We say an enumerated DCDS M is effectively sequential for all cells d and
effective states x satisfying the requirements in Definition 4.5, a sequentiality
index for d at x can be recursively computed from d and an index for x (again,
we need not assume extensionality). We write SSeqFuneff and SSeqAlgeff for the
respective full subcategories of SeqFuneff and SeqAlgeff consisting of effectively
sequential DCDSs.

4.2 B as a universal object

The key observation of this section is that the combinatory algebra B can be
viewed as (the set of states of) a concrete data structure. The cells of this CDS
are just the natural numbers; the values are also the natural numbers; every pair
(c, v) is an event; and the enabling relation is given by ∅ ` c for all c (all cells are
initial). The states are then precisely the partial functions from cells to values,
that is, elements of NN

⊥. We will denote this CDS also by B.
It is easy to see that B is a sequential DCDS. Note that B can also be described

as a countably infinite product (in either SeqFun or SeqAlg) of copies of a
single-cell CDS N whose values are the natural numbers.

Any CDS M can be “embedded” in B in such a way that the states of M are
identified with a subset of the states of B. Specifically, we pick some identifications
of CM , VM with subsets of N (or we suppose such identifications are given by the
hypothesis that CM , VM are countable). States of M are then identified with
certain partial functions N ⇀ N, i.e. states of B. (We take these partial functions
to be undefined outside the subset of N corresponding to CM .) This gives us a
continuous inclusion ιM : DM ↪→ B between CPOs.

For convenience, we will assume henceforth that CM , VM actually are subsets
of N for every M that we consider. Furthermore, in Definition 4.4, we identify
VN = CM + VM ′ with the set {?c | c ∈ CM} ∪ {!v′ | v′ ∈ VM ′} where ?, ! : N→ N
are the coding functions introduced in Section 2.

22

The following tells us when the embedding ιM is well-behaved.

Proposition 4.7 For a DCDS M , the following conditions are equivalent:
(i) M is sequential.
(ii) ιM is a sequential function i∗ : M → B.
(iii) M is a retract of B in SeqFun.
(iv) M is a retract of B in SeqAlg.

Proof (i)⇒ (ii): Any sequentiality index of M for c at x is also a sequentiality
index of ιM for c at x. (Note that if c 6∈ CM then a sequentiality index of ιM for
n at x is not needed.) So ιM = i∗ for some sequential algorithm i.

(ii) ⇒ (iii): It suffices to construct a sequential function j∗ : B → M such
that j∗i∗ = idM . Let us say that a cell d is supported in a state y of B if there is
a state x of M such that i∗(x) v y and d is filled in i∗(x). Write Σy for the set
of cells supported in y, and define j∗(y) to be the restriction of y to Σy. Clearly
j∗ is monotone and continuous, and j∗i∗ = idM . Moreover, it is routine to check
that j∗ is sequential.

(iii)⇒ (i): Assume M f∗→ B g∗→M is any retraction in SeqFun, and suppose
we are given x ∈ D(M) and d not filled in x such that d is filled in some y w x.
Since g∗f∗(x) = x, we may take c′ to be a sequentiality index of g∗ for d at f∗(x);
note that c′ is filled in f∗(y). We can now take c a sequentiality index of f∗ for c′

at x, and check that c is a sequentiality index of M for d at x.
(iii)⇒ (iv): It suffices to show that the only sequential algorithm representing

the sequential function idM is the identity. Clearly, for any cell c and state x,
the only sequentiality index of idM for c at x (if one exists) is c itself; and by the
relationship between sequential algorithms and abstract algorithms established
in [14, Section 2.6], this is enough.

(iv) ⇒ (iii) is trivial. 2

The above proposition shows that B is a universal object in the categories
SSeqFun and SSeqAlg. We henceforth suppose that each sequential DCDS M
comes equipped with some choice of sequential algorithms iM , jM representing
i∗, j∗ respectively.

Since SSeqAlg is cartesian closed, we have that BB is a retract of B—that
is, B is a reflexive object in SSeqAlg. In fact, one can choose a retraction
BB � B that gives rise in the standard way to precisely the applicative structure
(B, •). This is not the case for the particular retraction given by Proposition 4.7,
but the following proposition establishes the relevant retraction. The essential
force of this proposition is that irredundant realizers are sequential algorithms.
(Throughout this section, “irredundant” will mean •-irredundant.)

Proposition 4.8 (i) To any sequential algorithm a : B → B there corresponds
an irredundant element ra ∈ B such that r • b = a · b for all b ∈ B.

(ii) The map I∗ : a 7→ ra constitutes a sequential function BB → B.
(iii) The map I∗ is a bijection between sequential algorithms B → B and irre-

dundant elements of B.
(iv) The map J∗ : r 7→ I−1

∗ (irr•(r)) constitutes a sequential function B → BB.

23

Proof (i) Given a sequential algorithm a, we may construct a realizer r = ra
as follows. For each n ∈ N, let ρn : Seq(N) ⇀ B0 be the (unique) smallest partial
function with the following properties:

• ρn(ε) = ∅.
• If ρn(α) = x and (xn, ?m) ∈ a, then ρn(α, v) = x ∪ {m 7→ v}.

We now take r to be the smallest partial function such that, for all n, α, if
ρn(α) = x and (xn, l) ∈ a (where l may be ?c or !v) then r〈n, α〉 = l.

We first check that r is irredundant. If r〈n, α〉 = l then from the definition
l is a question or an answer. If moreover β is a proper prefix of α then ρn(β, v)
is defined for some v, so if y = ρn(β) then (yn, ?m) ∈ a for some m, whence
r〈n, β〉 =?m. Finally, we have (m, v) ∈ ρn(βv) v ρn(α), and so if x = ρn(α) then
(xn, ?m) 6∈ a, so r〈n, α〉 6=?m.

Next we show that r realizes b 7→ a · b, that is, (r • b)(n) = v iff ∃x v
b. (xn, !v) ∈ a. By definition, (r•b)(n) = v iff there is a sequence c1v1 . . . ckvk such
that (ci, vi) ∈ b for 1 ≤ i < k, and if xi denotes ρn〈v1, . . . , vi〉 then (xin, ?ci+1) ∈ a
for 0 ≤ i < k and (xkn, !v) ∈ a. So for the implication ⇒ above we may take
y = xn, since xn ⊆ x. Conversely, given x ⊆ b with (xn, !v) ∈ a, let y0 = x, and
while yi 6= ∅ let (yi+1n, ?di) be the unique enabling of yin in a (recall that BB is
a DCDS), where yi = yi+1 t {(di, wi)}. By the well-foundedness of the enabling
relation we have yk = ∅ for some k. But then the sequence dk−1wk−1 . . . d0w0

satisfies the above requirements for c1v1 . . . ckvk.
(ii) Suppose given a : B → B and c accessible from ra such that c is filled

in rb for some b w a. Since rb is irredundant, c must have the form 〈n, α〉. Let
β = m1, . . . ,mk be the shortest prefix of α such that 〈n, β〉 is not filled in ra; then
ra〈n, γ〉 is a question for any proper prefix γ of β. So let x = ρn(β) as above. It
is easy to check that xn is a sequentiality index of I∗ for c at a.

(iii) If r ∈ B is irredundant, then for each n and α = m1, . . . ,mk such that
r〈n, α〉 is defined, let σn,α be the (least) finite partial function such that for
0 ≤ i < k, if r〈n,m1, . . . ,mi〉 =?qi then σn,α(qi) = mi+1. Now define

ar = {(σn,αn, l) | n ∈ N, α ∈ Seq(N), l = r〈n, α〉}
(here l may be either a question or an answer). Clearly ar is a sequential algorithm
B → B, and it is straightforward to check that a = ar iff r = ra.

(iv) Suppose given r ∈ B, and xn accessible from a = ar• such that xn is
filled in as• for some s w r. Let {(yn, ?c)} be an enabling of xn in a, where
x = y ∪ {(c, v)} and y = σn,α as above. Then for any s as above, we have that
〈n, α, v〉 is accessible from irr•(r) and filled in irr•(s). Next, one can see by
applying (iii) above to the realizer irr•(irr•) that the map irr• is a sequential
function B → B. So take d a sequentiality index of this map for 〈n, α, v〉 at r.
Then d is clearly a sequentiality index of J∗ for xn at r. 2

Since J∗I∗ = id, by the proof of Proposition 4.7 we have that JI = id.
Clearly, morphisms 1 → B in SeqAlg correspond precisely to elements (or

states) of B. So by the above proposition, applying the functor Hom(1,−) to the
composite

B × B J×id−→ BB × B ev−→ B

24

gives precisely the function • : B × B → B.

Remarks 4.9 (i) By standard facts about reflexive objects in CCCs (see [3]),
the above gives an alternative proof that (B, •) is a combinatory algebra. In fact
it proves more: namely, that B is a λ-algebra. That is, if M,N are formal meta-
expressions over B (possibly involving λ∗) and M =β N , then [[M]]ν = [[N]]ν for
all valuations ν. It would be interesting to know what λ-theory is induced by the
interpretation of pure λ-terms in B.

It is clear, however, that B is not a λ-model, since different irredundant ele-
ments can realize the same function B → B.

(ii) An alternative way of viewing the above results is the following: given
the monoid M of realizable endofunctions on B (i.e. sequential endofunctions
on NN

⊥), one can obtain SSeqFun as a full subcategory of its Karoubi envelope
K(M). This is interesting because the definition ofM is much less cumbersome
than that of SSeqFun. However, K(M) is strictly larger than SSeqFun, as it
is easy to find realizable idempotents on B (and even projections) whose kernel
is not a concrete domain (see [22]).

Remark 4.10 One can easily obtain an effective analogue of Proposition 4.7,
showing that B is a universal object in both SSeqFuneff and SSeqAlgeff. One
can also show that the retraction (I, J) : BB � B described by Proposition 4.8
lives in SeqAlgeff, and induces a bijection between effective sequential algorithms
B → B and irredundant elements of Beff. Clearly, morphisms 1→ B in SeqAlgeff
correspond to elements of Beff, and so the retraction (I, J) gives rise to exactly
the combinatory algebra Beff.

4.3 Sequential DCDSs and realizability

Armed with the above results, we can formulate a precise connection between
CDSs and modest sets over B: specifically, SSeqFun can be fully embedded in
Mod(B).

We define a functor E : SSeqFun→Mod(B) as follows. Given M a sequen-
tial DCDS, we take |EM | to be the set DM of states of M , and for each x ∈ DM

let ‖x‖EM be the singleton set {iM∗(x)}. Given f : M → M ′ a sequential func-
tion, take Ef = f : DM → DM ′ . Note that if a : M → M ′ is any sequential
algorithm representing f then ra ≡ I(iM ′ ◦ a ◦ jM) is a realizer for Ef .

Likewise, we have a functor Eeff : SSeqFuneff →Mod(Beff) given as follows:
|EeffM | is the set of effective states of M , and ‖x‖EeffM = {iM∗(x)} (note that if x
is an effective state then iM∗(x) ∈ Beff). If f : M →M ′ is an effective sequential
function then Eefff is the restriction of f to effective states. Note that if a is an
effective sequential algorithm representing f then the realizer ra defined as above
is effective, since (we may assume) iM ′ and jM are effective.

Proposition 4.11 The functors E and Eeff are full and faithful.

Proof The faithfulness of E is trivial; the faithfulness of Eeff follows from the
fact that any continuous map DM → DM ′ is determined by its action on effective

25

states. To see that E is full, let g be any morphism EM → EM ′, realized by
r ∈ B say. Then jM ′ ◦ J∗(r) ◦ iM is a sequential algorithm M →M ′, representing
a sequential function g∗ such that Eg∗ = g. Similarly for Eeff. 2

Remarks 4.12 (i) Note that if f : M → M ′ is effective then the realizers for
Eefff are precisely the effective realizers for Ef . This is because an arbitrary
state of M,M ′ is a least upper bound of effective states, and so any realizer that
takes effective states of M to effective states of M ′ also does the same for arbit-
rary states.

(ii) The above is an instance of a general piece of folklore about realizability
models: given a category C with a universal and reflexive object X, giving rise to
a combinatory algebra AX, there is a full functor E : C →Mod(AX) such that
Ef = Eg iff Hom(1, f) = Hom(1, g).

(iii) All the modest sets in the image of either E or Eeff have the special
property that every element has just one realizer. Such objects are (up to iso-
morphism) precisely the projective modest sets (see e.g. [31]).

(iv) It is immediate from Propositions 4.7 and 4.11 that the object B ∼= NN
⊥

is a universal object in the subcategory of Mod(B) corresponding to SSeqFun;
similarly for Beff in Mod(Beff).

The above results establish the correspondence between sequential functions
M →M ′ and morphisms EM → EM ′. There is also a close relationship between
sequential algorithms and realizers in B. The correspondence is not a perfect
bijection—intuitively there are more realizers than sequential algorithms—but it
is fairly strong:

Proposition 4.13 Let M,M ′ be sequential DCDS. Then there are sequential
algorithms V : M ′M → B and W : B →M ′M such that

• if a : M →M ′ is a sequential algorithm representing a sequential function
f , then V · a tracks Ef ;

• if r ∈ B tracks Ef , then W · r is a sequential algorithm representing f ;

• W ◦ V = id;

• V ◦W is realized by an element of B.

If moreover M,M ′ are effectively sequential, then V,W are effective and induce
a similar correspondence between effective sequential algorithms and realizers in
Beff; furthermore, V ◦W is realized by an element of Beff.

Proof Since SeqAlg is cartesian closed, composition and application of se-
quential algorithms are themselves given by sequential algorithms. So there are
sequential algorithms V,W defined by

V = λa. I · (iM ′ ◦ a ◦ jM), W = λr. jM ′ ◦ (J · r) ◦ iM .

The first two conditions are then clear (cf. the proof that E is a functor and is
full). The third condition holds because JI = id, jM iM = id and jM ′iM ′ = id.

26

The fourth condition is immediate since, by Proposition 4.8(i), every sequential
algorithm B → B is realized by an element of B. The effective versions of these
conditions are straightforward given that iM , jM , iM ′, jM ′ are effective (an appeal
to Remark 4.12(i) is needed for the second condition.) 2

This gives us a particular retraction (V,W) : M ′M � B in SSeqAlg. In
general this is not identical to the chosen retraction (i, j) for M ′M , although the
“translations” i ◦W and V ◦ j are of course realizable by elements of B. We thus
have the following relationship between EM ′EM and E(M ′M):

Proposition 4.14 The exponential EM ′EM in Mod(B) is isomorphic to an ob-
vious quotient Q of E(M ′M), where |Q| is the set of sequential functions M →M ′;
and ‖f‖Q is the union of the (singleton) sets ‖a‖E(M ′M) for a a sequential al-
gorithm representing f . Similarly in the effective case. 2

Since in general there is no canonical sequential algorithm representing a
sequential function, the object Q (and hence EM ′EM) is not usually projective.
We therefore have some kind of an explanation for why SSeqFun fails to be
cartesian closed: the desired exponentials do live naturally in Mod(B), but they
take us outside the subcategory corresponding to SSeqFun. This is an example
of a common phenomenon: by passing from some category of objects to a category
of partial equivalence relations on them, we often obtain a much richer structure.
An abstract account of this phenomenon is given in [7].

5 The hypercoherence model

In the last section we explored the connections between the realizability model
over B and the sequential algorithms model. In this section we relate both of
these to the strongly stable model due to Bucciarelli and Ehrhard, as embodied
in Ehrhard’s category of hypercoherences. In [43], van Oosten gave a direct proof
that the SR functionals coincide exactly with the strongly stable functionals of
finite type. Here we follow a more scenic route to this result via the modified
realizability model and the sequential algorithms model. Our proof invokes a
theorem of Ehrhard [17] which states that the hypercoherence model may be
obtained as an extensional collapse of the sequential algorithms model. (We will
give our own proof of Ehrhard’s theorem in Section 7.)

We discuss some of the insights that the hypercoherence model provides, par-
ticularly with regard to the stable order on the SR functionals. We also point
out a curiosity, namely the failure of the effective analogue of Ehrhard’s result.

5.1 An extensional collapse construction

We start by considering the extensional collapse of the sequential algorithms
model, as studied by Ehrhard in [17]. We give a cheap proof that this construction
yields precisely the SR functionals, by relating it to the modified realizability
model described in Section 3.3.

27

It will be convenient to recast the definitions of Section 3.3 in terms of partial
equivalence relations (PERs). By a modified PER X on B we will mean a set
PX ⊆ B with 0 ∈ PX , together with a partial equivalence relation ∼X on PX
(that is, a symmetric, transitive relation on PX). We say that r ∈ B realizes a
morphism X → Y of modified PERs if for all a, b ∈ B we have

a ∈ PX =⇒ r • a ∈ PY , a ∼X b =⇒ r • a ∼Y r • b.

A morphism of modified PERs is an equivalence class of such realizers, under the
equivalence relation

q ∼ r ⇐⇒ ∀a ∈ B. q • a ∼Y r • a.

The category MPER(B) of modified PERs on B is clearly equivalent to
mMod(B). The modified modest sets [[σ]]m thus correspond to the modified
PERs Mσ = (Pσ,∼σ) defined as follows:

P0 = {⊥, 0, 1, . . .},
x ∼0 y ⇐⇒ x = y,
Pσ→τ = (Pσ ⇒ Pτ),
q ∼σ→τ r ⇐⇒ ∀x, y. x ∼σ y =⇒ q • x ∼τ r • y.

Next we consider the obvious interpretation [[−]]s of types in SSeqAlg:

[[0]]s = N, [[σ→ τ]]s = [[τ]][[σ]]s
s ,

where N is the CDS with a single cell which may be filled by any natural number.
Define a partial equivalence relation ≈σ on the states of [[σ]]s inductively as
follows:

x ≈0 y ⇐⇒ x = y, a ≈σ→τ b ⇐⇒ ∀x, y ∈ D([[σ]]s). x ≈σ y =⇒ a·x ≈τ b·y.

Remark 5.1 The structures (D([[σ]]s),≈σ) are exactly the structures ([σ]SEQ
∗ ,≈

) defined in Section 6 of [17]. The interpretation [σ]SEQ was there defined within
the category of sequential structures, a larger category than SeqAlg. However,
we have already seen that SSeqAlg is a full sub-CCC of SeqAlg, and it is shown
in [8, Chapter 5] that SeqAlg is a full sub-CCC of the category of sequential
structures. Thus, all the sequential structures [σ]SEQ lie within the sub-CCC
corresponding to SSeqAlg.

One can view each structure (D([[σ]]s),≈σ) as a modified modest set Nσ =
(Qσ,≈σ): we take Qσ to be the set of realizers for elements of E([[σ]]s)—these are
in bijective correspondence with states of [[σ]]s—and just transport ≈σ along this
bijection. By Proposition 4.13 it is clear that there are application morphisms
Nσ→τ ×Nσ → Nτ realized essentially by •.

The definitions of Mσ and Nσ look very similar, and indeed they turn out to
be isomorphic:

28

Proposition 5.2 For each type σ, we have Mσ
∼= Nσ in MPER(B); moreover,

these isomorphisms commute with the evident application morphisms Mσ→τ ×
Mσ →Mτ and Nσ→τ ×Nσ → Nτ .

Proof By induction on σ. The isomorphism M0
∼= N0 is easy. So suppose

cσ, dσ realize an isomorphism Mσ → Nσ and its inverse respectively, and likewise
for τ . Let V : [[τ]][[σ]]s

s → B and W : B → [[τ]][[σ]]s
s be the sequential algorithms

given by Proposition 4.13, and suppose v, w ∈ B are the corresponding realizers
for morphisms E([[σ → τ]]s)←→B. By Proposition 4.13 we have that if r ∈ Qσ→τ
then v • r ∈ (Qσ ⇒ Qτ). We therefore have the following diagram of subsets of B
and realizable functions between them (we label each arrow with an appropriate
realizer):

Pσ→τ ≡(Pσ ⇒ Pτ)
λ∗xy.cτ(x(dσy))-�
λ∗xy.dτ(x(cσy))

(Qσ ⇒ Qτ)
w -�
v

Qσ→τ

Hence we obtain realizers cσ→τ , dσ→τ for the composite functions Pσ→τ←→Qσ→τ .
It is routine to verify (using the induction hypothesis) that cσ→τ and dσ→τ realize
morphisms Mσ→τ → Nσ→τ and Nσ→τ →Mσ→τ respectively; that these morphism
commute with application; and hence that they are mutually inverse. 2

Now consider the type structure E, where Eσ is the subquotient of Qσ by ≈σ,
and the application operations are induced by •. This type structure is known
as the extensional collapse of the sequential algorithms model. The following is
now immediate from the above and Proposition 3.9:

Corollary 5.3 The type structure E is isomorphic to the type structure R of SR
functionals. 2

Remarks 5.4 (i) The effective analogue of this result also goes through: the
extensional collapse Eeff of the evident interpretation [[−]]s,eff in the effective
sequential algorithms model SSeqFuneff is isomorphic to the type structure of
effective SR functionals. Note that the sets Peff,σ are defined by working entirely
within Beff, whereas the sets Qeff,σ are defined via the interpretation of σ in the
“full” sequential algorithms model. But this does not matter since it is easily
shown that Peff,σ = Pσ ∩ Beff (cf. Remark 4.12(i)).

(ii) It is shown by Laird in [28] that the effective sequential algorithms model
coincides exactly with the observational quotient of the language µPCF , an
idealized functional language with control. From this and the above results,
it follows directly that Reff is the extensional collapse of the language µPCF.
More precisely, Reff is isomorphic to the subquotient of the type structure of
closed µPCF terms by the logical relation induced by observational equivalence
at ground type. Informally, this means that every effective SR functional can be
written in µPCF.

One also obtains a similar result for the programming language PCF+catch
studied by Cartwright, Curien and Felleisen in [11]. (The relationship between
µPCF and PCF+catch is discussed in [28].) In [11] it is shown that PCF+catch

29

has a fully abstract interpretation in the effective sequential algorithms model; a
universality result for such an interpretation is proved by Kanneganti, Cartwright
and Felleisen in [23].3 It follows from this that Reff is the extensional collapse of
PCF+catch. We would expect that many other programming languages should
give rise to Reff in this way—see Section 12.3.

5.2 Sequential algorithms and hypercoherences

We now recall some definitions concerning hypercoherences, and state the main
theorem of Ehrhard [17]. For more background on hypercoherences, see this
paper or [15].

Definition 5.5 (Hypercoherences) (i) A hypercoherence X is a countable set
|X| together with a set ΓX of non-empty finite subsets of |X|, such that {a} ∈ ΓX
for each a ∈ |X|. We call |X| the underlying set and ΓX the atomic coherence
of X.

(ii) The domain D(X) generated by a hypercoherence X is the set of all subsets
x ⊆ |X| such that for all non-empty finite u ⊆ x we have u ∈ ΓX . We will refer
to the elements x ∈ D(X) as states of X.

(iii) The coherence C(X) generated by X is the set of non-empty finite subsets
A ⊆ D(X) such that, for all non-empty finite u ⊆ |X|, u � A implies u ∈ ΓX ,
where u� A means

∀a ∈ u. ∃x ∈ A. a ∈ x ∧ ∀x ∈ A. ∃a ∈ u. a ∈ x.

The intuition here is that |X| is some set of “atoms of information”, and
ΓX specifies which finite combinations of atoms are “consistent”. The domain
D(X) can then be seen as the set of consistent “states” of X, where consistency
is determined by looking at finite subsets. In fact D(X) (ordered by inclusion)
is always a qualitative domain. The coherent subsets A of D(X) are, roughly
speaking, those such that any finite “cross-section” u of A looks consistent. The
coherent subsets are meant to generalize the notion of consistent pair of states
in the theory of stable domains: they are those subsets for which we require
morphisms to preserve the meets. This is reflected in the next definition:

Definition 5.6 (Strong stability) Let X, Y be hypercoherences. A strongly
stable function X → Y is a continuous function f : D(X)→ D(Y) such that for
any A ∈ C(X) we have f(A) ∈ C(Y) and f(

⋂
A) =

⋂
f(A). We write HC for

the category of hypercoherences and strongly stable functions.

It is shown in [15, 16] that HC is a cartesian closed category, indeed a sub-
CCC of the category of dI-domains with coherence. Given hypercoherences X, Y ,
the exponential Z = Y X may be defined explicitly as follows: |Z| is the set of
pairs (x, b) where x ∈ D(X) is finite and y ∈ |Y |; and for non-empty finite
w ⊆ |Z| we have w ∈ Γ(Z) iff

π1(w) ∈ C(X) =⇒ (π2(w) ∈ Γ(Y) ∧ (π2(w) a singleton =⇒ π1(w) a singleton)).
3Actually in [23] the proof is worked out for a variant of PCF+catch including error values,

but the same technique works for the error-free version.

30

In addition, we have a hypercoherence N of natural numbers, defined by

|N | = N, ΓN = {{n} | n ∈ N}.

The associated domainD(N) is the familiar domainN⊥. This means that we have
an interpretation [[−]]HC of the simple types in HC, giving rise to a type structure
H in the sense of Definition 3.6 (take Hσ = D([[σ]]HC) ∼= Hom(1, [[σ]]HC)). We
call H the type structure of strongly stable functionals.

The following result appears as Theorem 5 of [17]:

Theorem 5.7 (Ehrhard) The type structures E and H are isomorphic. 2

From this and Corollary 5.3 above, we may immediately recover the main
result of [43]:

Corollary 5.8 (van Oosten) The type structures H and R are isomorphic. 2

Remarks 5.9 (i) The proof of Theorem 5.7 is non-constructive: an appeal to
König’s Lemma is needed to show that every infinite element of H is represented
by a sequential algorithm (see [17, Section 6]). The failure of the effective ana-
logue of the theorem (see below) shows that the non-constructivity is essential.

(ii) If preferred, one could invoke van Oosten’s result and deduce Ehrhard’s
theorem as a corollary. We give an alternative proof of Theorem 5.8, not depend-
ent on either [17] or [43], in Section 7 below.

(iii) It is interesting to compare Ehrhard’s result in in [17], which we have
invoked above, with his earlier construction of the hypercoherence model as the
extensional collapse of the extensional sequential algorithms model (see [16]).
Roughly speaking, in [17] we first define an interpretation of all types without
regard to extensionality, and then pick out a type structure by the extensional
collapse construction, whereas in [16] we carve out the subset of extensionally
well-behaved algorithms at each type level, and use only this in defining the in-
terpretation of the next type level. Intuitively, this corresponds exactly to the
difference between exponentials in modified and standard realizability models.

The connection between the construction of [17] and modified realizability is
made precise above. One might hope to make a similar precise link between the
construction of [16] and standard realizability, yielding yet another proof of van
Oosten’s result, and indeed we initially tried to do this. The precise connection
seems elusive, but for an interesting reason. In both [16, 17] Ehrhard works in
the category of sequential structures (cf. Remark 5.1), and it turns out that in
[16] this extra generality is quite essential: even the sequential structure used to
interpret the type (02 → 0) → 0 falls outside the class of CDSs. We are thus
unable to transfer the results of [16] to the realizability model.

The hypercoherence presentation ofR shows a remarkable fact: the “computa-
tional” notion of sequential realizability can be captured exactly by a preservation
property with a finitary character.

Many properties of the SR functionals that are hard to prove from the defin-
ition of R are relatively easy for H. One such property concerns the effective

31

presentability of the finite elements (other examples appear in Section 5.4). Spe-
cifically, let Hσ

0 be the poset of finite elements of (Hσ,⊆). In view of the finitary
nature of the construction of exponentials in HC, the following fact is clear (we
omit the detailed proof):

Proposition 5.10 There are bijections βσ : N → Hσ
0 for each type σ, with

respect to which

• the ordering and (pairwise) consistency relations on Hσ
0 are decidable;

• the (binary) meet operations Hσ
0 ×Hσ

0 → Hσ
0 are recursive;

• the application operations Hσ→τ
0 ×Hσ

0 → Hτ
0 are recursive.

Moreover, codes for these operations may be obtained recursively from codes for
σ and τ . 2

It follows that the evident finitary analogue Rfin of R (in which we take 2⊥
instead of N⊥ as the ground type) is decidable. That is, the set Rσ

fin and the
application functions ·στ can be computed recursively from σ, τ (so that, for
example, the size of Rσ

fin is recursive in σ. An important result of Loader [29]
shows that the corresponding statement fails for PCF-sequentiality.

5.3 Effectivity in hypercoherences

Next we draw attention to a surprising anomaly. The effective analogue of The-
orem 5.7 fails: that is, the extensional collapse of the effective sequential al-
gorithms model does not coincide with the r.e. submodel of the hypercoherence
model. We give an example to show that, even at first order types, there are
r.e. strongly stable functions that are not represented by any effective sequential
algorithm. This is somewhat analogous to the result due to M.B. Trakhtenbrot
[56] that there exist r.e. elements of the Milner model that are not PCF-definable.
However, the two situations are in fact quite distinct, so we cannot simply re-use
known examples of the Trakhtenbrot phenomenon in our setting.

We should clarify what we mean by an r.e. element of the hypercoherence
model. By an enumerated hypercoherence we shall mean a hypercoherence X
together with a bijection between |X| and a subset of N; the r.e. states of X are
then those x ∈ D(X) that correspond under this bijection to r.e. subsets of N. It
is easy to give a standard enumeration for each of the hypercoherences [[σ]]HC:
for [[0]]HC = N we may take the identity enumeration; and given enumerations
for X, Y we may obtain an enumeration for Z = Y X using some standard effective
codings for pairs and finite sets. We shall always consider each [[σ]]HC as being
equipped with this standard enumeration; it is worth remarking that the atomic
coherence Γ[[σ]]HC then corresponds to a decidable set of finite subsets of N. The
effective states of these hypercoherences are of course closed under application,
and so they constitute a substructure Heff of H.

For convenience, we will identify states of the CDS N , and states of the
hypercoherence N , with elements of N⊥. In the following proposition we write
σ = 0→ 0→ 0 and τ = 0→ 0→ 0→ 0.

32

Proposition 5.11 There exists an r.e. element t ∈ D([[τ]]HC) such that there
is no effective sequential algorithm a ∈ [[τ]]s,eff with a · x · y · z = txyz for all
x, y, z ∈ N⊥.

Proof Let X be the hypercoherence [[τ]]HC. We may identify |X| with the
set of tuples (x, y, z, w) where x, y, z ∈ N⊥ and w ∈ N. Let A,B be disjoint but
recursively inseparable r.e. subsets of N: for example, take

A = {e | ϕe(0) = 0}, B = {e | ϕe(0) = 1},

where ϕe is the eth partial recursive function. Now let t ⊆ |X| be the set

{(x, 1, 1, 1) | x ∈ N} ∪ {(x, 0,⊥, 0) | x ∈ A} ∪ {(x,⊥, 0, 0) | x ∈ B}.

Then t is r.e. since both A,B are r.e. To see that t ∈ D(X), first let Y = [[σ]]HC,
and for each x ∈ N let tx = {(y, z, w) | (x, y, z, w) ∈ t} considered as a subset of
|Y |. It is easy to check that tx ∈ D(Y) for each x (there are just three possibilities
for tx). But now since X = Y N , we can see from the definition of exponentials in
HC that if u is any non-empty finite subset of t then u ∈ ΓX . Thus t ∈ D(X).

Now suppose, for contradiction, that a is an effective sequential algorithm
representing t. Then for x ∈ N we have that a · x is an effective sequential
algorithm representing tx, recursive in x. If M is the CDS [[σ]]s, we may identify
CM with the set of pairs (y, z) with y, z ∈ N⊥, and VM with the set {?y, ?z}∪{!w |
w ∈ N}, where ?y, ?z correspond to requests for the first and second arguments
respectively. Now for each x ∈ N we have a ·x ∈ D(M), and it is easy to see that
((1, 1), !1) ∈ a · x. Using the sequentiality of a · x, we can deduce that the cell
(⊥,⊥) is filled with either ?y or ?z in a · x. Furthermore, since a · x is recursive
in x, there is a recursive function of x telling us which of these is the case. But
such a function clearly separates A and B, giving us a contradiction. 2

By Remark 5.4, the above proposition suffices to show that the type structure
Reff is not isomorphic to Heff. We will see in Section 7 that Reff is a proper
substructure of Heff. It appears that Reff is the “right” effective analogue of the
SR functionals, while Heff seems to be something of a curiosity.

5.4 The stable order

The set of states of any hypercoherence are naturally ordered by inclusion. It is
known e.g. from [15] that for a function space Y X, this ordering coincides with
Berry’s stable order on functions. The stable order also plays an important role
in the theory of sequential functions. Here we briefly consider how the stable
order fits into the picture described in this section and the last.

We first recall some standard notions. A poset (X,≤) is called stable if
whenever x, y ∈ X have a common upper bound, they have a greatest lower
bound x ∧ y. A function f : X → Y between such posets is stable if whenever
x, y ∈ X have an upper bound we have f(x ∧ y) = f(x) ∧ f(y). It is well
known that the states of a DCDS [resp. hypercoherence] form a stable poset, and
moreover that sequential functions [resp. strongly stable functions] are stable.

33

If X, Y are stable posets, the stable order ≤s on stable functions X → Y is
defined as follows:

f ≤s g ⇐⇒ ∀x, y ∈ X. x ≤ y =⇒ f(x) = f(y) ∧ g(x).

The category of stable posets and stable functions is cartesian closed: the expo-
nential [X ⇒s Y] is the set of stable functions X → Y ordered by ≤s.

For DCDSs, the stable order admits alternative characterizations:

Proposition 5.12 Suppose f, g : M → M ′ are sequential functions between
DCDSs. Then the following are equivalent:

(i) f ≤s g.
(ii) There exist sequential algorithms a, b with a∗ = f , b∗ = g such that a v b.
(iii) There exist realizers q ∈ ‖Ef‖, r ∈ ‖Eg‖ such that q v r.

Proof (i) ⇒ (ii): Given f ≤s g, take any b such that b∗ = g, and define

a = {(xc′, ?c) ∈ b | true} ∪ {(xc′, !v′) ∈ b | (c′, v′) ∈ f(x)}.

It is routine to verify that a is a sequential algorithm and that a∗ = f .
(ii)⇒ (i): The evaluation morphism D(M ′M)×D(M)→ D(M ′) is stable, and

so we obtain a stable function D(M ′M) → [D(M) ⇒s D(M ′)] mapping a 7→ a∗.
So if a v b then a∗ ≤s b∗.

(ii)⇔ (iii) follows easily from Proposition 4.8. 2

For hypercoherences, as we have already remarked, the stable order on morph-
isms X → Y coincides with the inclusion order on D(Y X). Furthermore, this
ordering on the type structure H can alternatively be characterized in terms of
E or R:

Proposition 5.13 Suppose x ∈ Hσ, x′ ∈ Eσ and x′′ ∈ Rσ all correspond under
the isomorphisms H ∼= E ∼= R, and similarly for y, y′, y′′. The following are
equivalent:

(i) x v y in the inclusion order.
(ii) There exist sequential algorithms a ∈ x′, b ∈ y′ such that a v b.
(iii) There exist realizers q ∈ ‖x′′‖, r ∈ ‖y′′‖ such that q v r.

Proof (i) ⇒ (ii): For finite elements x, y this is Lemma 6 of [17]. One can
extend the result to infinite elements by an application of König’s Lemma exactly
as in [17, Theorem 5]. Let (rn) be the standard increasing sequence of finite
retractions on Hσ, and let (pn) be the corresponding sequence of retractions on
Dσ ≡ D([[σ]]s), as described in [17]. Each of these retractions has a finite image
consisting entirely of finite elements, and the lub of each sequence is the identity.
Suppose x v y, and for each n let xn = rn(x), yn = rn(y). Since these are finite
elements, there exist an v bn in the image of pn that represent the corresponding
elements x′n, y′n ∈ Eσ. In this case, we will say that cn = (an, bn) represents
zn = (xn, yn).

For each n there is a sequence c0 v . . . v cn in Dσ ×Dσ, where each ci rep-
resents zi: for instance, take (an, bn) representing zn and set ci = (pi(an), pi(bn)).

34

Moreover, each zi is represented by only finitely many pairs, since the image of
pi is finite. So by König’s Lemma, there exists an infinite sequence c0 v c1 v . . .
where ci represents zi. By taking c =

⊔
ci in Dσ×Dσ, we obtain a, b representing

x′, y′ as required.
(ii)⇒ (i) is Lemma 7(i) of [17].
(ii)⇔ (iii): By Proposition 5.12, (ii) holds iff there are realizers q′ v r′ for the

elements corresponding to x, y respectively in the modified modest set Nσ. So by
Proposition 5.2, (ii) holds iff the corresponding property holds for Mσ. But this
is clearly equivalent to (iii), by inspection of the proof of Proposition 3.9. 2

It follows immediately from Proposition 5.13 that the relation on each Rσ

given by condition (iii) above is a complete partial order. What seems to be
the analogous question for PCF-sequentiality is still open: for the games models
of PCF (for example), it is not known whether the extensional collapse at each
simple type is a CPO with the evident ordering.

6 A presheaf model

We now consider a characterization of the type structure R due to Colson and
Ehrhard [13], inspired by the notion of reducibility from proof theory. As we shall
see, it is a fairly short step from this to a description of R in terms of presheaves
over the monoid of sequential endofunctions on NN

⊥. For us, the interest of these
results is twofold: firstly, they yield yet another mathematical characterization of
R, quite different in flavour from those we have considered so far; and secondly,
they reveal a sense in which sequential realizability may be seen as “canonically”
extending the familiar notion of first-order sequentiality to higher types.

6.1 The Colson-Ehrhard characterization

We first summarize the crucial definitions and the main result from [13]. As
before we write NN

⊥ for the set of all partial functions N ⇀ N, and we suppose we
have a standard pairing function 〈−,−〉 : NN

⊥ × NN
⊥ → NN

⊥, with corresponding
projections fst, snd. For each type σ we define a set Lσ, and a set Lσω of functions
from NN

⊥ to Lσ, by simultaneous induction as follows:

• L0 = N⊥.

• L0
ω is the set of sequential functions NN

⊥ → N⊥ in the sense of Milner [37]
and Vuillemin [57] (equivalently, the functions NN

⊥ → N⊥ realizable by an
element of B).

• Lσ→τ is the set of all functions f : Lσ → Lτ such that for all g ∈ Lσω we
have f ◦ g ∈ Lτω.

• Lσ→τω is the set of all functions f : NN
⊥ → Lσ→τ such that for all g ∈ Lσω the

function λr : NN
⊥. f(fst r)(g(snd r)) is in Lτω.

The sets Lσ constitute a type structure L, which can be seen as arising nat-
urally from the set of sequential functions NN

⊥ → N⊥.

35

The set NN
⊥ obviously plays an important role in the above definition. We

shall also consider the hypercoherence Nω that intuitively corresponds to NN
⊥.

We can define Nω directly as follows: |Nω| = N × N; and for non-empty finite
w ⊆ |Nω| we have w ∈ Γ(Nω) iff

π1(w) a singleton =⇒ π2(w) a singleton.

One can check that D(Nω) ∼= NN
⊥, and that Nω is indeed the ω-fold product of

copies of N in HC.
We now import the main result of [13]. For the sake of completeness we give

a summary of the proof.

Theorem 6.1 (Colson/Ehrhard) L ∼= H.

Proof (Outline.) The key lemma is the following: if X, Y are hypercoherences,
a set-theoretic function D(X)→ D(Y) is a strongly stable map X → Y provided
for every strongly stable map g : Nω → X, the function f ◦ g : Nω → Y is
strongly stable. This is proved as follows. Suppose f satisfies the proviso: we
need to show that f is ω-continuous and preserves coherent sets and their meets.
For continuity, one shows that every ω-chain in D(X) is the image of a “generic”
chain in D(Nω) via a strongly stable map g. The strong stability of f ◦ g then
implies that f preserves the lub of this chain. For coherent sets, one shows that
every coherent set in X is the image of a coherent set in Nω via a strongly stable
map g. Again, the strong stability of f ◦ g then gives us that f preserves this
coherent set and its meet.

One then shows that at all types σ there are bijections Lσ ∼= D([[σ]]HC)
and Lσω

∼= D(Nω ⇒ [[σ]]HC) that commute with the application maps. This
is reasonably straightforward by simultaneous induction on σ, using the above
lemma. 2

6.2 A presheaf presentation

Next we relate L to a type structure arising from a certain category of presheaves.
In the first instance, consider the two-object category C consisting of the sets 1
and NN

⊥ together with all Milner-Vuillemin sequential functions between them.
(Equivalently, C may be described as the full subcategory of SeqFun consisting
of the objects 1 and B.) For typographical convenience, we will write B for the
object NN

⊥ of C.
The presheaf category over C is simply the category [Cop,Set] of functors

Cop → Set and natural transformations between them. Given F,G : Cop → Set,
we write Nat(F,G) for the set of natural transformations F → G. It is well
known that the presheaf category over any small category is cartesian closed. In
the case of our category C, if F,G : Cop → Set we may describe GF explicitly as
follows: GF (1) = Nat(F,G); GF (B) = Nat(hB×F,G), where hB = HomC(−, B);
and GF (f) is induced by precomposition with HomC(−, f)× idF .

We can obtain an interpretation of the simple types in [Cop,Set] by fixing on an
interpretation of the type 0. Let M0 : Cop → Set be the functor defined as follows:

36

M0(1) = L0 = N⊥, M0(B) = L0
ω, and the action of M0 on morphisms is given

by precomposition. At higher types we then define Mσ→τ to be the exponential
MMσ

τ in [Cop,Set]. The following proposition spells out the relationship between
the functors Mσ and the sets Lσ, Lσω:

Proposition 6.2 (i) For each type σ, there are bijections βσ : Mσ(1) ∼= Lσ and
βσω : Mσ(B) ∼= Lσω, with respect to which the action of Mσ on functors corresponds
to precomposition.

(ii) For each σ, τ , the function Mσ→τ (1) ×Mσ(1) → Mτ(1), (α, x) 7→ α1(x)
corresponds under these bijections to the application function Lσ→τ × Lσ → Lτ .

Proof By simultaneous induction on σ. For type 0, (i) holds by definition of
M0. So suppose (i) holds for σ and τ . We first establish the bijection βσ→τ :
Mσ→τ (1) ∼= Lσ→τ . Suppose α ∈ Mσ→τ (1), and let f = βτ ◦ α1 ◦ βσ−1 : Lσ → Lτ .
By the naturality of α at each x : 1→ B, we have that

βτω ◦ αB ◦ βσ−1
ω = f ◦ − : Lσω → Lτω.

In particular, for any g ∈ Lσω we have f ◦ g ∈ Lτω; thus f ∈ Lσ→τ . Conversely,
suppose f ∈ Lσ→τ ; then f− ≡ f ◦ − is a map from Lσω to Lτω. Set

α1 = βτ−1 ◦ f ◦ βσ, αB = βτ−1
ω ◦ f− ◦ βσω.

It is routine to check that this defines a natural transformation α ∈ Mσ→τ (1).
Moreover, the above constructions are mutually inverse, since any α : Mσ →Mτ

is uniquely determined by α1, by naturality at each x : 1→ B. We thus have the
required bijection βσ→τ .

We now establish the bijection βσ→τω : Mσ→τ (B) ∼= Lσ→τω . Suppose α ∈
Mσ→τ (B); then α is a natural transformation hB ×Mσ → Mτ , so in particular
we have α1 : NN

⊥ ×Mσ(1) → Mτ (1) and αB : Hom(B,B) ×Mσ(B) → Mτ (B).
Let f : NN

⊥ → LτL
σ be the function obtained from α1 by currying and composing

with the given bijections. First note that for all x ∈ NN
⊥ and all g ∈ Lσω, by

the naturality of α at each y : 1 → B we have that αB(kx, g) = f(x) ◦ g ∈ Lτω,
where kx is the constant morphism B → B corresponding to x. (Here, for
clarity, we have omitted a few βs, as we shall generally do from now on.) Thus
f(x) ∈ Lσ→τ for each x. Next, we wish to show that f ∈ Lσ→τω . Given any
g ∈ Lσω and any e : B → B, by naturality of α at each y : 1 → B we have that
αB(e, g) = (λr. f(er)(gr)) ∈ Lτω. Now note that fst, snd are sequential functions
and so correspond to morphisms B → B. Note also that Lσω is closed under
precomposition with sequential functions NN

⊥ → NN
⊥ since this corresponds to the

action of Mσ on morphisms B → B. Hence, given any g′ ∈ Lσω, setting e = fst
and g = g′ ◦ snd, we have that (λr. f(fst r)(g′(snd r))) ∈ Lτω; thus f ∈ Lσ→τω .

Conversely, suppose f ∈ Lσ→τω . Reversing the above argument, given any
g ∈ Lσω and any e : B → B, there is a morphism d : B → B given by r 7→ 〈er, r〉.
Since (λr. f(fst r)(g(snd r))) ∈ Lτω and Lτω is closed under precomposition with
d, we have that (λr. f(er)(gr)) ∈ Lτω. So define

α1(x, a) = f(x)(a), αB(e, g) = λr. f(er)(gr).

37

It is routine to check that this defines a natural transformation α ∈Mσ→τ (B).
Once again, the above constructions are mutually inverse since αB is uniquely

determined by α1. This gives us our bijection βσ→τω . The remaining clauses of
the proposition are now immediate from the construction of βσ→τ and βσ→τω . 2

As usual, we can now obtain a type structure by taking global elements. For
each σ let P σ = Hom(1,Mσ), and consider the P σ as equipped with the functions
P σ→τ × P σ → P τ induced by the evaluation morphisms in [Cop,Set]. Clearly we
may identify P 0 with N⊥, so this defines a type structure P . From the above
proposition we easily deduce the following:

Corollary 6.3 P ∼= R.

Proof The object 1 of [Cop,Set] is just the constant functor {∗}, which clearly
coincides with the representable functor h1 = Hom(−, 1). So by the Yoneda
Lemma, functors 1 → Mσ correspond naturally to elements of Mσ(1) ∼= Lσ.
Moreover, it is easy to see that the bijections P σ ∼= Lσ respect the application
operations, so P ∼= L as type structures. Combining this with Theorem 6.1 and
Corollary 5.8, we have that P ∼= R. 2

The above characterization of the SR functionals using the category C was
chosen to mesh well with the definition of L given in [13]. However, we can now
dispense with the object 1 in C to obtain a more aesthetically pleasing description.
Let M be the monoid of sequential endofunctions on NN

⊥, as in Remark 4.9(ii),
and let I be the full inclusionM ↪→ C. It is easy to show the following:

Proposition 6.4 The categories [Cop,Set] and [Mop,Set] are equivalent.

Proof This follows trivially from the fact that 1 arises as an absolute coequalizer
of two morphisms B→→B within C, and the Yoneda embedding exhibits [Mop,Set]
as the free cocompletion of M (see e.g. [36, Section 1.5]). 2

Under this equivalence, the object M0 corresponds to the right M-set X
whose carrier is the set of sequential functions NN

⊥ → N⊥, with right M-action
given by precomposition. The type structure generated from X in [Mop,Set]
thus gives a pleasing mathematical characterization of the SR functionals.

Remarks 6.5 (i) The object X bears very little relation to the natural number
object in [Mop,Set], which is a much more boringM-set with a trivialM-action.

(ii) In the light of the universal property mentioned above, [Mop,Set] is in
some sense a “canonical” extension of M to a cartesian closed category. The
above result (and indeed the result of Colson and Ehrhard) therefore suggests
that the SR functionals are in some way a canonical extension of the notion of
infinitary first-order sequentiality (embodied by M) to higher types.

(iii) The infinite arity of the functions embodied by M is quite essential
here. If we work with presheaves over the category of finitary Milner-Vuillemin
sequential functions, there is nothing to impose continuity at higher types.

(iv) There seems to be some analogy between [Mop,Set] and its relation to
the realizability model over B, and Mulry’s recursive topos [39] and its relation
to the effective topos. However, we have not explored this connection.

38

7 A universal type

We now come to the main new result of the paper. We show that in R the type
2 is a universal type, in the sense that every type σ is a retract of 2. More
specifically, for every type σ there are SR functionals Rσ←→R2 that compose to
give the identity on R2; thus, R2 in some sense “contains” all higher types. The
same also holds for Reff. This gives us a very good grasp of these type structures,
and numerous other results then follow fairly easily.

For ease of presentation, at this point in the paper we will shift the focus of
our attention to the call-by-value SR functionals, rather than the call-by-name
ones we have studied so far. Mathematically this does not make a big difference,
and one can easily recover the call-by-name version of our results from the call-by-
value version. In Section 7.1 we explain precisely the call-by-value interpretation
of types that we are considering.

We then show in Sections 7.2 and 7.3 that the (call-by-value) type 3 is a
retract of 2—it follows easily from this that every type is a retract of 2. The
required morphism I : 3 → 2 is easy to construct, and the bulk of the work
involves the morphism H : 2→ 3. We give the construction of H in Section 7.2,
and the verification that I ◦H = id in Section 7.3, along with other facts.

Some applications of this result will be given in Sections 8 and 9.

7.1 Call-by-value types

So far we have been considering the call-by-name interpretation of types in
Mod(B) as given by Definition 3.5 (we will write this interpretation here as
[[−]]N, and the corresponding type structure as RN). At this point in the pa-
per we switch our attention to the call-by-value interpretation [[−]]V , defined
essentially as follows:

[[0]]V ∼= N, [[σ1→ σ2]]V ∼= ([[σ2]]V⊥)[[σ1]]V .

By taking Rσ
V = |[[σ]]V | we obtain a call-by-value type structure, that is, a family

of sets Rσ
V together with partial application functions · : Rσ→τ

V ×Rσ
V ⇀ Rτ

V . Sim-
ilarly we define the effective call-by-value interpretation [[−]]V,eff in Mod(Beff),
and the corresponding call-by-value type structure RV,eff. (These turn out to
be the appropriate objects for giving interpretations of call-by-value PCF—see
Section 9.1 below.)

The reason for this shift is that the functional H lives most naturally in the
call-by-value setting. We emphasize, however, that this is really just a matter of
convenience. Indeed, the type structures RN and RV may each be recovered from
the other, since each object [[σ]]V can be defined as a retract of some [[τ]]N, and
vice versa (see e.g. [31, Chapter 6]). This means that the results we are interested
in will transfer easily between the two settings. We can therefore regard RN and
RV as being in some sense just different presentations of the same thing.

For the rest of this section, we will write [[−]] for [[−]]V , and R for RV . Since
most of the theorems and proofs in this section work identically in the full and
effective settings, we will use undecorated notation when we could be referring to

39

either case, and use the subscripts full and eff when we need to be specific. Thus,
B may refer to either Bfull or Beff.

The interpretation [[−]] (in both the full and effective cases) is given up to
isomorphism by the above definition, but it will greatly simplify our task to work
with judiciously chosen on-the-nose representations of these objects. Specifically,
we take [[0]] to be the object N as in Section 3.1, [[1]] ∼= NN

⊥ to be the object of
realizers B given by Definition 3.4. For our representation of [[2]], we need the
following ad hoc definition:

Definition 7.1 (Semi-irredundant realizers) We call an element r ∈ B semi-
irredundant if, for all α, β ∈ Seq(N),

• if r〈α〉 is defined then it is a question or an answer;

• if r〈α〉 is defined and β is a prefix of α then r〈β〉 is defined;

• if β is a prefix of α and r〈α〉 = r〈β〉 =?n then α = β.

Comparing this with Definition 2.9(i), any |-irredundant element is clearly
semi-irredundant, but a semi-irredundant element may have inaccessible nodes
underneath answer nodes. Note that if r is semi-irredundant then irr |(r) v r. (In
this section, unlike in Section 4, we will use “irredundant” without qualification
to mean |-irredundant.)

We now define [[2]] as follows:

|[[2]]| = {F | F is a morphism B → N⊥}
‖F‖[[2]] = {r | r is semi-irredundant ∧ ∀g ∈ B. r | g = F (g)}.

(Our reasons for choosing this semi-irredundant representation will become more
apparent in Section 7.2 below.) It is easy to check that [[2]] ∼= NB

⊥ . Note that
every semi-irredundant realizer belongs to some ‖F‖X; in fact, we may define
an equivalence relation ∼ on semi-irredundant realizers by setting r ∼ r′ iff
r, r′ ∈ ‖F‖X for some F .

For [[3]] we take the following object:

|[[3]]| = {Φ | Φ is a morphism [[2]]→ N⊥}
‖Φ‖[[3]] = {r | ∀F ∈ [[2]]. ∀t ∈ ‖f‖. r | t = Φ(F)}.

For all other types σ → τ we may take [[σ → τ]] = [[τ]][[σ]]
⊥ as usual. This

completes the definition of [[−]].
We remark briefly on the relationship between the full and effective inter-

pretations of these types. Clearly [[0]]full and [[0]]eff are identical, and [[1]]eff

can be identified with a subobject of [[1]]full. The observation above that every
semi-irredundant r realizes some F ∈ [[2]] (valid in both the full and effective
settings) yields the following easy facts: every F ∈ [[2]]eff extends uniquely to an
element F̂ ∈ [[2]]full, and every realizer for F is also a realizer for F̂ . The rela-
tionship between [[3]]eff and [[3]]full is far from obvious, but it will be established
in Section 8.

40

The call-by-value types (apart from 0) also have counterparts in the hyperco-
herence model. Indeed, for σ, τ 6= 0, we may define

[[0→ 0]]HC = Nω,
[[σ→ 0]]HC = ([[σ]]HC ⇒ N),
[[σ → τ]]HC = ([[σ]]HC ⇒ [[τ]]HC⊥),

where Nω is as defined in Section 6. We will consider this interpretation in
Section 8 below.

7.2 Construction of H

We now work towards the main result: in both Mod(Bfull) and Mod(Beff), the
object [[3]] is a retract of [[2]]. As we shall see, the construction of the retraction
is directly inspired by the combinatory algebra B.

The easy half of the retraction will be the morphism I : 3 → 2 defined as
follows. Let bar : B × B → N⊥ be the morphism defined by (f, g) 7→ f | g,
as in Section 3.1. Currying this, we obtain a morphism B → NB

⊥ , and hence a
morphism b : [[1]] → [[2]], mapping f to f | −. Now let I : [[3]] → [[2]] be the
morphism induced by precomposition with b: that is,

I = − ◦ b : ([[2]]⇒ [[0]]⊥) −→ ([[1]]⇒ [[0]]⊥).

Note that b is realized by the element irr| of Section 2.3, and I itself is realized
by ı = λ∗xy. x(irr| y).

The other half of the retraction will be a morphism H : [[2]]→ [[3]] such that
H ◦ I = id[[3]]. Since the construction of H is rather involved, we begin with an
informal explanation.

We think of the type 1 as the object B, and 2 as the object B equipped
with the partial equivalence relation ∼ defined above. Any element of B will
realize some morphism B → N⊥ (that is, 1 → 0), since each element of B has
just one realizer; but an element r of B will realize a morphism 2 → 0 only if r
acts extensionally on ∼-classes. The morphism I essentially takes a morphism
(B,∼) → N⊥ and treats it as a morphism B → N⊥, just by forgetting the
equivalence relation.

The morphism H, on the other hand, takes a morphism F : B → N⊥, given
by an arbitrary realizer r, and converts it into a morphism ext(F) : B → N⊥ that
acts extensionally with respect to ∼, and can hence be treated as a morphism
(B,∼)→ N⊥. In some sense, ext(F) will be the closest approximation to F that
is ∼-extensional.

We define ext(F) from F in something like the following way: for any r ∈ B
we take ext(F)(r) = n if F (r′) = n whenever r′ ∼ r; if there is no such n we take
ext(F)(r) = ⊥. (This is not quite right, but it gives the basic idea). Thus, ext(F)
“homogenizes” F with respect to ∼. However, it is not immediately clear that
ext(F)(r) can be computed by a sequential algorithm: it seems, on the face of it,
we would need to test infinitely many realizers r′ ∼ r. The key to the proof is
the observation that in some sense there are essentially only finitely many such

41

realizers r′, and so it suffices to test a finite set of realizers that are representative
of all of them.

We need to show, of course, that this testing can be done within B, so that we
obtain a realizer for ext(F). Finally, we show that the passage from F to ext(F)
can itself be performed within B, uniformly in F , so that we obtain a realizer for
the morphism H.

We approach the formal construction of H by first establishing some facts
about the set of realizers for an arbitrary type 2 function F . For any F ∈ [[2]],
we define its trace, written tr F , to be the set of all pairs (g, F g) where g : N ⇀ N
is a finite partial function (given as a finite set of ordered pairs) which is minimal
such that Fg is defined. (Of course, this is exactly the trace in the sense of
the hypercoherence model, although we will not need this fact.) Clearly F is
determined by tr F , since Fh = n iff (g, n) ∈ tr F for some g ⊆ h. Moreover, if
p is any irredundant realizer for F , there is a bijective correspondence between
elements of tr F and nodes α such that p〈α〉 is an answer. Explicitly, (g, F g) ∈
tr F corresponds to α if p〈α〉 =!Fg and whenever β,m is a prefix of α and
p〈β〉 =?n we have g(n) = m. (Note that in this situation the size of dom g is
exactly the length of α).

We write F v F ′ if tr F ⊆ tr F ′. We say F is finite if tr F is finite. The
following observations now provide the key to the whole construction:

Lemma 7.2 Suppose F ∈ [[2]] is finite. Then
(i) F has only finitely many irredundant realizers, each with finite domain;
(ii) any realizer p ∈ ‖F‖ extends exactly one of these irredundant realizers;
(iii) the set of minimal realizers can be effectively computed (as a finite list of

finite graphs) from tr F .

Proof (i) Clearly, if p is an irredundant realizer for F then dom p consists of
all 〈β〉 such that β is a prefix of some α with p〈α〉 an answer. But by the above
remarks, if F is finite then there are just finitely many such α; hence dom p is
finite. Moreover, for each (g, F g) ∈ tr F , p induces a total order �gp on dom g,
where n �gp n′ iff there exist proper prefixes β, β ′ of α with p〈β〉 = n, p〈β ′〉 = n′

and β a prefix of β ′. Clearly p may be recovered from tr F together with the
orders �gp as follows: if the elements of dom g in the order �gp are precisely
n1, . . . , nl then we have

p〈gn1, . . . , gni〉 = ?ni+1 for 0 ≤ i < l; p〈gn1, . . . , gnl〉 = !Fg.

But since there are only finitely many combinations of total orders �gp on the sets
dom g, there can be only finitely many irredundant realizers p.

(ii) If p is any semi-irredundant realizer for F then irr |(p) is an irredundant
realizer for F , and p extends irr |(p). Furthermore, if q is any irredundant realizer
for F such that p extends q, then irr |(q) = q and irr |(p) extends irr |(q); hence
clearly q = irr |(p).

(iii) Given tr F (where for each element (g, F g), g is given as a finite list
of pairs), we may effectively compute the finite set of all possible families of
orderings (�g | (g, F g) ∈ tr F) in which each �g is a total order on dom g.

42

Moreover, for each such family (�g), we may effectively determine whether the
�g all arise from some irredundant realizer p (this happens provided the above
formulae for p in terms of the �g do not give rise to clashes). If the �g do all
arise from some p, we may effectively compute the graph of p itself according to
the above formulae. Thus we may effectively compute the finite set of (graphs
of) irredundant realizers for F . 2

The force of this proposition is that we may find a finite set of realizers for
F that is representative of all of them. Part (ii) depends on the fact that our
realizers for F are already semi-irredundant rather than arbitrary elements that
track F . Note in passing that the set of irredundant realizers for a finite F is
exactly the same in the full and effective settings.

The next lemma establishes a useful connection between the trace ordering
on type 2 functions and the pointwise ordering on their realizers.

Lemma 7.3 Suppose given F,G ∈ [[2]] such that F v G. Then for any irre-
dundant realizer q ∈ ‖G‖ there is an irredundant realizer p ∈ ‖F0‖ such p v q.
Moreover, if F is finite then p can be chosen to be finite (and hence effective).

Proof Recall that the answer nodes of q correspond bijectively to the elements
of tr G. Let p be the restriction of q to arguments 〈β〉 where β is a prefix of
some answer node α corresponding to an element of tr F . Clearly p ⊆ q, and it is
easy to see that p tracks F . Moreover, if F is finite then there are finitely many
answer nodes corresponding to elements of tr F ; hence p has finite domain. 2

We are now ready to construct the morphism H. We proceed in several steps,
beginning with the following definition:

Definition 7.4 (i) Suppose F,G0 ∈ [[2]] with G0 finite. We say that F uniformly
yields n on G0 if, for each irredundant realizer p0 ∈ ‖G0‖, for all q v p0 in B we
have Fq = n iff q = p0.

(ii) We provisionally define a function HF : |[[2]]| → |[[0]]| as follows: For
each G ∈ [[2]], set HF (G) = n iff there is some finite G0 v G such that F
uniformly yields n on G0.

To ensure that part (ii) of the above definition is sound, we need to show
that G0, if it exists, is unique. This and other useful information is given by the
following proposition.

Proposition 7.5 Suppose given F,G ∈ [[2]], p an irredundant realizer for G, r
an irredundant realizer for F , and some finite G0 v G such that F uniformly
yields n on G0. Then

(i) r | p = n;
(ii) if p0 is the smallest subfunction of p such that r | p0 = n, then p0 is an

irredundant realizer for G0;
(iii) if G1 v G is finite and F uniformly yields n on G1, then G1 = G0.

43

Proof (i) By Lemma 7.3 we may choose p′ v p such that p′ is an irredundant
realizer for G0. But then Fp′ = n, so r | p′ = n, whence r | p = n.

(ii) The above realizer p′ v has the property that for all q v p′ in B we have
Fq = n iff q = p′. So if p0 is as given then p0 = p′; thus p0 is an irredundant
realizer for G0.

(iii) The realizer p0 is defined without reference to G0. So if G1 is as given
then p0 realizes both G0 and G1, so G0 = G1. 2

Proposition 7.6 For each F ∈ [[2]], the function HF defined above is realizable,
i.e. is an element of [[3]].

Proof Let r be an irredundant realizer for F . Note that if F uniformly yields
n on some G0 and p0 is an irredundant realizer for G0, then the answer node of r
that produces the result of the computation of r | p0 corresponds to the element
(γ, n) of tr F , where γ is the graph of p0.

This suggests that we restrict r to a realizer r′ defined as follows. If α is an
answer node of r corresponding to an element (γ, n) ∈ tr F , where γ is the graph
of some irredundant realizer p0 for some finite G0 ∈ [[2]], then take r′〈α〉 to be
!n if F uniformly yields n on G0, ⊥ otherwise. If a ∈ N is not of the form 〈α〉 for
such a node α, then take r′a = ra. Clearly r′ is irredundant, and from the above
observation it is easy to see that r′ tracks HF .

For the effective case, we also need to check that if r is effective then so is r′.
Suppose r is effective and irredundant; then given a such that ra =!n we must
have a = 〈α〉 for some α. Now given an answer node α of r we may effectively
compute the values of r〈β〉 for all prefixes β of α; from this we may effectively
obtain the element (γ, n) corresponding to α. We may then effectively decide
whether γ is the graph of an irredundant element p0; if so, p0 necessarily realizes
some finite G0, and we may effectively obtain tr G0 from γ. By Lemma 7.2, from
tr G0 we may effectively compute the finite list of all irredundant realizers for
G0; and since r is effective, it is semi-decidable whether F uniformly yields n on
G0. Combining all this information we see that r′ is effective. 2

We have thus defined a set-theoretic function H : |[[2]]| → |[[3]]|. Note that
the definitions of H in the full and effective settings agree: given F ∈ [[2]]full such
that F has an effective realizer and so restricts to an element Feff ∈ [[2]]eff, the
element HeffFeff coincides with the restriction of HfullF to [[2]]eff.

The last step in the construction is to show that the function H is itself
realizable. In fact, exactly the same realizer will work in the full and effective
settings. In the light of the above remarks, it suffices to show:

Proposition 7.7 There is an element h ∈ Beff such that, for all F ∈ [[2]]full, if
r ∈ ‖F‖ then h • r ∈ ‖HF‖.

Proof Essentially this amounts to showing that the construction of r′ from r
in the previous proof can be carried out within Beff itself. However, since this
construction works only on irredundant realizers and we require h to work on
all semi-irredundant realizers, we had better define h = λ∗x.h′(irr|x), where h′

embodies the above construction.

44

A completely formal definition of h′ would be unilluminating, so we content
ourselves with an “anthropomorphic” description of the algorithm embodied by
the ath decision tree in the forest represented by h′, for an arbitrary a ∈ N.

We first ask the question a (that is, h′〈a〉 =?a). Suppose this receives the
answer b. If either a is not of the form 〈α〉 or b is not of the form !n, we simply
return b as our final result (that is, h′〈a, b〉 =!b). Otherwise, we ask the question
〈β〉 for every prefix β of α in turn. From the answers received so far, we now
“know” the element (γ, n) in the previous proof. If γ is not the graph of an
irredundant realizer p0, we simply give up and diverge. Otherwise, we now know
p0 and hence the trace of the functional G0 it realizes. Let p1, . . . , pN be the list
of all irredundant realizers of G0, which we now know. We wish to check whether
our argument r satisfies r | pi = n for each i. To do this, we first simulate the
play of r against p1, by asking questions to r, and ourselves providing the answers
to the questions r asks using our knowledge of p1. If in fact r | p1 = n′, at some
point we will receive the answer !n′. If n′ 6= n, we again hang up and diverge.
If n′ = n, we then proceed to the simulation of r against p2, and so on. Finally,
if we complete the simulation of r against each of the pi and have received the
answer n in every case, we return n as our final result.

It should be clear that h′ may be given effectively, and that if r is an irredund-
ant realizer for F then h′ • r is the realizer r′ for HF described in the previous
proof. It follows that h is also effective, and tracks H as required. 2

This completes the construction of H.

7.3 Properties of H

We next show that H is indeed a one-sided inverse to I . For this, we need to
establish some special properties of realizers for elements Φ ∈ [[3]]. By definition,
r is a realizer for some such Φ iff r acts extensionally on semi-irredundant realizers,
that is, r | p = r | q whenever p ∼ q.

Proposition 7.8 Suppose r realizes Φ ∈ [[3]], p realizes F ∈ [[2]], and ΦF =
n ∈ N. Let p0 be the unique smallest finite subfunction of p such that r | p0 = n.
Then

(i) dom p0 is prefix-closed, i.e. if 〈α〉 ∈ dom p0 and β is a prefix of α then
〈β〉 ∈ dom p0;

(ii) p0 realizes some F0 ∈ [[2]] such that ΦF0 = n;
(iii) for all α, p0〈α〉 is an answer iff α is a leaf in p0 (i.e. α is not a proper

prefix of any β where 〈β〉 ∈ dom p0).

Proof (i) Extend p0 to a function p1 by setting p1〈β〉 =!0 whenever β 6∈ dom p0

is a prefix of some α ∈ dom p0. Then dom p1 is finite and prefix-closed, and since
p was semi-irredundant, so is p1. Thus p1 realizes some F1 ∈ [[2]]. Furthermore,
since p0 v p1 we have r | p1 = n, so ΦF1 = n. Now let p2 = irr |(p1); then p2

also realizes F1, and so r | p2 = n since r realizes Φ. Thus, we have p0, p2 v p1

with r | p0 = r | p2 = n; hence p0 v p2 by minimality of p0. But if there exists
α ∈ dom p0 with a prefix β 6∈ dom p0 then 〈α〉 6∈ dom p2, a contradiction. So

45

dom p0 is already prefix-closed, and p1 = p0.
(ii) Since p is semi-irredundant, it now follows that p0 is semi-irredundant,

and so realizes some F0 ∈ [[2]] where ΦF0 = n.
(iii) By (i), p4 = irr |(p0) also realizes F0, and so r | p4 = n. Since p4 v p0, by

minimality of p0 we have p4 = p0, so p0 is irredundant. In particular, if p0〈α〉 is
an answer then α is a leaf in dom p0. For the converse, suppose α is a leaf but
p0〈α〉 is a question. Let p5 be obtained as a restriction of p0 simply by removing
the value at 〈α〉. Clearly p5 also realizes F0, and so r | p5 = n, contradicting the
minimality of p0. 2

Part (iii) of the above proposition is not actually required below, but it
provides some additional insight into the situation. The proof of part (i) shows
why we need the notion of semi-irredundant realizer. If we assumed only that
r | p = n for all irredundant realizers p of F , we would not be able to show in
the above proof that r | p2 = r | p1. On the other hand, if we took as ‖F‖ the
set of all p tracking F , we would lose the property that every realizer for a finite
F extends one of the finitely many irredundant realizers (Lemma 7.2(ii)).

Theorem 7.9 For the morphisms

[[3]]
I -�
H

[[2]]

defined above, we have H ◦ I = id[[3]].

Proof Suppose Φ ∈ [[3]], and take any irredundant r ∈ ‖IΦ‖. It is easy to see
that r ∈ ‖Φ‖: take any G ∈ [[2]] and note that for any g ∈ ‖G‖ we have

r | g = (IΦ)(g) = Φ(λf. g | f) = ΦG.

Let r′ be the realizer for H(IΦ) obtained from r as in the proof of Proposition 7.6.
To show that H(IΦ) = Φ it will suffice to show that r′ = r. So suppose α is
an answer node of r corresponding to (γ, n) ∈ tr IΦ, where γ is the graph of
an irredundant realizer p0 ∈ ‖G0‖ for some finite G0. We wish to know that
r′〈α〉 = r〈α〉 (note that we automatically have r′a = ra for all a not of this
form). But r〈α〉 =!n, and so to show that r′〈α〉 =!n it is enough to show that
IΦ uniformly yields n on G0.

Suppose q0 is any irredundant realizer for G0. Since r realizes Φ, we have
r | q0 = ΦG0 = r | p0 = n. Now let q1 be the least subfunction of q0 such
that (IΦ)q1 = n—that is, such that r | q1 = n. Then by Proposition 7.8(ii), q1

is an irredundant realizer for some G1 v G0 such that ΦG1 = n. But now by
Lemma 7.3 we may find a realizer p1 ∈ ‖G1‖ such that p1 v p0. Since r realizes
Φ, we have r | p1 = n. But p0 is clearly minimal such that r | p0 = n, and
so p1 = p0. Hence G1 = G0, and since q0 is a minimal realizer for G0 we have
q1 = q0. So q0 is minimal such that (IΦ)q0 = n; thus IΦ uniformly yields n on
G0 as required. 2

46

Remark 7.10 It is natural to ask whether H (or some other one-sided inverse
to I) can be characterized by a universal property involving I—for instance,
as an adjoint or Kan extension. At present, the answer would seem to be no.
However, one can obtain a characterization of this kind if one decomposes I into
two components.

Specifically, let Z be the modest set defined by

|Z| = {F : B → N⊥ | ∀g ∈ B.F (g) = F (irr |(g))}, ‖F‖Z = ‖F‖[[2]].

Let I1 : Z → [[2]] be the evident inclusion; it is easy to see that I1 has a one-sided
inverse H1. Also I factors through I1 via a morphism I0 : [[3]] → Z. Let H0 be
the restriction of H to Z; then we have H0I0 = id. The morphism H0H1 is not
exactly our morphism H, but at least it is a one-sided inverse to I . Moreover,
one can characterize H0 and H1 abstractly as follows: H0 is a right adjoint of I0

with respect to the stable ordering, and H1 is a right adjoint of I1 with respect
to the pointwise ordering.

It is perhaps surprising that no simpler characterization of a one-sided inverse
to I is possible, if this is indeed the case.

It is now an easy step to show that every type is a retract of 2:

Theorem 7.11 (Universality of 2) In Mod(B), every object [[σ]] is a retract
of [[2]].

Proof We first prove the result for all pure types n. Clearly [[0]], [[1]], [[2]] are
all retracts of [[2]]. We have shown above that [[3]] � [[2]]; and from a retraction
(i, j) : [[n+ 1]] � [[n]] we obtain a retraction (− ◦ j,− ◦ i) : [[n+ 2]] � [[n+ 1]].
By composing such retractions, we have [[n]] � [[2]] for all n ≥ 3.

To extend the result to arbitrary types, we just need to know that every
object [[σ]] is a retract of some [[n]]. This is a well known piece of folklore. For
call-by-name types it is proved in [21, Section 8.1], and in fact the same proof
also works for call-by-value types without any modification. 2

Remark 7.12 If (i, j) : [[σ]] � [[2]] is a retraction in Mod(B), it is immediate
that i, j themselves live in the type structure R: essentially i ∈ Rσ→2 and j ∈
R2→σ.

We thus have that for the call-by-value SR functionals, the type 2 is universal
among simple types. Of course exactly the same result holds for the call-by-
name SR functionals, and one way to see this is as follows. By the results of
[31, Chapter 6], every object [[σ]]N is a retract of some [[τ]]V , and by the above
results, this is in turn a retract of [[2]]V , which is a retract of [[2]]N .

It is interesting to compare our results with the situation for other known
type structures. In both the full and effective Scott models, which correspond
to a version of PCF with parallel operators, the type 1 is already universal.
(This follows easily from the fact that every finite type is a definable retract
of Plotkin’s T ω—see [34, Lemma 5.2].) However, in the full or effective games
models, corresponding to pure PCF, there is no universal finite type.4

4I am grateful to Samson Abramsky and Martin Hyland for informing me of this fact.

47

Remark 7.13 We end this paragraph with some informal remarks on the com-
putational complexity of H. Although we do not know what is the best way to
measure complexity at higher types precisely, it is intuitively clear that the main
factor contributing to the complexity of H is the number of irredundant realizers
for G0 that have to be tested in turn. In the worst case, this is factorial in the
size of dom p0 (call this n), and each irredundant realizer p1 itself has size n.
Moreover, n is essentially the number of queries made by F to the given realizer
p for G. Thus, if we are given realizers r, p for F,G respectively, the time taken
up by H in the computation of HFG is at most t.t!, where t is the time taken
by F in the computation of Fp.

8 Applications of universality

One consequence of Theorem 7.11 is that, for many questions about the SR
functionals, it suffices to consider low types. In this section we illustrate this
principle by giving an alternative proof of van Oosten’s theorem (Theorem 5.8).
We also consider the category of retracts of [[2]] as a category of domains, and
indicate how one can interpret recursive types there. Further applications of the
universality theorem will be given in the next section.

8.1 Hypercoherences revisited

We now use Theorem 7.11 to give an alternative proof that the full SR functionals
coincide with the strongly stable functionals (cf. Section 5.2). Unlike the proofs
in [17, 43], which both involve elaborate inductions up the type structure, our
proof concentrates on the types 2 and 3; the extension to arbitrary types is then
straightforward. Since the main interest of the proof is conceptual rather than
technical, and result itself is not new, we concentrate on the main ideas, omitting
some of the details.

The call-by-value interpretation [[σ]]HC for types σ 6= 0 was given in Sec-
tion 7.1. We define sets Dσ by

D0 = N, Dσ = D([[σ]]HC) for σ 6= 0.

These come equipped with partial application operations ·στ : Dσ→τ ×Dσ ⇀ Dτ .
Our goal is to establish bijections βσ : Rσ ∼= Dσ that commute with application
(note that Rσ here means Rσ

V,full
). We will write Rn, Dn, βn simply as Rn, Dn, βn.

The bijections β0 and β1 are evident. For β2, we proceed as follows. For each
k > 0, let [k] be the flat hypercoherence with atoms 0, . . . , k − 1; then there are
evident retractions [k] � N in HC, and the corresponding projections N → N
form a chain whose limit is the identity. We also have retractions Nk � Nω

corresponding to the projection from Nω onto its first k factors. Using these, we
can construct a chain of retractions ([k]k ⇒ [k])�(Nω ⇒ N), with corresponding
projections δk on Nω ⇒ N where

⊔
ρk = id. Note that each δk : D2 → D2 has a

finite image consisting entirely of finite elements. We regard D2 as equipped with
the usual order on states of [[2]]HC; the image of each δk is then a full sub-poset
of D2.

48

Likewise, in Mod(B) we have evident retracts [k]⊥ � N⊥ for each k, and so
we can construct increasing sequence of retractions ρk : R2 → R2 corresponding
precisely to the δk. We regard R2 as equipped with the trace ordering as in
Section 7.2, so that the image of each ρk is a full sub-poset of R2.

Proposition 8.1 For each k there is an order-isomorphism Im δk ∼= Im ρk.
Moreover, these isomorphisms commute with the retractions (Im δl) � (Im δk)
and (Im ρl) � (Im ρk) for l ≤ k, and with the application operations.

Proof We wish to show that the poset Pk of elements of [k]k⊥ ⇒ [k]⊥ in Mod(B)
(with the trace ordering) is isomorphic to the poset Qk of states of [k]k ⇒ [k] in
HC. But Pk is easily seen to be isomorphic to the poset Sk of Milner-Vuillemin
sequential functions with the stable ordering (use the embedding SSeqFun →
Mod(B) of Section 4.3). The bijection Sk ∼= Qk is given by [9, Proposition 3],
and this is an order-isomorphism since, for hypercoherences, the inclusion order
on function spaces coincides with the stable order.

The isomorphisms Pk ∼= Qk clearly respect application. They yield isomorph-
isms Im ρk ∼= Im δk, and the coherence conditions are easily verified. 2

Let D2
fin =

⋃
Im δk, R2

fin =
⋃

Im ρk. It is clear from the construction that
D2 is the chain-completion of the full sub-poset D2

fin. We also know that any
element x ∈ R2 is a least upper bound

⊔
ρk(x) of elements of R2

fin. To establish
the order-isomorphism β2 : R2 ∼= D2, it therefore suffices to check:

Proposition 8.2 R2 (with the trace ordering) is a CPO.

Proof It suffices to check that any chain x1 v x2 v . . . where xk ∈ Im ρk has a
least upper bound in R2. This an easy application of König’s Lemma, analogous
to that in [17, Theorem 5] or our Proposition 5.13. 2

In order to show that Mod(B) and HC contain the same morphisms at type
3, we characterize the hypercoherence structure of [[2]] in terms of the realizability
model. Recall that in Mod(B) we have a surjective morphism b : [[1]] → [[2]]
mapping f to f | −, realized by irr|. The crucial step will be to show that all
chains and coherent sets in [[2]] arise, via b, from chains and coherent sets in
[[1]]. This will allow us to reduce questions about type 2→ 0 to questions about
1→ 0. (The basic idea here is inspired by [13].)

Lemma 8.3 (i) Under the bijections β1 and β2, the morphisms R1 → R2 in
Mod(B) correspond exactly to the strongly stable maps D1 → D2 in HC. In
particular, the function b corresponds to a strongly stable map.

(ii) For every increasing chain x0 v x1 v . . . in R2, there is an increasing
chain y0 v y1 v . . . in R1 such that b(yi) = xi for all i.

(iii) For every coherent set U ⊆ R2 (that is, for every set corresponding to a
coherent subset of D2), there is a coherent set V ⊆ R1 such that b(V) = (U).

Proof (i) It is easy to give a definition of a retraction ([[1]]⇒ [[2]]) � [[2]] that
works uniformly for both Mod(B) and HC. The corresponding idempotents are

49

then identified by β2, and the result follows easily.
(ii) By Proposition 8.2, take x =

⊔
xi in R2. Let r be any irredundant realizer

for x. By Lemma 7.3, we may take irredundant realizers ri for the xi such that
ri v r and (by inspection of the proof of Lemma 7.3) ri v ri+1. Thus the ri form
an increasing chain in R1, and xi = b(ri) for each i.

(iii) An important lemma (see e.g. [13, Lemma 3.2]) says that in any hyperco-
herence X, every coherent set is the image of a coherent set in Nω via a strongly
stable map Nω → X. So take W ⊆ R1 coherent and g : R1 → R2 strongly stable
such that g(W) corresponds to U . By (i), g may be regarded as a morphism
[[1]]→ [[2]] in Mod(B). Suppose r ∈ B tracks g; then g factors through b via a
morphism g̃ : [[1]]→ [[1]] tracked by r. But now g̃ : R1 → R1 is a strongly stable
map, so V = g̃(W) is coherent in R1, and b(V) = U . 2

Proposition 8.4 Under the bijection β2, the morphisms R2 → N⊥ in Mod(B)
correspond exactly to the strongly stable maps D2 → N⊥ in HC.

Proof Given Φ : [[2]] → N⊥ in Mod(B), we have Φ ◦ b : [[1]] → N⊥ and so
Φ ◦ b ∈ R2. Hence Φ ◦ b is strongly stable. We wish to check that Φ is strongly
stable, that is,

• Φ respects chains and their lubs;

• Φ respects coherent sets and their meets.

Suppose x0 v x1 v . . . is a chain in R2 with lub x. By Lemma 8.3(ii), take
y0 v y1 ⊆ . . . in R1 such that b(yi) = xi, and let y =

⊔
yi, so that b(y) = x. Since

Φ ◦ b is strongly stable it respects the chain (yi) and its limit; hence Φ respects
the chain (xi) and its limit.

Likewise, given U ⊆ R2 coherent, by Lemma 8.3(ii) take V ⊆ R1 coherent
such that b(V) = U . Since b is strongly stable, we have b(

∧
V) =

∧
U . But now

Φ ◦ b respects the coherent set V and its meet; hence Φ respects the coherent set
U and its meet. 2

We thus obtain a bijection β3 : R3 ∼= D3 that respects application. We can
now easily extend the isomorphism to all pure types:

Theorem 8.5 For every n there is a canonical bijection βn : Rn ∼= Dn, and these
bijections respect application.

Proof We already know the result for n = 0, 1, 2. We will prove by induction
(starting from n = 2) that there is a bijection βn+1 : Rn+1 ∼= Dn+1 that respects
application, and moreover there are retractions (in, jn) : [[n+ 1]] � [[n]] in both
Mod(B) and HC which are identified under βn+1 and βn.

For n = 2, we already have a bijection β3 respecting application. Since we
may define a retraction ([[2]] ⇒ [[3]]) � [[3]] uniformly in both Mod(B) and
HC, we have a bijection between morphisms R3 → R2 in Mod(B) and strongly
stable maps D3 → D2 in HC. In particular, H is present as a strongly stable
map in HC. Moreover, since the map b : [[1]]→ [[2]] is present in both models,

50

the map I = − ◦ b is present in both models. We therefore have retractions
(I,H) : [[3]] � [[2]] in both Mod(B) and HC as required.

For the induction step, given in and jn in both models as above, let in+1 =
λf : n. f ◦ jn and jn+1 = λg : n+ 1. g ◦ in Clearly (in+1, jn+1) is a retraction
[[n+ 2]] � [[n+ 1]] in both models. The corresponding idempotent on [[n+ 1]]
is λf : n.f ◦ jn ◦ in, and this has the same meaning in both models modulo the
bijection βn+1, since by hypothesis the latter respects application. By restricting
this bijection to the image of the idempotent, we obtain a bijection βn+2 : Rn+2 ∼=
Dn+2. Clearly this respects application, and the retractions (in+1, jn+1) in the two
models are identified under βn+2 and βn+1. 2

It is now routine to extend the isomorphism to arbitrary types σ by transport-
ing the bijections βn along appropriate retractions [[σ]]� [[n]], defined (uniformly
for both models) as in the proof of Theorem 7.11. Similarly, it is straightforward
to obtain a isomorphism for the corresponding call-by-name type structures, since
any call-by-name type may be obtained as a definable retract of a call-by-value
type (cf. [31, Chapter 6]). We omit the rather uninteresting details.

8.2 The category of retracts of type 2

We now draw attention to another consequence of the universality theorem: the
object [[2]] can be regarded as a combinatory algebra, and its category of retracts
is an attractive category of domains with much interesting structure. There is a
close analogy with the situation described in [50] for Scott’s Pω, whose category
of retracts is the very beautiful category of countably-based continuous lattices.
Again we give just a sketch of the main ideas, omitting tedious details. The
results of this section hold for both Bfull and Beff.

First recall that we already have operations on objects of Mod(B) correspond-
ing to products, sums, exponentials and lifting. We may also define a separated
sum operation ⊕ on objects by X ⊕ Y = (X + Y)⊥.

Let us now write B2 for the object [[2]] in Mod(B). We will be interested in
objects which are retracts of B2 in Mod(B); we write K for the full subcategory
consisting of such objects. The crucial observations are the following:

Proposition 8.6 (i) The objects B2 ×B2, B
B2
2 , B2⊥, B2 ⊕B2 are retracts of B2.

(ii) The category K has products, exponentials, lifting and separated sums, all
inherited from Mod(B).

(iii) Each object X of K comes with a lift algebra structure X⊥ → X, and has
a canonical fixed point operator XX → X.

Proof (i) It is routine to exhibit all these objects as retracts of [[3]]. So by
Theorem 7.9 they are retracts of B2.

(ii) Given X�B2 and Y �B2, we have induced retractions X×Y �B2×B2,
Y X �BB2

2 , X⊥ �B2⊥ and X ⊕ Y �B2⊕B2. By (i) all these objects are retracts
of B2, and the result follows since K is full in Mod(B).

(iii) The evident lift algebra structure on B2 induces one on X via the re-
traction X⊥ �B2⊥. For fixed points, it is easy to see that there is a fixed point

51

operator Y : BB2
2 → B2 tracked by y, since pre-irredundant realizers are closed

under lubs of chains. (Otherwise, the existence of Y may be deduced from the
connection with the hypercoherence model.) This transfers to a fixed point op-
erator XX → X via the retractions XX �BB2

2 and X �B2. 2

The retraction BB2
2 �B2 in particular means that the elements of B2 form a

combinatory algebra—indeed a λ-model, since Mod(B) is well-pointed (see [3]).
We will write B2 for this combinatory algebra. Note that the monoid M2 of
realizable endofunctions of B2 is precisely the monoid of endomorphisms of B2

in Mod(B), and since all idempotents have splittings in Mod(B), the Karoubi
envelope K(M2) is equivalent to K. It follows that there is a full embedding
E2 : K → Mod(B2), analogous to the embedding E : SSeqFun → Mod(B) of
Section 4.3. The embedding E2 preserves products, exponentials, lifting and sep-
arated sums, and has one significant advantage over the inclusion K ↪→Mod(B):
every object in the image of E2 is projective (each element has just one realizer).

To summarize, B gave rise to the category of retracts K(M), which included
SSeqFun, but B2 gives rise to the category of retracts K. Since K is much larger
than K(M) and has better closure properties (it is cartesian closed), we conclude
that B2 is in some sense a better model than B. However, the construction of B2

is undoubtedly more complicated, and indeed proceeds via the construction of B.
The situation described above for B2 is very similar to that for Pω: the

category of retracts of Pω is a good category of domains with products, expo-
nentials, lifting and separated sums, and it embeds well in Mod(Pω) (see [31,
Section 7.3]). Furthermore, it is shown in [50] that one can perform type opera-
tions on retracts of Pω within Pω itself, and hence construct recursive domains
simply by taking fixed points in Pω. We can now see that one can do exactly
the same thing for B2. We give only a very brief outline, since the details are
formally identical to those in [50].

An object X in K can be represented (up to isomorphism) by any element
x ∈ B2 that realizes an idempotent B2 → B2 corresponding to some retraction
X�B2. Note that x satisfies xa = x(xa) for all a ∈ B2; we will call any such ele-
ment x ∈ B2 an idempotent. Clearly every idempotent x represents some object
X. If F is a k-ary operation on objects of K, we say that F is realizable if there
is an element f ∈ B2 such that whenever x1, . . . , xk are idempotents represent-
ing X1, . . . , Xk respectively, the element fx1 . . . xk is an idempotent representing
F (X1, . . . , Xk). The following proposition lets us construct many examples of
realizable operations:

Proposition 8.7 (i) The product, exponential and separated sum operations are
realizable binary operations on objects of K, and the lift operation is a realizable
unary operation.

(ii) The identity operation on objects is realizable. Constant operations are
realizable. Realizable operations are closed under composition.

Proof We consider exponentials as an example. Suppose r ∈ B2 represents
the retraction BB2

2 , and x, y represent retractions X � B2, Y � B2 respectively.
Then λ∗a.λ∗z. y((ra)(xz)) (interpreted in B2) represents the induced retraction

52

Y X � B2. Thus, λ∗xyaz. y((ra)(xz)) realizes the exponential operation. The
other cases are similar.

(ii) is trivial. 2

It is now easy to obtain recursive types as fixed points of realizable operations:

Theorem 8.8 For any realizable unary operation F , there is an object X of K
such that X ∼= F (X). In particular, K contains solutions to all recursive type
equations X ∼= F (X) where F is a unary operation constructed using ×,⇒,−⊥,⊕
and fixed objects of K.

Proof Suppose f realizes F . Define a sequence r0, r1, . . . in B2 by r0 = ⊥,
rn+1 = frn. Clearly r0 is an idempotent, and hence every rn is an idempotent.
Moreover, the action of f gives a morphism B2 → B2 and so is monotone with
respect to the trace ordering; thus r0 v r1 v By Proposition 8.2, take
r =

⊔
rn in B2. Since each rn is an idempotent, it is easy to see that r is

an idempotent, and that fr = r. Take X an object represented by r; then
X ∼= F (X). The rest of the theorem follows immediately by Proposition 8.7. 2

Remark 8.9 The category HC also contains an object [[2]] and has many of the
closure properties mentioned above for K. It would therefore appear that HC
and K have a large full subcategory in common, but at present we do not know
the precise extent of the overlap. Since not all idempotents on [[2]] split in HC,
there are objects of K with no counterpart in HC; we do not know whether the
converse is true.

9 PCF and universal functionals

We now consider interpretations of call-by-value PCF in Mod(B) and Mod(Beff).
We will show that the functional H of Section 7 is universal, in the sense that
every effective SR functional is definable relative to H in PCF. We then consider
the extended language PCF+H, which gives us yet another handle on the SR
functionals. Next we briefly touch on a notion of “degree” for SR functionals
under the relation of relative PCF-definability. Finally, we prove a technical
result: there is no universal SR functional with an essentially lower type than H.

9.1 Call-by-value PCF

We review the syntax and semantics of call-by-value PCF (henceforth called
PCF). The types of PCF are just the simple types as given by Definition 3.5(i).
For each type σ we have an infinite supply of variables xσ0 , x

σ
1 , Exactly as

in call-by-name PCF, the well-typed terms are built up from variables and the
constants 0, 1, 2, . . . : 0, succ, pred : 1 and cond : 0→ 0→ 0→ 0 by means of the
following rules:

M : τ
(λxσi .M) : σ → τ

M : σ → τ N : σ
(MN) : τ

M : σ
(µxσi .M) : σ

53

A closed term is a value if it is either a numeral 0, 1, 2, . . . or a λ-abstraction;
we use V to range over values.

We give an operational semantics by defining a (big-step) evaluation relation ⇓
from closed terms to values, such that for each closed term M we have M ⇓ V for
at most one V . The relation ⇓ is defined inductively by the following derivation
rules. Here ^ denotes truncated subtraction: m ^ n = max(m− n, 0).

V ⇓ V (V a value) M [µx.M/x] ⇓ V
µx.M ⇓ V

M ⇓ n
succM ⇓ n+ 1

M ⇓ n
predM ⇓ n ^ 1

M ⇓ 0 N ⇓ V
condMNP ⇓ V

M ⇓ n+ 1 P ⇓ V
condMNP ⇓ V

M ⇓N λx.M ′ M ′[N/x] ⇓N V

MN ⇓N V

We write M ⇑ to mean that there is no V such that M ⇓ V .
Next we give the denotational semantics of this language in Mod(B) (where

B is either Bfull or Beff). The interpretation [[−]] of types is given essentially as
in Section 7; however, here it is convenient to interpret function types using the
standard exponentials and lifting rather than the special objects used there. We
will also write [σ] for [[σ]]⊥, and η for the inclusion [[σ]]→ [σ].

We now interpret a term M : τ whose free variables are included in Γ =
〈xσ1

1 , . . . , x
σn
n 〉, by a morphism [M]Γ : [σ1] × · · · × [σn] ⇒ [τ]. The definition of

[M]Γ is by induction on the structure of M . The clauses for variables, numerals,
succ, pred and cond are evident. For the remaining clauses, some further notation
is helpful. Let us write fixσ : [σ][σ] → [σ] for the fixed point morphism given by
Proposition 8.6. We also write ασ for the evident lift algebra structure [[σ]]⊥ →
[[σ]], and strict : BA

⊥ → BA⊥
⊥ for the morphism that extends a map A→ B⊥ to a

strict map A⊥ → B⊥. We then have:

[λxσ.M]Γ = η ◦ [σ]η ◦ curry ([M]Γ,xσ)
[MN]Γ = eval ◦ 〈strict ◦ ασ→τ ◦ [M]Γ, [N]Γ〉

[µxσ.M]Γ = fixσ ◦ curry ([M]Γ,xσ)

A closed term M : τ is interpreted as a morphism 1→ [τ], that is, an element
of [τ]. The following theorem establishes the agreement between the operational
and denotational semantics.

Theorem 9.1 (Adequacy) For any closed term M : 0, we have [M] = n if
M ⇓ n, and [M] = ⊥ if M ⇑.

Proof The usual technique for proving adequacy works (see [45]). In fact
the result follows immediately from results in [31, Chapter 6], as we shall see in
Section 10. 2

54

We now investigate the expressive power of PCF for defining SR functionals.
As before, we will write R for either Rfull or Reff. We say that an element x ∈ Rσ

is PCF-definable if there is a closed PCF term M : σ such that [M] = η(x). A
function f : Rσ → Rτ is PCF-definable if η ◦ f is PCF-definable as an element of
Rσ→τ .

Proposition 9.2 (i) The map b : R1 → R2 of Section 7.2 is PCF-definable.
(ii) The map I : R3 → R2 is PCF-definable.

Proof (i) Let isans : 1, strip : 1, empty : 0 and add : 0 → 0→ 0 be PCF terms
such that for our chosen effective codings [?, !] and 〈· · ·〉 we have

[[empty]] = 〈ε〉 [[add]](n)(〈α〉) = 〈α, n〉
[[isans]](!n) = 0 [[isans]](?n) = 1
[[strip]](!n) = n [[strip]](?n) = n.

Now let ρ ≡ 1→ 1→ 0→ 0, and let play be the PCF term

µP ρ. λf1.λg1.λa0. cond (isans (f a)) (strip (f a)) (P f g (add a (g (strip (f a))))).

Finally, let b = λf1. λg1. play f g empty. We omit the tedious verification that b
defines b.

(ii) Now let I = λΦ3. λg1.Φ(bar g). Then I defines I . 2

As a consequence of this we obtain an important property of the function H.

Theorem 9.3 (Universality of H) Every element f ∈ [σ]eff is PCF-definable
relative to H: that is, there is a closed PCF term M : (2 → 3) → σ such that
f = [M](η(η ◦H)).

Proof Clearly the term µxσ.x denotes⊥ ∈ [σ]eff, so it suffices to show that every
f ∈ [[σ]]eff is definable from H. Firstly, any element r ∈ [[1]]eff is definable in
pure PCF as it is simply a partial recursive function. Secondly, given any element
F ∈ [[2]]eff, take r ∈ Beff a realizer for F and M : 1 denoting r; then [bM] = η(F).
Thus every element of [[2]]eff is PCF-definable. Next, using Proposition 9.2(ii),
both halves of the retraction (I,H) : [[3]] � [[2]] are PCF-definable relative to
H, and it follows easily that for any σ, both halves of the induced retraction
(i, j) : [[σ]] � [[2]] are PCF-definable relative to H. Now given any f ∈ [[σ]], let
P : 2 be a PCF term denoting i(f), and let N : 2 → (2 → σ) be a PCF term
such that [N](η(η ◦H)) = j. Then clearly λh. (Nh)P defines f relative to H. 2

Remarks 9.4 (i) Clearly one can obtain an analogous result for the call-by-name
setting by using a call-by-name analogue of H. As an easy corollary, one can
derive Ehrhard’s result that any finite SR functional is definable relative to some
SR functional of type level 2. Specifically, let H0 v H1 v . . . be the sequence of
finite approximations to H induced by the standard sequence of finite retractions
ρ0 v ρ1 v . . . on type 2 (see Section 8.1). Any finite SR functional of any type
is PCF-definable from H and hence from some Hi; but from the definition of ρi

55

it is clear that Hi is itself definable from an element of type level 2. (See also
Remark 9.23(ii) below.)

(ii) It follows from the proof of the above theorem that, in the presence of
H, one only needs the PCF fixed point operator µxσ up to and including type 2
in order to define all effective SR functionals. (It is easy to see that the fixpoint
operator for the type ρ in the proof of Proposition 9.2 may be defined from that
for 2.) An analogous result for PCF with parallel features was pointed out in
[45].

9.2 The language PCF+H

Let us now extend the language PCF by adding a new constant H : 2 → 3. We
can give a denotational semantics for the language PCF+H in Mod(B) simply by
adding the clause [H]Γ = η(η ◦H) to the definition of [−]Γ. We can then rephrase
Theorem 9.3 as follows: every effective SR functional is definable in PCF+H.

Does the language PCF+H have an operational semantics? At present we do
not have a palatable way to give a semantics using structural operational rules.
(One particular problem is to see how to deal correctly with terms involving
recursive calls to H.) However, one can give an “operational semantics” in a rather
abstract sense, by specifying a way in which terms of PCF+H may be “compiled”
to elements of B, which we can regard as a kind of abstract machine for which we
already have an operational semantics. In particular, our denotational semantics
of PCF+H suggests a way of mapping each term M to a particular choice of
realizer for [M]. We can think of this mapping as a translation from PCF+H
into the untyped setting of B.

Let us indicate one way to do this explicitly. Let K, S,Y be new constant-
symbols. Given any closed term M of PCF+H, we first translate M into a term
M into a term of combinatory PCF+H, in which the terms are built up from
the constants 0, 1, 2, . . . , succ, pred, cond,K, S,Y,H using application (subject to
typing constraints). Specifically, M be obtained from M as follows:

• First replace each subterm µxσ.N by Y(λxσ.N).

• Then replace each subterm λxσ.N by its standard Curry translation into
combinatory logic, working from innermost subterms outwards.

It is easy to give a denotational semantics [−] for (type-decorated) combinatory
terms so that [M] = [M].

We may now change our perspective and regard M as an expression in an
untyped language of combinators. Indeed, each of the above combinatory con-
stants C has a denotation � C �∈ Beff. For C = 0, 1, 2, . . . , succ, pred, cond,H
we simply take � C � to be some realizer for the corresponding element in
Mod(Beff); we also take � K�= k, � PS �= s, � Y�= y. We can extend
� − � to arbitrary closed combinatory terms simply by taking � MN � =
� M � • � N �. Since we have an operational definition of the operation •
(e.g. a simple adaptation of Proposition 9.2(i) gives a definition of • in PCF), we
have a kind of “operational semantics” for this untyped combinatory language,
and hence for PCF+H.

56

If M is a closed term of PCF+H, we define � M �=� M �. We now
define a big-step evaluation relation ⇓ for closed PCF+H terms of type 0 by

M ⇓ n iff �M � (0) = n.

We may also define a unary termination predicate ⇓ for terms of any type σ by

M ⇓ iff �M � (0) ↓ .

The following facts are easily verified:

Theorem 9.5 (Adequacy for PCF+H) In both the full and effective models,
(i) For any closed PCF+H term M : 0 we have M ⇓ n iff [M] = n.
(ii) For any closed term M : σ we have M ⇓ iff [M] ∈ [[σ]] (that is, [M] 6= ⊥).

Proof It is clear that for any combinatory term M , � M � is a realizer for
[M] in both models. Hence the same holds for any PCF+H term M . But r ∈ B
realizes n ∈ [0] iff r(0) = n; hence [M] = n iff � M � (0) = n. For (ii), just
recall that [M] = [[σ]]⊥, and from the standard description of lifting given in
Section 10 we have that for any x ∈ X⊥ and r ∈ ‖x‖X⊥ we have x ∈ X iff r(0) ↓.
2

Remark 9.6 A rather more concrete way to specify an operational semantics for
PCF+H might be to give a translation to a language such as PCF+catch [12] or
µPCF [42], for which a structural operational semantics had already been given.
Essentially this would amount to giving an implementation of H in the target
language.

From the evaluation relation for PCF+H we may define a notion of observa-
tional equivalence for closed terms of the same type as usual: M ≈ N if for all
contexts C[−] : 0 we have C[M] ⇓ n⇔ C[N] ⇓ n. The following results are now
straightforward:

Theorem 9.7 (Full abstraction for PCF+H) For closed terms M,N : σ the
following are equivalent:

(i) M ≈ N ;
(ii) [M]eff = [N]eff;
(iii) [M]full = [N]full.

Proof (i)⇒ (ii): Suppose σ = σ1 → · · · → σr → 0 (r ≥ 0) and M ≈ N . Given
any x1 ∈ [[σ1]]eff, . . . , xr ∈ [[σr]]eff, by universality we may take terms P1, . . . , Pr
such that [Pi]eff = xi; then MP1 . . . Pr = NP1 . . . Pr and so [M]effx1 . . . xr =
[N]effx1 . . . xr. Since Mod(Beff) is well-pointed, this implies [M]eff = [N]eff.

(ii) ⇒ (iii): For σ = 2 the result is easy: if [M]eff = [N]eff then MP ≈ NP
whenever P denotes a finite function; hence [M]full(f) = [N]full(f) for all finite
f , which clearly implies [M]full = [N]full.

Now consider an arbitrary type σ. Let Iσ : σ → 2 and Jσ : 2 → σ be terms
of PCF+H that denote the two halves of the canonical retraction [[σ]] � [[2]]

57

uniformly in both the full and effective models. Suppose [M]eff = [N]eff; then
[IσM]eff = [IσN]eff, so [IσM]full = [IσN]full by the above, and so [Jσ(IσM)]full =
[Jσ(IσN)]full. There are now two cases. If [M]eff = ⊥ then ¬M ⇓ and so [M]full =
⊥, and similarly for N ; hence [M]full = [N]full. Otherwise we have [M]full ∈ [[σ]]
and so [Jσ(IσM)]full = [M]full, and similarly for N , so again [M]full = [N]full.

(iii)⇒ (i) is easy by the adequacy of [−]full. 2

One immediate consequence of full abstraction is the equational context lemma
for PCF+H:

Proposition 9.8 (Context Lemma) For closed PCF+H terms M,N : σ =
σ1 → · · · → σr → 0, we have M ≈ N iff for all closed P1 : σ1, . . . , Pr : σr,
MP1 . . . Pr = NP1 . . . Pr. 2

Note however that the inequational version of the Context Lemma fails, be-
cause the observational ordering coincides with the stable order rather than the
pointwise one.

Another corollary is that the type structure of effective SR functionals can
be characterized as the term model for PCF+H. Specifically, suppose we have
defined the syntax and operational semantics of PCF+H, and let ≈ be the notion
of observational equivalence defined as above. For each type σ, let T σ be the
set of values (i.e. numerals or λ-abstractions) of PCF+H modulo ≈, and let
· : T σ→τ × T σ ⇀ T τ be the operation induced by juxtaposition. Then it is
immediate from Theorems 9.3 and 9.7 that T ∼= RV,eff. This characterization
gives a genuinely new insight into the effective SR functionals; in particular we
may now deduce the following pleasing recursion-theoretic property, which is not
obvious from any of the previous characterizations:

Theorem 9.9 The type structure RV,eff is effective in the following strong sense:
there are total enumerations εσ of the set Rσ

V,eff (that is, surjective total functions
N → Rσ

V,eff) and partial recursive functions ϕστ : N × N ⇀ N such that for all
σ, τ,m, n we have

ϕστ (m,n) ↓ =⇒ εσ→τ (m) · εσ(n) = ετ(ϕστ (m,n)),
ϕστ (m,n) ↑ =⇒ εσ→τ (m) · εσ(n) ↑ .

Proof For each type σ let εσ be induced by an effective surjective coding d−eσ
of the (decidable) set of PCF+H values of type σ, via the bijection T σ ∼= Rσ

v,eff.
We wish to construct ϕστ such that, for all values M : σ → τ ,N : σ,

• if MN ⇓ then ϕστ (dMeσ→τ , dNeσ) = dPeτ for some value P : τ such that
MN ≈ P ;

• if ¬MN ⇓ then ϕστ (dMeσ→τ , dNeσ) ↑.

There are two cases. If τ = 0 then let ϕστ be the function which given dMeσ→τ
and dNeσ returns dne0 if � MN � (0) = n, and diverges if � MN � (0) ↑.
Clearly ϕστ is partial recursive and has the required properties. If τ = τ1 →
τ2, let ϕστ be the function which given dMeσ→τ , dNeσ returns dλxτ1.MNxeτ if
� MN � (0) ↓, and diverges otherwise. Again this clearly has the required
properties. 2

58

We can also now read off the following fact, whose proof (essentially) we have
been deferring since Section 3.2:

Theorem 9.10 RV,eff is a substructure of RV , i.e., there are inclusions Rσ
V,eff ↪→

Rσ
V that commute with the application operations.

Proof Immediate from the fact that RV,eff
∼= T and the values of PCF+H admit

a fully abstract interpretation in RV . 2

Remarks 9.11 (i) The situation of the above theorem is typical for notions
of higher-type partial functional: the computable objects obtained hereditarily
as those that act on computable arguments can just as well be seen as acting
on arbitrary continuous arguments. (For instance, the effective analogue of the
Scott-continuous functionals yields a substructure of the full Scott-continuous
type structure.) The situation is radically different for (hereditarily) total notions
of computability: not all effective total type 2 operations on the total recursive
functions can be extended to an effective total operation on arbitrary total func-
tions (see e.g. [46]).

(ii) All the above results of course go through for the call-by-name SR func-
tionals, using the call-by-name analogue of H.

(iii) Our general impression is that the existence of a universal SR functional
is interesting, but the particular functional H is not. For both conceptual and
practical reasons (cf. Remark 7.13), it would be very interesting if one could find
a simpler functional with the same universality property. We show below that
there can be no universal functional of an essentially simpler type than H, but it
is open whether there is a universal functional of lower computational complexity
than H.

9.3 Degrees of expressivity

Next we consider some effective SR functionals other than H. There is clearly a
sense in which some SR functionals are more expressive than others, and indeed
there is a structure of degrees of expressivity, analogous to the degrees of paral-
lelism in the Scott model [49]. These ideas are made precise as follows. We will
write PCFN for the standard call-by-name version of PCF (as in [45]), and PCFV

for the call-by-value version described above. For simplicity, we will restrict our
attention to degrees of effective SR functionals, and so for the rest of this section
we will write RN , RV in place of RN,eff, RV,eff.

Definition 9.12 (i) Let |RX | =
⊔
Rσ
X , where X is either N or V . Given f, g ∈

|RX |, we write f � g if there is an element m ∈ Rτ→σ
X , definable in PCFX, such

that m · g = f .
We write f ∼ g if both f � g and g � f .

(ii) A degree is an equivalence class for ∼; we write dX(f) for the degree
containing f . The partial order on degrees induced by � is also written as �.

Our first observation is that degrees inRN can be correlated with those in RV ,
so that we really have just one universe of degrees. For each type σ we have types

59

σ̂, σ̃ and standard retractions (δσ, εσ) : [[σ]]N � [[σ̂]]V and (ζσ, ξσ) : [[σ]]V � [[σ̃]]N
in Mod(Beff), as in [31, Chapter 6]. Roughly speaking, these retractions have
the property that all possible composites of type [[ρ]]N → [[ρ′]]N are definable in
PCFN , and similarly for V (see [31] for details).

Given f ∈ Rσ
N and g ∈ Rτ

V , we say f � g if δσ(f) � g, or equivalently if
f � ζτ(g). Likewise, g � f if ζτ(g) � f , or equivalently if f � δσ(g). We say
f ∼ g ∼ f if both f � g and g � f . With these definitions, � becomes a preorder
on the whole of |R| = |RN | t |RV |, with ∼ the induced equivalence relation. For
f ∈ |RX |, we write d(f) for the ∼-equivalence class of f in |R|. Clearly the poset
of degrees in |R| is isomorphic to the poset of degrees on |RX|, where X is either
N or V . Henceforth we will freely mix call-by-name and call-by-value functionals
in our discussion, using whichever seems most convenient.

The smallest degree (with respect to �) is the degree d(0) of all PCF-definable
functionals; the largest degree is d(H). The structure of the poset of degrees is
probably extremely complicated, and in this paper we will do no more than
consider a few examples.

An example of a degree strictly between these is the degree of the functional
F ∈ R2

N defined in Remark 3.7(ii) (see also the Introduction). The fact that d(F)
is strictly above d(0) is immediate from the pointwise non-monotonicity of F ; the
fact that d(F) is strictly below d(H) (i.e. that H is not definable from F) will be
shown below.

Another SR functional that seems particularly interesting from the point of
view of programming applications is the modulus functional M : R2→1→0

V specified
as follows:

• If G·f ∈ N then M ·G·f = dgraph f0e, where f0 is the unique smallest finite
subfunction of f such that G · f0 = n, and dgraph f0e is the normalized
graph of f0 (e.g. a sorted non-repetitive list of ordered pairs), coded as a
natural number.

• If G · f = ⊥ then M ·G · f = ⊥.

It is easy to check that M is indeed an effective call-by-value SR functional of
the specified type. The following observation is due to Alex Simpson:

Proposition 9.13 d(M) = d(F).

Proof Let F ′ ∈ R3
V be the functional

λG2. cond (MG(λx0.0) = d∅e) 0 1

(we mix syntax and semantics in a semi-formal way). Intuitively F ′ is a call-
by-value analogue of F , and indeed it is easy to see that d(F ′) = d(F). Thus
d(F) � d(M). For the converse, we may recover M from F ′ as follows. Let conv :
1 → 0 → 0 be the function λp1. λx0. cond (p 0)xx. Let insert : 0 → 0 → 0 → 0
be a function such that

insert x y dγe = dγ ∪ (x 7→ y)e

60

for all natural numbers x, y and graphs γ. Next, let M ′ : 2→ 1→ 0→ 0→ 0 be
the function

λG2.λf1.µm0→0→0.λn0.λg0.

cond F (λp1. G(λx0. cond (x < n) (f x)(conv (p 0)(f x))))
g

cond F (λp1. G(λx0. cond (x 6= n) (f x)(conv (p 0)(f x))))
(m (succ n) g)
(m (succ n) (insert n (f n) g).

Finally, take M = λGf.M ′Gf 0 d∅e. We leave it to the reader to check that M
is indeed the modulus functional. 2

More examples of degrees will appear in the next paragraph. A few further
examples, and some discussion of their potential programming applications, are
given in an electronically available Standard ML source file [33].

9.4 Types and universal functionals

We now ask what types a universal SR functional may have. Recall that H has
call-by-value type 2→ 3. Since it is easy to construct a retraction 2→ 3 � 3, we
certainly have a universal functional of call-by-value type 3. It is natural to ask
whether there is a universal functional of any “lower” type, in either call-by-name
or call-by-value PCF. We only need consider call-by-name types of the form

(0r1 → 0)→ · · · → (0rn → 0)→ 0,

since all other types below 3 are even lower than these. But any such type is
a PCF-definable retract of some call-by-name type ρr ≡ (0r → 0) → 0, so it
suffices to consider types ρr.

We will show, however, that there can be no such universal functional, and
indeed the expressive power of the set of functionals of type ρr increases strictly
with r. To this end we will exhibit, for each r, a denotational model of PCF that
contains all the SR functionals of type ρr and below, but lacks certain functionals
of type ρr+1.

Recall from [15] that HC is a full sub-CCC of the category of dI-domains
with coherence, defined as follows.

Definition 9.14 (i) A dI-domain is an ω-algebraic bounded-complete dcpo X
such that

• for all x, y, z ∈ X where y, z are bounded, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

• every compact element has only finitely many lower bounds.

We write dI for the category of dI-domains and stable continuous functions.
(ii) A coherence on a dI-domain X is a family C of finite non-empty subsets

of X, such that

• for all x ∈ X, {x} ∈ C;

61

• if A ∈ C and B ⊆fin X is below A in the Egli-Milner order (that is,
∀x ∈ A.∃y ∈ B. x ≤ y and ∀y ∈ B.∃x ∈ A. x ≤ y), then B ∈ C.

• if D1, . . . , Dn ⊆ X are directed and for all x1 ∈ D1, . . . , xn ∈ Dn we have
{x1, . . . , xn} ∈ C, then {

⊔
D1, . . . ,

⊔
Dn} ∈ C.

A dI-domain with coherence is a dI-domain X equipped with a coherence C(X);
elements of C(X) are called coherent sets. A strongly stable function between
dI-domains with coherence is a continuous function that respects coherent sets
and their meets. We write dIC for the category of dI-domains with coherence
and strongly stable functions.

(iii) If C is a coherence on X, a subset B ⊆ C is a basis for C if C is the
coherence generated by B (that is, the smallest coherence on X containing B).

In a dI-domain with coherence, any bounded finite non-empty set is coherent.
It follows that all strongly stable functions are stable; thus dIC is a (non-full)
subcategory of dI.

The embedding of HC in dIC can be immediately read off from Definitions 5.5
and 5.6. We will write N⊥ for the object of dIC corresponding to N in HC, and
[[−]] for the interpretation of PCF types in dIC. Explicit definitions of products
and exponentials in dIC can be found e.g. in [10].

We now define the models we want as full subcategories of dIC. We suppose
r is any positive integer.

Definition 9.15 (i) Let X be a dI-domain with coherence. A set A ∈ C(X) is
basic r-coherent if there exist a coherent set B ∈ C(N r

⊥) and a strongly stable
function f : N r

⊥ → X such that A = f(B). We say X is a dI-domain with
r-coherence if the basic r-coherent sets form a basis for C(X). We write dICr

for the category of dI-domains with r-coherence and strongly stable functions.

It turns out that both dIC1 and dIC2 are equivalent to dI, though we shall
not need this below. We will show that dICr is a CCC, but (crucially) the
inclusion dICr ↪→ dIC does not preserve the CC structure. The following simple
observations will be useful:

Lemma 9.16 Suppose X, Y are dI-domains, B a basis for C(X), and f : X → Y
a stable continuous map. If f(A) ∈ C(Y) for all A ∈ B, then f(A) ∈ C(Y) for
all A ∈ C(X).

Proof Let D = {A ∈ C(X) | f(A) ∈ C(Y)}. Then B ⊆ D, so to show
that D = C(X) it suffices to check that D is a coherence. That D contains all
singletons is trivial. If A ∈ D, B ∈ C(X) and B v A in the Egli-Milner order,
then f(B) v f(A) ∈ C(Y) and so f(B) ∈ C(Y). The closure of D under directed
lubs follows easily from the continuity of f . 2

Proposition 9.17 The category dICr has finite products.

62

Proof The terminal object presents no problem. Given objects X, Y of dICr,
let X×Y be the usual cartesian product of dI-domains, and let C(X×Y) be the
coherence generated by the basis

B = {〈f, g〉(A) | f : N r
⊥ → X, g : N r

⊥ → Y strongly stable, A ∈ C(N r
⊥)}.

Clearly all the sets in B are then basic r-coherent, so X × Y is a dI-domain with
r-coherence. The projection maps obviously respect all the coherent sets in B, so
by Lemma 9.16 they respect arbitrary coherent sets. Since they also preserve all
existing meets, they are strongly stable.

Now suppose we are given an object Z of dICr and strongly stable maps
f : Z → X, g : Z → Y . We wish to check that the stable and continuous function
〈f, g〉 : Z → X × Y is strongly stable. But if A ∈ C(Z) is a basic r-coherent
set induced by h : N r

⊥ → Z then 〈f, g〉(A) is a basic r-coherent set induced by
〈fh, gh〉. Thus 〈f, g〉 respects arbitrary coherent sets by Lemma 9.16. Moreover,
it is easy to check that for any A ∈ C(Z) we have 〈f, g〉(

∧
A) =

∧
〈f, g〉(A). 2

Proposition 9.18 The category dICr has exponentials.

Proof Given objectsX, Y of dICr, let Y X be the set of strongly stable functions
X → Y , endowed with the stable ordering; then Y X is a dI-domain by [10,
Proposition 14]. Now let C(Y X) be the coherence generated by the basis

B = {(curry f)(A) | f : N r
⊥ ×X → Y strongly stable, A ∈ C(N r

⊥)},

where N r
⊥ ×X is as given by the previous proposition. Again, all the sets in B

are then basic r-coherent, so Y X is a dI-domain with r-coherence.
To see that the evaluation map ε : Y X×X → Y is strongly stable, we compare

our object Y X with the exponential W = Y X calculated in dIC (see [10]). We
see that Y X and W have the same underlying dI-domain, and B ⊆ C(W) so
C(Y X) ⊆ C(W). Since the evaluation map W ×X → Y is known to be strongly
stable, it follows that ε is strongly stable.

Now suppose we are given an object Z of dICr and a strongly stable map
f : Z × X → Y . We wish to check that the stable and continuous function
curry f : Z → Y X is strongly stable. But if A ∈ C(Z) is a basic r-coherent set
induced by h : N r

⊥ → Z, then (curry f)(A) is a basic r-coherent set induced by
curry (f ◦(h× id)). Thus curry f respects arbitrary coherent sets by Lemma 9.16.
Moreover, for any A ∈ C(Z) we have (curry f)(

∧
A) =

∧
(curry f)(A) in W ,

hence also in Y X . 2

Thus dICr is a cartesian closed category. Moreover, it is easy to see that dICr

contains the dI-domain N⊥ with the usual coherence, and that any morphism
f : X → X in dICr has least fixed point

⊔
f i(⊥). It follows in the usual

way that dICr is a model of PCF—that is, there is an adequate interpretation
[[−]]r of call-by-name PCF in dICr, where [[0]]r = N⊥ and [[σ→ τ]]r = [[τ]][[σ]]r

r

(calculated in dICr).
Let us write [Nk

⊥] for the product of k copies of N⊥ computed in dIC, and
[Nk
⊥]r for the product computed in dICr. The following proposition gives a

measure of the similarity between the interpretations [[−]]r and [[−]].

63

Proposition 9.19 For any 1 ≤ k ≤ r,
(i) the objects [Nk

⊥]r and [Nk
⊥] coincide;

(ii) the objects [[0k → 0]]r and [[0k → 0]] have the same underlying dI-domain,
and C([[0k → 0]]r) ⊆ C([[0k → 0]]);

(iii) every element of [[ρk]] is also an element of [[ρk]]r.

Proof Part (i) follows from the easy observation that in [Nk
⊥] every coherent

set is basic r-coherent. Part (ii) follows from this by comparing exponentials in
dICr and dIC (as in the proof of Proposition 9.18). It is immediate from this
that every strongly stable function [[0k → 0]] → N⊥ is also a strongly stable
function [[0k → 0]]r → N⊥, which gives (iii). 2

We now come to the main point of the exercise: we exhibit an element Fr of
[[ρr+1]] that is not an element of [[ρr+1]]r. For r ≥ 1 and 1 ≤ i ≤ r, let εri ∈ N r

⊥
be the tuple (n− i+ 1, . . . , n− 1,⊥, 1, . . . , n− i). Let Er = {εr1, . . . , εrr}; we call
Er the rth Berry set. Recall from [16] that Er is coherent in [N r

⊥], but no proper
subsets of Er of size greater than 1 are coherent.

Lemma 9.20 Suppose k ≥ 2, and A ⊆ Nk
⊥ is such that Ek ⊆ A and Ek v A in

the Egli-Milner order. Then A is not basic r-coherent for any r < k.

Proof Suppose for a contradiction this is false for some k and A. Take r
minimal such that Ek is basic r-coherent; then clearly r > 1. Take B ∈ C(Nr

⊥)
and f : N r

⊥ → Nk
⊥ strongly stable such that f(B) = A. Let fi = πi◦f : N r

⊥ → N⊥
for 1 ≤ i ≤ k. Since none of the fi are constant functions, each has some
sequentiality index 1 ≤ ji ≤ r. So there must be two of the fi, say fi1 and
fi2, with the same sequentiality index j. Now consider an arbitrary element
x = (x1, . . . , xr) ∈ N r

⊥. Then fi1(x) ∈ N if f(x) 6= εki1 , and similarly for i2; so in
any case, we have xj ∈ N . So ⊥ 6∈ πj(B), and since πj(B) ∈ C(N⊥), this means
πj(B) is a singleton. So by deleting the jth factor in Nr

⊥ we can exhibit A as
basic (r − 1)-coherent, contradicting the minimality of r. 2

Let us write θri : N r
⊥ → N⊥ for the least monotone function such that

θri(εri) = 0. Now take φr = θr1 and ψr the pointwise least upper bound of
θr2, . . . , θrr. It is easy to see that both φr and ψr are PCF-definable, and so are
morphisms in dIC and in any dICr′.

Proposition 9.21 Suppose r ≥ 2.
(i) The set Er+1 is coherent in [N r+1

⊥]r+1 but not in [N r+1
⊥]r.

(ii) The elements θ(r+1)1, . . . , θ(r+1)(r+1) have an upper bound in [[0r+1 → 0]]r
but not in [[0r+1 → 0]]r+1.

(iii) In [[ρr+1]] and [[ρr+1]]r+1, but not in [[ρr+1]]r, there is a function Tr+1

such that Tr+1(φr+1) = 0 and Tr+1(ψr+1) = 1.

Proof (i) The first claim is immediate since Er+1 is coherent in [N r+1
⊥], which

coincides with [N r+1
⊥]r+1. To prove that Er+1 is not coherent in [N r+1

⊥]r, first note
that every directed set in Nr+1

⊥ already contains its lub; thus the first two closure

64

conditions in Definition 9.14(ii) suffice to generate the coherence C([Nr+1
⊥]r) from

the basic r-coherent sets. So if Er+1 is coherent in [N r+1
⊥]r then we have Er+1 v A

in the Egli-Milner order, where A is either a singleton or basic r-coherent. Since
r ≥ 2, clearly A cannot be a singleton. But if A is basic r-coherent, by the
above lemma we cannot have Er+1 ⊆ A. So take i such that ε(r+1)i 6∈ A; then
clearly ⊥ 6∈ πi(A). But since πi(A) is coherent and is not a singleton, we have a
contradiction.

(ii) Let θ be any upper bound for the θ(r+1)i in the stable order; then θ(Er+1) =
{1, . . . , r + 1} is not coherent, so θ is not an element of [[0r+1 → 0]]r+1. Now
let θr+1 be the (pointwise) least upper bound of the θ(r+1)i; we claim that θr+1 :
[N r+1
⊥]r → N⊥ is strongly stable. Suppose A ∈ C([Nr+1

⊥]r). If ⊥ ∈ θr+1(A) then
θr+1(A) is automatically coherent and θr+1(

∧
A) =

∧
θr+1(A). Otherwise, we

must have ∀x ∈ A.∃y ∈ Er+1. y ≤ x. Let E′ = {y ∈ Er+1 | ∃x ∈ A. y ≤ x}; then
E′ v A and so E′ ∈ C([N r+1

⊥]r). But Er+1 6∈ C([N r+1
⊥]r) and no non-singleton

proper subset of Er+1 is even in C([N r+1
⊥]), so E′ is a singleton. It follows that

θr+1(A) is a singleton (and hence coherent), and trivially θr+1(
∧
A) =

∧
θr+1(A).

(iii) In [[ρr+1]] one may define Tr+1 as follows:

Tr+1(f) =

 0 if φr+1 ≤s f ,
1 if ψr+1 ≤s f ,
⊥ otherwise

This function is well-defined by (ii). To see that it is strongly stable, sup-
pose A ∈ C([[0r+1 → 0]]). If Tr+1(A) is not coherent then we must have
Tr+1(A) = {0, 1}, so {θ(r+1)1, θ(r+1)2} v {φ, ψ} v A, so {θ(r+1)1, θ(r+1)2} is co-
herent, a contradiction. Hence Tr+1(A) is coherent, and a simple inspection of
cases shows that Tr+1(

∧
A) =

∧
Tr+1(A). Thus Tr+1 ∈ [[ρr+1]], and it follows

from Proposition 9.19(iii) that Tr+1 ∈ [[ρr+1]]r+1.
However, no such function Tr+1 can exist in [[ρr+1]]r, since φr+1, ψr+1 ≤s θr+1

but 0, 1 have no upper bound in N⊥. 2

Note that θ3 is the Gustave function, the standard example (due to Berry) of
a stable but not sequential function.

We may now read off the following result:

Theorem 9.22 There is no SR functional G of any type ρr such that all effective
SR functionals, or even all finite SR functionals, are PCF-definable relative to
G.
Proof We show that the SR functional Tr+1 (which is finite and hence effective)
is not PCF-definable from G. Suppose M : ρr → ρr+1 were a PCF term such
that [[M]](G) = Tr+1 in dIC. For each i let Ni be a PCF term denoting θ(r+1)i;
then [[M]](G)([[Ni]]) = i for each i. But the evident logical relation between the
PCF types in dIC and dICr relates G to G, [[M]] to [[M]]r, and [[Ni]] to [[Ni]]r
(using the logical relations lemma). It follows that [[M]]r(G) ∈ [[ρr+1]]r fulfils
the criteria for Tr+1, a contradiction. 2

Remarks 9.23 (i) In fact the model dICr shows that Tr+1 is not PCF-definable
even from the set of all SR functionals of type ρr or below. This answers negatively

65

a question implicitly posed at the very end of [17].
(ii) A simple corollary of the above theorem is that there is no finite SR

functional G of any type whatever such that all the finite SR functionals are
PCF-definable from G. For if such a G existed, it would be definable from
some finite approximation Hi to H arising from the standard sequence of finite
retractions; but each such Hi has the same degree as some functional of type ρr.

(iii) It is an easy exercise to show that each Tr+1 is PCF-definable from Tr+2.
We therefore have a strictly ascending chain of degrees d(T2) ≺ d(T3) ≺
Note that T2 is easily definable from the modulus functional, so d(T2) = d(F) by
Proposition 9.13. This shows that d(F) is strictly below d(H).

10 Synthetic domain theory

In this section we revisit our models Mod(Bfull) and Mod(Beff) from the stand-
point of synthetic domain theory (see e.g. [19, 35, 48, 52]). We will see that at
least two existing versions of synthetic domain theory work out very well in these
models; we also point out some ways in which our models are rather different in
flavour from most of those previously considered.

10.1 Well-complete and replete objects

Consider again the lift functor L = −⊥ on Mod(B) (where B is Bfull or Beff). As
observed in Section 3.1, it is easy to make this into a monad, i.e. to give natural
transformations η : id → L and µ : L2 → L satisfying the monad laws. Let
Σ be the object 1⊥, and let > be the morphism η1 : 1 → Σ. Pullbacks of >
along morphisms X → Σ are called Σ-monos. It is easy to see that (Σ,>) is a
dominance on Mod(B)—that is, any Σ-mono Y � X is the pullback of > along
a unique classifying map X → Σ, and Σ-monos are closed under composition.
(For the latter claim, we use the fact that the “generic” composite of Σ-monos
>⊥ ◦ > is classified by µ1.) Indeed, in the terminology of [35], (Σ,>) arises from
a divergence on B, namely the singleton set {⊥}.

For general reasons, the functor ⊥ has both an initial algebra ω and a final
coalgebra ω (see e.g. [35].) In the case of Mod(B), the following concrete present-
ations of ω and ω are especially convenient. For each n ∈ N define qn ∈ B by
qn(m) = 0 if m < n, qn(m) = ⊥ if m ≥ n; and take q∞ = λm.0. The objects ω, ω
may then be defined by

|ω| = N, ‖n‖ω = {qn},
|ω| = N, ‖n‖ω = {qn}, ‖∞‖ = {q∞}.

The structure map ω⊥ → ω for the initial lift algebra is the isomorphism that just
interchanges the points 0 and 1, and likewise for the final coalgebra. Moreover,
the unique algebra map ι : ω → ω is the evident inclusion. In all versions
synthetic domain theory, the morphism ι (or something very similar) plays a
fundamental role in formulating an appropriate notion of “chain-completeness”
for predomains.

66

We will briefly consider two possible such categories of predomains in Mod(B):
the well-complete objects introduced by Longley and Simpson [35], and the replete
objects considered by Hyland [19] and Taylor [55]. We will show that both these
notions yield good categories of predomains. First recall the following definition
from [35]:

Definition 10.1 (Well-completeness) An object X is complete if Xι : Xω →
Xω is an isomorphism. An object X is well-complete if X⊥ is complete.

Actually the notions of complete and well-complete object coincide in Mod(B)
(as they do in many other natural models), though we will not use this fact.
The following proposition shows that strong completeness axiom of [35] holds in
Mod(B):

Proposition 10.2 The object N in Mod(B) is well-complete.

Proof Suppose c is any morphism ω → N⊥, realized by r. Then each r • qn
realizes some element of N , and r • q∞ =

⊔
r • qn. But the set of realizers

for elements of N⊥ is (trivially) closed under lubs, and so r • q∞ also realizes
some element of N . Thus r realizes a (necessarily unique) morphism ω → N⊥
extending c. So N ι

⊥ : Nω
⊥ → Nω

⊥ is an isomorphism whose inverse is realized by
λ∗r.r. 2

This shows that we are in the situation described for general realizability
models in [31, 35], and indeed that all the axioms appearing in [48] or in [52] are
true in Mod(B). This means that all the machinery of well-complete objects is
available to us. In particular:

Theorem 10.3 (i) The well-complete objects in Mod(B) are closed under finite
limits, dependent products (including exponentials), finite sums, lifting and re-
tracts, and contain the natural number object.

(ii) For any well-complete object X equipped with a (necessarily unique) lift
monad algebra structure α : X⊥ → X, every morphism X → X has a fixed point,
and indeed there is a morphism yX : XX → X that computes it. Furthermore,
for any f : X → X and any t : X → Σ, we have t(yXf) = > iff t(fn(α⊥)) = >
for some n.

By the results of [31, Chapter 6], we also have adequate interpretations of
call-by-name and call-by-value PCF. Moreover, the well-complete objects form a
small complete category (i.e. an impredicative universe), so we can also interpret
much more powerful type theories (see e.g. [18]).

Next we turn our attention to the replete objects in Mod(B). There are many
equivalent definitions of repleteness (see e.g. [47]); here we recall a characteriza-
tion due to Taylor [19].

Definition 10.4 (Repleteness) A morphism e : X → Z is called Σ-epi if Σe :
ΣZ → ΣX is mono. A morphism f : X � Y is called an extremal mono if, for
any mono m and Σ-epi e with f = m ◦ e, e is an isomorphism. An object X is
replete if the canonical map εX : X → ΣΣX is an extremal mono.

67

In the situation of [35] it is always the case that every replete object is well-
complete; in fact, one can regard the well-complete objects as the largest good
category of predomains, and the replete objects as the smallest.

Proposition 10.5 The object N in Mod(B) is replete.

Proof Consider the canonical map ε : N → ΣΣN . We first show that this
is a regular mono—that is, there is a realizer p such that a ∈ ‖εn‖ implies
p • a ∈ ‖n‖. For convenience we work with the following presentations of N,Σ
and ΣN : ‖n‖N = {rn} where rn(0) = n, rn(m + 1) = ⊥; ‖>‖Σ = {r0} and
‖⊥‖Σ = {λm.⊥}; and for t : |N | → |Σ| we have ‖t‖ΣN = {rt}, where rtn = 0 if
tn = >, rtn = ⊥ if tn = ⊥. In addition, we consider as realizers for f ∈ |ΣΣN | all
•-irredundant realizers for f considered as a morphism ΣN → Σ (with respect to
the above presentations).

Relative to these presentations, any realizer a for any εn : ΣN → Σ clearly
satisfies a〈0〉 =?n; From this, it is easy to construct the required realizer p that
extracts n from a. So ε is a regular mono; in particular, it is maximal among
subobjects of ΣΣN whose points are exactly the elements εn.

To see that ε is an extremal mono, note first that if a is a •-irredundant
realizer for any f : ΣN → Σ, then f = εn iff a〈0〉 =?n and a〈0, 0〉 =!0. Using
this, it is easy to construct a morphism C : ΣΣN → Σ such that Cf is > if f = εn
for some n, and Cf = ⊥ otherwise. Now suppose εN factors as N e→ Z

m→ ΣΣN

where m is mono and e is Σ-epi. Clearly the maps C ◦m and λz.> : Z → Σ both
induce the constant map λn.> : N → Σ, and so C ◦m = λz.> since e is Σ-epi.
Thus the image of m contains only the points εn, and so e is an isomorphism by
the above. 2

For general reasons (see [48]) we can now deduce the analogue of Theorem 10.3
for the replete objects. So the replete objects also suffice for interpreting PCF
and indeed much richer languages. We do not know whether there are objects of
Mod(B) that are well-complete but not replete.

Remark 10.6 Clearly the category K of Section 8.2 lies within the category of
replete objects; hence so does the image of E : SSeqFun→Mod(B). Likewise,
we expect that some good subcategory of HC embeds well into the replete objects.

10.2 The Σ-order

We now consider another basic notion from synthetic domain theory: the Σ-order
(or intrinsic order) on objects. We shall see that in Mod(B) this coincides exactly
with the stable order (at least for finite types). This comes as no surprise after
the results of Section 5, but it means that the model Mod(B) has a completely
different flavour from any of the models considered e.g. in [35], in which the
Σ-order (seemingly) coincides with the pointwise order.

For any modest set X, the (external) Σ-preorder �X on |X| is defined by

x �X y ⇐⇒ ∀t : X → Σ. (tx = > =⇒ ty = >).

68

Clearly all morphisms between modest sets preserve the Σ-preorder. It is easy to
see that in Mod(B) the Σ-preorder on N⊥ coincides with the usual partial order;
and hence that for all finite types over N⊥ the Σ-preorder is a partial order. Since
Σ is a retract of N⊥, the definition of the Σ-order on the finite types Rσ can be
formulated as follows:

x �σ y ⇐⇒ ∀t ∈ Rσ→0. (t · x = 0 =⇒ t · y = 0).

This emphasizes that the Σ-order is intrinsic to the type structure R and not
dependent on any particular model for R such as the category Mod(B).

Proposition 10.7 For x, y ∈ Rσ
full, the following are equivalent:

(i) x �σ y.
(ii) x vσ y in the sense of Proposition 5.13.
(iii) x, y are path-related, i.e. there exists p ∈ R0→σ with p · ⊥ = x and

p · ⊥ = y.

Proof For (i) ⇒ (ii), it seems easiest to work with the characterization of vσ
given by the hypercoherence model (see Proposition 5.13). For each atom a in
the underlying set of the hypercoherence X = [[σ]]HC, let ta : X → N be the
strongly stable function whose trace is {({a}, 0)}; then for z ∈ D(X) we have
ta(z) = 0 if a ∈ z and ta(z) = ⊥ otherwise. So if x �σ y then (regarding x, y as
states of X), for each a we have

a ∈ x =⇒ ta(x) = 0 =⇒ ta(y) = 0 =⇒ a ∈ y.

Thus x ⊆ y, and so x vσ y by Proposition 5.13.
(ii) ⇒ (iii): Suppose x vσ y, i.e. there exist realizers a ∈ ‖x‖, b ∈ ‖y‖ with

a v b. It is trivial to construct a realizer r such that r • (λn.⊥) = a and r •rn = b
for any n (where rn(0) = n and rn(m + 1) = ⊥ as above). Clearly r realizes a
morphism p with the required properties.

(iii) ⇒ (i): Given p ∈ R0→Σ as above and t ∈ Rσ→0, if t · x = t · (p · ⊥) = 0
then t · y = t · (p · ⊥) = 0 since the map N⊥ → N⊥ given by t ◦ p is monotone. 2

Note that the implication (ii) ⇒ (iii) fails in the effective case: if x, y ∈ R1

correspond to two partial recursive functions such that x ⊆ y but dom y −
dom x is not r.e., there is no effective realizer for an element p with the required
properties.

It follows from the above that the Σ-order on ΣΣ is given by λx.⊥ � λx.x,
λx.⊥ � λx.>. Indeed, it is amusing to note that the functional F described in
the Introduction is actually an isomorphism ΣΣ ∼= 2⊥ in Mod(B). Likewise, one
can easily show that Σω ∼= Σω ∼= N⊥ in Mod(B).

Remark 10.8 The model Mod(B2) also fits well with the theory of well-complete
objects: the divergence {⊥} gives rise to a dominance in Mod(B2) satisfying the
Strong Completeness Axiom. As mentioned in Section 8.2, Mod(B2) also has
the potential advantage that most of the objects of interest are projective. It
would be interesting to know whether the modified realizability model mRT(B)
of Section 3.3 and the presheaf model [Mop,Set] in Section 6 also fit smoothly
into some version of synthetic domain theory.

69

11 Notions of higher-type computability

We end the main body of the paper by comparing the SR functionals with other
known type structures. The line of thought we describe here is part of a general
investigation of notions of computability at higher types, which will be developed
more fully in a forthcoming survey paper [30].

Our motivating philosophy is as follows: since it is not clear a priori what
should be meant by the “computable” functionals of higher types, we take a step
back and consider the space of all possible notions of higher-type computability.
More precisely, we define a general concept of “class of computable functionals”,
in such a way that any reasonable notion of higher-type computability can be
expected to provide an example of such a class. Within this abstract framework,
we can then collect particular notions of higher-type computability, and ask how
they are related.

11.1 General definitions

Here we shall restrict attention to notions of (hereditarily) partial computable
functional. In general, a class of partial higher-type functionals is embodied
by a partial type structure, as in Definition 3.6(i) (see also Section 7.1). For
definiteness, we will concentrate here on the call-by-name notion of type structure,
though (as usual) this choice does not matter much. We repeat the definition
here for convenience.

Definition 11.1 A partial type structure (PTS) T consists of

• a set T σ for each type σ, where T 0 = N⊥,

• for each σ, τ a total “application” function ·στ : T σ→τ × T σ → T τ .

We say T is extensional (or is an EPTS) if, for all types σ, τ and all f, g ∈ T σ→τ ,

(∀x ∈ T σ. f · x = g · x) =⇒ f = g.

It seems clear that any reasonable notion of computable partial functional
will give rise to a PTS T in this sense, since we expect computable functionals
to be closed under application. We would also expect T to be extensional, since
the elements of T σ→τ are just functions.5 Moreover, if T consists of computable
partial functions, we expect it to be effective in some way. We can build a notion
of effectivity onto the above definition as follows.

Definition 11.2 An effective structure on a PTS T assigns to each element f
of each T σ a non-empty set ‖f‖σ ⊆ N of realizers for f , such that:

• for each σ, τ there is a partial recursive function ϕστ : N × N ⇀ N such
that, for all f ∈ T σ→τ , x ∈ T σ,m, n ∈ N we have

m ∈ ‖f‖σ→τ ∧ n ∈ ‖x‖σ =⇒ ϕ(m,n) ∈ ‖f · x‖τ ;
5This is a slight oversimplification: if the domain of definition of the functions in Tσ→τ were

larger than Tσ, one could imagine distinct elements f, g ∈ Tσ→τ that had the same restriction
to σ. We will discuss the issue of extensionality in more detail in [30].

70

• there is a partial recursive function ψ : N ⇀ N such that for all n ∈ N we
have

ψ(n) ↓ =⇒ n ∈ ‖ψ(n)‖0, ψ(n) ↑ =⇒ n ∈ ‖⊥‖0.

A effective PTS is a PTS that admits at least one effective structure.

The reader may recognize that a PTS with effective structure is nothing other
than a certain kind of PTS within the realizability model on the partial combin-
atory algebra K1. The above definition is designed to be as liberal as possible
so as to admit any conceivable notion of computable functional—for instance,
there is no requirement that the set

⋃
x∈Tσ ‖x‖σ of realizers for objects of type σ

be recursively enumerable. Indeed, it seems reasonable to propose the following
informal hypothesis:

Thesis 11.3 Any reasonable notion of computable hereditarily partial functional
at higher types (henceforth “notion of computability”) is embodied in an effective
extensional PTS.

(Of course, there are also many silly effective EPTSs that do not embody a
reasonable notion of computability.) The above claim rests on Church’s Thesis
and on the intuitive idea that “effective” objects of any kind are ultimately rep-
resentable by natural numbers. It also depends on the supposition, true in all
known cases of interest, that any reasonable class of functionals (for example, a
class given as a call-by-value type structure) can be embodied in an “equivalent”
call-by-name type structure. In the absence of any evidence to the contrary, we
adopt the above thesis as a working hypothesis.

Given two EPTSs, it is natural to ask when one of them in some sense “con-
tains” the other. Again, we seek the most liberal notion of containment that
seems reasonable—for instance, the obvious definition of homomorphic inclusion,
and even that of logical relation, seem too strong for our purposes. We propose
the following notion:

Definition 11.4 Let T, U be EPTSs. A simulation s : T → U consists of a total
relation sσ : T σ −→| Uσ for each type σ, such that

• s0 is the identity relation on N⊥;

• for any f ∈ T σ→τ , g ∈ Uσ→τ , x ∈ T σ, y ∈ Uσ we have

sσ→τ (f, g) ∧ sσ(x, y) =⇒ sτ (f · x, g · y).

We write T ≤ U if there exists a simulation s : T → U .

Thesis 11.5 If U embodies a notion of computability that includes or subsumes
the notion embodied by T in any reasonable sense, then T ≤ U .

71

The intuition is that for any element x of T , there is at least one element
y of U that represents or “simulates” x. Note that T ≤ U iff T arises as a
homomorphic subquotient of U (where homomorphisms are required to be the
identity on type 0).

It is clear that EPTSs and simulations between them form a category. It is
also easy to see that the only simulation T → T is the identity; it follows that the
relation ≤ is a partial order on EPTSs. We will write P for the poset of EPTSs
ordered by ≤, and Peff for the full sub-poset of effective EPTSs. (Note that we
not impose any effectivity conditions on simulations between effective EPTSs.)

11.2 Three notions of computability

We now consider three important examples of effective EPTSs. These correspond
to the three good candidates for a natural notion of computable partial functional
at higher types that we are currently aware of, and each of them admits several
different characterizations.

Examples 11.6 (i) The effective continuous functionals—that is, those present
as effective elements of finite types in the standard Scott model—constitute an
effective EPTS. By a universality result due to Plotkin [45] and Sazonov [49],
all such functionals are definable in the programming language PCF + parallel-
or + exists (we call this language PCF++). It follows that this EPTS can be
characterized syntactically as the term model for PCF++ (that is, the type struc-
ture of closed PCF++ terms modulo observational equivalence). It is also the
EPTS arising from the familiar category of modest sets over K1 (see e.g. [31,
Chapter 7]). There are many other mathematical characterizations of this type
structure—these will be surveyed in [30].

(ii) The effective PCF-sequential functionals constitute an effective EPTS.
Syntactically this can be characterized as the term model for pure PCF. Semantic
characterizations of this type structure are provided by the effective versions of
the various game models for PCF [2, 21, 40]. There are also characterizations via
realizability models (see [32] for a survey).

(iii) The effective SR functionals, as described in this paper, clearly consti-
tute an effective EPTS. Of the many characterizations we have discussed, the
syntactic characterization as the term model for PCF+H is most relevant to our
present concerns.

Thesis 11.7 The above three type structures all represent reasonable notions of
computability.

For convenience we name each of these type structures after the corresponding
programming language, referring to them as T (PCF++), T (PCF) and T (PCF+H)
respectively. In each case, an effective structure on the PTS can be obtained
from the corresponding language via a Gödel-numbering of closed terms (note
that evaluation of terms of type 0 is effective, and the application operation can
be simply juxtaposition of terms.) In fact, for the arguments below we only
need to posit that T (PCF++) and T (PCF+H) represent reasonable notions of
computability.

72

It is easy to see that the syntactic inclusions PCF ↪→ PCF++ and PCF ↪→
PCF+H induce simulations between the corresponding term models, so that we
have T (PCF) ≤ T (PCF++) and T (PCF) ≤ T (PCF+H). (Note that the total
relations in question will not all be functions, since PCF terms that are observa-
tionally equivalent in PCF need not be so in PCF++ or PCF+H.)

Of course, many other interesting EPTSs are known. Some of these, such
as the effective part of Berry’s stable model [4], appear to be mathematically
natural, but no reasonable computational interpretation for the corresponding
functionals is known. Others arise from degrees of parallelism [resp. the degrees
defined in Section 9.3], and consequently lie between T (PCF) and T (PCF++)
[resp. T (PCF+H)]. Whilst these EPTSs do have a computational interpretation,
none of them has yet emerged as particularly canonical in the sense that it ad-
mits other mathematical characterizations. It is for these reasons that we claim
that our three EPTSs represent the only natural notions of partial higher-type
computability known to date.

The following facts are easily established:

Proposition 11.8 (i) T (PCF++) 6≤ T (PCF+H).
(ii) T (PCF+H) 6≤ T (PCF++).

Proof (i) Suppose we had a simulation s : T (PCF++)→ T (PCF+H). Let p ∈
T (PCF++)0→0→0 be some parallel operation—for instance, suppose that pxy = ⊥
iff x = y = ⊥. Take q ∈ T (PCF+H)0→0→0 such that s(p, q). Since s0 = id, it is
clear that q = p as a function N⊥ × N⊥ → N⊥. But this is a contradiction, since
p is not Milner-Vuillemin sequential and hence not SR.

(ii) Conversely, suppose we had a simulation t : T (PCF+H) → T (PCF++).
Let F ∈ T (PCF+H)2 be the functional defined in Remark 3.7(ii), and take G ∈
T (PCF++)2 such that t(F,G). Then clearly G also satisfies the specification
given in Remark 3.7(ii). But this is impossible, since every G ∈ T (PCF++)2 is
monotone with respect to the pointwise order. 2

The relationships between our three type structures in Peff may therefore be
depicted as follows:

T (PCF++) T (PCF+H)

@
@
@
@
@ �

�
�
�
�

T (PCF)

It is already interesting to note that there are two seemingly natural but
incomparable notions of computability. One might now ask whether there is
some more generous notion of computability that subsumes both of them. We
shall see that the answer is no: the notions of computability corresponding to
PCF++ and PCF+H are essentially incompatible.

We will write T for the type structure T (PCF++), We assume some familiarity
with the characterization of T as the EPTS arising from Mod(K1) (see [31]), and
we write ‖ − ‖T for the effective structure on T given by Mod(K1).

73

Proposition 11.9 For each type σ there is a total recursive function εσ : N→ N
such that

• for any n ∈ N, εσ(n) ∈ ‖x‖Tσ for some x ∈ T σ;

• if n ∈ ‖x‖Tσ then also εσ(n) ∈ ‖x‖Tσ .

Proof It is straightforward to construct such a function for the type 1. The
result for arbitrary types then follows from the fact that every type T σ is a
PCF++-definable retract of T 1 (see [34, Lemma 5.2]). 2

Lemma 11.10 The type structure T is a maximal element of Peff.

Proof Suppose we have an EPTS U with effective structure ‖ − ‖U , and a
simulation s : T → U . We can regard each structure (Uσ, ‖−‖Uσ), as well as each
(T σ, ‖−‖Tσ), as an object in Mod(K1). We will show that there are isomorphisms
T σ ∼= Uσ in Mod(K1) that respect application.

For 0 the bijection T 0 ∼= U0 is immediate, and the fact that this is an iso-
morphism in Mod(K1) follows from the existence of the functions ψ of Defin-
ition 11.4. For type σ → τ , given any f ∈ Uσ→τ and any n ∈ ‖f‖U we may
recursively obtain a Kleene index tracking f · − : Uσ → U τ . By the recursive
equivalence of T, U at σ and τ we may thence recursively obtain a Kleene in-
dex tracking f · − : T σ → T τ , that is, an element of ‖f‖Tσ→τ . We thus have a
morphism Uσ→τ → T σ→τ in Mod(K1) that respects application. Conversely, for
every f ∈ T σ→τ there exists f ′ ∈ Uσ→τ such that s(f, f ′), and so we certainly
have a function f 7→ f ′ respecting application. To see that this is a morphism
T σ→τ → Uσ→τ , we use the function εσ→τ of the above proposition. By extending
εσ→τ to a strict function we can clearly regard εσ→τ as an element of T 0→(σ→τ).
So take e ∈ U0→(σ→τ) such that s(εσ→τ , e); then from an element of ‖e‖U one may
construct a Kleene index for the morphism N → Uσ→τ corresponding to e, and
this index tracks the required morphism T σ→τ → Uσ→τ . 2

Theorem 11.11 The type structures T (PCF++) and T (PCF+H) have no upper
bound in Peff. Hence Peff contains no top element.

Proof Immediate from the above lemma and Proposition 11.8(ii). 2

From this and the above theses, it follows that there can be no reasonable no-
tion of computability that subsumes all other reasonable notions—that is, there
is no ultimate class of computable functionals containing “all” computable func-
tionals of higher type. This observation seems to hold some philosophical interest
in its own right, and is closely related to a problem posed by Kleene in [24, §1.2]
(also quoted in [21]):

I aim to generate a class of functions . . . which shall coincide with
all the partial functions which are “computable” or “effectively de-
cidable”, so that Church’s 1936 will apply with the higher types in-
cluded.

74

The above results suggest that Kleene’s problem, understood in a certain
way, has no solution. If one is seeking a notion of computability that is inclusive
as possible, one inevitably has to choose to exclude certain kinds of functional
in order to include others. This fact may appear paradoxical at first sight—
for instance, one might wonder whether there was not some class of functionals
computable in the language PCF+++H. The answer is that any attempt to design
an operational semantics for such a language results in a system that is either non-
effective or non-deterministic (depending on exactly how it is attempted): the
question of whether a function needs to look at its argument in order to return
a result cannot be answered effectively when we are dealing with infinitely many
parallel threads of computation. Another way to say this is that the question of
whether f looks at its argument is only sensible for intensional representations
of f of a certain restricted kind.

Whilst our argument depends on the thesis that T (PCF++) and T (PCF+H)
both represent reasonable notions of computability, we have not needed to as-
sume that the type structures we have considered represent the only reasonable
such notions. Indeed, there appears to be no evidence for this at present, beyond
the fact that no other compelling notions of computability are currently known.
Thus, there remains the intriguing possibility that there are other natural no-
tions awaiting discovery, represented by elements of Peff but embodying some
computational principle quite different from those above.

We conclude with some scattered observations about the poset Peff. First,
it is natural to ask whether T (PCF+H) is also a maximal element. In fact it
is not: the effective elements of the hypercoherence model clearly constitute an
effective EPTS, and it follows from the results of Section 5.3 that this is strictly
larger than T (PCF+H). However, it would appear that this larger type structure
is a distraction since it does not embody an interesting computational notion—
certainly it is not “effectively sequential” in any way. We would conjecture that,
in some informal sense, T (PCF+H) represents a maximal notion of effectively
sequential functional, and perhaps even the unique maximal notion.

Secondly, one might ask whether T (PCF) is a greatest lower bound in Peff

for T (PCF++) and T (PCF+H). In general, one can construct a greatest lower
bound of two EPTSs T, U (not necessarily the unique one) by forming the product
T × U and then taking the subquotient by the unary logical relation induced by
the diagonal relation at ground type. Clearly if T, U are effective then so is the
resulting type structure. However, if this is construction is applied to T (PCF++)
and T (PCF+H), the resulting type structure V is strictly greater than T (PCF).
This can be seen from the fact that both T (PCF++) and T (PCF+H), and hence
also V , contain a function C : (02 → 0) → 0 corresponding to Curien’s Third
Counterexample (see [14, p.269]), which is not PCF-definable:

C f =
{

0 if f 0⊥ = 0 or f ⊥ 0 = 0 or f ⊥ 1 = f 1 0 = 0,
⊥ otherwise.

The idea that this counterexample survives even when the Scott model and the
strongly stable model are combined is already implicit in [10]. Operationally, the
function C can be implemented using either parallel operations such as parallel-or
or SR functions such as H, though it cannot be implemented in pure PCF.

75

12 Conclusions and further directions

12.1 Review of results

We have presented a number of contrasting but equivalent characterizations of
the type structures R,Reff. For convenience we summarize them here (glossing
over the difference between the call-by-name and call-by-value variants).

1. The type structure given by standard realizability over the combinatory
algebra B or Beff (Definition 3.6).

2. The type structure given by modified realizability over B or Beff (Proposi-
tion 3.9).

3. The extensional collapse of the [effective] sequential algorithms model (Co-
rollary 5.3).

4. (Reff only) The extensional collapse of the programming languages µPCF
and PCF+catch (Remark 5.4).

5. (R only) The type structure in the strongly stable model HC (Corollary 5.8;
Section 8.1).

6. The type structure in the presheaf category [Mop,Set] (Section 6.2).

7. (Reff only) The closed term model of the language PCF+H (Section 9.2).

A few of these characterizations (e.g. 1,6) seem sufficiently simple and appeal-
ing that even by themselves they suggest that the SR functionals are a math-
ematically natural object of study. More importantly, however, the fact that
so many constructions of such diverse characters all give rise to the same type
structure creates a strong impression that this type structure is a highly canonical
mathematical object.

The above list provides a good example of how different mathematical char-
acterizations can illuminate different facets of the same object. For instance,
the characterizations 1–4 all have an intensional or operational flavour, and they
show how the SR functionals arise from a natural and very general notion of
sequential process. These constructions are all basically “extensional collapses”
of some kind—that is, at each type level they pick out the set of elements that
“just happen” to behave extensionally—thus, they do not immediately give much
of a grasp on what these elements are. (Note, however, that characterization 1
leads to a proof of the universality of type 2, and we do not know whether this
result can be obtained easily by any other means.) By contrast, the strongly
stable model, while it does not directly reveal the computational aspect of the
SR functionals, does give a “finitary” characterization of them in terms of a
preservation property, and hence yields effective information (such as the decid-
ability of equality for finite elements) that is not evident from any of the other
characterizations. Likewise, the language PCF+H, while seemingly artificial in
itself, provides a pleasing “constructive” handle on Reff which is not given by

76

any of the other descriptions—we can recursively enumerate all the effective SR
functionals and only them. The functional H can also be used to establish the
relationship between the full and effective type structures (Theorem 9.10).

We have also shown that the SR functionals enjoy some pleasing properties
not shared by the PCF-sequential functionals: for instance, the decidable present-
ation of the finite elements (Proposition 5.10) and the existence of a universal
type (Theorem 7.11). These results indicate that the class of SR functionals is
in some sense of a lower “logical complexity” than the class of PCF-sequential
functionals.

Though our main focus has been on the type structures R and Reff, we believe
our results also indicate that van Oosten’s combinatory algebra B is an attractive
object worthy of study in its own right. It provides a simple mathematical setting
in which sequential algorithms have a natural home, and it has directly inspired
our construction of a retraction 3 � 2. Moreover, the corresponding notion of
realizability coincides with that embodied by Abramsky’s combinatory algebra
A (see Remark 2.8). In addition, we suspect that the combinatory algebra B2,
discussed in Section 8.2, will also turn out to be a natural and important object.

12.2 The meaning of “sequentiality”

Having discussed the mathematical status of the SR functionals, it is worth con-
sidering their computational aspects, and in particular, examining more closely
the claim that the SR functionals are “sequential” in some reasonable sense. As
is pointed out in the Introduction to [2], there is a tension inherent in the the
phrase “sequential functional”, since sequentiality refers primarily to a compu-
tational process rather than a mere function. Clearly, by specifying an abstract
type structure such as Reff, or even a functional such as H, we do not commit
ourselves to any particular kind of operational implementation. Indeed, many
different operational realizations of Reff are possible (see e.g. Section 12.3 below).
The claim that the SR functionals are sequential, therefore, can only mean (in
our view) that at least some reasonable realizations of them have a “sequential”
character.

The question, then, is what sequentiality should mean for computational pro-
cesses. The problem here is that there is no agreed general definition of “sequen-
tiality” for processes of higher type. We can therefore argue in two ways: we can
demonstrate the relationship with other things that have been called “sequential”,
or we can appeal to an informal understanding of what the word means. Regard-
ing the first of these, we have shown that the SR functionals can all be computed
by sequential algorithms, and that they can be implemented in languages such
as PCF+catch and µPCF which are widely referred to as sequential.

Regarding the informal concept of sequentiality, it is instructive to compare
a language such as PCF+catch with pure PCF. Intuitively, in both languages we
can only “do one thing at a time”: slightly more precisely, we cannot have two
subcomputations that are directly triggered by the same function call in progress
at the same time. This contrasts with PCF+parallel-or, even when the latter is

77

implemented using deterministic reduction rules, for example:

if M →M ′ then parallel-or MN → parallel-or NM ′.

In PCF, however, there is an additional requirement: each subcomputation must
be “completed” before another subcomputation, directly triggered by the same
function call, can be begun. (In game-theoretic terms, this can be enforced by
a well-bracketing condition.) This requirement is not satisfied by PCF+catch,
since the catch operator allows subcomputations to be aborted before they are
completed. Our view is that sequentiality informally means “doing only one thing
at a time”, which is not the same thing as “completing one thing before starting
another”. On this informal understanding, the languages PCF and PCF+catch
are both sequential, while PCF+parallel-or is not. Insofar as PCF+catch embodies
one reasonable realization of the SR functionals, we therefore feel justified in
referring to the SR functionals as sequential.

The above discussion suggests that, from at least one point of view, the differ-
ence between PCF-sequentiality and sequential realizability lies in whether or not
computations are required to be well-bracketed. The same message is reinforced
by Abramsky’s combinatory algebra A and its well-bracketed subalgebra Awb
(see Remark 2.8), which give realizability models of the SR and PCF-sequential
functionals respectively.

We are anxious to point out, however, that we do not see the notions of se-
quential realizability and PCF-sequentiality as being in competition in any way.
In our view, they both represent natural and compelling notions of sequentiality
at higher types, and we are not inclined to argue over which is “the more ca-
nonical”. It is true, as we have seen, that in some ways the SR functionals have
better mathematical properties than the PCF ones, but we think these should be
distinguished from questions about the conceptual status of the two notions.

12.3 Game-theoretic models

Perhaps the biggest omission from our theoretical investigation of the SR func-
tionals concerns their relationship to game models for sequential computation
(see e.g. [2, 21]). Here we will briefly describe the situation as we see it, and
suggest some questions for further investigation.

Abramsky has proposed an “intensional hierarchy” of computational phenom-
ena, such as state and control features, which can be captured semantically via
various relaxations of the constraints on strategies in the basic game model for
PCF. Roughly speaking, for deterministic sequential languages there appear to
be two main axes of interest along which such relaxations can be made: we may
weaken either the well-bracketing condition on strategies (leading to models for
languages with control features—see [27]), or the innocence condition (leading to
models for languages with state—see e.g. [1]). These conditions can be relaxed to
various degrees, and also in combination (this seems to be necessary to provide
good models for ML-style exceptions, for example). In general, one tries to cor-
relate particular programming language features with particular (combinations
of) conditions on strategies, by means of full abstraction or universality results.

78

The recent Ph.D. thesis of Laird [28] makes explicit some of the connections
between this work in game semantics and the results of the present paper. He
considers a class of innocent unbracketed strategies, and shows that its observa-
tional quotient coincides exactly with the sequential algorithms model. It follows
immediately from the results of our Section 5.1 that the extensional collapse of the
innocent unbracketed games model yields the SR functionals, and similarly for
the effective analogue. Laird also shows that every effective innocent unbracketed
strategy is definable in µPCF. It follows from this that Reff is the extensional
collapse of µPCF (see our Remark 5.4), or indeed of any other language that
defines the same class of strategies.

We believe that similar results will hold for many other interesting conditions
on strategies (and for the corresponding programming languages). For instance,
we have recently shown that our functional H (and hence all SR functionals) can
be implemented using ML-style references of ground type. Consequently, it would
appear that the SR functionals arise as the extensional collapse of a certain class
of non-innocent strategies (or of a corresponding programming language with
state). Likewise, H can be implemented using ML-style exceptions; we would
expect this to lead to another result of the same kind.

Indeed, we would conjecture that more than this is true. It seems likely
that, in some sense, any reasonable class of strategies that is “sufficiently un-
constrained” along either axis (i.e. sufficiently larger than the basic class of PCF
strategies) will yield the type structure R as its extensional collapse. This would
suggest that a large class of sequential programming languages, including lan-
guages with continuations, exceptions and references of various kinds and in
various combinations, would have as their extensional collapse the type struc-
ture Reff. A precise result to this effect would constitute further evidence for the
ubiquity of the SR functionals.

However, we are aware of at least one example of a sequential programming
language of the above kind for which such a result does not hold. Our imple-
mentations of SR functionals using ML-style exceptions can fail to work if their
arguments are allowed to contain wildcard exception handlers;6 thus, the ex-
tensional collapse of a certain extension of PCF with exceptions and wildcard
handlers does not yield the effective SR functionals. However, this need not
seriously challenge the kind of general result suggested above, since it appears
that wildcard handlers do not fit comfortably into the general framework under
consideration. (There is already some consensus that features such as wildcard
handlers—a kind of control delimiter—are troublesome from a semantic point of
view; see e.g. [11]).

Perhaps the most important open question in this area is whether there is (a
sensible description of) a class of strategies whose observational quotient is exactly
the type structure R. For all the extensional collapse constructions mentioned
above, we have to throw away non-extensional junk in order to obtain just the
SR functionals. It would be very interesting indeed if one could find a constraint
on strategies (preferably of a “local” nature) that gave rise to the SR functionals
without any such junk, in the same way that the fully constrained games model

6I am indebted to Nick Benton and Andrew Kennedy for this observation.

79

gives rise to the PCF type structure. Such a constraint on strategies would be
likely to suggest a programming language for the SR functionals using some novel
kind of language feature, rather than one obtained just by adding a universal
functional to PCF.

12.4 A programming language for SR functionals

We end by discussing the possibility of a practical programming language based
on the SR functionals.

The existence of universal SR functionals means that, at least in principle,
one could design a programming language that incorporates the full power of the
effective SR functionals into its purely “functional” fragment. For example, a
functional such as H could be built into the language, and programmers could
use it and believe that they were doing pure functional programming. If this
proved impractical, one could at least build in a selection of weaker functionals,
such as the modulus functional M of Section 9.3, giving at least some of the
power of the SR functionals.

One can imagine, in principle, several reasons why these possibilities might
be interesting. Firstly, they would increase the power of the purely functional
fragment of the programming language. In existing functional languages such as
Standard ML, the pure functional fragment is based essentially on pure PCF.
However, there are natural examples of “functional” programs in the SR sense
which would be (variously) impossible, inefficient or just inelegant in pure PCF.
For such programs, one would gain the transparency and ease of reasoning offered
by pure functional programming, as well as increased scope for compiler optim-
ization and perhaps garbage collection.

Secondly, an SR-based functional programming language would allow us to
design better and simpler program logics than can be easily done for PCF-based
languages. We have already pointed out that the class of SR functionals is in
many ways mathematically simpler than the class of PCF-sequential function-
als; this means that operational notions such as observational equivalence and
definability are theoretically more tractable in the SR case. If one adopts the
philosophy (advocated e.g. in [34]) that a good program logic should have a clear
operational content of a kind easily grasped by programmers, it follows that it
should be easier to design and axiomatize a good program logic (with reasonable
completeness properties) for an SR-based programming language.

Thirdly, besides the hope that one could design a better program logic, it
seems likely that one could also perform proofs about particular programs more
easily within such a logic. In view of the lower “complexity” of the SR functionals,
we would expect larger fragments of the logic to be decidable (e.g. equality for
finite elements), and this would give greater scope for automation in machine-
assisted proofs.

It is worth noting that all of the above points would in principle apply to the
parallel language PCF++. In criticism of the above arguments, one might point
out that despite the overwhelming mathematical naturalness and simplicity of
the type structure T (PCF++), no one has so far been seriously tempted to use
PCF++ as the basis of a practical programming language. However, we feel there

80

are some grounds for being more optimistic in the case of the SR functionals.
Firstly, there is a consensus that parallel operators are “painful to implement
and encourage hideously inefficient programming” [12], whereas the implement-
ation of SR functionals is relatively straightforward owing to their sequential
nature. (This is attested by the fact that many SR functionals can be implemen-
ted very easily in Standard ML.) Secondly, there is the question of the interaction
with side-effects (such as exceptions or references) in an impure functional lan-
guage. In a parallel language with side-effects, we would be obliged to sacrifice
the deterministic character of the language (or else to specify a particular inter-
leaving protocol in gruesome detail). In an SR-based language with side-effects,
the deterministic character would be easily retained (again, this can be seen by
reflecting on the fact that SR functionals can be implemented in ML).

The main weakness in our proposal, at present, is that the universal func-
tional H has an unacceptably high computational complexity (as pointed out in
Remark 7.13, it involves a factorial-size search), and we do not currently know
of a universal functional that is essentially any better. We might respond to this
in two ways: we could hope to discover a better universal functional than H
(or perhaps some other way of designing a language for the SR functionals, as
suggested at the end of Section 12.3); or else we could sacrifice some expressive
power and content ourselves with a selection of simpler functionals (such as M)
that were computationally feasible. Regarding the first possibility, we suspect
that any universal functional will have at least an exponential complexity in the
worst case, but we are hopeful that there may be universal functionals that are
feasible in practice, since the offending “worst cases” would not arise in natural
examples of programs. The second possibility—that of restricting ourselves to a
proper subset of the SR functionals—would be aesthetically less satisfying, and
we might lose some of the advantages of a clean and simple program logic that
still had a clear operational meaning; however, we feel that it might ultimately
turn out to be the most practical way forward.

Setting aside the issue of designing completely new programming languages,
some of the advantages of an SR-based programming style can already be en-
joyed simply by implementing a few useful SR functionals in a language such as
Standard ML. This allows one to experiment easily with these functionals, and to
discover the kinds of task to which such a programming style is particularly well-
suited. We have recently begun an investigation these practical issues. It would
appear so far that the construction of general-purpose search algorithms and exact
real-number computation both provide promising application areas for SR-based
programming, though there may be many other possible applications, such as the
static analysis of programs. It would be fair to admit that our examples to date
do not provide clinching proof of the usefulness of SR-based programming, but
they are certainly intriguing enough to encourage further investigation.

Some examples of SR functionals implementations in ML, and some tentative
programming applications, may be found in the Standard ML source file [33],
available electronically from the author’s web page.

81

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics
for general references. In Proc. 13th Annual Symposium on Logic in Com-
puter Science. IEEE, 1998.

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF.
Accepted for publication, 1996.

[3] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, revised edition, 1984.

[4] G. Berry. Stable models of typed lambda-calculi. In Proc. 5th International
Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science 62, pages 72–89. Springer, 1978.

[5] G. Berry and P.-L. Curien. Sequential algorithms on concrete data struc-
tures. Theoretical Computer Science, 20(3):265–321, 1982.

[6] G. Berry, P.-L. Curien, and J.-J. Lévy. Full abstraction for sequential lan-
guages: the state of the art. In M. Nivat and J. Reynolds, editors, Algebraic
Semantics, pages 89–132. Cambridge University Press, 1986.

[7] L. Birkedal, A. Carboni, G. Rosolini, and D.S. Scott. Type theory via exact
categories. In Proc. 13th Annual Symposium on Logic in Computer Science.
IEEE, 1998.

[8] A. Bucciarelli. Sequential models of PCF: some contributions to the domain-
theoretic approach to full abstraction. PhD thesis, Dipartimento di Inform-
atica, Università di Pisa, 1993.

[9] A. Bucciarelli and T. Ehrhard. Sequentiality and strong stability. In Proc.
6th Annual Symposium on Logic in Computer Science, pages 138–145. IEEE,
1991.

[10] A. Bucciarelli and T. Ehrhard. Sequentiality in an extensional framework.
Information and Computation, 110:265–296, 1994.

[11] R. Cartwright, P.-L. Curien, and M. Felleisen. Fully abstract semantics for
observably sequential languages. Information and Computation, 111(2):297–
401, 1994.

[12] R. Cartwright and M. Felleisen. Observable sequentiality and full abstrac-
tion. In Proc. 19th POPL, pages 328–342. ACM Press, 1992.

[13] L. Colson and T. Ehrhard. On strong stability and higher-order sequentiality.
In Proc. 9th Annual Symposium on Logic in Computer Science, pages 103–
108. IEEE, 1994.

[14] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Func-
tional Programming. Birkhäuser, second edition, 1993.

82

[15] T. Ehrhard. Hypercoherences: a strongly stable model of linear logic. Math-
ematical Structures in Computer Science, 3:365–385, 1993.

[16] T. Ehrhard. Projecting sequential algorithms on strongly stable functions.
Annals of Pure and Applied Logic, 77:201–244, 1996.

[17] T. Ehrhard. A relative PCF-definability result for strongly stable functions
and some corollaries. To appear in Information and Computation, 1997.

[18] J.M.E. Hyland. A small complete category. Annals of Pure and Applied
Logic, 40:135–165, 1988.

[19] J.M.E. Hyland. First steps in synthetic domain theory. In Category The-
ory, Proceedings, Como, Lecture Notes in Mathematics 1488, pages 131–156.
Springer, 1990.

[20] J.M.E. Hyland and C.-H. L. Ong. Modified realizability toposes and strong
normalization proofs. In J.F. Groote and M. Bezem, editors, Typed Lambda
Calculi and Applications, Lecture Notes in Computer Science 664, pages
179–194. Springer, 1993.

[21] J.M.E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III.
Submitted for publication, 1996.

[22] G. Kahn and G.D. Plotkin. Concrete domains. Theoretical Computer Sci-
ence, pages 187–277, 1993. First appeared in French as INRIA-LABORIA
technical report, 1978.

[23] R. Kanneganti, R. Cartwright, and M. Felleisen. SPCF: its model, calculus,
and computational power. In Proc. REX Workshop on Semantics and Con-
currency, Lecture Notes in Computer Science 666, pages 318–347. Springer,
1993.

[24] S.C. Kleene. Recursive functionals and quantifiers of finite types revisited I.
In J.E. Fenstad, R.O. Gandy, and G.E. Sacks, editors, Generalized Recursion
Theory II, pages 185–222, 1978.

[25] S.C. Kleene and R.E. Vesley. The Foundations of Intuitionistic Mathematics.
North-Holland, 1965.

[26] G. Kreisel. Interpretation of analysis by means of functionals of finite type.
In A. Heyting, editor, Constructivity in Mathematics, pages 101–128. North-
Holland, 1959.

[27] J. Laird. Full abstraction for functional languages with control. In Proc.
12th Annual Symposium on Logic in Computer Science, pages 58–67. IEEE,
1997.

[28] J. Laird. A Semantic Analysis of Control. PhD thesis, University of Edin-
burgh, 1998. Submitted for examination.

83

[29] R. Loader. Finitary PCF is not decidable. To appear, 1996.

[30] J.R. Longley. Notions of computability at higher types. In preparation.

[31] J.R. Longley. Realizability Toposes and Language Semantics. PhD thesis,
University of Edinburgh, 1995. Available as ECS-LFCS-95-332.

[32] J.R. Longley. Realizability models for sequential computation. In prepara-
tion, 1998.

[33] J.R. Longley. When is a functional program not a functional program?: a
walkthrough introduction to the sequentially realizable functionals. Standard
ML source file, available from http://www.dcs.ed.ac.uk/home/jrl/, 1998.

[34] J.R. Longley and G.D. Plotkin. Logical full abstraction and PCF. In J. Gin-
zburg et al., editor, Tbilisi Symposium on Language, Logic and Computation,
pages 333–352. SiLLI/CSLI, 1997.

[35] J.R. Longley and A.K. Simpson. A uniform approach to domain theory in
realizability models. Mathematical Structures in Computer Science, 7:469–
505, 1997.

[36] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer,
1992.

[37] R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer
Science, 4:1–22, 1977.

[38] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[39] P.S. Mulry. Generalized Banach-Mazur functionals in the topos of recursive
sets. Journal of Pure and Applied Algebra, 26:71–83, 1982.

[40] H. Nickau. Hereditarily sequential functionals. In Proc. 3rd Symposium
on Logical Foundations of Computer Science, Lecture Notes in Computer
Science 813, pages 253–264. Springer, 1994.

[41] P.W. O’Hearn and J.G. Riecke. Kripke logical relations and PCF. Inform-
ation and Computation, 120(1):107–116, 1995.

[42] C.-H.L. Ong and C.A. Stewart. A Curry-Howard foundation for functional
computation with control. In Proc. Symposium on Principles of Program-
ming Languages, pages 215–227. ACM Press, 1997.

[43] J. van Oosten. A combinatory algebra for sequential functionals of finite
type. Technical Report 996, University of Utrecht, 1997. To appear in Proc.
Logic Colloquium, Leeds.

[44] J. van Oosten. The modified realizability topos. Journal of Pure and Applied
Algebra, 116:273–289, 1997.

84

[45] G.D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[46] G.D. Plotkin. Full abstraction, totality and PCF. Accepted for publication,
1997.

[47] B. Reus. Program Verification in Synthetic Domain Theory. PhD thesis,
University of Munich, 1995.

[48] B. Reus and T. Streicher. General synthetic domain theory—a logical ap-
proach. In Category Theory in Computer Science, Lecture Notes in Com-
puter Science 1290, pages 293–313. Springer, 1997.

[49] V.Yu. Sazonov. Degrees of parallelism in computations. In Mathematical
Foundations of Computer Science, Lecture Notes in Computer Science 45,
pages 517–523. Springer, 1976.

[50] D.S. Scott. Data types as lattices. SIAM Journal of Computing, 5(3):522–
587, 1976.

[51] D.S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. The-
oretical Computer Science, 121:411–440, 1993. First written in 1969 and
widely circulated in unpublished form since then.

[52] A.K. Simpson. Computational adequacy in an elementary topos. Presented
at CSL ’98; submitted for publication, 1998.

[53] G.L. Steele and G.J. Sussman. The revised report on Scheme, a dialect of
Lisp. Technical Report Memo 452, MIT AI Lab, 1978.

[54] T. Streicher. Investigations into intensional type theory. Habilitationsschrift,
München, 1993.

[55] P. Taylor. The fixed point property in synthetic domain theory. In Proc. 6th
Annual Symposium on Logic in Computer Science, pages 152–160. IEEE,
1991.

[56] M.B. Trakhtenbrot. On representation of sequential and parallel functions.
In Proc. 4th Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science 32, pages 411–417. Springer, 1975.

[57] J. Vuillemin. Syntaxe, Sémantique et Axiomatique d’un Langage de Pro-
grammation Simple. PhD thesis, Université Paris VII, 1974.

85

