
Diluting ACID

Tim Kempster∗, Colin Stirling, Peter Thanisch
Division of Informatics, University of Edinburgh

Technical Report ECS-LFCS-99-404
Department of Computer Science

University of Edinburgh

March 15, 1999

Abstract

Several DBMS vendors have implemented the ANSI standard SQL isolation levels for
transaction processing. This has created a gap between database practice and textbook
accounts which simply equate isolation with serializability.
We extend the notion of conflict to cover lower isolation levels and we present improved
characterisations of classes of schedules achieving these levels.

∗Rm 2602, JCMB, Kings Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ,
Scotland Tel +44 131 650 5139, Fax +44 131 667 7209.



1 Introduction

A recent trend in the search for transaction processing performance improvements has been the
exploitation of concurrency opportunities that occur when transactions request a lower level of
isolation, i.e. the ’I’ in the ACID properties of transactions. Different levels of isolation are now
a part of the ANSI SQL standard [1] and many DBMS vendors have implemented this facility, or
something similar.

Arguably, the lower ANSI isolation levels have an indirect impact on consistency (the ’C’ in
ACID). Suppose that a transaction, say ti, reads data values that were created by a transaction
that subsequently aborts, or it read two data values that belong to two different consistent states.
If, subsequently, ti writes a data item, then the value written is a function of non-existent data.
The system could only be said to obey the consistency property if the transactions such as ti have
been designed in such a way that they do not corrupt the database even if they see no consistent
state, or a multiplicity of consistent states, in the database.

The classical theory of serializability does not distinguish between two schedules, say s1 and
s2, where the only difference is that, in s1 a transaction, t1, read a value for a data item that was
written by another transaction, t2, before t2 aborted.

s1 : w1[d] r2[d] c2 a1 s2 : w1[d] a1 r2[d] c2

To make this distinction the classical theory must be extended. We achieve this by extending the
theory of conflicting actions to contain the context of the outcome of the transactions in which
these actions appear.

When defining isolation levels, the ANSI standard [6] [1] deliberately avoids reference to lock-
ing, thereby making the standard relevant to non-locking based concurrency control algorithms.
It instead defines isolation levels by specifying types of ”phenomena” which are disallowed if a
particular isolation level is to be achieved.

Berenson et al. [2] criticise the ANSI standard. They highlight some serious shortcomings and
provides alternative isolation level definitions based on locking. Berenson et al. also provide an
equivalent phenomenon-based definition to their locking definition. In this paper we demonstrate
that their phenomenon based definition is not equivalent to their locking based definition.

Many textbooks state that isolation and serializability are synonymous [4] [5]. However we
argue in this paper that isolation is really a sufficient but not necessary condition for serializability.
Indeed, the isolation levels defined by Berenson et al. exclude many serializable schedules.

2 Schedules

Let ti, tj denote transactions and d, d′ denote data items in the database. It is assumed that
ti 6= tj, unless otherwise stated, but we do not assume d 6= d′. A transaction, ti, consists of
actions. These actions are divided into four categories. Read and write actions which we call
accesses and denote ri, wi respectively or oi to denote either a ri or wi, together with commit
and abort actions which we call terminals and denote ci, wi respectively or ei to denote either ci
or ai. When a transaction commits, the changes it has made to the data items of the database
are made durable, and the values it has read are returned to the user. If a transaction aborts, all
write actions are undone leaving any data items with the value that they would have had if the
transaction had never executed, furthermore no read values are returned.

Accesses Terminals
wi[d] ti writes d ci ti commits
ri[d] ti reads d ai ti aborts

1



We assume each type of access within a transaction is to a unique data item1 and also that exactly
one kind of terminal for each transaction occurs exactly once2. A schedule, s, is a sequence3 of
actions generated by a scheduler. We say oi[d] ≺ o′j [d] if an action oi[d] is earlier than an action
o′j [d] in s. In any schedule no terminal of a transaction precedes an action of that transaction. An
example of a schedule is w1[d] r2[d]w1[d′] c1 c2. A serial schedule is one in which all actions of one
transaction are completed before any action of another transaction is started.

By slightly abusing notation we say ci (ai) is true over a schedule if action ci (ai) happens at
some point. We use wi[d] ≺ cj, to denote that tj commits and does so after a write action of ti
on data item d. We write wi[d] ≺ ej , to mean that either tj aborts or commits but does so after
a write action by ti. Similarly, we write rj[d] ≺ (ai ∧ cj), to say ti aborts after a read of d by tj
and also tj commits. Finally, we write ri[d] ≺ wj [d] ∧ (ai ∧ cj), to say ti aborts and tj commits
and that ri[d] is before wj[d], it should be noted this allows ai before or after wj[d].

3 Extending conflict serializability

To define serializability we must first define equivalence over schedules. The most common and
useful definition is that of conflict equivalence [3]. Unfortunately, this definition fails to capture
the inequivalence of schedules containing aborting transactions. For example, in this definition
the following two schedules are defined to be equivalent.

w1[x] r2[x] a1 c2 ≡ w1[x] a1 r2[x] c2

The classical definition of conflict equivalence requires the ordering of conflicting actions from
committing transactions to be maintained, but says nothing about the ordering of actions of
aborting transactions. To capture this behavior we extend the classical definition of conflict
equivalence by first extending the definition of a conflict.

In the classical theory of conflicting accesses, two accesses are said to conflict if they both
access the same data item and at least one of them is a write. This is expressed in our notation
as follows. We relax our assumption that ti 6= tj in the definition of conflicts.

I ri[d] ≺ wj [d]∧ (ci ∧ cj)

II wi[d] ≺ rj [d]∧ (ci ∧ cj)

III wi[d] ≺ wj [d]∧ (ci ∧ cj)

We can extend the notion of a conflict to cover the case in which, subsequently, one of the
transactions aborts. There are two new instances of conflict which capture conflicting actions in
schedules containing aborting transactions.

IV ri[d] ≺ wj [d]∧ (ci ∧ aj)

V wi[d] ≺ rj [d] ≺ (ai ∧ cj)

The schedule
r1[d]w2[d]w2[d′] r1[d′] c1 a2

has two conflicts, the first between r1[d] and w2[d], an instance of IV above, and the second between
w2[d′] and r1[d′] which is an instance of V above. The extended definition of conflict equivalence
naturally follows from the extended definitions of conflict.

Definition 1 Schedules s and s′ are conflict equivalent iff
1The results in this paper do not depend on this but it is a useful notational convenience.
2Schedules with this property are often called complete schedules.
3A schedule is also sometimes defined as a poset of actions, and sometimes called a history. We choose to define

it as a sequence in order to keep it consistent with [2].

2



• s and s′ have the same actions and

• for each conflict of type C ∈ {I, . . . , V } involving actions oi, oj, ei, ej , in s the same conflict
of type C appears in s′ involving the same actions oi, oj , ei, ej .

2

Definition 2 Schedule s is serializable if it is conflict equivalent to some serial schedule.

2

Our definition of conflict serializability coincides with Bernstein et al. [3], in the case when the
committed projection of schedules is considered. However we can now judge equality between
schedules containing aborting transactions. For example, under our new definition

w1[x] r2[x] a1 c2 6≡ w1[x] a1 r2[x] c2

because the write-read conflict (type V) on the left hand side does not exist on the right hand
side.

Although serializability has been defined only on complete schedules (i.e. those where all
transactions in the schedule eventually either abort or commit) we can extend the definition to
incomplete schedules. Any incomplete schedule can be extended to a complete schedule by aborting
all the transactions without a terminal, we call the resulting schedule the aborting-completion. We
now say an incomplete schedule is serializable iff its aborting-completion is serializable.

In real systems failures can truncate schedules at any point. Upon recovery active transactions
are aborted. For this reason A useful property of any serializability definition over schedules is
that if p is a prefix of a serializable schedule s, then p is serializable.

Proposition 1 Any prefix of a complete serializable schedule is serializable.

Proof Let s denote a complete serializable schedule and sser denote a serial schedule that is
conflict equivalent to s. Let p denote any prefix of s. We will construct a serial schedule pser from
sser that is conflict equivalent to the aborting-completion of p, which we denote pcom. This shows
that any prefix of a complete serializable schedule is serializable. We do this in two steps.

S1 For each ai ∈ pcom such that ci ∈ sser, replace the ci in sser with ai to form p′.

S2 If any action appears in p′ but not in pcom remove the action from p′ to form pser.

We will now show that pser is a serial schedule that is conflict equivalent to pcom. Clearly pser
is serial and has the same actions as pcom because of the way it was constructed from sser . We
must now show that if a conflict of type C appears in pcom it also appears in pser.

Suppose pcom has a conflict of type I, II or III, then then it will also be in sser because it was
in s. Steps S1 and S2 will not remove this conflict so it will also be present in pser.

Suppose pcom has a conflict of type IV or V, then either it was in p, and by a similar argument
to the one above will be in pser, or a new conflict will have been formed when the abort completion
of p was taken to give pcom. If a new conflict was formed of type IV (V) in pcom then a conflict of
type I (II) must have been present in s so it will also be present in sser and will be changed to a
conflict of type IV (V) by step S1 when constructing pser as required.

2

3



4 Redefining Phenomena

As pointed out in by Berenson et al. [2] the phenomena based definitions of isolation levels proposed
in the ANSI standard [1] are ambiguous and incomplete. They give much more precise definitions
in response to these deficiencies. We restate these improvements in our notation and extend them
further.

Berenson et al.’s [2] definition of the dirty read phenomenon may be restated in our notation
as follows
P1 : wi[d] ≺ rj [d] ≺ ei

Clearly, the intention is to disallow the situation where tj reads the changes made by ti before
they are committed. However, it is not always unsafe to do so. In fact, it is only unsafe in the case
that ti aborts after tj read d and also when tj commits. For example, consider the serializable
schedule wi[d] rj[d] ci aj which is disallowed by P1.
We propose the following definition of the phenomenon to capture more accurately the idea of a
dirty read.
NP1 : wi[d] ≺ rj[d] ≺ (cj ∧ ai)

The name non-repeatable read suggests a phenomenon where a read is repeated in a transaction
yielding different values brought about by the interference of another transaction. Although this is
an example of what might happen we prefer to think of this phenomenon as an inconsistent view.
Berenson et al.’s [2] definition of this phenomenon can be restated in our notation as follows.
P2 : ri[d] ≺ wj [d] ≺ ei

Again the intention is to prevent non-repeatable reads by ensuring no other transaction tj may
change the value of a data item once read by ti until after ti has terminated. It is not always
unsafe to do this. For example the schedule, ri[d]wj[d] ai cj , is serializable but not allowed by P2.
The non-repeatable read phenomenon can occur in two ways depending on the order of the read
and write. We thus propose the two phenomenon to more accurately capture the notion of a
non-repeatable read.
NP2R : ri[d] ≺ wj[d] ≺ ci
NP2L : wi[d] ≺ rj [d] ≺ (cj ∧ ci)

Although excluding phenomena NP2L, and NP2R from schedules allows more more serializable
schedules than disallowing P2 they still disallow some serializable schedules. For example, the
schedule ri[d]wj[d] ci cj is serializable but disallowed by NP2R. This raises the following question.
Can we simply characterise using our notation a phenomena that captures only the schedules that
read inconsistent views and no more? The answer to this is no. This is because such definition
would need to include reachability in the associated conflict graph of a schedule, this type of
property is not expressible in our notation.

The ANSI standard did not disallow schedules containing so called “dirty writes”. This was
identified and correctly rectified by the addition of the P0 Phenomena by [2]. We restate and
adopt this as a necessary phenomenon in our definitions.
P0 : wi[d] ≺ wj [d] ≺ ei

5 Serializability

We now show that any if schedules do not exhibit any of the phenomena P0, NP1, NP2L or
NP2R they will be serializable. We first prove the following lemma.

Lemma 1 If a conflict exists between two transactions ti, and tj (ti 6= tj), on data item d which
we can write generically as

oi[d] ≺ oj [d]∧ ei ∧ ej
in a schedule s and phenomena P0, NP1, NP2L, NP2R do not occur over the actions of this
conflict then ei ≺ oj [d].

4



Proof By case analysis of the types of conflict.

I ri[d] ≺ wj [d]∧ (ci ∧ cj) but NP2R does not occur so ci ≺ wj[d], as required.

II wi[d] ≺ rj [d]∧ (ci ∧ cj) but NP2L does not occur so ci ≺ rj[d], as required.

III wi[d] ≺ wj [d]∧ (ci ∧ cj) but P0 does not occur so ci ≺ wj[d], as required.

IV ri[d] ≺ wj [d]∧ (ci ∧ aj) but NP2R does not occur so ci ≺ wj[d], as required.

V wi[d] ≺ rj[d] ≺ (ai ∧ cj) but NP1 does not occur which rules out this type of conflict
completely.

Theorem 1 All schedules, s, which do not exhibit phenomena P0,NP1,NP2L,NP2R are seri-
alizable.

Proof Suppose s is not serializable. Let G = (V, E) be the conflict graph constructed from s as
follows. The vertices of G are the transactions in s and an edge (ti, tj) is in E if there is a conflict
between ti and tj (ti 6= tj) and the accesses of this conflict are ordered oi[d] ≺ oj . s is serializable
iff G is acyclic (A proof would be similar to Theorem 2.1 [3]).

Suppose s is not serializable Without loss of generality let the smallest cycle in the conflict
graph G be denoted by

t1
d1−→ t2

d2−→ . . .
dm−1−→ tm

dm−→ t1

Using both the fact that all accesses of transactions are before their terminals, oi[d] ≺ ei, and also
Lemma 1 alternately, we can order the actions of the conflicts which form the cycle in the conflict
graph as follows.

o1[d1] ≺ e1 ≺ o2[d1] ≺ e2 ≺ o2[d2] ≺ e3 . . . ≺ em ≺ o1[dm]

This leads to a contradiction since e1 ≺ o1[dm] may not occur in s, so s is serializable.

2

6 Predicates

We now extend our model with some new types of accesses. Given a predicate P we add a new
action, ri[P ], to denote a read of the set of data items that fulfill P . For example, P might be
“all employees that are male”, so that ri[P ] denotes transaction ti reading all those employees
that are male. We also add two types of write actions wi[insert y in P ] and wi[delete y in P ],
these denote actions that insert or delete a new data item item, y, in a way that would change
the values returned by a ri[P ] access 4. We write wi[y in P ] to denote either an insert or a delete
access. In our example above wi[y in P ] might be inserting or deleting a male employee. In this
extended model a phenomenon known as phantoms may occur. We restate an example from [2]
that exemplifies this phenomenon.

Example 1 Transaction ti performs a <search-condition> to find the list of active employees.
Then transaction tj performs an insert of a new active employee and then updates d′, the count
of employees in the company. Following this ti reads the count of employees as a check and finds
a discrepancy. The schedule can be written as:-

ri[P ]wj[insert d in P ] rj[d′]wj[d′] cj ri[d′] ci

4y does not have to directly satisfy P for this to be true.

5



In order to characterise this phantom phenomenon Berenson et al. [2] provide the following defin-
ition which we restate in our notation as follows.
P3 : ri[P ] ≺ wj[d in P ] ≺ ei

Unfortunately, this does not completely characterise phantom phenomena. Consider Example 2.

Example 2 Transaction ti inserts a new active employee. Transaction tj then reads the count
of active employees z, this will not include the last one previously inserted by ti. Transaction tj
then reads the set of all active employees, this will include the employee inserted by ti and then
commits. Finally ti updates the count of new employees and commits. The schedules can be written
as follows.

wi[insert y in P ] rj[z] rj[P ] cj ri[z]wi[z] ci

The schedule of Example 2 is not serializable but it is allowed by P3 therefore the phenomenon
based definition given by Berenson et al. [2] of a level of isolation giving rise to only serializable
schedules admits non-serializable schedules. Furthermore, it is claimed this phenomena based
definition is equivalent the the locking based definition of serializable isolation which they call
LOCKING SERIALIZABLE.

In fact the locking based definition, LOCKING SERIALIZABLE does not allow predicate write
locks to be released until commit or abort time, thus disallowing the schedule of Example 2.

We conclude that Berenson et. al [2] phenomenon based definition of SERIALIZABLE isolation
admits non-serializable schedules and further that it is not equivalent to the locking based definition
given which does only admits serializable schedules.

The phenomenon P3 does characterise the behavior in Example 1 but it is too strict. For
example, the history r1[P ]w2[insert d in P ] a1 c2 is disallowed, which is serializable. We need
only disallow the case when ti commits. This produces phenomena NP3R below. We also require
phenomenon NP3L to exclude behavior of the type in Example 2.
NP3R : ri[P ] ≺ wj [d in P ] ≺ ci
NP3L : wi[d in P ] ≺ rj[P ] ≺ (cj ∧ ci)

The dirty read phenomenon characterised by NP1 has a predicate equivalent, which we give below.
NP21

2 : wi[d in P ] ≺ rj[P ] ≺ (cj ∧ ai)
Again the same recoverability and database constraint arguments for phenomenon P0 offered by
Berenson et al. [2] can be used in our enriched model, and we include a predicate version of P0
for completeness.
NP21

4 : wi[d in P ] ≺ wj[d in P ] ≺ ei
We are now in a position to define isolation levels in terms of all our new phenomena.

P0 NP1 NP2R NP3R
Isolation Level NP2 1

4 NP2L NP3L

NP2 1
2

READ UNCOMMITTED – + + +
READ COMMITTED – – + +
REPEATABLE READ – – – +
SERIALIZABLE – – – –

Table 1: Definition of isolation levels. [+] denotes a phenomena that is allowable at a particular
isolation level whereas [–] denotes that the phenomena is not allowed in any schedules achieving
this isolation level.

7 Conclusion

We provided a phenomenon based definition for isolation levels which is also applicable to non-
locking based schedulers. Our definition admits serializable schedules which are excluded by the
definitions given in [2]. We have shown that if all our isolation requirements are met, schedules
will be serializable under our extended definition.

6



References

[1] ANSI x3.135-1992. American National Standard for Information Systems–Database Language–
SQL, November 1992.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. ACM SIGMOD Record, 24(4), 1995.

[3] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Data-
base Systems. Addison-Wesley, Reading, MA, 1987.

[4] P.A. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan-Kaufmann,
San Mateo, CA, 1997.

[5] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
San Mateo, CA, 1993.

[6] J. Melton and R. Simon. Understanding the New SQL: A Complete Guide. Morgan-Kaufmann,
San Mateo, CA, 1993.

7


