
[chapter] [chapter] [chapter] [chapter] [chapter] [chapter] [chapter]

1



Decidability and complexity of

equivalences

for simple process algebras

Jitka St°íbrná

Doctor of Philosophy

University of Edinburgh

1998



Abstract

In this thesis I study decidability, complexity and structural properties of

strong and weak bisimilarity with respect to two process algebras, Basic Process

Algebras and Basic Parallel Process Algebras.

The decidability of strong bisimilarity for both algebras is an established re-

sult. For the subclasses of normed BPA-processes and BPP there even exist po-

lynomial decision procedures. The complexity of deciding strong bisimilarity for

the whole class of BPP is unsatisfactory since it is not bounded by any primitive

recursive function. Here we present a new approach that encodes BPP as special

polynomials and expresses strong bisimulation in terms of polynomial ideals and

then uses a theorem about polynomial ideals (Hilbert's Basis Theorem) and an

algorithm from computer algebra (Gröbner bases) to construct a new decision

procedure.

For weak bisimilarity, Hirshfeld found a decision procedure for the subclasses

of totally normed BPA-processes and BPP, and Esparza demonstrated a semideci-

sion procedure for general BPP. The remaining questions are still unsolved. Here

we provide some lower bounds on the computational complexity of a decision

procedure that might exist. For BPP we show that the decidability problem is

NP-hard (even for the class of totally normed BPP), for BPA-processes we show

that the decidability problem is PSPACE-hard.

Finally we study the notion of weak bisimilarity in terms of its inductive

de�nition. We start from the relation containing all pairs of processes and then

form a non-increasing chain of relations by eliminating pairs that do not satisfy a

certain expansion condition. These relations are labelled by ordinal numbers and

are called approximants. We know that this chain eventually converges for some

α such that ≈α = ≈β = ≈ for all α < β. We study the upper and lower bounds

on such ordinals α. We prove that for BPA, α ≥ ωω, and for BPPA, α ≥ ω · 2.
For some restricted classes of BPA and BPPA we show that ≈ = ≈ω·2.



Acknowledgements

I would like to express my gratitude to Mark Jerrum for his advice and pa-

tience, and for all the time that he devoted to me. I have learnt a great deal

under his supervision.

Special thank-you goes to John Power for numerous discussions and chats,

and for his friendly encouragement throughout my doctorate.

My examiners, Julian Brad�eld and Javier Esparza, read the thesis very care-

fully. I am grateful for their comments and suggestions that helped to improve

the �nal version.

Finally, I would like to thank my family and all my friends.

My stay in Edinburgh was sponsored by a scholarship from the Wolfson Foun-

dation.



Declaration

I declare that this thesis was composed by myself, and the work contained in it

is my own, unless stated otherwise.

The results of Chapter 5 were published in [59], and the results of Chapter 3

are contained in [60].



Table of Contents

List of Figures 4

List of Tables 5

Chapter 1 Introduction 6

1.1 Calculus of Communicating Systems . . . . . . . . . . . . . . . . 6

1.2 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Decidability of bisimulation equivalences . . . . . . . . . . . . . . 9

1.3.1 Strong bisimilarity . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Weak bisimilarity . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Computational complexity of equivalences . . . . . . . . . . . . . 12

1.4.1 Hardness of weak bisimilarity . . . . . . . . . . . . . . . . 13

1.5 Bisimulation approximants . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Background 17

2.1 Bisimulation equivalences . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Strong bisimulation equivalence . . . . . . . . . . . . . . . 18

2.1.2 Weak bisimulation equivalence . . . . . . . . . . . . . . . . 20

2.2 Simple process algebras . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Basic Process Algebras . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Basic Parallel Process Algebras . . . . . . . . . . . . . . . 25

2.3 Further notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Strong norm . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Weak norm . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 Image-�niteness . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Semidecidability of bisimulation . . . . . . . . . . . . . . . 33

2.3.5 Unique prime decompositions . . . . . . . . . . . . . . . . 33

2.4 Decidability of strong bisimilarity on BPA . . . . . . . . . . . . . 34

2.4.1 Caucal bases and normed BPA . . . . . . . . . . . . . . . 35

1



2.4.2 Decidability for unnormed BPA . . . . . . . . . . . . . . . 38

2.5 Decidability of strong bisimilarity on BPP . . . . . . . . . . . . . 40

2.5.1 Bisimulation trees . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Decidability problem for weak bisimilarity . . . . . . . . . . . . . 44

2.6.1 Decidability of ≈ for totally normed BPA and BPP . . . . 44

2.6.2 Semidecidability of ≈ for general BPP . . . . . . . . . . . 46

Chapter 3 Approximants 51

3.1 Ordinal arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Weak bisimulation approximants . . . . . . . . . . . . . . . . . . 54

3.2.1 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 In�nite branching . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 BPA-processes and ≈α . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Basic Parallel Processes and ≈α . . . . . . . . . . . . . . . . . . . 71

3.4.1 Decidability of ≈n for BPP . . . . . . . . . . . . . . . . . 75

3.5 General properties of ≈α . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 4 Lower bound results 80

4.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Complexity classes . . . . . . . . . . . . . . . . . . . . . . 81

4.1.2 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.3 Decision problems . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Weak bisimilarity of BPP is NP-hard . . . . . . . . . . . . . . . . 84

4.2.1 Totally normed BPP . . . . . . . . . . . . . . . . . . . . . 87

4.2.2 Totally normed BPA-processes . . . . . . . . . . . . . . . . 88

4.3 Weak bisimilarity of BPA is PSPACE-hard . . . . . . . . . . . . . 89

4.3.1 EXPSPACE-complete problem versus ≈ of BPA . . . . . . 94

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 5 Connecting BPP and polynomial rings 97

5.1 Polynomial algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Ideal membership and Gröbner bases . . . . . . . . . . . . . . . . 99

5.3 Bisimulation and polynomial ideals . . . . . . . . . . . . . . . . . 101

5.4 Semidecision procedure . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Decision procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2



Chapter 6 Conclusions and further work 115

6.1 Strong bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Weak bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Hardness results . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 Ordinal characterisation . . . . . . . . . . . . . . . . . . . 117

Appendix A 118

Bibliography 121

3



List of Figures

1.1 Language-equivalent processes P and Q . . . . . . . . . . . . . . . 8

1.2 Various processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Weakly bisimilar processes . . . . . . . . . . . . . . . . . . . . . . 21

3.1 In�nitely branching BPA-process . . . . . . . . . . . . . . . . . . 59

3.2 In�nitely branching BPP . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 The processes C and AC . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 The process An . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 The processes P and Q . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 The nondeterministic automaton A . . . . . . . . . . . . . . . . . 91

4.3 The corresponding process Q . . . . . . . . . . . . . . . . . . . . . 91

5.1 The summation and multiplication operations on F2 . . . . . . . . 99

5.2 Semidecision procedure for ∼ of BPP . . . . . . . . . . . . . . . . 108

5.3 Decision procedure for ∼ of BPP . . . . . . . . . . . . . . . . . . 110

4



List of Tables

1.1 The summary of decidability results for strong bisimilarity . . . . 11

1.2 The summary of decidability results for weak bisimilarity . . . . . 12

2.1 Transition rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5



Chapter 1

Introduction

The area of concurrency has been widely studied in recent years. The need

for a theory of concurrent systems comes from the desire to �nd appropriate

theoretical descriptions of real systems so that we can use some mathematical

tools in proving properties about systems that are of practical interest. In system

design, one wants to specify the properties that the system should possess, and

then verify whether the outcome satis�es the given requirements.

Process algebras or process calculi have become a popular tool for describing

both systems and their formal speci�cations. Verifying that a system satis�es

a given speci�cation can be done by checking whether the two corresponding

descriptions (processes) are equivalent. There are many di�erent process calculi,

which vary in the constructions that are considered primitive. There are also

various notions of equivalence. One of the most popular calculi is the Calculus

of Communicating Systems, and among the favoured equivalences are strong and

weak bisimulations.

1.1 Calculus of Communicating Systems

One of the most in�uential works in the area of process calculi has been Milner's

Calculus of Communicating Systems (CCS), which originally appeared in [48] and

later as a revised version in [49]. The calculus is built around a few simple opera-

tors: we start with a distinguished set of actions Act = {a, b, c, . . . , ā, b̄, c̄, . . .} ∪
{τ}, where each action a has a complement ā and ¯̄a = a, with the exception

of the silent action τ . The intended meaning is that processes can synchronise

on complementary actions giving the action τ . The basic operators are: action

pre�x, summation over an arbitrary set, (parallel) composition, restriction, and

relabelling. The semantics of the process expressions is given in terms of labelled

transition systems, i.e. graphs whose edges are labelled by actions from Act.

6



A process P pre�xed with an action a can perform a and evolve into P .

A sum of processes
∑

i∈I Pi can nondeterministically choose to start behaving as

any summand Pj thus discarding all other processes Pi for i 6= j. A process P | Q
obtained as composition of two processes P and Q can evolve into either P ′ | Q by

performing some transition of P , or P | Q′ by performing some transition of Q, or

it can synchronise on complementary actions a of P and ā of Q and perform τ to

become P ′ | Q′. Restriction is speci�ed by a set of actions L ⊆ Act and it forbids

a process from performing an action a if a ∈ L or ā ∈ L. And �nally, relabelling

is given by a function f on actions with the convention that f(a) = f(ā) and

f(τ ) = τ , which results in renamed behaviour of processes.

The combination of composition, restriction and relabelling makes the calculus

very powerful since it enables us to de�ne processes that are encodings of Turing

machines. That means the calculus is very expressive. On the other hand there

are some disadvantages of the expressiveness since in general we will not be able

to test whether two processes are equivalent for interesting notions of equivalence.

1.2 Equivalences

Now we will concentrate on the question of under which circumstances two pro-

cesses will be considered equivalent. We want to distinguish between two pro-

cesses P and Q if there is a di�erence that can be detected by another process

that might interact with either of them. As an example, let us �rst consider an

equivalence much favoured in automata theory that is language equivalence. We

call two automata language equivalent if they accept identical strings of symbols.

However, we can see that this equivalence is not suitable for concurrent processes,

as illustrated by the following example.

Example 1.1 We consider processes P and Q whose derivation trees are shown

in Fig. 1.1. The languages of P and Q are identical and are given as L(P ) =
L(Q) = {ab, ac}. Therefore the processes P and Q are language-equivalent.

However, Q, after having performed an action a loses the choice between b and c

since it evolves into a state which can only perform one of b or c. That contrasts

with the process P which after the a action can choose between b and c. If there

was another process R that could perform the action b̄ then it would always be

able to synchronise with P after P performs an a but it may not be able to

synchronise with Q. �

This example demonstrates that language equivalence is too weak for concurrent

systems as it does not take into account the branching of processes. There are

7



P

a

��

Q
a

����
�
��
�� a

��>
>>

>>
>
>

b

}}{{
{{
{{
{{ c

!!C
CC

CC
CC

C

b
��

c

��

Figure 1.1: Language-equivalent processes P and Q

many ways of overcoming this problem and many di�erent notions of process

equivalences. The notion of bisimulation equivalence is among the most important

ones. The basic idea is that two processes will be considered equivalent if they

can match each other's transitions and by doing so evolve into processes which are

again equivalent. This idea was suggested by Park in [55]. Following Park, Milner

used this concept in the de�nition of bisimilarity in [49] which was originally

de�ned as a limit of a decreasing chain of equivalences [48]. We spell out the

de�nition in Chapter 2, meanwhile we will illustrate the concept by means of

an example.

Example 1.2 We consider processes P , Q, R and S as depicted in Fig. 1.2.

P

a

��

Q
a

||zz
zz
zz
zz
z

a

��>
>
>>

>
>>

R

a

��

S
a

����
��
��
�� a

��>
>>

>>
>>

>

b
��

b
��

b
��

b

}}{{
{{
{{
{{ b

!!C
CC

CC
CC

C

b
��

Figure 1.2: Various processes

The processes P , Q and R are all bisimilar since they possess the property that

after an a action they have always a b action at their disposal. That is not

true of the process S which can choose one branch so that no further action is

available. We will also explain why the two processes P and Q from Fig. 1.1 are

not bisimilar. The reason is that P can always choose between the actions b and

c after having done an a whereas Q determines which of b and c will be available

by the choice of the a transition. �

Bisimulation became one of the pivotal notions in concurrency theory. It is a

simple and elegant notion with appealing mathematical properties. Bisimulation

8



is an equivalence relation and its de�nition in [49] lends itself to an elegant tech-

nique of proving bisimilarity simply by providing a binary relation on processes

that satis�es a certain closure property. However, in some situations it may prove

too discriminative since it requires a matching response to each transition. That

may be rather inconvenient in the treatment of the silent action τ since in some

circumstances we may want to abstract away from silent behaviour. The im-

portance of the silent action is to hide the inner behaviour of a process from its

environment, only conveying a possible change of state to an outside observer.

We will de�ne a less strict equivalence that still requires a matching response

to any visible (non-τ ) action which can however include any number of τ transi-

tions. To this end we introduce a weak derivative of a process which is obtained

by performing an action preceeded and followed by arbitrary �nite sequences

of τ transitions. Two processes are then equivalent if they have matching weak

derivatives that are again equivalent. This equivalence is called weak bisimulation

equivalence (see Milner in [49]).

Weak bisimulation identi�es more processes than strong bisimulation. It is

consistent with strong bisimulation, i.e. any pair of processes that are strongly

bisimilar are also equivalent under weak bisimulation. However, the opposite does

not hold which may be illustrated by the following example: we take a process P

which can only do a single action a, and de�ne another process Q as P pre�xed

with τ . These two processes are not equivalent under strong bisimulation but

they are weakly bisimilar. That captures the idea that a weakly bisimilar process

may be involved in some inner behaviour, which we do not want to consider,

however all the observable actions match those of the other process.

1.3 Decidability of bisimulation equivalences

We would like to be able to test, given a pair of processes and a speci�c equiva-

lence, whether the processes are related by that equivalence. We may not always

be able to do that satisfactorily. The key problem is whether a given equivalence

is decidable for a particular class of processes that we want to consider. This is

an important practical consideration if we want to use an equivalence for design

and implementation of systems. So the question we want to ask ourselves is: Can

we decide for a given pair of processes whether they are equivalent?

The answer is of course relative to the class of processes and the equivalence

we have in mind. For the class of CCS processes and strong/weak bisimulation,

the answer is unfortunately negative. As Christensen demonstrated in his the-

9



sis [6], already the subclass of CCS obtained by application of �nite summation,

parallel composition and restriction has full Turing power. He proceeds by en-

coding two-counter machines [51] by such processes. Then he reduces the Halting

problem of two-counter machines to bisimilarity. Since the Halting problem for

two-counter machines is undecidable one can conclude that in general, strong and

weak bisimilarity for CCS processes is undecidable.

Another indication of the power that the combination of parallel composition

and restriction possesses is showed in [8]. The result presented there states that

if we disallow either of parallel composition or restriction and relabelling, we

arrive at a subclass of processes on which bisimilarity is decidable. A summary

of decidability results for various classes of processes also appears in [53].

1.3.1 Strong bisimilarity

We will investigate the classes of processes for which bisimilarity is decidable, and

their expressiveness. It is a folklore result that if we restrict our attention to �nite

state processes we can decide any reasonable equivalence simply by checking the

equivalence condition for �nitely many possible combinations of states. But �nite

state processes are not expressive enough as the description of many systems gives

rise to in�nite state derivation trees.

In this thesis we will concentrate on two simple classes of possibly in�nite state

processes. We will avoid the operators of restriction and relabelling altogether.

The processes in our process calculi will be obtained from a set of variables by

application of the operators of action pre�x and �nite summation combined with

sequential and parallel composition.

The �rst class of algebras we will consider are Basic Process Algebras (BPA).

The processes of a Basic Process Algebra are called BPA-processes. The main

operators of Basic Process Algebras are �nite summation and sequential com-

position. Sequential composition is not among the basic operators of CCS. Its

semantics is de�ned in this way: sequential composition of processes P and Q is

a process P · Q which behaves as the process P until termination upon which it

behaves as the process Q.

Basic process algebras arose from language theory as the process equivalent of

context-free grammars. This connection was described by Baeten, Bergstra and

Klop in [2] which also contains the �rst decidability result for BPA, an algorithm

deciding strong bisimilarity for the restricted subclass of normed BPA-processes.

Other results followed with [5], [37], [20], and [38]. Eventually, a polynomial

algorithm for normed BPA-processes was demonstrated by Hirshfeld, Jerrum and

10



Moller in [31]. Decidability for the class of general BPA-processes was established

by Christensen, Hüttel and Stirling in [10], and an elementary (estimated as

doubly exponential) decision algorithm was presented by Burkart, Caucal and

Ste�en in [4].

The second class of algebras that we will investigate are Basic Parallel Process

Algebras (BPPA). The processes of a BPPA are called Basic Parallel Processes

(BPP). The class of BPPA was conceived by Christensen in his doctoral thesis

[6]. It is a simple subclass of CCS which only contains the operators of �nite

summation and merge. Merge is a restricted form of parallel composition where

no synchronisation occurs, that is the τ action is prescribed explicitly and cannot

occur as a result of synchronisation on two complementary actions. The class of

Basic Parallel Processes also arises as a simple subclass of Petri nets, so called

communication-free Petri nets.

The �rst decidability result for strong bisimilarity of BPP was a decision

procedure for normed and live BPP by Christensen, Hirshfeld and Moller [7]

which was later extended to the whole class of BPP by the same authors in

[8]. Another decision technique for the class of general BPP was presented by

Hirshfeld [27]. For normed BPP, Hirshfeld, Jerrum and Moller constructed a

polynomial algorithm deciding bisimilarity [29], [30].

The decidability results for strong bisimilarity on basic process algebras and Basic

Parallel Process Algebras are summarised in the table below:

BPA normed BPA BPPA normed BPPA

strong decidable decidable decidable decidable

bisimilarity
doubly polynomial no primitive polynomial

∼ exponential algorithm recursive algorithm
upper bound upper bound

Table 1.1: The summary of decidability results for strong bisimilarity

1.3.2 Weak bisimilarity

The problem of deciding weak bisimilarity seems to be harder than deciding strong

bisimilarity. Weak bisimulation has an additional complex aspect which is the

possibility of in�nite branching of processes. When we restrict ourselves to �nite

11



summation then all processes have only �nitely many possible derivatives with

respect to strong bisimulation. With weak bisimulation we allow the possibility to

evolve into potentially in�nitely many derivatives with a single (weak) transition.

We have already mentioned that weak bisimilarity for CCS is undecidable due

to the fact that we can encode the Halting problem for two-counter machines to

strong (weak) bisimilarity of CCS. We have also mentioned that for the classes of

BPA and BPPA, strong bisimilarity is decidable. However, we do not yet know

exactly what is the situation like for weak bisimilarity and BPA/BPPA.

So far, there are only partial results available. We can single out the subset

of totally normed BPA-processes and totally normed BPP (they can terminate

by performing at least one visible action) for which Hirshfeld showed weak bi-

similarity to be decidable [28]. For totally normed BPA-processes, decidability

of weak bisimilarity can be also derived from Stirling's proof of decidability of

strong bisimilarity for normed pushdown automata [58]. When we consider the

general processes, nothing is known about decidability for BPA. For the class of

general BPP, Esparza demonstrated a semidecision procedure in [16], [15].

The decidability results for weak bisimilarity on basic process algebras and Basic

Parallel Process Algebras are summarised in the table below:

totally totally

BPA normed BPA BPPA normed BPPA

weak not decidable not decidable
bisimilarity known known

≈

Table 1.2: The summary of decidability results for weak bisimilarity

1.4 Computational complexity of equivalences

Several problems arise in the current situation. We may want to investigate weak

bisimulation equivalence for BPA and BPPA to complete the picture and estab-

lish whether weak bisimilarity is decidable or undecidable for the whole classes.

As for strong bisimilarity, the results for normed BPA-processes and normed BPP

are satisfactory because of the existence of polynomial decision procedures. For

general BPA-processes and BPP the situation is not completely clear. We assume

that the computational complexity of an algorithm deciding bisimilarity might be

12



greater for general processes compared with the special subclass of normed pro-

cesses. However, so far there is no indication that a polynomial algorithm cannot

exist for BPA-processes and BPP in general, that is we do not have any lower

bounds on the complexity. When we examine the upper bounds on the complexity

we discover a wide gap between the two algebras. The best algorithm for deciding

strong bisimilarity of BPA-processes so far runs in estimated doubly exponential

time [4] whereas we do not even know of a primitive recursive function which

would serve as an upper bound on the complexity of deciding strong bisimilarity

of BPP.

In this thesis we try to investigate the complexity of deciding strong bisimila-

rity for Basic Parallel Processes. We describe a new link between Basic Parallel

Process Algebras and classical algebra of polynomials. We express BPP and

strong bisimulations in terms of polynomials and polynomial ideals, and devise

a condition that enables us to test bisimilarity by testing membership in polyno-

mial ideals. We use some tools of computer algebra designed to test polynomial

ideal membership.

We have mentioned above that the problem of deciding weak bisimilarity has

not been satisfactorily resolved. In this thesis we study weak bisimulation from

two di�erent points of view. We investigate the hardness of the weak bisimilarity

decision problem, and we study the structural complexity of weak bisimulation

equivalence in a sense that will be explained shortly.

Hirshfeld in [28] demonstrates decidability of weak bisimilarity for totally nor-

med BPA-processes and totally normed BPP but does not place any estimates

on the complexity of the decision procedures. For BPP we face the same prob-

lem as in the case of the strong equivalence and with the current techniques no

complexity bound can be given. That leaves open a whole range of possibilities.

Although it is quite unlikely, so far there are no negative results which would

prove that weak bisimilarity cannot be tested in polynomial time.

1.4.1 Hardness of weak bisimilarity

We can by means of a reduction convince ourselves about the hardness of a prob-

lem, that is a lower bound on the complexity of all algorithms that decide that

problem. The reduction technique consists in transforming one problem P e�ec-

tively to another problem Q, where the time or space complexity of the problem

P is known. If we make sure that the transformation is e�cient and transforms

instances of P into equivalent instances ofQ of roughly the same size, then we can

deduce that deciding Q must be as hard as deciding P. Using this technique we

13



manage to show that deciding weak bisimilarity for totally normed BPA-processes

and totally normed BPP is NP-hard. Under the widely accepted conjecture that

P 6= NP (that is the class of problems decidable in polynomial time by determin-

istic Turing machines is strictly smaller than the class of problems decidable in

polynomial time by nondeterministic Turing machines) we can conclude that the

decision problem for weak bisimilarity is not polynomial.

For general BPA-processes, it still may be the case that weak bisimilarity is

undecidable. However, we can construct a reduction which will show that weak

bisimilarity is PSPACE-hard for BPA-processes. The class PSPACE is de�ned as

the class of all problems decidable by polynomial-space bounded Turing machines.

It is assumed that the class NP is strictly contained in PSPACE and hence this

constitutes a stronger result. To our knowledge, these results are the �rst attempt

in the direction of estimating lower bounds for weak bisimilarity.

1.5 Bisimulation approximants

One can look at strong and weak bisimulation equivalences from a rather di�erent

perspective and study the properties of these notions following Milner's original

de�nition in [48]. There he de�nes strong bisimulation in terms of a decreasing

binary sequence of approximants. This construction was later replaced with a

more elegant de�nition in the spirit of Park [55]. However, the earlier de�nition

is more helpful when we want to argue about non-bisimilarity.

We will develop an analogous approach by de�ning weak bisimulation appro-

ximants. We de�ne a sequence of binary relations on processes as follows: we

start with the universal relation (containing all pairs of processes) and then we

inductively construct smaller relations by removing �unsuitable� pairs (that will

be speci�ed later). We will show that for both strong and weak bisimilarity these

sequences converge to a limit that is the largest strong or weak bisimulation.

For strong bisimilarity we can easily convince ourselves that the maximal strong

bisimulation will be obtained as the limit of all �nite sequences. However, we

will see that in order to reach the maximal weak bisimulation one needs to go on

further. We will investigate the length and structural properties of the sequences

of approximants, mainly by providing some lower bounds on the length by means

of examples.

14



1.6 Organisation of the thesis

The thesis is organised as follows: in Chapter 2 we explain all background

de�nitions, namely of Basic Process Algebras and Basic Parallel Process Algebras,

strong and weak bisimulation equivalences, and some further notions, and describe

in detail a few techniques for deciding strong and weak bisimilarity.

In Chapter 3 we de�ne weak bisimulation approximants, binary relations on

processes labelled by ordinal numbers. We establish their properties and show

that they eventually converge at the maximal weak bisimulation. We will search

for the value of an ordinal α with the following property: for every β ≥ α,

≈ = ≈β. Such an ordinal represents the approximant which has already con-

verged to weak bisimulation. The value will di�er for BPA and BPPA. We will

demonstrate some lower bounds on this α which will be ωω for BPA and ω · 2 for

BPPA. We will also study approximants on some restricted subclasses of BPA-

processes and BPP. Finally, we will use the method of semilinear sets to show

decidability of ≈n for Basic Parallel Processes.

In Chapter 4 we study hardness of the weak bisimilarity decision problem

for BPA-processes and BPP. The question whether weak bisimilarity is decidable

for general BPA-processes and BPP is still open. The problem we are looking at

is what would be the complexity of a decision procedure that might exist. We use

the concept of reduction to provide some lower bounds on the complexity. We

present two reductions from two problems that are complete for two complexity

classes. That demonstrates various hardness results for weak bisimilarity. The

�rst is a reduction from the problem Knapsack, which is NP-complete, to weak

bisimilarity of (totally normed) BPA-processes and BPP. The second is a reduc-

tion from the problem Tot, which is PSPACE-complete, to weak bisimilarity

of BPA-processes. That demonstrates NP-hardness of deciding weak bisimilarity

for (totally normed) BPA-processes and BPP, and PSPACE-hardness of deciding

weak bisimilarity of BPA-processes.

Chapter 5 describes a new connection between Basic Parallel Process al-

gebras and polynomial rings. We explain how Basic Parallel Processes can be

viewed as special one-term polynomials (power products), where parallel compo-

sition of BPP corresponds to multiplication of power products. A bisimulation

relation gives rise to a polynomial ideal and the bisimulation condition can be

expressed in terms of polynomial ideal membership. We use an important the-

orem from polynomial algebra, the Hilbert's Basis Theorem, to show that our

ideals have �nite bases. Then we use a method from computer algebra, the me-

thod of Gröbner bases, to decide membership in polynomial ideals. By combining

15



all these methods we construct semidecision and decision procedures for strong

bisimilarity of BPP.

Finally, Chapter 6 contains a summary of the results achieved in this thesis

and directions for further work.

16



Chapter 2

Background

In this chapter we are going to de�ne basic concepts which will be used through-

out the thesis. We will de�ne two kinds of process algebras that we will study, the

Basic Process Algebras and the Basic Parallel Process Algebras. Two notions of

equivalence will be presented, strong bisimulation equivalence and weak bisimula-

tion equivalence. We will study the relationship between the process algebras and

the equivalences. Eventually we will present a review of known decidability and

complexity results for these equivalences and various techniques that were used

to obtain them.

2.1 Bisimulation equivalences

We will �nd it convenient to de�ne some basic notions in terms of labelled transi-

tion graphs. These are accepted as an appropriate semantic model of concurrent

computation when interleaving semantics is considered, as it is indeed in our case.

De�nition 2.1 A labelled transition graph is a triple (S, A,−→) consisting of a
set of states or processes S, a set of labels or actions A and a transition relation

−→⊆ S × A× S.

For a labelled transition graph (S, A,−→), we will write P a−→ P ′ to denote that

(P, a, P ′) ∈ −→, and if there is no P ′ ∈ S and no a ∈ A with P
a−→ P ′, we

will denote that by P 6−→. We will generalise the transition relation to include

sequences of transitions in a straightforward way. For every P , P
ε−→ P , where

ε is the empty word. If w = a1a2 . . . ak is a non-empty sequence of labels from

A then we write P
w−→ P ′ if there exists a sequence of transitions P

a1−→ P1
a2−→

P2
a3−→ . . .

ak−→ Pk = P ′.

17



2.1.1 Strong bisimulation equivalence

We want to identify processes which exhibit the same observable behaviour that is

represented by labelled transitions. Following Milner in [49] we de�ne the notion

of a strong bisimulation as a binary relation on a transition graph.

De�nition 2.2 Let (S, A,−→) be a transition graph. A binary relation R over

S is a strong bisimulation if whenever (P,Q) ∈ R then for every a ∈ A,

• if P a−→ P ′ then there exists Q a−→ Q′ such that (P ′, Q′) ∈ R, and

• if Q
a−→ Q′ then there exists P

a−→ P ′ such that (P ′, Q′) ∈ R.

Processes P and Q are bisimilar, written P ∼ Q, if they are related by some

strong bisimulation.

Note that if we want to relate two states P and Q from two di�erent transition

graphs S and S ′ we can construct a strong bisimulation on the disjoint union of

S and S ′. That ensures the universality of our de�nition.

It was shown in [49] that the union of all strong bisimulations is also a strong

bisimulation. It is the largest strong bisimulation, denoted by ∼, and it is an

equivalence relation. We will also call it (strong) bisimulation equivalence.

There is an alternative approach towards strong bisimilarity which was the

original de�nition stated by Milner in [48]. We start from the relation containing

all pairs of processes and then form a non-increasing chain of binary relations

which are called approximants. Approximants are labelled by ordinal numbers

and denoted by ∼α. Originally, Milner only considered the chain of approximants

labelled by natural numbers and ∼ was taken to be the intersection
⋂
n∈N ∼n.

That is entirely su�cient in the context of �nitely branching transition graphs but

fails to work for a more general, in�nitely branching systems that one might want

to consider. Hence the de�nition stated here is phrased in terms of binary relations

labelled by ordinal numbers. We will use Greek letters α, β to denote ordinals

and the class of ordinal numbers will be denoted by On. For an introduction to

ordinal numbers we refer the reader to standard textbooks (cf. [21], [22], [45]).

De�nition 2.3 Let (S, A,−→) be a transition graph. Strong bisimulation appro-

ximants labelled by ordinal numbers are binary relations over S denoted by ∼α
and de�ned in the following way:

• P ∼0 Q for all P and Q

18



• P ∼α+1 Q if for all actions a ∈ A,

� whenever P a−→ P ′ then there exists Q a−→ Q′ so that P ′ ∼α Q′ and

� whenever Q a−→ Q′ then there exists P a−→ P ′ so that P ′ ∼α Q′

• P ∼λ Q if P ∼α Q for every α < λ, for a limit ordinal λ.

We can state another de�nition of approximants which considers sequences of

actions instead of single actions in the clauses. That is the original de�nition

which appears in [48]:

De�nition 2.4 Let (S, A,−→) be a transition graph. We de�ne strong bisimu-

lation approximants ∼Mα as binary relations over S in this way:

• P ∼M0 Q for all P and Q

• P ∼Mα+1 Q if for every sequence of actions t ∈ A∗,

� whenever P
t−→ P ′ then there exists Q

t−→ Q′ so that P ′ ∼Mα Q′ and

� whenever Q t−→ Q′ then there exists P t−→ P ′ so that P ′ ∼Mα Q′

• P ∼Mλ Q if P ∼Mα Q for every α < λ, for a limit ordinal λ.

The two notions of approximants are equivalent in the sense that both de�ne

non-increasing chains of relations that always converge, with the limit being the

maximal bisimulation. We will spell that out formally for the approximants de-

�ned by 2.3, however analogous statements hold for De�nition 2.4 as well.

The following statement says that the relations ∼α decrease non-strictly as α

increases. It is rather straightforward to verify this proposition and we will not

concern ourselves with the proof here.

Proposition 2.5 For all α, β ∈ On, α > β implies ∼α ⊆ ∼β.

The second claim con�rms that the chain of approximants always converges and

its limit is the largest strong bisimulation. The proof, which involves arguments

from �xed-point theory, can be found in [49].

Proposition 2.6 ∼ =
⋂
α∈On ∼α.

19



It is apparent that the approximants de�ned by 2.4 distinguish �ner aspects of

branching behaviour than those of 2.3, and clearly ∼Mα ⊆ ∼α for every α. The

latter approximants ∼Mα also converge faster towards the maximal bisimulation.

However, checking whether two processes are related by ∼Mα may not be feasible

since it involves checking a property for all sequences of moves that these processes

can perform. That can make these approximants undecidable even for some

simple classes of processes [36]. Therefore it is more convenient to work with the

simpler notion as de�ned by 2.3.

2.1.2 Weak bisimulation equivalence

The notion of strong bisimilarity requires a process to be capable of matching each

transition that an equivalent process may perform. However, sometimes we want

to distinguish between observable (external) and internal behaviour of processes

and we wish to regard two processes equivalent if they exhibit the same observable

behaviour, irrespective of any intermediate internal behaviour that may occur. To

this end we introduce a special silent action τ which represents internal behaviour

and we de�ne a new composite transition
a=⇒ as ( τ−→)∗ a−→ ( τ−→)∗ if a 6= τ and

( τ−→)∗ for a = τ . Then we can de�ne a more general process equivalence which

is called weak bisimulation.

De�nition 2.7 Let (S, A,−→) be a transition graph, where the set of labels A

also includes the silent action τ . A binary relation R over S is a weak bisimula-

tion if whenever (P,Q) ∈ R then for every a ∈ A,

• if P a−→ P ′ then there exists Q a=⇒ Q′ such that (P ′, Q′) ∈ R, and

• if Q a−→ Q′ then there exists P a=⇒ P ′ such that (P ′, Q′) ∈ R.

Processes P and Q are weakly bisimilar, written P ≈ Q, if they are related by

some weak bisimulation.

The requirement on matching transitions is relaxed in comparison with strong

bisimulation and so this de�nition yields a weaker notion of bisimulation. It is

easy to convince oneself that for all pairs of processes P and Q, if P ∼ Q then

also P ≈ Q. However, the converse does not always hold which is illustrated in

the example that follows.

Example 2.8 We consider the processes P and Q pictured in Fig. 2.1. Clearly

P and Q are not strongly bisimilar because to the move P
a−→ P ′ the process

20



P

a

��

Q

τ

��

P ′ Q′

a

��
Q′′

Figure 2.1: Weakly bisimilar processes

Q has no response, and vice versa, the move Q
τ−→ Q′ cannot be matched by

P . When we consider weak bisimilarity then these processes become equivalent.

To the transition P
a−→ P ′ the process Q will respond with Q

τ−→ Q′
a−→ Q′′,

written as Q
a=⇒ Q′′ in terms of weak derivations. The resulting derivatives

P ′ and Q′′ represent deadlock, i.e. cannot perform any action at all, and hence

are equivalent. Conversely, to the transition Q
τ−→ Q′ the process P chooses to

perform the empty transition P
ε=⇒ P . The resulting processes Q′ and P are

even strongly bisimilar. Hence we can conclude that P ≈ Q. �

The above example illustrates the valid option of a process to refrain from per-

forming any action in response to a τ transition of an equivalent process. This

conveys the essence of τ transition as an internal change of state that is not

observable by outsiders and hence has to be abstracted from.

Analogously to strong bisimulation, we can de�ne weak bisimulation by a

non-increasing chain of binary approximants. That will be carried out in detail

in Chapter 3.

2.2 Simple process algebras

Simple process algebras are a category of process algebras that are obtained by

application of a few basic operators. They are Basic Process Algebras (BPA),

whose main operators are sequential composition and summation, and Basic Pa-

rallel Process Algebras (BPPA), whose main operators are parallel composition

and summation. Now we are going to de�ne the syntax and semantics of the two

classes of process algebras. We will de�ne processes by process expressions which

we will provide with structured operational semantics.

We presuppose an in�nite set of actions Act = {a, b, c, . . .}∪{τ} with τ being

a distinguished element of Act denoting the silent action. We let the variables

µ, ν, . . . range overAct. We also assume a countably in�nite set of process variables

21



Var = {X, Y, Z, . . .} with capital letters P,Q,R, S ranging over strings from Var ∗

or multisets from Var⊗. The distinguished character ε shall denote the empty

sequence or the empty (multi)set.

The process expressions are obtained using the following abstract syntax:

E ::= 0 (inaction)
| µE (action prefix µ ∈ Act)
| X (process variable X ∈ Var)
| E + F (summation)
| E · F (sequential composition)
| E‖F (parallel composition)

The variables E, F will denote process expressions. The intended meaning of our

operators is:

• 0 represents the inactive process with no available transitions.

• µE is a process which can evolve into E by performing µ.

• E + F can either behave like E or F .

• E · F behaves like E until termination whereupon it behaves like F .

• E‖F can perform the actions of E and F in an arbitrary interleaved fash-

ion. In fact, this type of parallel composition is called merge but for our

convenience we will continue to call it parallel composition.

There is no synchronisation in our calculus and therefore the silent action τ

only occurs when explicitly stated, it cannot arise as a result of communication

between two processes. Finally, to simplify the process expressions, we will omit

all super�uous occurrences of 0, that is we will write µ instead of µ0. We will

also omit the symbol for sequential composition, thus writing EF for E · F .
A process is a process expression whose variables are de�ned by a family ∆ of

�nitely many recursive process equations

∆ =
{
Xi

def= Ei | i = 1, 2, . . . , n
}
,

where Xi are distinct variables and Ei are process expressions containing at most

the variables {X1, . . . , Xn}. The variable X1 is singled out as the leading variable.

We allow recursive de�nitions and so we need to make sure that all �nite families

of process equations have a unique solution up to bisimilarity. The following

condition takes care of that [49]:

22



De�nition 2.9 A process expression E is guarded if every variable occurrence

in E is within the scope of an action pre�x. The family of process equations

∆ = {Xi
def= Ei | i = 1, . . . , n} is guarded if each Ei is guarded for i = 1, . . . , n.

Hence we will always assume guarded families of process equations. Now we

can present the semantics of our language in the style of operational semantics.

Any �nite family of guarded process equations ∆ determines a labelled transition

graph; states are process expressions, the set of labels is given by Act and the

transition relation is given as the least relation derived from the rules of Table

2.1.

We have already de�ned strong bisimulation in terms of labelled transition

graphs. Every family of guarded process equations determines a labelled transi-

tion graph. So we can say that two such families ∆ and ∆′ are bisimilar, ∆ ∼ ∆′,
if there exists a strong bisimulationR relating the corresponding transition graphs

of ∆ and ∆′ such that (X1, X ′1) ∈ R, whereX1, resp. X ′1, are the leading variables

of ∆, resp. ∆′.

E
µ−→ E′

E + F
µ−→ E′

F
µ−→ F ′

E + F
µ−→ F ′

E
µ−→ E′

EF
µ−→ E′F

E
µ−→ E′

E‖F µ−→ E′‖F
F

µ−→ F ′

E‖F µ−→ E‖F ′
isnil(E), F µ−→ F ′

EF
µ−→ F ′

E
µ−→ E′

X
µ−→ E′

(X def= E ∈ ∆) µE
µ−→ E

Table 2.1: Transition rules

For the representation of the rules for sequential composition we introduce a pre-

dicate isnil(E) (following Christensen [6]) indicating whether or not E is capable

of performing an action, in other words whether or not E is bisimilar to the in-

active process 0. We will compute the predicate by induction on the structure of

guarded process expressions.

De�nition 2.10 ([6]) The predicate isnil(E) is de�ned by cases on the structure

of E as follows:

• isnil(0) = true

23



• isnil(µE) = false

• isnil(E + F ) = isnil(EF ) = isnil(E‖F ) = isnil(E) ∧ isnil(F )

• isnil(X) = isnil(E) where X def= E ∈ ∆

We can easily verify that isnil(E) if and only if E ∼ 0 which justi�es the inference

rule that de�nes sequential composition.

2.2.1 Basic Process Algebras

A Basic Process Algebra (BPA) consists of BPA-processes that are obtained from

a �nite set of variables using the operators of action pre�x, sequential composition

and summation. The semantics is de�ned by transition rules for each operator.

A Basic Process Algebra can be also presented as a free monoid over a �nite set

of generators (atoms) together with a �nite set of rules that de�ne the behaviour

of each atom. We will present both de�nitions and show the relationship between

them. First we present the de�nition of a BPA in the spirit of process calculi.

De�nition 2.11 The BPA-process expressions are given by the following abstract

syntax:

E ::= 0 | µE | X | E + F | E · F

A family of guarded process equations ∆ = {Xi
def= Ei | i = 1, . . . , n} de�nes a

BPA-process if each Ei is a guarded BPA expression for i = 1, . . . , n.

We can present process expressions in a special form which is an analogue of

Greibach normal form for context-free grammars. Indeed, there is a close link

between Basic Process Algebras and context-free grammars which was demon-

strated by Baeten, Bergstra and Klop in [2]. We will later follow that link and

present an alternative de�nition of BPA.

De�nition 2.12 A �nite family ∆ = {Xi
def= Ei | i = 1, . . . , n} of guarded BPA

equations is in Greibach normal form (GNF) if every expression Ei is of the form

Ei ≡
ni∑
j=1

µijPij ,

where Pij ∈ Var ∗.

24



It was shown in [2] and [34] that every system of guarded BPA equations can

be e�ectively presented in Greibach normal form. Therefore we do not need to

consider the full generality provided by the process expression de�nition and we

can restrict our attention to processes formed as strings of variables from Var ∗.

Theorem 2.13 ([2], [34]) If ∆ is a �nite family of guarded BPA equations, we

can e�ectively �nd a family ∆′ in GNF such that ∆ ∼ ∆′.

That leads us to consider a Basic Process Algebra as a pair (Σ∗,∆), where Σ is

a �nite set of variables {X1, . . . , Xn} and ∆ = {X µ−→ P | X ∈ Σ, P ∈ Σ∗} is a
�nite set of transitions. Obviously BPA-processes are strings over Σ and we can

generalise the rules of ∆ to determine a more general transition relation by

for every Q ∈ Σ∗, XQ
µ−→ PQ whenever X

µ−→ P ∈ ∆.

Clearly each equation in GNF X
def=
∑n

i=1 µiPi can be equivalently viewed as

a sequence of transitions X
µi−→ Pi. Thus every �nite family of guarded BPA

equations in GNF gives rise to an equivalent Basic Process Algebra of the form

(Σ∗,∆), and vice versa. Therefore we will adopt the notation (Σ∗,∆) as the

de�nition of a Basic Process Algebra throughout the thesis.

Remark: In fact, the de�nition expressed in spirit of process calculi slightly

di�ers from the standard approach towards BPA in two aspects. It includes

the inactive process 0, and views each µ from Act as a unary operator. In the

original calculus BPA [2], each µ would represent a process, namely the process

µ0. We have chosen this uniform presentation along the lines of Christensen [6].

Throughout the thesis we will prefer to view BPA-processes as elements from a

free monoid over a �nite set of atomic variables, as spelt out above. We shall also

assume, without loss of generality, that for each variable X ∈ Σ there is at least

one rule X
µ−→ P in ∆. The same condition will be required from Basic Parallel

Process Algebras for reasons which will become clear later.

2.2.2 Basic Parallel Process Algebras

Basic Parallel Processes are a natural concept that arises in di�erent contexts.

Originally they were de�ned by Christensen in his thesis [6]. A Basic Parallel

Process Algebra (BPPA) consists of Basic Parallel Processes (BPP) that are ob-

tained from a �nite set of variables using the operators of action pre�x, parallel

composition (merge) and summation. The semantics is de�ned by transition rules

for each operator.

25



A Basic Parallel Process Algebra can be also presented as a free commutative

monoid over a �nite set of generators (atoms) together with a �nite set of rules

that de�ne the behaviour of each atom. We will present both de�nitions and

show the relationship between them. The standard de�nition of a BPPA in the

spirit of process calculi is as follows:

De�nition 2.14 The Basic Parallel Process (BPP) expressions are de�ned by

the following abstract syntax:

E ::= 0 | µE | X | E + F | E‖F

A family of guarded process equations ∆ = {Xi
def= Ei | i = 1, . . . , n} de�nes a

Basic Parallel Process (BPP) if each Ei is a guarded BPP expression for every

1 ≤ i ≤ n.

Analogously to BPA, for every BPP expression there exists a normal form which is

called full standard form in this context. The de�nition and the theorem proving

existence of an equivalent normal form is due to Christensen [6].

De�nition 2.15 A �nite family ∆ = {Xi
def= Ei | i = 1, . . . , n} of guarded BPP

equations is in full standard form if every expression Ei is of the form

Ei ≡
ni∑
j=1

µijPij ,

where Pij ∈ Var⊗.

The set Var⊗ is the commutative monoid consisting of multisets of variables from

Var . We can write elements of Var⊗ as multisets or as parallel composition, e.g.

{X,X, Y, Z} (or equivalently {X2, Y, Z}) is the multiset representation, whereas

X‖X‖Y ‖Z (or equivalently X2‖Y ‖Z) is the parallel composition notation.

Proposition 2.16 [6] Given any �nite family of guarded BPP equations ∆ we

can e�ectively construct another �nite family of BPP equations ∆′ in full standard

form such that ∆ ∼ ∆′.

That eventually leads us to abandon the general abstract syntax and consider a

simpler and more straightforward notation for BPPA.

De�nition 2.17 A Basic Parallel Process Algebra is a pair (Σ⊗,∆) where

• Σ⊗ is the set of multisets over the �nite set of variables Σ = {X1, . . . , Xn},
and

26



• ∆ is a �nite set of rules of the form X
µ−→ P where X ∈ Σ and P ∈ Σ⊗.

The elements of Σ⊗ are then called Basic Parallel Processes (BPP).

In the commutative algebra Σ⊗ there is a natural operation of union which corre-

sponds to parallel composition and hence we will denote it by ‖. For P,Q ∈ Σ⊗,

P‖Q = Xi1+j1
1 . . . Xin+jn

n , where P ≡ Xi1
1 . . . Xin

n and Q ≡ Xj1
1 . . .Xjn

n .

We can extend the rules of ∆ to all BPP in the obvious way:

P‖X‖Q µ−→ P‖R‖Q if there is a rule X
µ−→ R ∈ ∆.

As we showed previously with BPA, the latter notation (Σ⊗,∆) seems better

suited to the purpose of the thesis and therefore we will accept it as our notion

of Basic Parallel Process Algebra.

2.2.2.1 Vector representation of BPP

When we consider BPP as multisets of atomic processes we can represent them

as vectors of natural numbers in this way: assuming that the cardinality of Σ is

n, then a multiset {Xi1
1 , . . . , X

in
n } can be expressed as a vector (i1, . . . , in) ∈ Nn.

Each multiset determines a unique vector and union of multisets corresponds to

vector summation. Pairs of BPP can be represented as vectors from Nn × Nn =
N2n.

Later we shall exploit this representation together with some mathematical

structures on vectors. We shall be using two orderings on BPP: the product order

⊆ and the lexicographic order <Lex. We remind ourselves of the de�nitions. We

assume some processes P and Q given as P ≡ Xi1
1 . . . Xin

n , equivalently P ≡
(i1, . . . , in), and Q ≡ Xj1

1 . . . Xjn
n , equivalently Q ≡ (j1, . . . , jn). Then we say

that P is less than Q in the product order, written P ⊆ Q, if il ≤ jl for every

1 ≤ l ≤ n. We say that P is less than Q under lexicographic order, P <Lex Q,

if there exists l0 such that il0 < jl0, and for all l < l0, il = jl. The orderings

generalise in the obvious sense to pairs of processes.

The two orderings are consistent with parallel composition, that is P ⊆ Q

implies that P‖R ⊆ Q‖R, and P <Lex Q implies that P‖R <Lex Q‖R, for every
R. We also have that lexicographic order is a well-order, i.e. it is linear and every

strictly decreasing sequence is �nite. The following property of lexicographic

order will be referred to later.

Lemma 2.18 For any BPP P,Q, R and S such that P 6= Q, it holds that either

(P‖R,P‖S) <Lex (P‖R,Q‖S) or (Q‖R,Q‖S) <Lex (P‖R,Q‖S).

27



Proof: As P 6= Q and <Lex is linear then either P <Lex Q or Q <Lex P . As-

suming that P <Lex Q, we have that P‖S <Lex Q‖S and hence (P‖R,P‖S) <Lex

(P‖R,Q‖S). From the latter assumption Q <Lex P we would analogously derive

that (Q‖R,Q‖S) <Lex (P‖R,Q‖S). �

2.3 Further notions

In general, the processes that we shall consider determine in�nite state transition

graphs. No decision procedure for testing bisimilarity can be based on a simple

exhaustive search since for in�nitely many states that is not feasible. For that

reason we are trying to identify some properties of the processes which would

provide us with additional information that would lead to a decision procedure.

An obvious guess is to try and identify some structural properties of processes.

We want to divide the goal of testing bisimilarity of a given pair of processes into

testing several cases of smaller processes which would eventually lead to one of a

few trivial base cases. We will identify the conditions under which a process can

be decomposed into smaller processes.

The concept of size of a process seems to be a natural criterion to consider.

Intuitively, size should satisfy the following requirements. Two equivalent pro-

cesses should be of the same size, �nite state processes should have �nite size

and in�nite state processes would have in�nite size. Size should be a function of

branching and of the lengths of sequences that can be performed by a process.

And �nally, size should be additive under composition.

One potential candidate for size is the height (rank) of the transition tree

determined by a process. The height of a tree is an ordinal number de�ned

inductively in this way: the height of an empty tree is taken to be ∅, and the

height of a node is taken to be the supremum (limit) of the heights of its sons that

are increased by 1. Intuitively this concept is rather appealing, however the way

it is usually de�ned does not accommodate trees with in�nite branches. That is

a serious restriction and there does not seem to be an easy way of overcoming

this obstacle.

We will present here a measure on processes which is very simple and still

possesses many of the desired properties. We notice that if two processes are

equivalent then all their �nite behaviour has to coincide. In particular, if there

is a terminating sequence of length n available to one of the equivalent processes

then the other process has to be able to produce matching behaviour, i.e. the same

sequence of the same length n. That applies to minimal (in length) sequences as

28



well and that is what we will take for our notion of measure on processes. We

will de�ne an auxiliary notion of norm to be the length of a minimal terminating

sequence. Norm does not have any computational value in itself but it is sur-

prisingly useful in classifying processes. It combines additively with respect to

composition, sequential and parallel, and it is consistent with bisimilarity.

2.3.1 Strong norm

In the following text we assume that our processes are taken either from a Basic

Process Algebra or a Basic Parallel Process Algebra. If P is a process then the

norm of P , denoted by |P |, is the length of a minimal sequence leading from P

to the empty process ε, that is |P | = min{length(w) | P w−→ ε, w ∈ A∗}. We say

that a process is normed if it has a �nite norm, otherwise it is unnormed. We

also call this notion strong norm to distinguish it from weak norm which will be

de�ned later. Norm is consistent with strong bisimilarity and is additive with

respect to composition which is expressed in the lemma below.

Lemma 2.19 Let P and Q be processes. Then the following conditions hold:

1. If P ∼ Q then |P | = |Q|.

2. |P ◦Q| = |P |+ |Q|, where ◦ is either sequential or parallel composition.

3. If |P | = 0 then P = ε.

Proof: Since the statements of the lemma are quite easy to see we will prove them

in an informal way. Case 3. is a straightforward consequence of the de�nition of

norm since we do not admit inactive atoms.

To verify 1. and 2. we will note that if |P | = n > 0 then there exists a

transition P
µ−→ P ′ with |P ′| = n − 1. We call this a norm-reducing transition.

If we have P and Q such that |P | = m < n = |Q| then there is a norm-reducing

sequence P
µ1−→ P1

µ2−→ P2 . . .
µm−→ Pm = ε of length m. Since the norm of Q

is strictly larger than m, for every sequence Q
µ1−→ Q1

µ2−→ Q2 . . .
µm−→ Qm the

process Qm can perform some transition
µ−→. Hence Pm 6∼ Qm for every such Qm

and from that follows that P 6∼ Q.

If we have a composition of two processes P and Q, then we can reach the

inactive state by �rst performing a minimal sequence of P followed by a minimal

sequence of Q. Hence clearly |P ◦Q| ≤ |P |+ |Q|. To verify the other direction, we
can observe that if we had a sequence starting from P ◦Q leading to ε of length

less than |P | + |Q|, we could reconstruct from it a sequence P
s−→ P ′ = ε with

29



length(s) < |P | or a sequence Q
t−→ Q′ = ε with length(t) < |Q|, which would

contradict our assumptions.

We can observe that the verity of these statements relies strongly on the fact

that we do not admit inactive variables in our algebra. If we allow an inactive

atom X with no transition rule X
µ−→ P associated with it, then any composite

process XQ can perform no actions whatsoever and hence is bisimilar to ε. Then

it follows from 1. that the norms of ε and XQ are equal, i.e. 0. Also the norm

of X is 0. By 2., the norm of XQ is equal to |X| + |Q| = |Q|. We have that

|XQ| = 0 yet the norm of Q does not necessarily have to be 0. �

There is a singular process of norm zero (ε) and the norm is additive under

composition. Hence we can state a simple yet important claim, a corollary of

case 2 which applies both to BPA and BPPA.

Corollary 2.20 For a �xed algebra and a �xed n ∈ N, there are only �nitely

many processes of norm n.

The norm of a process from some algebra (Σ,∆) (BPA, resp. BPPA) can be

easily computed. First we will iteratively construct the set ΣN of normed atoms

from Σ. We initialise N1 to consist of all atoms X that can reach ε within a single

step, i.e. there is a transition X
µ−→ ε in ∆. Then we construct Ni+1 by taking Ni

and adding atoms that can with a single transition reach a process from N∗i , resp.

N⊗i . This algorithm will stop when no more variables can be added. That will

certainly occur within k iterations, where k is the size of Σ. All the normed atoms

will be contained in ΣN = Nk, and all the atoms from Σ \ΣN are unnormed. For

all normed processes we can easily derive their norms by the following rules:

• |ε| = 0

• |P ◦Q| = |P |+ |Q|, where ◦ is either sequential or parallel composition

• |X| = min{|P | | ∃X µ−→ P ∈ ∆}+ 1

The properties of norm which we have just veri�ed are essential in decidability

techniques. We will see later that algebras where all processes are of �nite norm

are simple to deal with since we can decide bisimilarity in polynomial time.

30



2.3.2 Weak norm

The principle of norm is based on a minimal terminating sequence of a process.

In the context of strong bisimilarity all actions contribute equally towards the

�nal length. When we consider weak bisimilarity, the action τ acquires a special

status which has to be re�ected in this notion. We consider the notion of weak

norm, originally de�ned by Hüttel in [35]. The weak norm ‖P‖ of a process P is

taken to be the length of a minimal derivation sequence from P to ε not counting

τ -moves, i.e. ‖P‖ = min{length(w) | P w=⇒ ε}.
A process P of a �nite norm is called weakly normed. If the norm of P is

�nite and positive, i.e. 0 < ‖P‖ < ∞, then P is totally normed. A process of

in�nite norm is again called unnormed. Weak norm on BPA and BPPA satis�es

the following properties:

Lemma 2.21 Let (Σ,∆) be an algebra such that for every atom X ∈ Σ, if X ≈ ε
then there is a weak transition X τ=⇒ ε. For all processes P and Q of this algebra

holds the following:

1. If P ≈ Q then ‖P‖ = ‖Q‖.

2. ‖P ◦Q‖ = ‖P‖+ ‖Q‖, where ◦ is either sequential or parallel composition.

The proof of the lemma above is analogous to the proof of Lemma 2.19. We

shall now explain the extra condition placed on P and Q. From the de�nition of

weak norm, a process that behaves as a τ loop, for instance a process T de�ned

by a sole transition rule T
τ−→ T , has in�nite norm. On the other hand T cannot

ever produce any observable behaviour and so is weakly bisimilar to ε. Clearly,

these two facts combined would violate statement 1, therefore all processes like

T have to be excluded.

The weak norm of a process can be computed in a similar way to strong norm

with the only di�erence that silent moves are not taken into account. Again we

can design an iterative algorithm that after a �nite number of steps halts with

the set of weakly normed atoms. Then for weakly normed processes we calculate

their respective norms following these rules:

• ‖ε‖ = 0

• ‖P ◦Q‖ = ‖P‖+ ‖Q‖, where ◦ is either sequential or parallel composition

• ‖X‖ = min{min{‖P‖ | ∃X µ−→ P ∈ ∆, µ 6= τ}+ 1,min{‖P‖ | ∃X τ−→ P ∈
∆}}

31



We have showed that analogously to strong norm and strong bisimilarity, weak

norm is consistent with weak bisimilarity and combines additively under compo-

sition. However, in contrast to strong norm, the class of processes of norm zero

is not necessarily so simple. It is no longer true that if ‖P‖ = 0 then P = ε as we

can change the norm of a process P to be 0 simply by adding a new transition

P
τ−→ ε. Yet P can still have many other actions at its disposal and so it need

not even be bisimilar to ε. If there is a variable X of norm zero in an algebra

then automatically we obtain an in�nite set of processes of norm zero by taking

X,X2, X3, . . .. That also means that there may be an in�nite set of processes of

identical norm. Hence for weak bisimulation we cannot use the standard decida-

bility techniques that work for strong bisimulation. We can achieve decidability

by restricting to the subset of totally normed processes which will be showed in

Subsection 2.6.1.

2.3.3 Image-�niteness

Although the general BPA-processes and BPP de�ne in�nite state transition

graphs they possess an important property with respect to strong bisimilarity

which is image-�niteness. In fact because each process algebra is de�ned by a

�nite set of rules all processes are �nitely branching.

De�nition 2.22 A process P is image-�nite if the set {P ′ | P µ−→ P ′} is �nite
for every action µ.

It is a standard result that for every class of image-�nite processes the maximal

strong bisimulation∼ can be obtained as the intersection of approximants labelled

by natural numbers.

Lemma 2.23 ∼ =
⋂
n∈ω ∼n.

Proof: We presuppose a class of image-�nite processes and the maximal strong

bisimulation ∼ on it. It is a matter of fact that the inclusion ∼ ⊆ ∼α holds for

every α, and therefore ∼ ⊆
⋂
n∈ω ∼n. We need to show that for this class of

image-�nite processes the other direction is satis�ed, i.e. ∼ω =
⋂
n∈ω ∼n ⊆ ∼.

The way to do that is to show that ∼ω is a strong bisimulation, hence it is

included in ∼. We need to verify that ∼ω is closed under expansion. We assume

two processes P and Q from the class such that P ∼ω Q. That means that for

every n, P ∼n Q. We �x a transition P
µ−→ P ′ and from our assumptions, for

every n there is a matching transition Q
µ−→ Q′n such that P ′ ∼n Q′n. Since Q has

only �nitely many µ derivatives, there must be a Q′ that occurs in�nitely often

32



in the sequence Q′0, Q
′
1, . . . , Q

′
n, . . .. Then P

′ ∼n Q′ for in�nitely many indices n,

and hence P ′ ∼ω Q′. The same argument can be used for any transition of Q.

Therefore we have veri�ed that ∼ω is a strong bisimulation and thus we come to

the conclusion that ∼ω ⊆ ∼, and �nally, ∼ω = ∼. �

We include this proof here for completeness. The original proof can be found in

[23].

2.3.4 Semidecidability of bisimulation

Most of the original decidability results for strong bisimilarity on simple pro-

cess algebras consist of two semidecision procedures. Semidecidability of non-

bisimilarity is a simple consequence of Lemma 2.23 of the previous subsec-

tion. It is straightforward to see that both BPP and BPA-processes give rise

to classes of image-�nite processes with respect to strong bisimilarity and hence

∼ =
⋂
n∈ω ∼n. Therefore if two BPA-processes or BPP P and Q are not strongly

bisimilar there must be an n such that P 6∼n Q.
We can easily verify that ∼n is decidable for every n: the base case ∼0 relates

all processes, and in order to check whether P ∼n+1 Q we need to check only

�nitely many situations P ′ ∼n Q′ with P
µ−→ P ′ and Q

µ−→ Q′, as P and Q

are �nitely branching. These two facts combined give us a direct semidecision

procedure for non-bisimilarity.

Lemma 2.24 Strong bisimilarity is semidecidable on Basic Process Algebras and

Basic Parallel Process Algebras.

2.3.5 Unique prime decompositions

We will now focus our attention on normed algebras and show that each process

from a normed algebra can be decomposed into a composition of prime processes.

Prime processes are those that are not further decomposable. We will show that

this decomposition is unique with respect to bisimilarity.

Let A be an algebra (BPA or BPPA) with atoms Σ = {X1, . . . , Xn}. We say

that A is normed if all its process variables are normed. A variable X ∈ Σ is

called prime (with respect to ∼) if X ∼ PQ entails that P ∼ ε or Q ∼ ε. Let

Π = {Y1, . . . , Yi} be a subset of Σ which contains one selected atom from every

equivalence class of primes. A prime decomposition of a process P is an expression

Z1Z2 . . . Zk ∼ P , where each Zi is a prime from Π, for i = 1, . . . , k. We say that

an algebra has unique prime decomposition up to bisimilarity if every process is

bisimilar to a unique product of primes from Π.

33



Historically, the �rst result on unique prime decompositions was obtained for

�nite processes by Milner and Moller in [50], [52]. Here we will state a couple

of theorems about unique prime decompositions for BPA and BPPA. The proofs

can be found in [6], [32].

Theorem 2.25 Any normed Basic Process Algebra has unique prime decompo-

sition up to bisimilarity.

Theorem 2.26 Any normed Basic Parallel Process Algebra has unique prime

decomposition up to bisimilarity.

We will show on an example why normedness is a necessary condition for unique

prime decomposition. We assume two processes X
a−→ ε and Y

a−→ Y . The

atom X is a prime, however Y is not because Y ∼ XY (taken as either sequential

or parallel composition). We cannot express Y as any composition of a �nite

number of primes and so clearly prime decomposition fails.

2.4 Decidability of strong bisimilarity on BPA

The �rst decidability result appeared in [2] where Baeten, Bergstra and Klop

demonstrated decidability for normed BPA-processes. They noticed that the

concept of context-free grammars can be transposed to the setting of process

algebras where it gives rise to context-free processes, or BPA-processes. Their

result was a consequence of certain periodic structure displayed by the transition

graphs determined by BPA-processes.

Other proofs for the normed subclass of BPA-processes followed with Hüttel

and Stirling [37], and Caucal [5]. Then came papers by Groote [20], and Huynh

and Lu Tian [38] which improved the computational complexity of the decision

problem. Eventually, Hirshfeld, Jerrum and Moller produced a polynomial time

decision procedure in [31].

For the unrestricted class of general BPA-processes, the �rst decidability result

was demonstrated by Christensen, Hüttel and Stirling in [10], [11]. Their approach

was similar to Caucal's proof for normed BPA-processes. An improvement on this

was an elementary decision procedure reported by Burkart, Caucal and Ste�en

[4]. We will now concentrate on the technique developed by Caucal in [5] since

it enables us, for some classes of processes, to test bisimilarity by constructing a

�nite base for bisimulation.

34



2.4.1 Caucal bases and normed BPA

Caucal in his paper [5] introduced the notion of self-bisimulation which then be-

camewidely used by other authors, also under the name of Caucal base. Originally

conceived in order to construct a decision procedure for normed BPA-processes, it

was used later in combination with other techniques to decide strong bisimilarity

for other classes of processes. Here the de�nition of Caucal base will be given

and Caucal's original decidability proof will be explained. All the de�nitions and

theorems that follow are due to Caucal and taken from [5] unless stated otherwise.

Caucal phrases his results in terms of graphs of right derivations of context-free

grammars, however we will present the work in the framework of Basic Process

Algebras. In the following we will assume a normed BPA (Σ,∆), although the

notion of a Caucal base and its properties carry over to general BPA.

For a binary relation R on BPA-processes, the least congruence generated by

R is denoted by
R≡, and it is the least equivalence relation containing R which is

also closed under sequential composition. To spell this out, PP ′
R≡ QQ′ whenever

P
R≡ Q and P ′

R≡ Q′.

De�nition 2.27 A binary relation R on (general) BPA-processes is a Caucal

base if whenever (P,Q) ∈ R we have that

• if P
µ−→ P ′ then Q

µ−→ Q′ for some Q′ with P ′
R≡ Q′, and

• if Q
µ−→ Q′ then P

µ−→ P ′ for some P ′ with P ′
R≡ Q′.

The following result relates Caucal bases and bisimulation equivalence.

Proposition 2.28 If R is a Caucal base then
R≡ ⊆ ∼.

In fact a stronger property holds, that if R is a Caucal base then the least con-

gruence generated by R is a bisimulation. In order to prove that we would show

by induction on the depth of inference that if P
R≡ Q then for every P

µ−→ P ′

there exists Q
µ−→ Q′ such that P ′

R≡ Q′, and vice versa. The base case is that

(P,Q) ∈ R, then the sought condition follows from R being a Caucal base. If

P
R≡ Q follows from the closure properties of the congruence then the result fol-

lows by induction, using the fact that bisimulation equivalence is a congruence.

We can easily see that ∼ satis�es the conditions of a Caucal base and so as a

corollary we obtain the following:

Corollary 2.29 P ∼ Q if and only if (P,Q) ∈ R for some Caucal base R.

35



We can immediately see the importance of a Caucal base. Clearly one cannot test

bisimilarity by going through the whole possibly in�nite bisimulation equivalence.

A Caucal base is intended as a �nite representation of ∼ that would enable

e�ective testing. However, not every Caucal base would su�ce as the feasibility

of testing with a base depends on the check whether processes are related by the

least congruence generated by the base.

For normed BPA-processes Caucal solves this problem by considering self-

bisimulations that are fundamental. As we work within a slightly di�erent frame-

work we present a slight modi�cation of the notion. It will be convenient to

assume that the variables from Σ are ordered by nondecreasing norm, so that

X < Y implies |X| ≤ |Y |. Then we say that a binary relation R on processes is

fundamental if it satis�es the following two conditions:

1. R consists of pairs (X, Y P ) where Y < X and |X| = |Y P |

2. there is at most one pair (X, Y P ) in R for every variable X.

Every fundamental relation will be �nite as it contains at most one pair for each

process variable. For a fundamental relation R it is decidable whether P
R≡ Q

hence we can test whether a given fundamental relation is a Caucal base. It also

follows from the de�nition that there are only �nitely many fundamental relations

and they can be e�ectively enumerated.

We can intuitively see that a correct fundamental self-bisimulation will consist

of pairs (atom, its decomposition into primes), whose existence is guaranteed for

normed BPA. Before we express the exact nature of the relationship between a

fundamental self-bisimulation and bisimulation equivalence we will formulate the

property of normed BPA-processes that captures the essence of decomposition.

Lemma 2.30 If XP ∼ Y Q and |X| ≤ |Y | then there exists a process R such

that XR ∼ Y and P ∼ RQ.

The �nal item of the decision procedure is the criterion that states when a fun-

damental Caucal base generates the maximal bisimulation.

Theorem 2.31 Every fundamental Caucal base that is maximal with respect to

inclusion generates the maximal strong bisimulation.

Proof (sketch): Clearly every fundamental Caucal base generates a subset of

the maximal bisimulation. That every bisimilar pair belongs to the congruence

generated by a fundamental self-bisimulation R that is maximal with respect to

36



inclusion is obtained as a consequence of Lemma 2.30. If that there exists a

bisimilar pair XP ∼ Y Q that does not appear in
R≡, we choose a minimal such

pair. Then there exists a process R such that, without loss of generality,XR ∼ Y

and P ∼ RQ. As both pairs (XR, Y ) and (P,RQ) have smaller norm, we can

conclude from the assumptions that XR
R≡ Y and P

R≡ RQ. The relation
R≡ is

a congruence and hence XP
R≡ Y Q which contradicts the choice of (XP, Y Q).

Thus we have that
R≡ ⊆ ∼. �

Given a normed BPA and a pair of processes P,Q, the algorithm for deciding

bisimilarity will enumerate all fundamental relations on the algebra. For each

such relation it will test whether it is a Caucal base maximal with respect to

inclusion. As the set of all fundamental relations is �nite and the test on self-

bisimulation is decidable, the algorithm will eventually stop with some maximal

Caucal base R. Then it will check whether the input pair P,Q is related by

the least congruence generated by R. The algorithm will output that P ∼ Q if

P
R≡ Q, otherwise it will output that P 6∼ Q. This is clearly a correct algorithm

that decides strong bisimilarity on any normed BPA hence we can conclude:

Theorem 2.32 Strong bisimilarity is decidable on any normed Basic Process

Algebra.

Now we can brie�y explain the polynomial algorithm for deciding ∼ of normed

BPA-processes as it was presented in [31]. The idea is analogous to the deci-

sion procedure above, however we actually construct a �nite base for the largest

bisimulation and we do that in time polynomial in the size of the input algebra.

We start from a base of size quadratic in the number of atomic variables and

then re�ne it in a series of steps into smaller bases which eventually converge to

a base for ∼. All the bases satisfy this condition: they consist of pairs (Y,XP )
such that |Y | = |XP |. We include at most one pair for each choice of variables

X, Y and moreover, for every bisimilar pair Y ∼ XQ there is a pair (Y,XP )
with P ∼ Q in the base. These conditions altogether ensure that we do not omit

any bisimilar pair and also that the sizes are polynomial.

The re�nement step mirrors the condition in the de�nition of a Caucal base.

If there is a pair (X,P ) in the current base such that some derivative (Q,R) is

not in the congruence generated by the base then X 6∼ P and hence we remove

that pair from the base. We use the decomposition theorem to test in polynomial

time whether two processes belong to the congruence
B≡ for the current base B.

37



2.4.2 Decidability for unnormed BPA

Having explained the decidability procedure for normed BPA-processes we will

move onto general BPA. Christensen, Hüttel and Stirling were the �rst to ap-

ply Caucal bases for the purpose of proving bisimilarity decidable for all BPA-

processes [10]. We will present their approach so all the de�nitions and theorems

that follow are taken from [10].

We assume a Basic Process Algebra (Σ,∆) whose variables may be unnormed.

The notion of Caucal base carries over together with Proposition 2.28 and

Corollary 2.29. However, decomposition based on norm no longer works as there

may be in�nitely many unnormed processes and hence in�nitely many possibilities

of matching them up. Still, there exists a �nite Caucal base for bisimulation and

we will explain how it can be obtained.

Due to the sequential structure of BPA-processes we do not need to consider

processes XP for unnormed X since then clearly X ∼ XP . We will divide Σ
into the set of normed variables ΣN , and the set ΣU = Σ \ ΣN consisting of

unnormed variables. Then we will only consider processes from Σ∗N ∪ Σ∗NΣU , i.e.

processes in the form of sequences of normed variables possibly followed with a

single unnormed variable.

The next de�nition stipulates what we mean by decomposition.

De�nition 2.33 A pair (XP, Y Q) satisfying XP ∼ Y Q is decomposable if X

and Y are normed and for some R,

• X ∼ Y R and RP ∼ Q, or

• Y ∼ XR and RQ ∼ P .

We have noted earlier that in the context of normed algebras all bisimilar pairs

(XP, Y Q) are decomposable (see Lemma 2.30). However, in the presence of

unnormed variables there can be bisimilar pairs that are not decomposable. For-

tunately we will manage to show that there are only �nitely many of them. The

following �niteness lemma is crucial:

Lemma 2.34 If PR ∼ QR for in�nitely many non-bisimilar processes R, then

P ∼ Q.

To verify this lemma we would show that the relation R = {(P,Q) | PR ∼
QR, for infinitely many non− bisimilar R} is a bisimulation. The argument rests

on the fact that the processes are image-�nite. If there is a moveP
µ−→ P ′ then for

38



in�nitely many non-bisimilar R we must have Q
µ−→ QR such that P ′R ∼ QRR.

There must be some Q′ occurring in�nitely many times among these QR, hence

(P ′, Q′) is again in R.
We will call two pairs (XP, Y Q), (XP ′, Y Q′) distinct if P 6∼ P ′ or Q 6∼ Q′.

Then we have the following lemma about non-decomposable pairs:

Lemma 2.35 For any X,Y , any set R of the form

R = {(XP, Y Q) | XP ∼ Y Q and (XP, Y Q) are not decomposable }

which contains only distinct pairs is �nite.

This lemma is a consequence of image-�niteness and the previous Lemma 2.34.

For the �nal part we need to introduce a well-founded ordering v on pairs

of processes. To that end we de�ne a measure s on Σ∗N ∪ Σ∗NΣU as follows. For

P ∈ Σ∗N and X ∈ ΣU , s(P ) = s(PX) = |P |. Now we put (P, P ′) v (Q,Q′) if

max{s(P ), s(P ′)} ≤ max{s(Q), s(Q′)}. We will make use of the ordering in the

construction of a Caucal base for ∼.

Theorem 2.36 There exists a �nite Caucal base for ∼.

Proof (sketch): The base R is obtained as a union of two (�nite) relations R1

and R2. The relation R1 is the largest set {(X,P ) | X ∈ ΣN and X ∼ P}.
The relation R2 is the largest set {(XP, Y Q) | XP, Y Q ∈ Σ∗N ∪ Σ∗NΣU , XP ∼
Y Q and (XP, Y Q) not decomposable}, such that each pair (XP, Y Q), (XP ′, Y Q′)
is distinct, and we only assume minimal elements with respect to v.

The two sets are clearly �nite; R1 is �nite as there are only �nitely many

processes of a given �nite norm and the �niteness of R2 follows from Lemma

2.35. Thus R is �nite.

As R contains only bisimilar pairs, R ⊆ ∼ and thus
R≡ ⊆ ∼ because ∼ is a

congruence with respect to sequential composition. The other direction, ∼ ⊆ R≡,
is then checked separately for decomposable, resp. not decomposable, bisimilar

pairs (XP, Y Q) by induction on v. �

To conclude the semidecision procedure we note that it is semidecidable for a

�nite relation R whether it is a Caucal base as the membership test in
R≡ is

also semidecidable. The algorithm for semideciding bisimilarity then proceeds by

generating �nite relations and testing for a Caucal base. This procedure combined

with the algorithm for semideciding non-bisimilarity (Subsection 2.3.4) yields

a decision procedure, although no complexity bound can be obtained in this way.

39



For more detailed treatment consult [10], [11], [29]. An improvement on this

approach is presented in [4] where an actual bisimulation base is constructed

thus yielding an elementary decision procedure, with the complexity estimated as

doubly exponential.

2.5 Decidability of strong bisimilarity on BPP

The �rst decidability result for strong bisimilarity of BPP was a decision proce-

dure for the subclasses of normed and live BPP by Christensen, Hirshfeld and

Moller in [7]. That was later extended to the whole class of BPP by the same

authors in [8].

For the subclass of normed BPP, Hirshfeld, Jerrum and Moller constructed a

polynomial algorithm in [29], [30]. For the class of general BPP, there appeared

various other decidability results following di�erent techniques. There is a de-

cision procedure that makes use of tableaux by Hirshfeld and Moller [32], or a

method based on semilinear sets suggested by Jan£ar in [40], [41]. However, with-

out further assumptions it is not possible to place any primitive recursive upper

bound on the computational complexity of deciding bisimilarity of BPP.

Hirshfeld in [27] presented an elegant method of testing bisimilarity by con-

structing trees that yield a �nite representation of bisimulation if used for bisi-

milar pairs. This technique is quite general and can be used for various process

algebras and di�erent notions of bisimulation. We will give a brief overview of

his technique.

2.5.1 Bisimulation trees

The commutative nature of BPP in general requires the use of di�erent techniques

from those that we could apply to BPA-processes. Here the method of bisimu-

lation trees devised by Hirshfeld is introduced. All the de�nitions and results of

this section are taken from [27].

When we consider parallel composition it is no longer true that if X is un-

normed then for any process P , X‖P ∼ X. Therefore we need to take into ac-

count processes that may contain more unnormed atoms. Adding to that, there

is no �niteness theorem for non-decomposable pairs (although we can prove the

existence of a �nite base for bisimilarity) and thus we have to follow a di�erent

path. We will construct a tree - a witness for bisimilarity, which will be always

�nite and will contain a successful branch if and only if the input is a bisimilar

pair. The nodes of the tree will be formed by �nite sets, slightly re�ned versions

40



of expansions:

De�nition 2.37 Let A be a �nite set of pairs of Basic Parallel Processes. A set

A′ of pairs of BPP is an expansion of A if

• for every pair (P,Q) in A and for every derivation P
µ−→ P ′ there is a

derivation Q
µ−→ Q′ with (P ′, Q′) ∈ A′;

• for every pair (P,Q) in A and for every derivation Q
µ−→ Q′ there is a

derivation P
µ−→ P ′ with (P ′, Q′) ∈ A′;

• A′ is minimal, that is no proper subset of A′ satis�es these two conditions.

We say that A has an expansion in R if some expansion of A is a subset of R. If

we start o� from a bisimilar pair then there must be a (possibly in�nite) sequence

of expansions whose union yields a bisimulation relating the original pair. Those

expansions correspond to correct derivations of the input pair. We will put that

idea into practise and construct a tree whose nodes correspond almost exactly to

expansion sets.

De�nition 2.38 A bisimulation tree for a pair of processes (P,Q) is a tree whose
nodes are labelled by �nite sets of pairs such that the root is labelled by the singleton

{(P,Q)} and the sons of each node are labelled by di�erent expansions of the set

of pairs at this node, with this modi�cation: we do not include any pairs that

have occurred in some ancestor node and every pair (P, P ) is omitted. A leaf

of a bisimulation tree is successful if it is labelled by the empty set. A leaf of a

bisimulation tree is unsuccessful if it is not empty and yet has no expansion. A

branch is successful if it ends with a successful node or if it is in�nite.

Every pair of the form (P, P ) constitutes bisimilar processes and hence it is not

necessary to include such pairs in the construction of a bisimulation witness. If we

have already considered a pair (P,Q) at some point then by the de�nition of ex-

pansions we have already examined and included all possible matching derivatives

and so we do not need to check this pair again if it appears later on.

Since every BPP has only �nitely many derivatives in one step, every �nite set

of pairs of processes has �nitely many possible expansions and every expansion

is �nite. Therefore every bisimulation tree is �nitely branching. It is not di�cult

to see that the de�nition yields the following characterisation:

Proposition 2.39 P and Q are bisimilar if and only if their bisimulation tree

has a successful branch. In fact, the union of the sets labelling the nodes of a

successful branch together with all the pairs (P, P ) forms a bisimulation.

41



The bisimulation tree as it is de�ned can still contain in�nite branches. It is

the unbounded growth of the processes which may make the branches in a tree

in�nite. We shall use an idea similar to decomposition which will ensure that the

sizes of the processes that may occur in the tree will be bounded.

We will use the natural correspondence between BPP and vectors over natural

numbers that was explained in 2.2.2.1. Assuming that the size of the set of

variables Σ is k, we will represent a BPP as a vector in Nk. Then we say that

P dominates Q if there is a process R such that P = Q‖R. Equivalently, P

dominates Q if P is greater than Q in the product order. For pairs of vectors, we

say that (P,Q) dominates (R, S) if P dominates R and Q dominates S. Finally,

a sequence of BPP is proper if it does not contain a process dominating a process

previously occurring in the sequence. Proper sequences cannot go on forever

which was originally formulated and proved by Dickson in [13]. We will also refer

to the following lemma as Dickson's lemma.

Lemma 2.40 Every proper sequence of BPP is �nite.

In order to remove in�nite branches, we will modify the construction of the bi-

simulation tree. The idea is that �big� processes will be replaced with smaller

ones so that pairs of processes from nodes along a branch will determine proper

sequences. That will ensure �nite lengths of branches of the tree.

We start from the root and assuming we have modi�ed up to some node,

we carry out the modi�cation of its sons. If a son includes a pair (P‖R,Q‖S)
which dominates a previously occurring pair (P,Q) then we consider the pairs

(P‖R,P‖S) and (Q‖R,Q‖S). If either of them does not dominate (P,Q) then

we replace (P‖R,Q‖S) with the respective pair.

However, it may still happen that both pairs dominate (P,Q). Then we make

use of the fact that either (P‖R,P‖S) or (Q‖R,Q‖S) is less than (P‖R,Q‖S)
in the lexicographic order which was stated in Lemma 2.18. Assuming it is

(P‖R,P‖S) <Lex (P‖R,Q‖S) we continue the modi�cation with (P‖R,P‖S)
(still with respect to (P,Q)). Thus we are forming a decreasing sequence of pairs

which will be �nite as <Lex is a well-order. Therefore we will eventually come

across a pair (P ′, Q′) that will not dominate (P,Q).
However, it may happen that the new pair still dominates another previously

occurring pair. As there are only �nitely many of such pairs to consider this

algorithm will stop after a �nite number of modi�cation steps. The outcome will

be a pair that does not dominate any pair occurring at a previous node along the

branch and it will be the replacement for the original pair (P‖R,Q‖S).

42



In order to show that the modi�cation preserves the soundness of the tree we

will need the following lemma:

Lemma 2.41 Assuming that P ∼ Q, then for every R and S, P‖R ∼ Q‖S i�

P‖R ∼ P‖S i� Q‖R ∼ Q‖S.

To verify the lemma we would employ the property of bisimulation being a con-

gruence with respect to parallel composition. If P ∼ Q then for any R and S

also P‖R ∼ Q‖R and P‖S ∼ Q‖S. That combined with the assumption of

P‖R ∼ Q‖S and ∼ being symmetric and transitive implies that also P‖R ∼ P‖S
and Q‖R ∼ Q‖S. The other implications would be deduced in a similar way.

Analogously we would show that if the dominated pair does not consist of

bisimilar processes then modi�cation does not add processes that would produce

a bisimulation witness. All successors of a node containing a non-bisimilar pair

will eventually fail, i.e. reach a (non-empty) set that has no expansion. Therefore

the soundness of the tree is preserved.

The modi�cation of the bisimulation tree that we have just described ensures

that all nodes alongside every branch determine proper sequences of processes.

Then the application of Dickson's lemma ensures that all branches have to be

�nite. Lemma 2.41 ensures that the modi�cation preserves the correctness and

so the modi�ed bisimulation tree has a successful branch if and only if the root is

labelled by a bisimilar pair of processes. In fact, the union of the nodes alongside

a successful branch forms a �nite Caucal base for a bisimulation.

Finally we will remark on the complexity of this decision procedure. There

are two factors to consider. The �rst is the size of the branching at each node

which is bounded by a function exponential in the size of the input algebra.

The second is the upper bound on the lengths of the branches. The only fact

concerning the lengths of branches available to us is Dickson's lemma. McAloon

in [47] found an e�ective upper bound on the length of a maximal proper sequence

which unfortunately is not even primitive recursive.

For normed BPP there exists a polynomial algorithm deciding bisimilarity. It

makes use of Caucal bases and decomposition into primes and although the tech-

nique is rather di�erent than polynomial decision procedure for BPA-processes,

the idea also involves constructing a series of bases which starts from a large base

and is eventually pruned down to a bisimulation base.

43



2.6 Decidability problem for weak bisimilarity

When we move into the realm of weak bisimilarity we encounter more complex

behaviour even in the case of processes de�ned by a few simple operators. By al-

lowing any number of τ transitions within a single step we lose the image-�niteness

since now processes have the capability of evolving into one of potentially in�ni-

tely many options. That brings in the problem that we may not be able to test a

property for all derivatives of a process unless they can be somehow represented

by a �nite number of base processes. We shall see that that is the case for BPP

where the set of derivatives of a BPP forms a semilinear set which has a �nite

characterisation. This fact will form a basis for a semidecision procedure for weak

bisimilarity.

Another problem that we encounter is semideciding weak non-bisimilarity.

There does not seem to exist any straightforward semidecision procedure for 6≈
that would work along the lines of the semidecision procedure for strong non-

bisimilarity. Just to remind ourselves, the algorithm for semideciding 6∼ consecu-

tively enumerated and tested approximants ∼n which are decidable for both BPA

and BPPA, and converge with the limit being ∼. In Chapter 3 we will de�ne an

analogue of strong bisimulation approximants for weak bisimulation, weak bisimu-

lation approximants ≈α. However, we shall see that the equality ≈ =
⋂
n∈N ≈n

does not hold for general BPA-processes and BPP which is just another conse-

quence of the capability to perform in�nite branching. We will provide more

explanation and examples in Chapter 3.

We have discussed the concept of norm around which the current decidability

techniques for ∼ centre. For weak norm and the class of totally normed processes

we will show that we can actually recover enough of the results that work for

strong bisimilarity to construct a decision procedure.

2.6.1 Decidability of ≈ for totally normed BPA and BPP

Decidability of weak bisimilarity for totally normed process algebras was demon-

strated by Hirshfeld in [28]. Totally normed process algebras consist of process

variables whose weak norm is �nite and positive. We will therefore assume that

we are given some algebra (BPA or BPPA) with a set of atoms Σ and set of

transitions ∆, where for every X ∈ Σ, 0 < ‖X‖ <∞. Hirshfeld noticed that for

weak bisimulation on such algebras one can use similar techniques as for strong

bisimulation.

When we disallow atomic processes to have norm zero then there remains

44



only one process of norm zero which is the empty process ε. Then all other

processes have a positive norm and, as a consequence of additivity of norm, the

set of processes of a �xed �nite norm is �nite. As weak bisimilarity is consistent

with weak norm we can request the condition that matching derivatives should

be of equal norm. Thus we will be able to adjust the technique of bisimulation

trees to work for weak bisimilarity. We shall de�ne weak expansion and weak

bisimulation trees with appropriate modi�cations that re�ect the character of

weak bisimilarity.

De�nition 2.42 Let A be a �nite set of pairs of Basic Parallel Processes. A set

A′ of pairs of BPP is a weak expansion of A if

• for every pair (P,Q) in A and for every derivation P
µ−→ P ′ there is a

derivation Q
µ=⇒ Q′ with (P ′, Q′) ∈ A′;

• for every pair (P,Q) in A and for every derivation Q
µ−→ Q′ there is a

derivation P
µ=⇒ P ′ with (P ′, Q′) ∈ A′;

• A′ is minimal, that is no proper subset of A′ satis�es these two conditions.

We de�ne a weak bisimulation tree exactly as for strong bisimilarity with the

following alterations: expansions are replaced with weak expansions, and we only

consider matching derivatives of equal weak norm. It is not di�cult to see that if

we start o� with a bisimilar pair then the constructed tree contains a successful

branch and the union of weak expansions along that branch together with all

pairs (P, P ) forms a weak bisimulation.

For this particular case of totally normed BPP, the bisimulation tree is �nitely

branching. The reason for that is the requirement that the weak norm be pre-

served, and for totally normed processes, there are only �nitely many processes

of a given norm. Hence if we are at a node and we consider a pair (P,Q), then for

each derivation P
µ−→ P ′ (and there are only �nitely many of those) there exist

only �nitely many matching derivations Q
µ

=⇒ Q′ with ‖P ′‖ = ‖Q′‖. Therefore

the tree we are constructing is �nitely branching with nodes being labelled with

�nite weak expansions.

As for strong bisimilarity, the original tree may contain in�nite branches. The

way around that is to replace dominating pairs with smaller pairs so that the

branches correspond to proper sequences. Dickson's lemma then takes care of

�niteness. The modi�cation for weak bisimulation works precisely as for the

strong case. To justify the soundness of the modi�cation we make use of the

45



following lemma, a weak bisimulation analogue of Lemma 2.41. More details

can be found in [28].

Lemma 2.43 Assuming that P ≈ Q, then for every R and S, P‖R ≈ Q‖S i�

P‖R ≈ P‖S i� Q‖R ≈ Q‖S.

For totally normed BPA-processes the situation is rather more complicated but

still the technique of bisimulation trees works. On the other hand, we can make

use of a result proved by Stirling in [58] which shows decidability of strong bisi-

milarity of normed pushdown automata (PDA).

Another relevant result regarding weak bisimulation of BPA-processes is that

of Sénizergues [57] which settles decidability of bisimilarity for a larger class of

processes that includes all pushdown processes. When pushdown processes are

enriched with arbitrary ε-transitions then weak bisimilarity of BPA-processes cor-

responds to strong bisimilarity of PDA. However, in the class of [57] ε-moves are

restricted in such a way that it covers only �nitely branching BPA-processes, i.e.

processes which by a
µ=⇒ transition can create only a �nite class of derivatives.

That naturally implies that the question of decidability of ≈ cannot be settled

by this approach.

2.6.2 Semidecidability of ≈ for general BPP

The last technique we wish to discuss applies solely to commutative algebras. It

was suggested as a method to decide strong bisimilarity for BPP by Jan£ar in

[40] and developed to deal with weak bisimilarity by Esparza in [16], [15]. The

underlying idea is to combine the facts that every congruence in a commutative

monoid is �nitely generated and that the maximal strong (and weak) bisimulation

on BPP is a congruence. That exploits the multiset character of BPP which will

be again represented as vectors of natural numbers.

We assume that our BPP-algebra consists of a set of atoms Σ = {X1, . . . , Xk},
and a set of transitions ∆. Again we will identify processes with vectors from N
and a pair of processes with a vector from N2k. The set N2k together with the

operation of vector addition is a commutative monoid. We know that the largest

weak bisimulation is a congruence, that means ≈ is an equivalence relation such

that P ≈ Q and R ≈ S implies that P‖R ≈ Q‖S. Parallel composition can be

directly translated as vector addition and hence it is straightforward that ≈ is a

congruence when expressed as a subset of N2k. Then we will show that ≈ is �nitely

generated as a semilinear set and we will show that membership in a semilinear

set can be encoded by a formula from Presburger arithmetic, a decidable �rst

46



order theory of addition. Now we are going to explain all necessary notions and

state all relevant theorems.

De�nition 2.44 A subset A of Nk is linear if there exist vectors v0, v1, . . . , vn in

Nk such that A = {v0 + a1v1 + . . .+ anvn | a1, . . . , an ∈ N}. A set is semilinear if

it is a �nite union of linear sets.

Theorem 2.45 ([14]) Every congruence in a �nitely generated commutative

monoid M is a semilinear subset of M ×M .

A corollary of this theorem is the following:

Corollary 2.46 The largest weak bisimulation ≈ on (Σ⊗,∆) is a semilinear sub-

set of Nk × Nk.

If we translate this result into the process language it says that there exists a

�nite set of sequences of pairs of BPP
{
〈(P10, Q10), (P11, Q11) . . . , (P1i1, Q1i1)〉, . . . ,

〈(Pn0, Qn0), (Pn1, Qn1), . . . , (Pnin , Qnin)〉
}
such that for each bisimilar pair (P,Q)

there exists a j ≤ n so that

(P,Q) = (Pj0, Qj0) +
nj∑
i=1

ai(Pji, Qji), for some a1, . . . , anj ∈ N.

Semilinear sets can be encoded as formulas of Presburger arithmetic. Presburger

arithmetic is the �rst order theory of addition with formulas that are built out of

variables, logical connectives, quanti�ers and the symbols 0,≤ and +. Formulas

are interpreted on the natural numbers and the symbols are interpreted as the

number 0, the natural total order on N and addition. The decidability of Pres-

burger arithmetic was originally proved by Presburger in [56], for other references

consult [24], [19].

Theorem 2.47 It is decidable whether an arbitrary Presburger sentence is true.

What it means to encode a set of vectors as a Presburger formula is de�ned below:

De�nition 2.48 A subset A ⊆ Nk is expressible in Presburger arithmetic if there

exists a Presburger formula A(x1, . . . , xk) with free variables x1, . . . , xk such that

for every (n1, . . . , nk) ∈ Nk, the closed formula A(n1, . . . , nk) is true if and only

if (n1, . . . , nk) ∈ A.

And the �nal connection between formulas and semilinear sets is expressed in a

theorem by Ginsburg and Spanier:

47



Theorem 2.49 ([19]) A subset A ⊆ Nk is semilinear i� it is expressible in Pres-

burger arithmetic. Moreover, the transformations between semilinear sets and

Presburger formulas are e�ective.

We will use this fact to show that we can encode the property of being a bisimu-

lation as a Presburger formula. That will enable us to check whether a binary

relation, given by its �nite representation as a semilinear set, is a bisimulation.

To do that we will make use of the following proposition (consult [16] for details):

Proposition 2.50 For a �xed BPP-algebra and a �xed action µ, the set {(P, P ′) |
P

µ
=⇒ P ′} is semilinear.

We will not specify the details of the proof here but for a �xed action µ we can

actually construct a formula φµ(~x, ~y), where ~x = (x1, . . . , xk), ~y = (y1, . . . , yk) are
vectors of variables, so that

φµ(P, P ′) ≡ P µ=⇒ P ′

Assuming a given binary semilinear set R, we know that it is expressible as a

formula of Presburger arithmetic (Theorem 2.49) and hence we can construct

a formula ψ of 2k free variables so that ψ(~x, ~y) ≡ (~x, ~y) ∈ R. Then we can put

the two formulas together and de�ne a closed formula Φ(R) which will be true if

and only if the relation R is a weak bisimulation:

Φ(R) ≡ ∀~x, ~y ∈ Nk. ψ(~x, ~y) ⇒∧
µ∈L

(
∀~x′. [φµ(~x, ~x′)⇒ ∃~y′. φµ(~y, ~y′) ∧ ψ(~x′, ~y′)] ∧
∀~y′. [φµ(~y, ~y′)⇒ ∃~x′. φµ(~x, ~x′) ∧ ψ(~x′, ~y′)]

)
,

where L is a �nite set of actions that occur in the de�nition of the BPP-algebra

in question.

Therefore we can decide whether a given binary relation is a weak bisimulation.

We can now present the sketch of the semidecision procedure where we make use

of the standard fact that we can recursively enumerate all �nite sets, hence also

all (generators of) semilinear sets.

1. Input a pair of BPP P and Q.

2. Compute an e�ective enumeration of all semilinear sets S1, S2, . . . , such

that each Si contains the pair (P,Q).

3. Check Φ(Si) until you �nd i such that the formula holds.

48



Clearly if P ≈ Q then there exists a weak bisimulation relating the two processes

and eventually we will generate the corresponding semilinear set and successfully

terminate. On the other hand, we have no means of encoding maximality into

Presburger arithmetic which means that we are not able to test for the largest

weak bisimulation. For that reason this method cannot verify that two processes

are not weakly bisimilar.

We already know that the straightforward semidecision procedure for non-

bisimilarity does not work for in�nitely branching processes and hence for weak

bisimilarity. Thus we are confronted with the curious case where we can semide-

cide bisimilarity but we cannot say anything more speci�c about verifying non-

bisimilarity.

2.6.2.1 Bisimulation trees for general BPP

Another technique that can be applied to general BPP to obtain semidecidability

is Hirshfeld's method of bisimulation trees. The construction is essentially the

same as for totally normed BPP. The weak bisimulation tree consists of nodes

labelled by weak expansions. These are always �nite, as in the case of totally

normed BPP, simply because for a pair (P,Q) from some node we consider only

derivatives (P ′, Q′) where either P
µ−→ P ′ and Q

µ
=⇒ Q′ or Q

µ−→ Q′ and

P
µ=⇒ P ′. However, since there may be an in�nite number of possibilities of a

matching derivative to some move even when we require that they preserve weak

norm, there may be an in�nite number of possible weak expansions for some set

(node) and the bisimulation tree may be in�nitely branching.

We can ensure �nite lengths of branches by never including any dominating

pair, as in the case of (totally normed) BPP. Therefore the only obstacle that we

are facing is the potential in�nite branching which cannot be prevented. Still the

�nite depth of the tree enables us to search the tree by dove-tailing for a potential

bisimulation witness, in the form of an empty leaf.

The dove-tailing technique can be brie�y summed up as follows. The nodes of

the tree that is being constructed are labelled by sequences of natural numbers in

this fashion: the root is labelled by 1; if a node has label n1n2 . . . nk then its sons

have labels n1n2 . . . nk1, n1n2 . . . nk2, . . ., n1n2 . . . nki, and so on. The algorithm

for every i ∈ N constructs nodes whose labels add up to i, i.e. in the �rst step

the root is computed, then the �rst son labelled by 11, next the �rst son of 11,

labelled by 111, and the second son of the root, labelled by 12, etc. Since for

every i there are only �nitely many possible sequences adding up to it, and the

nodes are �nite, the iteration for every i is �nite and each node of the tree will

49



be eventually computed. The algorithm will terminate if it generates an empty

node (leaf).

Obviously, the question that immediately arises in this context is whether

one can somehow curb in�nite branching. One way of conquering the obstacle of

in�nite branching would �nding some upper bound N such that for any bisimilar

pair (P,Q) and any moveP
µ−→ P ′, there would exist a matching derivativeQ

µ
=⇒

Q′ with P ′ ≈ Q′ such that the size of Q′ would be bounded by N . The upper

bound would be some function of the size of a given algebra, i.e. would depend

on the number of atoms and sizes of de�ning transition rules, although it is not

entirely clear what measure would be best suited for this purpose. If we had such

a bound we would be able to preserve �niteness of the branching as there would be

only �nitely many weak expansions that would need to be checked. Analogously,

this upper bound could be expressed in Presburger arithmetic so that we would

only need to check bounded quanti�cation instead of general quanti�cation. Then

we would immediately achieve decidability.

50



Chapter 3

Approximants

In this chapter we will develop an idea introduced by Milner in [48]. He de�nes

an equivalence relation on processes which he calls strong equivalence ∼ and

de�nes in terms of a decreasing sequence of equivalence relations (approximants)

∼0,∼1, . . . ,∼k, . . .. The de�nition of the approximants ∼k is stated in Chapter

2. Milner then puts ∼ to be
⋂
k∈ω ∼k. That coincides with the alternative

de�nition of strong bisimulation as presented in [49] on the classes of both Basic

Process Algebras and Basic Parallel Process Algebras. The reason for that is the

image-�niteness of these processes.

As we have already mentioned, the fact that the maximal strong bisimulation

can be obtained as the limit of the chain of approximants labelled by natural

numbers can be employed to yield a semidecision procedure for non-bisimilarity.

Each approximant can be tested in a simple straightforward way, and if two

processes are not bisimilar then they are not related by an approximant ∼k for

some k.

We can adopt a similar approach towards weak bisimilarity. Analogously to

the strong bisimulation approximants we can de�ne a sequence of binary relations

labelled by ordinal numbers that will approximate the maximal weak bisimulation

relation from above. We will call these relations weak bisimulation approximants.

The approximant labelled by 0 is the largest relation in the sequence and contains

all pairs of processes. Approximants labelled by larger ordinals are de�ned in

terms of smaller approximants so that the resulting sequence is non-increasing.

Note that we need to go beyond natural numbers in this construction. The reason

for that will become clear later.

We will show that in general this sequence converges to the maximal weak

bisimulation. For the speci�c cases of BPA and BPPA we will search for the

minimum ordinal that labels an approximant equal to ≈. Finally we will demon-

strate that in the case of Basic Parallel Processes all approximants labelled by

51



natural numbers are decidable. In this chapter we will use notions and results

from the theory of ordinal numbers and so we will commence with an informal

revision of ordinal numbers.

3.1 Ordinal arithmetic

In this section we will present an informal overview of ordinal arithmetic (for more

details consult [1], [21], [22], [45]). We assume that the reader is familiar with

the notion of ordinal numbers as representatives of classes of well-ordered sets.

Ordinal numbers form a class denoted by On with the least element being the

empty set ∅. Ordinal numbers are constructed starting from ∅ by two operations:

by taking an ordinal α and adding {α} to it to form a set α ∪ {α} which gives

rise to an ordinal denoted by α+ 1, or by taking a union of a possibly in�nite set

of ordinals. The ordinal of the form α ∪ {α} is called a successor ordinal and α

is its predecessor. An ordinal λ 6= ∅ which does not have a predecessor is called

a limit ordinal. Ordinals themselves are well-ordered by the element-of relation

which will be denoted by <. We will denote successor ordinals by Greek letters

α, β, γ, and limit ordinals by λ, κ.

The ordinals we will be using form an initial segment of On and they start

with the natural numbers 0, 1, 2, . . . , n, . . . together with the linear order. The

limit of this chain is the �rst limit ordinal ω after which we continue in a similar

fashion ω, ω + 1, ω + 2, . . . , ω + n, . . . , ω + ω, and so on.

Before we de�ne some arithmetical operations on the class of ordinal numbers

we will recall the notion of lexicographic order on On2. We say that the pair

(α1, β1) is less than (α2, β2) with respect to lexicographic order if and only if

α1 < α2 or (α1 = α2 ∧ β1 < β2). Now we are ready to spell out the de�nitions of

ordinal summation and multiplication.

De�nition 3.1 The sum of ordinals α and β is an ordinal number denoted by

α + β and de�ned as the representative of the set ({0} × α) ∪ ({1} × β) under

lexicographic order.

De�nition 3.2 The multiplication of ordinals α and β is an ordinal number de-

noted by α ·β and de�ned as the representative of the set β×α under lexicographic

order.

The asymmetry in the de�nition of ordinal multiplication is due to historical

reasons. On natural numbers, the operations of ordinal summation and mul-

tiplication correspond to (natural) summation and multiplication. However, in

52



general these operations are not symmetric. Hence for example 1+ω = ω 6= ω+1,
and 2 · ω = ω 6= ω · 2. We will pay particular attention to sums and multiples of

ω so to clarify our notation let us note that we will abbreviate ω+ω to ω ·2, etc.,
and ω · ω with ω2, etc. It should be clear now what we mean by the expression

ωmem +ωm−1em−1 + . . .+ωe1 + e0 which will be abbreviated as
∑m

i=0 ω
iei, where

e0, . . . , em are natural numbers and we assume that em 6= 0. In this thesis we will

not get very far in the ordinal hierarchy, however we will encounter the ordinal

ωω in some claims. It is not necessary to understand the structure of this ordinal

and it su�ces to consider ωω as a supremum (limit) of the sequence of ordinals

ω, ω2, ω3, . . . , ωn, . . ..

Before we move on to explain some proof methods that deal with ordinals we

will state this important yet simple property concerning sums.

Proposition 3.3 For two arbitrary sums,
∑m

i=0 ω
iei =

∑n
i=0 ω

ifi if and only if

m = n and ei = fi for every i = 0, 1, . . . ,m.

We will not concern ourselves with a proof here. Intuitively, the validity of this

observation follows from the fact that ωn+1 is the limit of ωn, ωn ·2, . . . , ωn ·k, . . . ,
and hence we cannot reach ωn+1 with any �nite multiple of a smaller power of ω.

When we deal with the whole class of ordinals the common induction principle

for natural numbers becomes too weak for proving theorems. We need a more

powerful proof method than that and, fortunately, the well-ordered structure of

ordinal numbers enables us to formulate a statement which is a generalisation of

the induction principle. It is called trans�nite or ordinal induction.

The Principle of Trans�nite Induction: Let P (α) be a statement for each

ordinal α. Assume that

1. P (0)

2. P (α)⇒ P (α+ 1) for every α

3. if λ is a limit ordinal then (∀α < λ. P (α))⇒ P (λ).

Then for every α ∈ On, P (α).

Now if we want to verify that some property P holds for the class On we only

have to test three cases: the base case P (0), the successor case P (α)⇒ P (α+ 1)
and the limit case (∀α < λ. P (α))⇒ P (λ). If we manage to prove all three cases

we can be con�dent that all ordinals possess the desired property P .

53



The di�erence from the induction on N is obviously the case of a limit ordinal.

In order to test that case we need to understand the structure of a limit ordinal

and there is one special property that will prove to be useful. Clearly if we have a

limit ordinal λ and any α < λ, then also α+ 1 < λ, and so on. Thus there always

exists an ordinal β such that α < β < λ and, in fact, there exists an in�nite

increasing sequence β0 < β1 < . . . < βn < . . . with βi < λ for every i ∈ N.
We will also touch brie�y on the subject of cardinality of ordinal numbers. A

set X is called countable if there exists a one-to-one mapping from X to ω. All

the ordinals 0, 1, . . . , ω, ω · 2, . . . , ω2, . . . , ωn, . . . , ωω, . . . are countable. The �rst

uncountable ordinal is denoted by ω1. Later we will make use of the following

fact: assume that we have a sequence of sets {Xα | α < ω1} such that the set

X0 is countable and Xα ⊆ Xβ for every β < α. Then there must be a β < ω1

so that Xβ = Xγ for every β ≤ γ < ω1. Expressed in other terms, there is no

uncountable strictly decreasing sequence of countable sets.

3.2 Weak bisimulation approximants

In this section we will state several possible ways of de�ning weak bisimulation

approximants. The individual de�nitions di�er in the type of moves we require the

processes to perform (a single transition
a−→, an action augmented with τ actions

a=⇒ or a sequence of such actions
t=⇒). Accordingly to the type of transition the

di�erent de�nitions also possess di�erent attributes.

In the de�nitions below we assume a �xed labelled transition graph (S, A,−→)
where the set of labels A contains the silent action τ . The processes range over

S and the actions range over A.

De�nition 3.4 Weak bisimulation approximants ≈sα
• P ≈s0 Q for all P and Q

• P ≈sα+1 Q if for all actions a,

� whenever P
a−→ P ′ then there exists Q

a=⇒ Q′ so that P ′ ≈sα Q′ and

� whenever Q a−→ Q′ then there exists P a=⇒ P ′ so that P ′ ≈sα Q′

• P ≈sλ Q if P ≈sα Q for every α < λ, for a limit ordinal λ.

De�nition 3.5 Weak bisimulation approximants ≈α

• P ≈0 Q for all P and Q

54



• P ≈α+1 Q if for all actions a,

� whenever P a=⇒ P ′ then there exists Q a=⇒ Q′ so that P ′ ≈α Q′ and

� whenever Q a=⇒ Q′ then there exists P a=⇒ P ′ so that P ′ ≈α Q′

• P ≈λ Q if P ≈α Q for every α < λ, for a limit ordinal λ.

De�nition 3.6 Weak bisimulation approximants ≈Mα

• P ≈M0 Q for all P and Q

• P ≈Mα+1 Q if for every sequence of actions t,

� whenever P t=⇒ P ′ then there exists Q t=⇒ Q′ so that P ′ ≈Mα Q′ and

� whenever Q t=⇒ Q′ then there exists P t=⇒ P ′ so that P ′ ≈Mα Q′

• P ≈Mλ Q if P ≈Mα Q for every α < λ, for a limit ordinal λ.

The three de�nitions determine di�erent types of approximation. The appro-

ximants ≈sα are asymmetric in that only single transitions are included in the

premise. The relations ≈α are symmetric and composite transitions are inspected

as both initial and matching moves. The last relations ≈Mα are consistent with the

original Milner's de�nition of strong bisimulation approximants where sequences

of moves are considered rather than single moves. We can observe some sim-

ple relations between the various approximants and also between the individual

approximants and the maximal weak bisimulation ≈ as de�ned in Chapter 2.

To make things simpler we will state the lemma below in terms of De�nition

3.5, however it holds for De�nitions 3.4 and 3.6 as well.

Lemma 3.7

1. for every α ∈ On, ≈Mα ⊆ ≈α ⊆ ≈sα

2. for every α, β ∈ On, α < β ⇒ ≈β ⊆ ≈α

3. for every α ∈ On, ≈ ⊆ ≈α

4. if there is an α such that ≈α = ≈α+1 then for all β ≥ α, ≈α = ≈β = ≈

5. ≈ =
⋂
α∈On ≈α

6. for BPA and BPPA, ≈ = ≈ω1

55



We will not directly call upon any of the claims above hence the proofs are placed

in Appendix A. We can interpret the statements as follows: claim 1. says that

≈Mα determine the strictest relations, ≈sα the weakest and ≈α are between the two.

Claims 2. and 3. assert that all three de�nitions determine non-increasing chains

of approximants, and each approximant contains the maximal weak bisimulation.

Claims 4., 5. and 6. resolve convergence towards weak bisimulation, with 6.

asserting that for BPA and BPP, convergence occurs at most at the level ≈ω1.

Now we will compare the above de�nitions of weak bisimulation approximants.

De�nition 3.4 is an analogue of the original de�nition of a weak bisimulation

relation as stated in [49]. Algorithmically it is the simplest de�nition of the three

although the double arrow in the second part may still cause in�nite behaviour.

Still, it would make proofs easier if it was not for the fact that the resulting

relations fail to be equivalences. The mismatch between the single and double

arrows means that the approximants ≈sα fail to be transitive which is shown in

the following example:

Example 3.8 We will de�ne the following BPA:

A
a−→ ε A

τ−→ ε C
τ−→ CA C

τ−→ ε B
a−→ B B

τ−→ ε

We will illustrate that the approximants ≈sk fail to be transitive for all k ≥ 3. We

will demonstrate that by showing that B ≈sk Ak and Ak ≈sk CA for every k but

B 6≈s3 CA. The two equivalences can be easily veri�ed by induction hence we will

only concentrate on the fact that B fails to be ≈s3-equivalent with CA.
We make the process CA do τ and become A. The variable B can either

respond by doing B
τ−→ ε but then A 6≈s1 ε or B

ε=⇒ B. Now B can perform

a sequence of a actions of an arbitrary length, however A is capable of only one

a transition after which it evolves into ε. Therefore we come to the conclusion

that A 6≈s2 B hence B 6≈s3 CA and B 6≈sk CA for all k ≥ 3. With De�nition 3.5

this could never occur because of this simple fact: Ak 6≈3 B for any k ≥ 2. The

reason for that is the possibility of doing τ actions in the preamble so Ak can

perform
a=⇒ and become a single copy A. The response of B is either B

a=⇒ ε

with A 6≈1 ε or B
a−→ B with A 6≈2 B hence, �nally, Ak 6≈3 B. �

The approximants de�ned by 3.5 and 3.6 are equivalence relations which is not

di�cult to verify. The last De�nition 3.6 possesses similar disadvantage as

the analogous De�nition 2.4 of strong bisimulation approximants - it may not

be feasible to check a property for all sequences of actions. This can be very

well demonstrated on the example of BPP. We can check whether a process is

56



reachable from another process via a sequence of actions, more speci�cally we

can decide the membership in the set {(P, P ′) | P w=⇒ P ′} for a given word w

([16]). However, the test over all possible sequences w causes a problem. Hirshfeld

showed in [26] that trace equivalence (∼M1 ) for BPP is undecidable. Later Hüttel

generalised this result by proving that all strong bisimulation approximants ∼Mn
are undecidable (see [36]). It is a straightforward generalisation that weak bisi-

mulation approximants possess the same property, i.e. ≈Mn are undecidable for

every n > 0. On the other hand, we will establish later that for BPP, the appro-

ximants ≈n are decidable. Hence we have chosen to work with weak bisimulation

approximants as de�ned in 3.5 and we will assume that throughout the following

text unless stated otherwise.

3.2.1 Congruence

Another property we shall discuss is congruence. The approximants ≈α are con-

gruence relations with respect to Basic Parallel Processes because of the commu-

tativity of parallel composition. For BPA-processes ≈α are not congruences in

general. Clearly, if P ≈α Q then also RP ≈α RQ but the opposite direction does

not always hold.

Lemma 3.9 (Congruence) Assume that a Basic Process Algebra (Σ∗,∆) is

such that every process variable X ∈ Σ satis�es the following condition:

• if X is weakly bisimilar to the empty process ε then X can evolve into ε with

a τ=⇒ move.

Then for every ordinal number α and processes P , Q and R from Σ∗, if P ≈α Q
then also PR ≈α QR.

Proof: We will prove this statement in full generality using trans�nite induction

on α. For α = 0 the claim holds trivially as all processes are equivalent at level

0. Now assuming that the claim holds for some α we will prove that it also holds

for its successor α + 1. We presuppose a BPA satisfying the required condition

and three BPA-processes P , Q and R with P ≈α+1 Q. In order to demonstrate

that PR ≈α+1 QR we have to check all possible moves of PR and QR. When

PR performs a move PR
µ=⇒ P ′ there may occur two di�erent situations:

1. The process P is not exhausted and there is a remainder P̄ such that P ′ =
P̄R. In this case we use the assumption that P ≈α+1 Q to conclude that

57



there must be a response Q
µ=⇒ Q̄ with P̄ ≈α Q̄. Since Q̄ is an

µ=⇒
derivative of Q then Q̄R is an

µ=⇒ derivative of QR and it follows from the

induction hypothesis that these composites P̄R and Q̄R are equivalent at

level α.

2. The process P is exhausted and P ′ is actually equal to some R′. Either

the derivation sequence is PR
µ=⇒ R

τ=⇒ R′ or PR
τ=⇒ R

µ=⇒ R′. The

former is analogous to the previous case so we assume that P
τ=⇒ ε and

R
µ

=⇒ R′. From the assumption that P ≈α+1 Q we have that there must

be a matching response of Q in the form Q
τ=⇒ Q′ such that ε ≈α Q′. The

empty process ε cannot perform any action at all and so there cannot be

any visible transition available for Q′. Since we assume that every process

weakly bisimilar to ε must have the possibility to become ε by performing
τ=⇒ then there must be a �nite sequence of τ moves leading from Q′ to ε.

Therefore the composite QR has the ability to get rid of Q and become R′

with the sequence of moves QR
τ=⇒ Q′R

τ=⇒ R
µ=⇒ R′. Since the relations

≈α are equivalences we can conclude the proof with the fact that R′ ≈α R′.

The analysis of the moves of the process QR is symmetrical and hence we can

draw the conclusion that indeed PR ≈α+1 QR.

The analysis of the limit case is straightforward. If P ≈λ Q for a limit ordinal

λ then for all α < λ, P ≈α Q. Then also PR ≈α QR for any process R and

hence PR ≈λ QR. The conclusion is that ≈α are congruence relations for every

α ∈ On. �

Example 3.10 We are now going to demonstrate that the condition we place

on the processes in the statement above is essential for congruence to hold. We

can de�ne a process P to be a τ loop, that is P
τ−→ P is the only transition

available to P , then we take Q to be a process capable of a single τ action, that is

Q
τ−→ ε is the transition that de�nes Q, and we take a process R to be R

a−→ ε.

Clearly P ≈ Q which implies that P ≈α Q for every α. The process PR is weakly

bisimilar to P because we can never get past P but on the other hand the process

QR can do
τ−→ and become R and then perform

a−→. Since the action a is not

available to P we come to the conclusion that PR 6≈1 QR despite the fact that

P ≈ Q. �

3.2.2 In�nite branching

As we mentioned in the previous chapter, both BPA-processes and BPP are

image-�nite with respect to strong bisimilarity (for any process P and any action

58



µ, there are only �nitely many process reachable from P via µ). A corollary of

this fact is that the chain of strong bisimulation approximants stops at the level

ω, i.e. ∼ = ∼ω. When we move from strong bisimilarity to weak bisimilarity we

lose the important property of image-�niteness for both BPA-processes and BPP.

Now we can de�ne processes that may have an in�nite number of derivatives ob-

tained by performing
µ

=⇒ for some action µ, hence they are capable of in�nite

branching.

Example 3.11 Here we demonstrate two in�nitely branching BPA-processes:

X
a−→ ε Y

τ−→ Y X Y
b−→ ε

The process Y can perform the sequence
τn−→ b−→ = b=⇒ and become Xn for an

arbitrary n. That clearly determines an in�nitely branching transition tree. We

present the tree in Fig. 3.1 in two versions: in terms of single transitions and

then using the appropriate =⇒ notation.

Y
b

����
��
��
�� τ

""D
DD

DD
DD

D

ε Y X
b

}}zz
zz
zz
zz τ

##G
GG

GG
GG

GG

X YX2

b

{{ww
ww
ww
ww

X2 Y Xn

b
zzvv
vv
vv
vv
v

τ

%%JJ
JJ

JJ
JJ

JJ

Xn Y Xn+1

xx ##

Y

b

s{ ooo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
o

τ

w� ww
ww
ww
ww
ww
ww
ww
ww
ww
w

ww
ww
ww
ww
ww
ww
ww
ww
ww
w

b

�� 	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

τ

��

b

��
6
6
6
6
6
6
6
6
6
6
6
6
6

6
6
6
6
6
6
6
6
6
6
6
6
6

τ

#+PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
P

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
P

b

%-TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

T

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

T

ε Y X X YX2 X2 . . . Y Xn Xn . . .

Figure 3.1: In�nitely branching BPA-process

59



We can interpret the expression Y X as parallel composition Y ‖X and that gives

rise to an in�nitely branching BPP as presented in Fig. 3.2. Notice that since

in the parallel composition each composite variable can perform an action, the

processes Y ‖Xn have the
a−→ transition at their disposal, as opposed to the

sequential processes Y Xn. �

Y
b

����
��
��
��

τ
""E

EE
EE

EE
E

ε Y ‖X

a
mm

b

}}{{
{{
{{
{{

τ
##H

HH
HH

HH
HH

X Y ‖X2

a
kk

b

{{vv
vv
vv
vv
v

$$I
I

I
I

I

X2 Y ‖Xn

b
zzuu
uu
uu
uu
uu

τ
%%KK

KK
KK

KK
KK

Xn Y ‖Xn+1

a
kk

xxp p
p
p
p
p

$$H
H

H
H

H

Y

a
��

b

rz nnn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
n

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn

τ

v~ tt
tt
tt
tt
tt
tt
tt
tt
tt
tt

tt
tt
tt
tt
tt
tt
tt
tt
tt
tt

a

�� 	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

b

��

τ

�'
GG

GG
GG

GG
GG

GG
GG

GG
GG

G

GG
GG

GG
GG

GG
GG

GG
GG

GG
G

a

$,QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

b

&.TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TTT

TTT
TT

ε Y ‖X Y ‖X X . . . Y ‖Xn Y ‖Xn Xn . . .

Figure 3.2: In�nitely branching BPP

Most importantly, along with image-�niteness we also lose the property that the

maximal bisimulation relation can be obtained as the intersection of all approxi-

mants over the set of natural numbers. In the following part we will show the

existence of processes that distinguish the level ≈ω from ≈. We will construct a

sequence of pairs of BPP Pi and Qi such that Pi ≈ω+i Qi and Pi 6≈ Qi, for all

i ∈ ω. For BPA-processes we will show an even stronger result - we will construct

pairs of processes Pi, Qi with the property that for every i, Pi ≈ωi Qi but Pi 6≈ Qi.

Thus we will obtain two lower bounds on the convergence towards ≈. For BPPA,
≈ ⊂ ≈ω+i for every i ∈ ω. For BPA, ≈ ⊂ ≈α for every α < ωω.

60



Remark: Both weak bisimilarity and weak bisimulation approximants are binary

relations de�ned on a �xed process algebra (Σ,∆). Most of the time we will not

specify that algebra explicitly but we will assume that it can be determined from

the context.

3.3 BPA-processes and ≈α
In this section we will focus our attention onto the relationship between BPA-

processes and weak bisimulation approximants. The aim of this section is to pro-

vide a lower bound on the ordinal number α which is the label of an approximant

that coincides with the maximal weak bisimulation. We will construct an in�nite

sequence of pairs of processes (Pn, Qn) that will distinguish the approximant ≈ωn
from ≈ and then deduce that the lower bound on such an α is ωω.

We will start with a pair of BPA-processes that distinguishes ≈ω from ≈. For
that purpose we will use process variables A and C as de�ned in Example 3.8:

A
a−→ ε A

τ−→ ε C
τ−→ CA C

τ−→ ε

Now we can show the basic result that the processes C and AC are equivalent

at level ω but not weakly bisimilar, in fact not equivalent at level ω + 1 which

implies that ≈ 6= ≈ω (more precisely, there is a proper inclusion ≈ ( ≈ω). The

two processes are pictured in Fig. 3.3.

Proposition 3.12 C ≈ω AC ∧ C 6≈ω+1 AC.

Proof: First we will make two important observations: Ak ≈k Al for any k ≤ l

and Ak ≈k CAl for any k, l. The validity of the two observations can be seen by

induction on k: the processes Ak, Al and CAk can only perform sequences of a

actions and there is no branching involved so equivalence at level k is determined

solely by the ability to generate a sequence ( a=⇒)k. Also, if any process decides

to dispose of a number of copies of A in one go, the other process is always able

to simulate that and become an identical process.

From the de�nition, two processes are equivalent at level ω if they are equi-

valent at level n for all n. Hence we will continue by induction on n. The base

case is C ≈0 AC which holds trivially. Assuming C ≈n AC we will show that

C ≈n+1 AC by analysing all possible moves of C and AC. First we will note that

any move of C can be copied by AC
τ−→ C hence the only `interesting' moves are

those of AC. They are displayed in the table below:

AC
a=⇒

{
CAl, for any l
Al, for any l AC

τ=⇒
{
CAl, for any l
Al, for any l

61



C

τ

y� {{
{{
{{
{{
{{
{{
{{
{{
{

{{
{{
{{
{{
{{
{{
{{
{{
{

τ

�	 �
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

τ

��

τ

�&
FF

FF
FF

FF
FF

FF
FF

FF
FF

FF
FF

FF
FF

FF
FF

FF
FF

FF

ε A A2 . . . An . . .

AC

a,τ

��
C

τ

y� zz
zz
zz
zz
zz
zz
zz
zz
zz

zz
zz
zz
zz
zz
zz
zz
zz
zz

τ

�	 �
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

τ

��

τ

�'
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG

ε A A2 . . . An . . .

Figure 3.3: The processes C and AC

The response of C to the move AC
a=⇒ CAl is C

τ=⇒ An+1 a−→ An and we use

the second observation to conclude that An ≈n CAl. The response to AC
a=⇒ Al

is C
τ=⇒ Al+1 a−→ Al. For the

τ=⇒ moves, if AC
τ=⇒ CAl or Al then C is actually

capable of generating the same processes CAl or Al by a sequence of τ moves.

Therefore we can conclude that C ≈n+1 AC from which follows that C ≈ω AC.
In order to see that C 6≈ω+1 AC we observe that if AC does

a−→ and becomes

C then C has to match the action and the only way of doing that is by generating

CAk+1 with a sequence of τ moves, disposing of the C in front and doing
a−→ to

become Ak. Then we have the process C on the one hand and Ak on the other.

These two processes cannot be equivalent at level ω because we can choose any

N > k and generate AN from C. AN can enforce a sequence of N actions a which

Ak cannot match. Hence Ak 6≈N AN , Ak 6≈ω C and C 6≈ω+1 AC. �

Now we can try to explain the construction of processes which will be equivalent at

levels ≈ωn without being actually weakly bisimilar. We will present a discussion

to convey the idea, the precise statements and proofs will follow later. The

construction builds on the variables A and C de�ned earlier. If we take C and AC

and compose them both from the right with the same number of copies of C then

we obtain processes Cn and ACn, for some n, which are related by ≈ωn but are

not related by ≈ωn+1 and hence are not weakly bisimilar. These pairs of processes

therefore distinguish between ≈ and ≈ωn. Intuitively, the reason why this is so

62



An

τ,a

s{ ooo
oo
oo
oo
oo
oo
o

oo
oo
oo
oo
oo
oo
oo

τ,a

�� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

τ,a

��

τ,a

&.VVV
VVV

VVV
VVV

VVV
VVV

VVV
V

VVV
VVV

VVV
VVV

VVV
VVV

VVV
V

. . . An−1

τ,a

x� zz
zz
zz
zz
z

zz
zz
zz
zz
z

τ,a

�	 �
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

τ,a

��

τ,a

%-TTT
TTT

TTT
TTT

TTT
TT

TTT
TTT

TTT
TTT

TTT
TT

A
τ,a

}� ��
��
��
��

��
��
��
�
�

A2

τ,a

z� }}
}}
}}
}}

}}
}}
}}
}
}

τ,a

�%
BB

BB
BB

BB

BB
BB

BB
BB

. . . An−2

τ,a

u} ss
ss
ss
ss
ss
s

ss
ss
ss
ss
ss
s

τ,a

��

τ,a

"*M
MM

MM
MM

MM
M

MM
MM

MM
MM

MM

A

τ,a

��

A

τ,a

��

A2

τ,a

��

τ,a

�&
FF

FF
FF

FF

FF
FF

FF
FF

A

τ,a

��

An−3

A
τ,a

��

. . .

τ,a

��

Figure 3.4: The process An

is the following: each C has got the power to generate any number of copies of

A by a sequence of τ moves hence it de�nes an in�nitely branching transition

tree with branches of unbounded length and therefore of height ω (height is also

called rank). BPA-processes compose in a way that uses the full power of each

component so a process Cn will give rise to a tree of height ω · n. Each ω tier of

the tree provides for one ω level in the ≈ω·n equivalence hence height ω ·n implies

equivalence at ≈ω·n. That is the reason for the processes being ≈ω·n equivalent.

On the other hand, that the processes cannot be weakly bisimilar can be seen as

follows: the single copy of A in front of one of the processes gives the possibility

of an extra a action. So while ACn can do
a−→ and become Cn the other process

Cn already has to commit itself to becoming AkCn−1 for some k. However big

this k, the former process can always choose to become ANCn−1 for N > k so it

has the advantage of having some extra a actions. Then it can perform such a

sequence of choices which will demonstrate that ACn and Cn are not equivalent

at ω · n + 1.
This construction clearly does not have to stop at ≈ω·n and indeed we can

generalise the idea and de�ne process variables which will give rise to trees of

larger height. We will de�ne a new process variable which will be capable of

generating any power of C which will give rise to a tree of height ω2 and we will

continue in this manner. So we are going to introduce an in�nite hierarchy of

new variables Di such that D0 = A, D1 = C and each new variable Di+1 will be

63



able to generate any number of copies of Di. Formally, the construction is done

inductively as follows:

1. D0
a−→ ε, D0

τ−→ ε

2. assuming we have de�ned the variables D0, . . . , Di, the variable Di+1 is

de�ned by Di+1
τ−→ Di+1Di, Di+1

τ−→ ε.

Notice that the only variable capable of performing a visible action is D0. The

purpose of the other variables is to create bigger and bigger branching. We will

show later that each variable Di determines a tree of height ωi. Now we are ready

to state the main result of the section:

Theorem 3.13 Dn ≈ωn D0Dn ∧Dn 6≈ D0Dn for every n ∈ N.

We will formulate and prove a couple of more general claims from which the

Theorem 3.13 will easily follow. First we will analyse all possible moves and

derivatives of the processes in question. In order to gain intuition about the

behaviour of the processes we will examine all the possibilities that can arise

from a single copy of Di with i > 0. We can observe that except for the process

variable D0 none of the other process variables can do a visible action. The

only available behaviour is to generate some variables of one level lower and then

disappear.

Starting from a variable Di we can only perform a
τ=⇒ sequence with which

we will obtain the process DiD
ei−1
i−1 for some ei−1. We cannot get a more complex

shape without removing the Di in front. After having disposed of the Di we

can continue and from D
ei−1
i−1 generate (with another

τ=⇒ sequence) the process

Di−1D
ei−2
i−2 D

ei−1−1
i−1 . We can repeat the procedure several times and �nally derive

a process either of the form Dk+1D
ek
k D

ek+1
k+1 . . . D

em
m or Dek

k D
ek+1
k+1 . . . D

em
m , where

k ≥ 0, m < i and ek, . . . , em ≥ 0. The latter process is an ascending product of

variables which will be denoted by
∏m

i=0D
ei
i and called simply a product.

So we can easily deduce that a single variable evolves into a product, resp. a

variable followed by a product, which can then only evolve into another product or

a process of the form a variable followed by a product. In both cases the resulting

process is smaller in a certain sense which we will specify later. Before we make

this observation precise in the Proposition 3.14 below we will introduce the

following auxiliary notation. To a product
∏m

i=0D
ei
i we will assign an ordinal

number
∑m

i=0 ω
iei = ωmem + ωm−1em−1 + . . . + ωe1 + e0 which will provide the

measure for product processes. This measure actually corresponds to the height

of product processes but we will not follow that link here.

64



Proposition 3.14 For any product
∏m

i=0 D
ei
i and any process P , there is a deri-

vation
∏m

i=0D
ei
i

µ=⇒ P if and only if P is of the form
∏m

i=0D
fi
i or Dl

∏m
i=l−1 D

fi
i ,

with
∑m

i=0 ω
ifi <

∑m
i=0 ω

iei in case µ = a, and
∑m

i=0 ω
ifi ≤

∑m
i=0 ω

iei in case

µ = τ .

Proof: Since we deal with sequential processes we know that all moves available

to a product process are induced by the transitions of its foremost variable. Hence

in order to analyse all possible sequences of moves a product can perform it su�ces

to investigate the behaviour of each potential front process variable before it

eventually disappears and gives way to another variable.

To carry out the proof we �x a product
∏m

i=0 D
ei
i and the corresponding∑m

i=0 ω
iei and assume that ej is the �rst non-zero exponent. If j = 0 then

we know that all available transitions are D0
µ−→ ε where µ is either τ or a. Each

such transition diminishes the respective ordinal number by 1. Hence we can

conclude that as long as D0 remains the front variable all possible sequences of

transitions lead to a product of the form De
0D

e1
1 . . . Dem

m with e < e0 and therefore

also ωmem + . . .+ ωe1 + e < ωmem + . . . + ωe1 + e0.

Next we assume that j > 0. For such j the process variable Dj can decide to

disappear using the rule Dj
τ−→ ε which gives rise to the product D

ej−1
j . . . Dem

m .

The respective ordinal is then ωmem + . . . + ωj(ej − 1) which is smaller than

the original ωmem + . . . + ωjej. Before Dj disappears it can perform a sequence

of transitions Dj
τ−→ DjDj−1 which results in the process DjD

ej−1
j−1 D

ej−1
j . . . Dem

m .

However, the respective ordinal ωmem+ . . .+ωj(ej−1)+ωj−1ej−1 is again smaller

than ωmem + . . .+ωjej. Since we can break any (non-empty) sequence of transi-

tions into subsequences of the form we have just analysed we can conclude that any

process derived from
∏m

i=0D
ei
i has to be of the form

∏m
i=0D

fi
i or Dl+1

∏m
i=lD

fi
i ,

with
∑m

i=0 ω
ifi <

∑m
i=0 ω

iei. In case the product performs an empty sequence
ε=⇒ the assigned ordinal remains unaltered.

Finally we want to show that for any sequence f0, f1, . . . , fm with
∑m

i=0 ω
ifi ≤∑m

i=0 ω
iei we can perform a derivation resulting in the product

∏m
i=0D

fi
i . Clearly

in case of
∑m

i=0 ω
ifi =

∑m
i=0 ω

iei, fi = ei for every i, and hence it is the empty

sequence
ε=⇒. If case

∑m
i=0 ω

ifi <
∑m

i=0 ω
iei we de�ne j = max{i | fi 6= ei}.

Then fj < ej and the product
∏m

i=0D
fi
i is equal to Df0

0 . . .D
fj
j D

ej+1
j+1 . . .D

em
m . In

the explanation preceding this proposition we showed that from a single variable

Dj we can derive any product Df0
0 . . . D

fj−1
j−1 hence we proceed in this way: with a

τ=⇒ sequence we reduce the product
∏m

i=0 D
ei
i into D

fj+1
j D

ej+1
j+1 . . .D

em
m and then

we generate from the front copy of Dj the required pre�x Df0
0 . . . D

fj−1
j−1 obtaining

the resultDf0
0 . . . D

fj−1
j−1 D

fj
j D

ej+1
j+1 . . .D

em
m . This is all achieved with a

τ=⇒ sequence,

65



however if we require the sequence
a=⇒ we can also generate one more copy of D0

that will �nally perform
a−→. Of course, in this way we can only obtain products

of strictly smaller heights. �

We have shown in Proposition 3.14 that there are only two types of derivatives

of a product process. We will simplify the forthcoming proofs by showing that

a process of the form Dl

∏m
i=l−1 D

fi
i is in fact weakly bisimilar to the product

Dfl+1
l

∏m
i=l+1 D

fi
i . We will make use of this property in the equivalence check

for ≈α. Suppose we want to establish that P ≈α+1 Q for some products P,Q.

Then if there is a derivation P
µ=⇒ Dl

∏m
i=l−1 D

fi
i we look for a matching response

Q
µ=⇒ Q′ with P ′ ≈α Q′. If there exists some P

µ=⇒ P ′ with Dl

∏m
i=l−1D

fi
i ≈ P ′

for which P ′ ≈α Q′ then, as the relations ≈α are equivalences and contain ≈,
also Dl

∏m
i=l−1 D

fi
i ≈α Q′. We can conclude that it su�ces to carry out the check

solely for P ′. All that has been said combined will permit us to consider solely

product processes in the analysis of derivatives of some product.

In order to show that Dl

∏m
i=l−1 D

fi
i is weakly bisimilar to Dfl+1

l

∏m
i=l+1 D

fi
i we

will show that the processes Dl and DlDn
l−1 are weakly bisimilar for every l > 0

and every n, that means that it does not matter how many copies of Dl−1 we

have already generated as long as we still keep the front copy of Dl. Then we

will use the fact that weak bisimulation is a congruence in this special case hence

Dl ≈ DlDn
l−1 implies that DlD

fl−1
l−1 D

fl
l . . .D

fm
m ≈ Dfl+1

l . . .Dfm
m . It is convenient

to state and prove a stronger result.

Proposition 3.15 For every k, m and l > 0, Dk+1
l ≈ DlDm

l−1D
k
l .

Proof: In order to demonstrate that two processes are weakly bisimilar it suf-

�ces to construct a binary relation containing the pair of the processes in ques-

tion and show that the relation is a weak bisimulation. For that purpose we

will de�ne a binary relation R = {(DlDm
l−1D

k
l , DlDn

l−1D
k
l )|k, l > 0,m, n ∈ N} ∪

{(D̂, D̂)|DlDm
l−1D

k
l

a∗=⇒ D̂, k, l > 0,m ∈ N}. Clearly the relation R contains the

pairs (Dk+1
l , DlDm

l−1D
k
l ) for every k, m and l > 0. Now we have to check that it

is closed under expansion with
µ−→, that means for every pair (P,Q) from R, if

there is a transition P
µ−→ P ′ then there has to be a matching transition Q

µ
=⇒ Q′

with the resulting pair (P ′, Q′) again in R, and conversely, also starting from Q.

Firstly we will choose a pair (DlDm
l−1D

k
l , DlDn

l−1D
k
l ) for some �xed k, l > 0,m

and n. We remind ourselves that for any l > 0, the only possible transitions Dl

can do are Dl
τ−→ ε and Dl

τ−→ DlDl−1. If eitherDlDm
l−1D

k
l or DlDn

l−1D
k
l chooses

to perform the transition Dl
τ−→ DlDl−1 the other process does exactly the same

which results in a pair (DlD
m+1
l−1 Dk

l , DlD
n+1
l−1 D

k
l ) that belongs to R by de�nition.

66



To analyse the case when one process decides to employ the transitionDl
τ−→ ε

we will assume that m ≤ n. Hence the response to DlDn
l−1D

k
l

τ−→ Dn
l−1D

k
l will

be DlDm
l−1D

k
l
τn−m−→ DlDn

l−1D
k
l

τ−→ Dn
l−1D

k
l and the pair (Dn

l−1D
k
l , D

n
l−1D

k
l ) will

belong to R since Dn
l−1D

k
l is derived from DlDn

l−1D
k
l . If it is DlDm

l−1D
k
l that

disposes of Dl and becomes Dm
l−1D

k
l then the other process DlDn

l−1D
k
l responds

by removingDl in the �rst place and then all super�uous copies ofDl−1 to become

Dm
l−1D

k
l . Again the pair (Dm

l−1D
k
l , D

m
l−1D

k
l ) is in R.

Lastly, if we have a pair (D̂, D̂) from R with D̂ being an
a∗=⇒ derivative of

some DlD
m
l−1D

k
l then any D̄ obtained from D̂ by performing

µ−→ is also an
a∗=⇒

derivative of DlDm
l−1D

k
l and hence the pair (D̄, D̄) belongs to R. �

And a simple consequence of the preceding two statements is the following corol-

lary:

Corollary 3.16 The processes Dl

∏m
i=l−1D

fi
i and Dfl+1

l

∏m
i=l+1 D

fi
i are weakly bi-

similar and there is a derivation
∏m

i=0D
ei
i

µ=⇒ Dl

∏m
i=l−1 D

fi
i if and only if there

is a derivation
∏m

i=0 D
ei
i

µ
=⇒ Dfl+1

l

∏m
i=l+1 D

fi
i .

Proof: The �rst part of the statement follows from the fact that for Basic Process

Algebras which do not allow in�nite τ sequences, weak bisimulation is a congru-

ence. No process over the variables D0, D1 . . . , Dn has the capability to perform

the action τ in�nitely many times hence we can deduce that since Dl ≈ DlD
fl−1
l−1

then also Dfl+1
l D

fl+1
l+1 . . . D

fm
m ≈ DlD

fl−1
l−1 D

fl
l D

fl+1
l+1 . . .D

fm
m .

One implication of the second part is straightforward. If we can have a deri-

vation
∏m

i=0 D
ei
i

µ
=⇒ Dfl+1

l

∏m
i=l+1 D

fi
i then with repeated application of the rule

Dl
τ−→ DlDl−1 we can obtain the process Dl

∏m
i=l−1 D

fi
i . On the other hand

we know that this rule is the only means of obtaining copies of Dl−1 so obvi-

ously we cannot generate Dl

∏m
i=l−1 D

fi
i without having generated the product

Dfl+1
l D

fl+1
l+1 . . . D

fm
m �rst. �

Now we are ready to prove the main Theorem 3.13 in two parts, the positive

part by demonstrating equivalence at the speci�ed level, and the negative by

showing that the two processes are not related at the level above. We will make

use of the ordinals assigned to each product since they determine the highest

level that relates two processes. Intuitively this corresponds to the heights of

respective transition trees which we discussed earlier. The height of the smaller

tree is the maximal level that can relate two trees which is formalised in the

following lemma.

67



Lemma 3.17 For all products,
∏m

i=0 D
ei
i ≈α

∏m
i=0 D

fi
i , where α ≤ min{β, γ} with

β = ωmem+ωm−1em−1 + . . .+ωe1 +e0 and γ = ωmfm+ωm−1fm−1 + . . .+ωf1 +f0.

Proof: We will prove this statement by trans�nite induction on α which consists

of proving the claim for the cases of α being 0, then a successor ordinal number

and �nally a limit ordinal number. The claim obviously holds for α = 0 since all

processes are related at zero level.

In order to prove the successor case we assume that the claim holds for some α

and we will want to prove it for α+1. We presuppose two processes P =
∏m

i=0D
ei
i

and Q =
∏m

i=0D
fi
i such that α + 1 ≤ β =

∑m
i=0 ω

iei ≤ γ =
∑m

i=0 ω
ifi and we

will show that P ≈α+1 Q. We know that β = γ if and only if ei = fi for every

i = 0, . . . ,m. In that case P and Q are two identical processes which are trivially

equivalent at every level. Hence we can without loss of generality assume that

β < γ.

We remind ourselves that P ≈α+1 Q if for every move P
µ=⇒ P ′ there is a

matching transition Q
µ=⇒ Q′ with P ′ ≈α Q′, and conversely, starting from Q.

Since
∑m

i=0 ω
iei <

∑m
i=0 ω

ifi the process Q can evolve into P by a
τ=⇒ sequence

so in case P takes the initiative and performs a transition P
µ

=⇒ P ′ the process

Q will copy P and become P ′ as well. Then we can conclude by P ′ ≈α P ′.
It remains to check the moves of Q =

∏m
i=0D

fi
i . Either Q

µ=⇒
∏m

i=0 D
gi
i , where∑m

i=0 ω
igi ≤ γ, or Q

µ=⇒ Dj

∏m
i=j−1 D

gi
i . The latter is by Proposition 3.15

weakly bisimilar to the product D
gj+1
j

∏m
i=j+1 D

gi
i . We can replace Dj

∏m
i=j−1 D

gi
i

with the bisimilar product because of Corollary 3.16 and the facts that for every

ordinal δ, ≈ ⊆ ≈δ and ≈δ is transitive. Therefore if P ′ ≈α Dgj+1
j

∏m
i=j+1 D

gi
i for

some P -derivative P ′ then also P ′ ≈α Dj

∏m
i=j−1 D

gi
i . Hence we will assume that

Q evolves into a product
∏m

i=0 D
gi
i , for some gi such that

∑m
i=0 ω

igi ≤ γ. We have

to distinguish two cases according to the height of the Q-derivative:

1. α <
∑m

i=0 ω
igi

We will show that P can do a matching action and evolve into a product∏m
i=0D

hi
i with

∑m
i=0 ω

ihi ≥ α. Then we will use the induction hypothesis

and conclude that
∏m

i=0 D
hi
i ≈α

∏m
i=0 D

gi
i . There are two ways in which P

will respond depending on e0 (the exponent of D0 in P ).

• If e0 > 0 then P contains at least one copy of D0 which will per-

form the appropriate action using the transition D0
a/τ−→ ε. P will

therefore evolve into De0−1
0 . . .Dem

m with
∑m

i=0 ω
iei − 1 ≥ α. Hence

α ≤ min{
∑m

i=0 ω
iei− 1,

∑m
i=0 ω

igi} and from the induction hypothesis

we can conclude that De0−1
0 . . . Dem

m ≈α
∏m

i=0 D
gi
i .

68



• If e0 = 0 then β =
∑m

i=0 ω
iei is a limit ordinal. Since α+1 is a successor

ordinal and α+1 ≤ β then from the nature of ordinal numbersα+1 < β

and, moreover, there exists an ordinal δ with α < δ < β. Now we can

use the statement of Proposition 3.14 and deduce that there has

to be a matching move of P resulting in a product
∏m

i=0D
hi
i with

α < δ =
∑m

i=0 ω
ihi. Then again α ≤ min{

∑m
i=0 ω

ihi,
∑m

i=0 ω
igi} and

the conclusion is that
∏m

i=0 D
hi
i ≈α

∏m
i=0D

gi
i .

2. α ≥
∑m

i=0 ω
igi

In this case also
∑m

i=0 ω
igi <

∑m
i=0 ω

iei which means that by Proposition

3.14 the process P can simulate the move of Q and become exactly the

product
∏m

i=0 D
gi
i . Again we conclude with the argument that the relation

≈α is an equivalence and so
∏m

i=0 D
gi
i ≈α

∏m
i=0D

gi
i .

Lastly we have to check the case of a limit ordinal λ. The argument is the

following: we assume that the two processes
∏m

i=0 D
ei
i and

∏m
i=0 D

fi
i are such that

λ ≤ min{
∑m

i=0 ω
iei,
∑m

i=0 ω
ifi}. Hence the same holds for every α < λ. From the

induction hypothesis we conclude that
∏m

i=0D
ei
i ≈α

∏m
i=0D

fi
i for every α < λ and

from the de�nition of a limit approximant we know that
∏m

i=0 D
ei
i ≈λ

∏m
i=0D

fi
i .

�

And the second technical lemma which deals with the negative part of the main

Theorem 3.13 goes as follows:

Lemma 3.18 If
∏m

i=0 D
ei
i 6=

∏m
i=0 D

fi
i then

∏m
i=0 D

ei
i 6≈α

∏m
i=0D

fi
i where α >

min{β, γ} with β = ωmem+ωm−1em−1+. . .+ωe1+e0 and γ = ωmfm+ωm−1fm−1+
. . .+ ωf1 + f0.

Proof: We will prove this statement by trans�nite induction on α. For α = 0
the statement holds vacuously. Next we check the case of a successor ordinal. We

assume that the claim holds for an ordinal α and we will argue that it also holds

for α+1. We know that
∏m

i=0D
ei
i =

∏m
i=0D

fi
i if and only if

∑m
i=0 ω

iei =
∑m

i=0 ω
ifi

hence without loss of generality we can presuppose two products
∏m

i=0D
ei
i and∏m

i=0D
fi
i such that

∑m
i=0 ω

iei >
∑m

i=0 ω
ifi and α + 1 >

∑m
i=0 ω

ifi.

Now let the larger product
∏m

i=0 D
ei
i take the initiative and perform

a=⇒ to be-

come
∏m

i=0D
e′i
i with

∑m
i=0 ω

ie′i ≥
∑m

i=0 ω
ifi. The possibility of such a move follows

from our earlier assumption and Proposition 3.14. Again using the Proposi-

tions 3.14 and 3.16 we conclude that any matching move
a=⇒ of

∏m
i=0 D

fi
i will

69



necessarily be sum decreasing, that is if
∏m

i=0D
fi
i

a=⇒
∏m

i=0 D
f ′i
i then

∑m
i=0 ω

if ′i <∑m
i=0 ω

ifi. Hence the two derivatives are distinct with
∑m

i=0 ω
ie′i >

∑m
i=0 ω

if ′i
and moreover, also α >

∑m
i=0 ω

if ′i and we can use the induction hypothesis to

conclude that
∏m

i=0D
e′i
i 6≈α

∏m
i=0D

f ′i
i . Since this is true for all matching responses

of
∏m

i=0 D
fi
i , the products

∏m
i=0D

ei
i and

∏m
i=0D

fi
i cannot be equivalent at α+ 1.

Finally we assume that λ is a limit ordinal and P =
∏m

i=0 D
ei
i , Q =

∏m
i=0 D

fi
i

are distinct products such that without loss of generality
∑m

i=0 ω
iei >

∑m
i=0 ω

ifi

and λ >
∑m

i=0 ω
ifi. From the de�nition, P ≈λ Q if for every α < λ, P ≈α Q, so

if there exists an α < λ with P 6≈α Q then also P 6≈λ Q. We have to distinguish

two cases:

1. λ >
∑m

i=0 ω
iei

Then we know that there exists an ordinal α such that λ > α >
∑m

i=0 ω
iei.

From the induction hypothesis it follows that
∏m

i=0 D
ei
i 6≈α

∏m
i=0 D

fi
i and we

can deduce that
∏m

i=0 D
ei
i 6≈λ

∏m
i=0 D

fi
i .

2.
∑m

i=0 ω
iei ≥ λ >

∑m
i=0 ω

ifi

In this case we can �nd an ordinal number α such that λ > α >
∑m

i=0 ω
ifi.

By Proposition 3.14 there exists a transition
∏m

i=0D
ei
i

a=⇒
∏m

i=0 D
e′i
i with

α =
∑m

i=0 ω
ie′i. For any matching move Q

a=⇒
∏m

i=0D
f ′i
i the sum

∑m
i=0 ω

if ′i

is smaller than α. Hence we can deduce that
∏m

i=0D
e′i
i 6=

∏m
i=0 D

f ′i
i and

α > min{
∑m

i=0 ω
ie′i,
∑m

i=0 ω
if ′i} which means that

∏m
i=0D

e′i
i 6≈α

∏m
i=0D

f ′i
i

and �nally,
∏m

i=0D
ei
i 6≈α+1

∏m
i=0D

fi
i and

∏m
i=0 D

ei
i 6≈λ

∏m
i=0 D

fi
i . �

To conclude the proof of the Theorem 3.13 we notice that the positive part

follows from Lemma 3.17 because for each i, ωi is the minimum of ωi and ωi+1
and hence the two processes Di and D0Di are equivalent at level ωi. The negative

part is a straightforward consequence of Lemma 3.18 since clearlyDi and D0Di

will not be (ωi + 1)-equivalent and hence they cannot be weakly bisimilar.

To summarise the above constructions, if we de�ne a Basic Process Algebra

(Σ∗n,∆n) to be Σn = {D0, D1, . . . , Dn} and ∆n = {D0
τ−→ ε,D0

a−→ ε,Di+1
τ−→

Di+1Di, Di+1
τ−→ ε | 0 ≤ i < n} then we know that the weak bisimulation over

this BPA cannot be equal to the approximant ≈ωn which is demonstrated by the

two processes Dn and D0Dn that distinguish ≈ from ≈ωn . Hence we obtain a

lower bound on weak bisimulation approximants over all Basic Process Algebras

which can be expressed as follows:

Proposition 3.19 For every α < ωω there exists a Basic Process Algebra (Σ∗,∆)
such that ≈ ⊂ ≈α on (Σ∗,∆).

70



On the other hand, to reach every higher level we need to introduce a new variable.

Since we are only allowed to use a �nite number of variables in the de�nition of

a BPA this leads to the following conjecture:

Conjecture 3.20 For Basic Process Algebras, ≈ = ≈ωω .

3.4 Basic Parallel Processes and ≈α
In this section we are going to study the properties of weak bisimulation approxi-

mants with respect to Basic Parallel Processes. We will start by demonstrating a

pair of BPP related at the level ω but not weakly bisimilar. Then we will present

pairs of processes that distinguish the approximants ≈ω+n from ≈ and we will

spell out a conjecture (suggested independently by Hirshfeld and Jan£ar) that

for Basic Parallel Process Algebras, ≈ = ≈ω·2. We will demonstrate the validity

of this conjecture for a special subclass of processes. To conclude with, we will

present the decidability of ≈n for all n ∈ N. The following example introduces

BPP that distinguish ≈ω from ≈.

Example 3.21 We de�ne Basic Parallel Processes P and Q in this way:

P
τ−→ Q Q

τ−→ Q‖A R
a−→ R

P
a−→ R Q

a−→ ε A
a−→ ε

P
τ //

a

��

Q
a

����
�
��
�
��

τ
!!C

CC
CC

CC
C

ε Q‖A

a
ll

a

}}||
||
||
||

τ
##G

GG
GG

GG
GG

R

a

FF A Q‖A2

a
kk

a

{{ww
ww
ww
ww
w

τ
##H

HH
HH

HH
HH

A2 Q‖A3

a
kk

a
zzuu
uu
uu
uu
u

  
A3

Now we will verify that P ≈ω Q and P 6≈ Q. To test that P ≈ω Q we have

to show that P ≈n Q for every n. Of course P ≈0 Q holds trivially hence it

remains to show that P ≈n+1 Q for every n ≥ 0. We will �x an n and analyse the

71



possible moves of P and Q. To any move Q
a=⇒ Q′ the variable P can respond

with the transitions P
τ−→ Q

a=⇒ Q′, thus becoming an identical process. The

transition P
τ−→ Q is also easy since Q can choose to perform the empty sequence

Q
ε=⇒ Q. Therefore the only interesting move is P

a−→ R to which Q will respond

by performing Q( τ−→)nQ‖An a−→ An. Since the only transition R and A can do

is
a−→ we come to the conclusion that R ≈n An and hence P ≈n+1 Q.

To see that P is not weakly bisimilar to Q we will actually show that P 6≈ω+1

Q. We let the process P perform the transition
a−→ to become R. The only

available transition of R is R
a−→ R which de�nes an in�nite a sequence. The

process Q has two options: it can generate a number of copies of A and then

either disappear or stay. In both cases it cannot maintain equivalence at level ω:

1. If the response of Q is Q
τ=⇒ Q‖An a−→ An then we take an N > n and

clearly An 6≈N R which implies that An 6≈ω R.

2. If Q decides to perform the sequence Q
τ=⇒ Q‖An+1 a−→ Q‖An then we

take an N > n and make Q‖An perform the transition Q‖An a−→ An. We

know that An 6≈N R and hence Q‖An 6≈ω R. �

Following up on this idea, for every n we can construct a pair of processes Pn, Qn

such that Pn ≈ω+n Qn and Pn 6≈ Qn. The construction is as follows:

1. P0 = P and Q0 = Q

2. assuming we have de�ned Pn and Qn,

Pn+1
a−→ Pn and Qn+1

a−→ Qn.

Pn

a
��

≈ω+n Qn

a
��

...

a

��

. . . ...

a

��
P1

a

��

≈ω+1 Q1

a

��
P ≈ω Q

We can easily verify the following proposition:

72



Proposition 3.22 For every n, Pn ≈ω+n Qn and Pn 6≈ Qn.

Proof: It is quite straightforward to show the validity of this proposition. We as-

sume that P0 ≈ω Q0 and P0 6≈ Q0 which was shown earlier. For the positive part,

since the only transition both sides can do is
a−→, more precisely Pn+1

a−→ Pn and

Qn+1
a−→ Qn, the equivalence Pn+1 ≈ω+n Qn+1 follows from the assumption that

Pn ≈ω+n Qn. For the negative part, again because of the form of the available

transitions we can argue that Pn ≈ Qn if and only if P0 ≈ Q0. Earlier we have

demonstrated that P0 6≈ Q0 which implies that also Pn 6≈ Qn. �

As a consequence of the former proposition we can observe that ≈ ⊂ ≈ω+n for

every n. We may interpret it as a lower bound in this way: if α is an ordinal

such that for every Basic Parallel Process Algebra, if ≈ = ≈β then β ≤ α, then

α ≥ ω · 2.
On the other hand, there is no known example of a pair of BPP which would

be equivalent at levelω·2 and yet not weakly bisimilar which leads to the following

conjecture:

Conjecture 3.23 (Hirshfeld, Jan£ar) For Basic Parallel Process Algebras,

≈ω·2 = ≈.

However simple this conjecture may seem, the question of its validity still remains

open. Let us reason about a possible proof technique. We need to demonstrate

the inclusion ≈ω·2 ⊆ ≈. One way of doing that is to use the fact that ≈ is the

largest weak bisimulation equivalence and contains all other weak bisimulation

relations. Hence it su�ces to show that ≈ω·2 is closed under expansion which then

would imply that it is indeed a weak bisimulation. So we assume two arbitrary

BPP P and Q such that P ≈ω·2 Q and we assume a transition P
µ=⇒ P ′. Now we

need to �nd a matching move Q
µ=⇒ Q′ with P ′ ≈ω·2 Q′. However, there may be

an in�nite sequence of matching moves resulting in processes Q′0, Q
′
1, . . . , Q

′
n, . . .

and we can only argue that P ′ ≈ω+n Q′n for every n. We can place some further

restrictions on the sequence, for instance there is Dickson's lemma (cf. [27])

which allows us to assume that the processes form a non-decreasing sequence with

respect to product order. Even this fact does not seem to be enough to overcome

the hurdle of in�nity and therefore we have to resort to smaller subclasses of BPP.

We will restrict ourselves to process algebras which only use one visible, i.e.

non-τ , action. Although this restriction seems rather strict, we can argue that

a single action was enough to construct BPA-processes that could distinguish

73



approximants ≈ωn from ≈, and in the case of BPP we could distinguish the level

≈ω+n from ≈.
We need one further assumption which restricts the norm of the process vari-

ables. We recall that the weak norm ‖P‖ of a process P is the length of the

shortest derivation sequence from P to ε not counting τ -moves. Variables of

weak norm zero are not allowed in our process algebra. Again, we can recall

the BPA-processes Di that were all of norm zero. Then we can demonstrate the

following claim:

Proposition 3.24 For all Basic Parallel Process Algebras with one visible action

and no variables of norm zero, ≈ = ≈ω·2.

Proof: First we will make an important observation: if we have an algebra

where all the rules use only one visible action then all processes of in�nite norm

are actually weakly bisimilar. The reason for that is that if a process has in�nite

norm then it can only perform in�nite sequences of moves. When we consider a

single non-τ action a then such a process can only perform in�nite sequences of
a=⇒moves and two such processes are indistinguishable. We also remind ourselves

that for any two processes of di�erent norms there exists an n such that these

processes are not equivalent at level n. Hence if two processes P and Q are

equivalent at level ω (or higher) then necessarily ‖P‖ = ‖Q‖.
To verify the statement of the theorem we presuppose two processes P and Q

such that P ≈ω·2 Q. Hence for any transition P
a=⇒ P ′ and every i there exists

Q
a=⇒ Q′i such that P ′ ≈ω+i Q′i and we need to distinguish two cases according

to the norm of P ′:

1. If ‖P ′‖ = ∞ then also for every i the norm of Q′i is in�nite. We have

observed earlier that all processes of in�nite norm are weakly bisimilar and

hence they must be related by ≈ω·2, that is P ′ ≈ω·2 Q′i for every i.

2. If ‖P ′‖ = n for some natural number n, then also ‖Q′i‖ = n for all i. Each

Q′i is of the form Xq1i
1 ‖ . . . ‖ Xqki

k and we assume that all variables Xj have

a non-zero �nite norm, let us say nj . We know that the norm is additive

and so each process Q′i has norm
∑k

j=1 qjinj which we assume equals n.

Since all nj are greater than 0, there can be only �nitely many di�erent

combinations of exponents qji such that the sum adds up to n and hence

only �nitely many distinct Q′i. Therefore there must be at least one Q′ that

occurs in�nitely many times in the sequence Q′1, . . . , Q
′
i, . . . , and hence for

in�nitely many i, P ′ ≈ω+i Q′. Therefore P ′ ≈ω·2 Q′ and we will choose Q′

to be the required response from Q. �
74



It is well worth noting why we cannot replace ≈ω·2 with ≈ω in the proof above.

The point is rather subtle. It is the presence of unnormed processes which would

create problems. Assume that P ≈ω Q and we allow P to evolve with some move

into an unnormed process P ′. Then the response of Q is a sequence of processes

Q′0, Q
′
1, . . . , Q

′
i, . . . but these may be normed because we are only guaranteed that

P ′ ≈i Q′i and so we cannot deduce that ‖P ′‖ = ‖Q′i‖. Hence they cannot be

forced to be weakly bisimilar and equivalent at ≈ω. We will see later that when

we restrict ourselves to totally normed variables (that is variables of a positive

�nite norm) we will be able to prove that ≈ = ≈ω.
If we study the proof of the above theorem thoroughly we �nd out that we do

not use any special properties that only apply to BPP. The proof goes through

without any problems for sequential algebras and hence we can conclude with the

following proposition:

Proposition 3.25 For all Basic Process Algebras with one visible action and no

variables of norm zero, ≈ = ≈ω·2.

3.4.1 Decidability of ≈n for BPP
Now we will demonstrate the decidability of �nite approximants ≈n for Basic

Parallel Processes. We will follow the approach of Esparza in [16] that uses

semilinear sets and their encoding as formulae of Presburger arithmetic which is

decidable. The de�nition of semilinear sets, Presburger arithmetic and all related

theorems are introduced in Chapter 2. Now we only recall the de�nition of ≈n:

• P ≈0 Q for all P and Q

• P ≈n+1 Q if for every action µ,

� whenever P
µ=⇒ P ′ then there exists Q

µ=⇒ Q′ so that P ′ ≈n Q′ and

� whenever Q
µ=⇒ Q′ then there exists P

µ=⇒ P ′ so that P ′ ≈n Q′.

It su�ces to show that we can encode the individual approximants as formulae

of Presburger arithmetic. It was proved in [16] that for every BPP-algebra and

every action µ, the set of pairs {(P, P ′) | P µ
=⇒ P ′} is semilinear. A theorem

by Ginsburg and Spanier [19] ensures that every semilinear set can be e�ectively

expressed as a formula of Presburger arithmetic. Hence we presuppose a �xed

BPPA (Σ⊗,∆) and we can assume that we can construct a formula φµ(P, P ′)

75



of Presburger arithmetic such that φµ(P, P ′) i� P
µ=⇒ P ′. Assuming that we

have such a formula we can now proceed to de�ne formulae Φn(P,Q) such that

Φn(P,Q) i� P ≈n Q. The construction is done inductively as follows:

Φ0(P,Q) ≡ tt

Φn+1(P,Q) ≡
∧
µ∈L

{
∀P ′.[φµ(P, P ′)⇒ ∃Q′.(φµ(Q,Q′) ∧ Φn(P ′, Q′))]

∧ ∀Q′.[φµ(Q,Q′)⇒ ∃P ′.(φµ(P, P ′) ∧ Φn(P ′, Q′))]
}

The set L in the de�nition of formulas Φn(P,Q) consists of all actions that appear
in the transitions rules of ∆. It is important that L can be easily enumerated and

is always �nite.

It is easy to verify that the construction is correct. The formula Φ0(P,Q) is

always true which corresponds to the approximant ≈0 relating all processes P

and Q. All the other formulas are a straightforward translation of the de�nition

of approximants so we can conclude that

Proposition 3.26 For any two BPP P and Q and for every n, Φn(P,Q) if and
only if P ≈n Q.

For everyP , Q the formulaeΦn(P,Q) are closed formulae of Presburger arithmetic

and thus decidable and so we can conclude with the �nal theorem:

Theorem 3.27 On every Basic Parallel Process algebra, the approximants ≈n
are decidable for every n.

3.5 General properties of ≈α
Now we can demonstrate what we have claimed in the previous section, that the

restriction to totally normed algebras is enough to ensure that ≈ = ≈ω. That

means we could construct a semidecision procedure for weak non-bisimilarity in

an analogous way as in the case of strong non-bisimilarity, provided we could test

each approximant ≈n.
We recall that a process P is totally normed if the weak norm of P is positive

and �nite, i.e. 0 < ‖P‖ < ∞. An algebra is totally normed if all its process

variables are totally normed. First we will show a little lemma which relates

weak norm and approximants.

76



Lemma 3.28 For any pair of processes P and Q, if ‖P‖ = n, P ≈m Q and

n < m, then ‖Q‖ = n.

This lemma is intuitively true; if the process P has a weak norm n then P

can perform a sequence of moves
w=⇒ that leads to ε and is of length n. As

m > n, there must be a matching response Q
w=⇒ ε of exactly the same length,

so ‖Q‖ ≤ n. On the other hand, if the weak norm of Q was less than n then

Q would be able to perform a strictly shorter terminating sequence to which P

would not have an adequate response and Q would not be equivalent with P at

≈m.
Now we are ready to verify the claim about totally normed algebras. We will

state it in a general way so that it can be applied to both BPA and BPPA.

Lemma 3.29 For totally normed algebras, ≈ =
⋂
i∈ω ≈i = ≈ω.

Proof: The proof follows the line of the proof for image-�nite processes. We only

need to verify one inclusion which is ≈ω ⊆ ≈.
We assume a pair of processes P and Q from a totally normed (BPA or BPP)

algebra with the property P ≈ω Q. From the de�nition this is equivalent to the

fact that P ≈n Q for all n. We consider a transition P
µ=⇒ P ′. That will be

matched by a sequence Q′0, Q
′
1, . . . , of

µ=⇒ derivatives of Q such that P ′ ≈n Q′n
for every n. We know that the weak norm of P ′ is some positive number N . Now

we make use of the lemma above that if we have a process P ′ such that ‖P ′‖ = N ,

P ′ ≈m Q′ and N < m, then ‖Q′‖ = N .

Therefore for every m > N the Q-derivatives Q′m must agree with P ′ on the

norm, that is ‖Q′m‖ = ‖P ′‖ = N . Finally we wheel in the fact that there are only

�nitely many processes of a given norm in totally normed algebras, from which

we can conclude that there must be a Q′ occurring in�nitely often in the sequence

Q′m, Q
′
m+1, . . ., thus being equivalent with P ′ for in�nitely many indices, and so

P ′ ≈ω Q′. We would follow a symmetric argument for any initial transition of

the process Q. Hence we have shown that ≈ω is a weak bisimulation and thus

≈ω ⊆ ≈. Since the opposite inclusion is trivially true we have indeed veri�ed that

≈ω = ≈. �

We can now combine several facts to obtain another proof of decidability of weak

bisimilarity for totally normed BPP. In Section 3.4.1 we demonstrated that

weak bisimulation approximants ≈n are decidable. The Lemma 3.29 above then

ensures that we can semidecide non-bisimilarity. That combined with Esparza's

77



semidecision procedure for bisimilarity presents another proof of the fact that ≈
is decidable for totally normed BPP.

We have been trying to estimate the ordinal number α such that for every algebra

(BPA or BPPA), the chain of weak bisimulation approximants will have converged

to maximal weak bisimulation at the level α. We need to consider the maximum

ordinal taken over the whole class of BPA, resp. BPPA. So far, we have produced

some lower bounds on such an ordinal which is ωω for basic process algebras and

ω · 2 for Basic Parallel Process Algebras.

Now we can try to establish some upper bounds on the level of convergence.

That does not seem to be so easy as we do not have appropriate tools that could

establish the maximal level of convergence, even for a speci�c algebra. It seems

that the only claim we can make stems from the fact that the process algebras

we deal with are countable. We have already showed that

≈α = ≈α+1 =⇒ ≈α = ≈,

that is if two subsequent levels α and α+ 1 de�ne the same equivalence then all

levels β for α ≤ β are equal and hence equal the maximal weak bisimulation.

We can de�ne only countably many processes and hence countably many pairs

of processes which means we can never distinguish more than countably many

approximants. That can be expressed as follows:

Lemma 3.30 ≈ = ≈ω1.

Obviously, this is a rather crude upper bound (ω1 is the �rst uncountable ordinal).

Brad�eld observed that there exists a stronger upper bound that can be obtained

as follows. Non-bisimulation is an inductively de�ned property, and the monotone

(and indeed positive) operator over which induction occurs is arithmetical, since

the
µ

=⇒ relation for BPA is clearly arithmetical. There is a theorem due to

Spector (consult Theorem IV.2.15 in [25]) that any inductive de�nition over a

monotone arithmetical (or even Π1
1) operator has closure ordinal ≤ ωCK1 , the

least non-recursive ordinal.

However, it seems plausible that there must be yet smaller (countable) ordinals

that will provide an upper bound, such as ωω for BPA and ω ·2 for BPP. It seems

that in order to prove any stronger claim we need to develop some technique that

would enable us to estimate the convergence for any given process algebra. Such

a technique might require further involvement of ordinal numbers that would in

some way capture the ability of processes to maintain equivalence with other

processes at high levels of ≈α whilst being actually weakly non-bisimilar.

78



3.6 Conclusions

In this chapter we were concerned with the relation between Basic Process Alge-

bras and Basic Parallel Process Algebras, and weak bisimulation, more precisely

weak bisimulation approximants. We established lower bounds on ordinal num-

bers labelling the approximants that are equal to ≈ which was ≈ω·2 in case of

BPP and ≈ωω in case of BPA. We showed decidability of ≈n for BPP and we

discussed the importance of processes of zero and in�nite norm.

However, there are a few questions to which we did not manage to �nd satis-

factory answers. What are the least ordinals, both for BPA and BPPA, that label

the approximant equal to the maximal weak bisimulation. Hirshfeld and Jan£ar

independently conjectured that for Basic Parallel Process Algebras, ≈ = ≈ω·2.
We stated a hypothesis that in the case of Basic Process Algebras, ≈ = ≈ωω . We

did not manage to verify those hypotheses since the only upper bound we could

establish was the �rst uncountable ordinal ω1 (in fact, Brad�eld observed that it

is ωCK1 , the least non-recursive ordinal). Related to the question of decidability

of BPP (or rather semidecidability of 6≈) is the following: is ≈ω decidable, and

are ≈ω+n decidable for every n?

With BPP, we can also investigate Milner's approximants ≈Mα which may

contribute to the solution to the semidecidability of 6≈ problem. Although we

know that ≈Mn are undecidable for every n > 0, we are not certain about the status
of 6≈Mn and we can spell out another conjecture: ≈ = ≈Mω . In case that 6≈Mn were

semidecidable and the conjecture was proved that would establish decidability of

≈ for BPP.

79



Chapter 4

Lower bound results

The decidability of weak bisimilarity for the restricted subclass of totally nor-

med BPP and BPA-processes was established by Hirshfeld in [28]. In the case

of totally normed BPA-processes it can be also viewed as a consequence of Stir-

ling's result of decidability for strong bisimilarity on normed pushdown automata

[58]. A semidecision procedure for weak bisimilarity of BPP was presented by

Esparza [16], however decidability for general BPA-processes and BPP remains

open. Since the decision problem seems to be rather di�cult to solve we may try

to study easier aspects of weak bisimilarity, for example its hardness. To be pre-

cise, we will try to establish some lower bounds on the computational complexity

of a decision procedure that might exist.

So far, decidability of (strong) bisimilarity for simple process algebras has been

consistent with a polynomial-time decision procedure. Polynomial algorithms de-

ciding strong bisimilarity for normed BPP and BPA-processes were demonstrated

by Hirshfeld, Jerrum, and Moller in [29], [30], [31]. Even though there is no known

polynomial decision procedure for the classes of general BPP and BPA-processes,

there is no evidence (lower bound) that would contradict its existence. Since weak

bisimilarity is a much more complex notion we might expect that any existing

decision procedure would be of rather high computational complexity. Indeed, a

possible result in that direction would be to show that weak bisimilarity cannot

be decided in polynomial time. To the best of our knowledge even this result has

not been showed yet. Here we provide a strong evidence in favour by demonstra-

ting that for weak bisimilarity and (totally normed) BPP and BPA-processes the

decision problem is NP-hard and for general BPA-processes, decidability would

imply a PSPACE-hard decision procedure.

In order to obtain these results we will make use of a reduction, a concept which

is widely used in both recursion theory and computational complexity theory. The

principle of a reduction is that we construct a translation of a decision problem P

80



to a decision problem Q which is e�cient and maps instances of P to equivalent

instances of Q. If we know the complexity of our chosen problem P then we will

be able to gauge the hardness of Q. First we will recall a few important notions

from the �eld of computational complexity.

4.1 Computational complexity

In order to de�ne time or space complexity of a problem (language) we employ

the concept of Turing machines (see e.g. [33]). We say that a Turing machine

M decides a language L over some alphabet Σ if M halts on every input string

w ∈ Σ∗ and M accepts w if and only if w ∈ L. Assuming that T (n) is a function

on natural numbers, we say that a machine M has time complexity T (n) if for

every n and for every input string w of length n the amount of time required for

the computation of the machine on w is bounded by T (n). Also the language

decided by M is said to be of time complexity T (n). If S(n) is a function on

natural numbers, we say that a Turing machine M has space complexity S(n) if

for every n and for every input string w of length n the amount of space required

for the computation of M on the input w is bounded by S(n). The language

decided by M is then of space complexity S(n).

Remark: If there is a Turing machine of time complexity T (n) deciding a lan-

guage L then the function T (n) is an upper bound on the inherent hardness of

L. There may exist other Turing machines of lower time complexity deciding

L. However, that is inevitable because there are languages for which no �best�

Turing machine exists (in terms of time complexity). The same applies to space

complexity S(n) of languages.

4.1.1 Complexity classes

We distinguish between deterministic and nondeterministic computation, that is

computation performed by deterministic and nondeterministic Turing machines.

We group languages into complexity classes according to their time or space com-

plexity. DTIME(f(n)) consists of languages decidable by deterministic Turing

machines whose time complexity is bounded by f(n), DSPACE(f(n)) consists

of languages decidable by deterministic Turing machines whose space complexity

is bounded by f(n). The classes NTIME(f(n)) and NSPACE(f(n)) are de�ned

analogously in terms of nondeterministic Turing machines. We are particularly

interested in classes that involve polynomial time and space complexity, as de�ned

below.

81



P = ∪c>0 DTIME(nc)

NP = ∪c>0 NTIME(nc)

PSPACE = ∪c>0 DSPACE(nc)

NPSPACE = ∪c>0 NSPACE(nc)

The relationship between these classes is as follows:

P ⊆ NP ⊆ PSPACE = NPSPACE

It is not known whether any of these inclusions is proper, however it is widely

assumed that P 6= NP and NP 6= PSPACE. Any problem that belongs to P is

considered feasible because there exists an algorithm that solves it in polynomial

time. Generally, problems outside P are looked upon as hard to solve. Assuming

P 6= NP, already the class NP contains some hard problems. The class PSPACE is

widely assumed to contain some problems harder than all problems in NP and so

problems complete for PSPACE are considered not feasible. Now we will explain

how we can compare complexities of various languages.

4.1.2 Reductions

We de�ne computational complexity of languages in terms of Turing machines

whose output is either accept or reject. Hence we may view a Turing machine to

be computing a function from the set of strings over the input alphabet to the

two-element set {0, 1}. In the context of reductions we need to be able to compute

functions from one set of strings to another set of strings and so we will consider

special kinds of Turing machines that are called transducers. A transducer is

a Turing machine which consists of a read-only input tape, a work-tape and a

write-only output tape on which the head always moves to the right. The function

computed by some transducer is de�ned in the obvious way.

Assume two languages L1 over some alphabet Σ1 and L2 over an alphabet Σ2.

A reduction from L1 to L2 is a function f from Σ∗1 to Σ∗2 such that

for all w ∈ Σ∗1, w ∈ L1 ⇐⇒ f(w) ∈ L2.

A reduction f is polynomial-time if there exists a polynomial-time bound trans-

ducer that computes the function f . A reduction f is log-space (logarithmic space)

if it is computable by a transducer with log-space bounded work-tape. Every log-

space reduction is also a polynomial-time reduction. Polynomial-time reduction

82



will su�ce for our purposes as will be shown later. We will denote the fact that

L1 is polynomial-time reducible to L2 by L1 2 L2.

We say that a language L is complete for a class C (with respect to polynomial-

time reduction) if L is in C and every language in C is polynomial-time reducible

to L. A language L is hard for C (with respect to polynomial-time reduction) if

every language in C is reducible to L, but L is not necessarily in C. The concept
of hardness is not enough to determine the complexity of a language, however

it provides us with a lower bound. We will be mainly dealing with the classes

NP and PSPACE and the following theorem [33] con�rms that polynomial-time

reduction is suitable for our purposes.

Lemma 4.1 If L2 ∈ P and L1 2 L2 then also L1 ∈ P.

If there are languages L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 such that L1 is polynomial-time

reducible to L2 then there exists a Turing machine M that transforms input

strings over Σ1 into equivalent strings over Σ2 and whose time complexity is

bounded by some polynomial p(n). That means that each word w1 of length n

will be transformed into a word w2 of length at most p(n). If we can decide the

language L2 in polynomial time, let us say q(n), then clearly via the machine

M we can decide the language L1 in time p(n) + q(p(n)) which is clearly also

polynomial.

Since the composition of two polynomial-time reductions is also polynomial-

time we obtain the following statement:

Lemma 4.2 If L1 is C-complete and L1 2 L2 then L2 is C-hard.

4.1.3 Decision problems

We have de�ned our complexity notions in terms of languages. It is more conve-

nient to deal with a slightly less formal concept of decision problems. A decision

problem is characterised by a set of instances of the problem and a YES/NO ques-

tion that one asks about the instances. Each language de�nes a decision problem

in this way: for a language L, a subset of Σ∗, the corresponding decision problem

is to decide whether a word w belongs to L, for any word over the alphabet Σ.
Obviously, if we have a Turing machine that decides L we can easily modify it into

a Turing machine deciding the corresponding decision problem hence languages

and decision problems are closely related. From now on, we will only consider

decision problems.

83



Example 4.3 Let us consider the Hamilton circuit problem (Ham) which is de-

�ned as follows: given a graph G, we want to determine if there exists a path

in G which visits each vertex exactly once and returns to its starting point. To

encode Ham formally we presuppose an alphabet Σ (whose letters will be used to

encode graphs), for instance Σ = {0, 1, (, )}. The language LHam is a subset of Σ∗

which corresponds to encodings of graphs with Hamilton circuits. The decision

problem Ham is then given as follows:

Instance: A graph G.

Question: Does G contain a Hamilton circuit? �

More details and examples of complete problems can be found in Papadimitriou

[54], and Garey and Johnson [17].

4.2 Weak bisimilarity of BPP is NP-hard

In order to show NP-hardness of weak bisimilarity we choose the problemKnap-

sack which is known to be NP-complete (originally proved by Karp in [42]).

We will reduce it to weak bisimilarity of Basic Parallel Processes. As we have

explained earlier that will make the decidability of ≈ for BPP at least NP-hard.

Knapsack (also called Subset Sum) is a combinatorial problem which com-

pares sums of natural numbers. We are given a sequence of natural numbers

m1,m2, . . . ,mn and a total t and we want to �nd out whether we can choose a

subsequence mi1, . . . ,mik that adds up to t. That brings us to the idea of having

two processes, one representing the total t by being de�ned as a trace of length

t, and the other representing the choices of subsequences of m1,m2, . . . ,mn and

hence giving rise to a tree whose branches correspond to traces of lengths speci-

�ed by the individual subsequences. Formally, the de�nition of the problem is as

follows:

De�nition 4.4 Knapsack is the following problem:

Instance: t,m1,m2, . . . ,mn ∈ N
Question: ∃ i1, i2, . . . , in ∈ {0, 1}.

∑n
j=1 ijmj = t?

We will follow the convention that all the input values t,m1,m2, . . . ,mn are en-

coded in binary [17]. That is an essential requirement because if we consider

Knapsack with the input encoded in unary then we can actually construct an

algorithm that will solve it in polynomial time. We say that Knapsack is not

84



strongly NP-complete [17]. However, with respect to binary encoding it is NP-

complete.

The fact that we assume input values encoded in binary means that we can

encode large numbers in a succinct way. That means we will have to deal with

large values in the de�nition of processes that occur in the reduction. That will

require a trick in the de�nition so that we remain within the limits of polynomial-

time reduction. We will now proceed to demonstrate a polynomial timemany-one

reduction of Knapsack to weak bisimilarity of BPP.

Lemma 4.5 Knapsack 2 ≈.

Proof: Let t,m1,m2, . . . ,mn ∈ N be an instance of Knapsack. We will demon-

strate two Basic Parallel Processes P and Q such that there exist i1, i2, . . . , in ∈
{0, 1} with

∑n
j=1 ijmj = t if and only if P ≈ Q. Following the aforementioned

idea, the process P will simulate branching de�ned by individual subsequences,

and the process Q will simulate a trace of length t. For the purpose of counting

we will use a single visible action a that will help us to test if there is a branch

in the tree de�ned by P of length t, i.e. equivalent with Q.

For each mj, resp. t, we will introduce a process variable Mj, resp. T , that

will be able to perform exactly a sequence of
a=⇒ transitions of length mj, resp.

t. The process P then will be capable of generating any subset of {M1, . . . ,Mn}
whereas the process Q will be able to evolve into T . Finally we will demonstrate

that P is weakly bisimilar to Q if and only if the answer to the corresponding

instance is yes. Now we will present the transition rules that de�ne the process

variables P and Q:

P
τ−→ P1 ‖ . . . ‖ Pn Q

τ−→ P Pj
τ−→Mj , j = 1, . . . , n

Q
τ−→ T Pj

τ−→ ε, j = 1, . . . , n

In order to complete the de�nitions of P and Q we have to de�ne process variables

Mj and T . Our only concern is that the resulting reduction is polynomial time

hence we have to use a little trick in the de�nition. We de�ne a sequence of

variables S0, S1, . . . , Sk in this way: S0
a−→ ε, Si+1

τ−→ Si‖Si for i < k, where k

is taken to be blog(max{t,m1, . . . ,mn})c. Thus we have obtained variables such

that Si ≈ a2i, where we use the expression am in the obvious meaning. Now we

can de�ne T
τ−→ Sekk ‖ . . . ‖S

e1
1 ‖Se00 where ek . . . e1e0 is the binary encoding of t

(the expression on the right-hand side of the rule is written as Sekk ‖ . . . ‖S
e1
1 ‖Se00 in

order to make the idea clear; in fact the variables Si with the respective exponent

ei being equal to 0 will not be present). The variables M0, . . . ,Mn are de�ned

in a similar fashion: Mj
τ−→ S

ekj
k ‖ . . . ‖S

e1j
1 ‖S

e0j
0 , where ekj . . . e0j is the binary

85



encoding of mj, for j = 1, . . . , n. To summarise, we only need k+1 extra variables

in order to de�ne the processes T and Mj.

Q

a

��

τ // P
a

{� ��
��
��
�

��
��
��
�

a

��

a

$,QQ
QQ

QQ
QQ

QQ
QQ

QQ
Q

QQ
QQ

QQ
QQ

QQ
QQ

QQ
Q

a

��
a

��

a

�#
>>

>>
>>

>

>>
>>

>>
>

a

��

. . .

a

��
a

��

a

��

Figure 4.1: The processes P and Q

The transition systems determined by processes P and Q are illustrated in Fig.

4.1. It is easily seen from the construction that P can only perform sequences

of
a=⇒ transitions of length

∑n
j=1 ijmj for some i1, i2, . . . , in ∈ {0, 1}. Therefore

if this sum never adds up to t the process Q can become T and thus force non-

bisimilarity with P . On the other hand, if there exist i1, i2, . . . , in ∈ {0, 1} such
that

∑n
j=1 ijmj = t the process P will generate the compositionM i1

1 ‖ . . . ‖M in
n as

an answer to the move Q
τ−→ T and preserve weak bisimilarity. If it is P that

takes the initiative then the process Q simply makes use of the rule Q
τ−→ P and

then copies any move of P . �

It remains to check that the reduction is polynomial-time. We will prove that

by examining the reduction in detail and we will actually show that the re-

duction is log-space. We de�ne a log-space transducer that performs this re-

duction as follows: it consists of a read-only input tape, a work-tape, and a

write-only output tape on which the head only moves to the right. The input

is encoded in binary and hence the size of the input is roughly n · k, where

k = blog max{t,m1, . . . ,mn}c+ 1. In the construction we use 2n+k+ 4 variables

for which we need blog(2n+k+4)c+1 space, that is about log(n+k). We will set

up a counter on the work-tape which will contain the following information: (the

encoding of) the last variable, the variable being currently de�ned and then some

auxiliary information. All this takes up space of about logn+ log k+ log(n+ k).

86



We proceed to encode the algebra in this fashion: we start with the sequence

of rules Si+1
τ−→ Si‖Si. In order to do that we need to keep track of the previously

de�ned variable, that is to encode the transition of Si+1 we need to remember

Si which requires log k space. Then we continue with the transition rules for

individualMj and T . For that we just need to be able to work out the encoding

of some Si if it appears on the right hand side of some rule. We will also write

down the encoding of M1 so that we know how to start in the de�nition of P1.

That requires a counter for keeping track of which Pj is being de�ned. Finally,

we �nish o� with the encoding of P and Q. Clearly all the information stored in

the work-tape only takes up space which is logarithmic in the size of the input.

Since the head only moves to the right on the output tape we can conclude that

the reduction is indeed polynomial-time. Hence we have veri�ed the following

theorem:

Theorem 4.6 The decidability of weak bisimilarity of Basic Parallel Processes

is NP-hard.

4.2.1 Totally normed BPP

The result that we have just proved appears rather weak in the light of the fact

that so far there exists only a semidecision procedure. Now we will present a

stronger result by modifying the reduction so that the resulting processes belong

to the restricted subclass of totally normed BPP, for which weak bisimilarity

is actually decidable [28]. In the original reduction we de�ne several variables

which are of norm zero. The class of totally normed processes does not admit

such variables and so we will replace them with variables of positive norm.

The problematic processes are Pi since they have at their disposal the transi-

tion rules Pi
τ−→ ε. We can get rid of such processes by considering the problem∑n

j=1 ijmj +
∑n

j=1 mj = t +
∑n

j=1 mj instead. Clearly, there exist coe�cients

ij ∈ {0, 1} such that
∑n

j=1 ijmj = t if and only if there exist i′j such that∑n
j=1 i

′
jmj = t +

∑n
j=1mj, where i′j ∈ {1, 2}. Following this idea we de�ne

new process variables P ′i and P
′ using the transitions P ′i

τ−→Mi‖Mi, P ′i
τ−→Mi,

and P ′
τ−→ P ′1‖ . . . ‖P ′n. The fact that we are now simulating either the number

mj or its double 2mj means that the moves Pi
τ−→ ε are no longer present. We

also need to replace the process Q representing t with a process Q′ representing

t +
∑n

j=1mj. The process Q′ is de�ned by the two transitions Q′
τ−→ P ′ and

Q′
τ−→ T‖M1‖ . . . ‖Mn.

It is obvious that for the processes P ′ and Q′ de�ned above, P ′ ≈ Q′ if and

only if they correspond a positive instance of Knapsack. This modi�cation does

87



not have any impact on the size of the reduction which can still be done in log-

space. All the newly de�ned processes are totally normed and we can conclude

with the following theorem:

Theorem 4.7 The decidability of weak bisimilarity of totally normed Basic Pa-

rallel Processes is NP-hard.

4.2.2 Totally normed BPA-processes

For general BPA-processes we will demonstrate PSPACE-hardness of the decision

problem for weak bisimilarity but before doing that we will modify the reduction

from Knapsack to sequential composition in order to show the following theo-

rem:

Theorem 4.8 To decide weak bisimilarity of totally normed BPA-processes is

NP-hard.

Proof: The proof follows very much the ideas we used in the reduction to weak

bisimilarity of BPP. Given an instance t,m1, . . . ,mn of Knapsack, we will de�ne

processes P and Q in this way:

P
τ−→ P1M1 P

τ−→ P1M
2
1 Q

τ−→ P

P1
τ−→ P2M2 P1

τ−→ P2M2
2 Q

τ−→ T
...

...

Pn−1
τ−→Mn Pn−1

τ−→M2
n

Note that it is not enough to simply replace parallel composition with sequential in

the de�nition of P because of the leftmost derivation in case of BPA. If we took P

to be P1P2 . . . Pn then we would not be able to derive any process M i1
1 M

i2
2 . . .M in

n

in a single
τ=⇒ transition because Pi is only enabled when all Pj have terminated

for all j < i. Therefore we would have to start producing
a=⇒ transitions which

would introduce more possibilities for branching and spoil bisimilarity.

The de�nitions of T and each Mj are again expressed in terms of auxiliary

variables Si:

S0
a−→ ε Si+1

τ−→ SiSi T
τ−→ Sekk . . . Se11 S

e0
0 Mj

τ−→ S
ekj
k . . . S

e1j
1 S

e0j
0 ,

where 1 ≤ i < blog(max{t,m1, . . . ,mn})c, and ek . . . e1e0, resp. ekj . . . e1je0j, are

the binary encodings of t, resp. mj. For these processes there is no branching

available, they only determine a sequence of
a=⇒ moves of the right length.

When we examine the possible behaviour of P we can see that before doing

an
a=⇒ transition it must have evolved into a composition of variables of the form

88



M in
n . . .M i2

2 M
i1
1 with ij ∈ {1, 2}. That represents some subset of m1, . . . ,mn and

P can perform exactly
∑n

j=1 ijmj actions
a=⇒ for the corresponding ij. Then we

apply a similar argument as in the case for BPP and we can conclude that P ≈ Q
if and only if there are i1, . . . , in ∈ {1, 2} so that

∑n
j=1 ijmj = t. All the variables

are totally normed which concludes the proof. �

We can see that the presented reduction constructs roughly the same number of

processes as the reduction to (totally normed) BPP. Hence we can rely on the

analysis of the former reduction and conclude that also the reduction to totally

normed BPA-processes is log-space.

4.3 Weak bisimilarity of BPA is PSPACE-hard

Sequential composition, however, enables us to go even further. With the sequen-

tial structure of BPA-processes we are able to encode �nite automata and hence

achieve a stronger result. We will use the totality problem for �nite automata

Tot which is PSPACE-complete and construct a polynomial time reduction to

weak bisimilarity of BPA-processes. Thus we will show that this problem is at

least PSPACE-hard. First we will de�ne the totality problem for �nite automata:

De�nition 4.9 Tot is the following problem:

Instance: A nondeterministic �nite automaton A over some alphabet Σ.
Question: Is L(A), the language accepted by the automaton A, equal to the

total language Σ∗?

This problem is PSPACE-complete even for a two-letter alphabet (cf. [17]) hence

in the following we will assume that Σ = {a, b}. We will in fact demonstrate a

linear time reduction of Tot to weak bisimilarity of BPA-processes.

Theorem 4.10 Tot 2 ≈.

Now we will explain the main idea behind the reduction. We presuppose a nonde-

terministic �nite automaton A = (Σ,Q, δ, q0, {qk}), where Σ = {a, b} is the input
alphabet, Q = {q0, q1, . . . , qk} is the set of states with q0 being the initial and qk

the �nal states, and δ : Q × Σ → 2Q is the transition function. We will write

(qi, x) 7−→ qj to express the fact that the state qj belongs to the set δ(qi, x) with
x being either a or b. Also note that without loss of generality we can assume a

single �nal state qk.

89



We will simulate words over {a, b} by introducing two variables A and B such

that A can only perform the transition A
a−→ ε and B can only perform the

transition B
b−→ ε. Then any process over A and B will determine a single

word over the alphabet Σ. To simulate the total language Σ∗ we will introduce a
process P that will be capable of producing any string of atoms A and B. Next

we de�ne a process Q that can generate all strings from L(A). However since

we are only allowed the leftmost derivation in the case of BPA-processes, we will

de�ne a process that generates exactly all the reverse words from L(A). Still, we
will be able to show that L(A) = Σ∗ if and only if P ≈ Q.

For each state q0, q1, . . . , qk of the automaton A we de�ne a process variable

Q0, Q1, . . . , Qk using the following rules:

if (qi, a) 7−→ qj then Qi
τ−→ QjA, and

if (qi, b) 7−→ qj then Qi
τ−→ QjB.

For the variable Qk that corresponds to the �nal state qk we add a special rule

Qk
s−→ ε, where s is a special initial action. The purpose of s is to mark that

the automaton A, resp. the corresponding process Q, has reached a �nal state

and halted. Finally, we put Q = Q0. It is quite straightforward to observe that a

word w is in L(A) if and only if we can with
τ=⇒ transition from the variable Q

generate the process QkR where R ∈ {A,B}∗ determines precisely the word w̄,

the reverse of w.

Example 4.11 To illustrate the construction above we will now show an example

of a nondeterministic �nite automaton and the process that it gives rise to. The

automaton A (Fig. 4.2) consists of a set of states {q0, q1, q2, q3} with q0 being

the initial and q3 the �nal states, the alphabet is Σ = {a, b} and the transition

function is given by δ(q0, c) = {q1}, δ(q1, a) = {q2, q3}, and δ(q2, b) = {q1, q3}. The
language it de�nes is given by the regular expression c(ab)∗a+ c(ab)∗ = {c(ab)ia |
i ≥ 0} ∪ {c(ab)i | i > 0}.

The process Q is de�ned by the following transition rules and is pictured in Fig.

4.3:

Q0
τ−→ Q1C Q1

τ−→ Q2A Q1
τ−→ Q3A

Q2
τ−→ Q1B Q2

τ−→ Q3B Q3
s−→ ε

It is not di�cult to verify that the only processes derivable from the process Q0

with
s=⇒ move are either of the form A(BA)iC or (BA)iC. Clearly a process

90



GFED@ABCq0
c // GFED@ABCq1

a

++

a

  @
@@

@@
@@

@@
@@

@@
@@

@@
@

GFED@ABCq2

b

kk

b

~~~~
~~
~~
~~
~~
~~
~~
~~
~~

GFED@ABC?>=<89:;q3

Figure 4.2: The nondeterministic automaton A

Q0

τ

��
Q1C

τ

xxrrr
rr
rr
rr
r

τ

%%J
JJ

JJ
JJ

JJ

Q2AC

τ

xxppp
pp
pp
pp
pp

τ

&&LL
LL

LL
LL

LL
Q3AC

s

��
Q1BAC

τ

xxppp
pp
pp
pp
pp

τ

&&NN
NN

NN
NN

NN
N

Q3BAC

s

��

AC

Q2ABAC

τ

xxqqq
qq
qq
qq
qq

τ

&&NN
NN

NN
NN

NN
Q3ABAC

s

��

BAC

Q1(BA)2C

{{w
w
w
w
w

&&M
M

M
M

M
M

M
Q3(BA)2C

s

��

ABAC

(BA)2C

Figure 4.3: The corresponding process Q

A(BA)iC, resp. (BA)iC, determines the word a(ba)ic, resp. (ba)ic, which is the

reverse of c(ab)ia, resp. c(ab)i. �

Now we de�ne the process P whose task is to be able to represent all strings

from {a, b}∗ and simulate the process Q, and also the variables A, resp. B, that

simulate the letters a, resp. b.

P
τ−→ QT P

τ−→ PA A
a−→ ε T

τ−→ T

P
s−→ ε P

τ−→ PB B
b−→ ε

For technical reasons we need a process that will block any sequence of variables

that the process P may have generated. The process T forms such a block since

91



it is de�ned as a τ loop and therefore it is clear that TR ≈ ε for any process R.

The presence of T in the algebra means that the algebra fails to be totally normed

which opens the question about the complexity of weak bisimilarity for totally

normed processes. The �nal step is to show the correctness of the reduction.

Lemma 4.12 Assume a given automaton A and P and Q de�ned as above. Then

L(A) = {a, b}∗ i� P ≈ Q.

Proof: One implication is straightforward. Assume that L(A) 6= {a, b}∗ and let

w ∈ {a, b}∗ \ L(A). Since P is constructed to generate all strings of a and b it

can produce a sequence of variables capable of performing the word sw̄, where w̄

is the reverse of w. However, as Q simulates the automaton A it cannot produce

the string w̄ and thus P 6≈ Q.
In order to show the other direction we need to analyse the moves of P and

Q. The idea is that P will wait for Q to make a move and then respond by doing

P
τ−→ QT which blocks anything which P may have generated in the meantime.

Clearly Q ≈ QTR for any process R because we can never get past T . On the

other hand, Q has to respond only when P decides to generate a sequence of A's

and B's and then disappear. Hence the responses of Q are:

1. P
τ=⇒ PR,R ∈ {A,B}∗ - in this case Q does the empty sequence Q

ε=⇒ Q

2. P
τ=⇒ QTR,R ∈ {A,B}∗ - in this case Q ≈ QTR and hence again the

response is Q
ε=⇒ Q

3. P
s=⇒ R,R ∈ {A,B}∗ - since Q can generate all strings over the alphabet

{A,B} it will be able to generate the process R via
s=⇒.

We will make a formal argument out of the informal analysis above by actually

constructing a weak bisimulation relation containing the pair (P,Q). We de�ne

a binary relation R as a union of three subrelations, R = R1 ∪R2 ∪R3, where

R1 = {(QiRTR′, QiR) | R,R′ ∈ {A,B}∗}

R2 = {(PR,Q) | R ∈ {A,B}∗}

R3 = {(RTR′, R) | R,R′ ∈ {A,B}∗}

To establish that R is a weak bisimulation relation we have to verify that R is

closed under expansion. This naturally falls into three cases:

92



1. Given a pair (QiRTR′, QiR) fromR1, the possible transitions are only those

of Qi and each process will always simulate the other's move. There are two

transitions to distinguish: eitherQiR
τ−→ QjXR withX being from {A,B}

in which case (QjXRTR′, QjXR) belongs to R1, or i = k and the transition

is QiR
s−→ R, in which case we end up with the pair (RTR′, R) which is

contained in R3.

2. Consider a pair (PR,Q) from R2. If P takes the initiative the possible

transitions are as follows:

• PR τ−→ PXR, where X is either A or B. Then Q will respond with

the empty move Q
ε=⇒ Q and from the de�nition, the pair (PXR,Q)

belongs to R2.

• PR τ−→ QTR, to which move Q will again respond with Q
ε=⇒ Q,

and now the resulting pair (QTR,Q) belongs to R1.

• PR s−→ R, then Q will respond with a sequence of τ transitions gen-

erating precisely the process QkR and then removing the �nal variable

Qk with
s−→. The possibility of such a move follows from the assump-

tion that the automaton generates the total language. The result is a

pair (R,R) which is contained in R3.

That sorts out all moves available to P . When the process Q decides to

perform any move Q
µ−→ Q′ the other process PR makes use of the transi-

tion PR
τ−→ QTR

µ−→ Q′TR and from the de�nition, the pair (Q′TR,Q′)
is in R1.

3. Any pair from R3 is of the form (RTR′, R) where R and R′ are sequences

over process variables A and B. SinceA can only do
a−→ and disappear, and

B can only do
b−→ and disappear, it is clear that any move R

µ−→ R̂ results

again in a process R̂ ∈ {A,B}∗, and so the pair (R̂TR′, R̂) is contained in

R3.

We have exhausted all possible moves of any P ′, Q′ such that (P ′, Q′) ∈ R and

thus showed that R is closed under expansion. Since the pair (P,Q) belongs to

R2 and we have demonstrated that R is a weak bisimulation relation we can

conclude that P ≈ Q. �

Finally we need to verify the size of the reduction. We assume that we start from

an automaton with k + 1 states. We need to measure the size of the transition

93



function δ and we will choose the size to be N =
∑k

i=0(|δ(qi, a)|+ |δ(qi, b)|), that
is the total number of states reachable from each single state by accepting a or

b. For each qj ∈ δ(qi, x) we de�ne a transition rule, moreover there are several

more rules that de�ne the processes P , T , A and B. Eventually we end up with

N + 8 transition rules of size linear in the size of encoding of the states q0, . . . , qk.

To write down the rules of the algebra we need a work-tape that will contain

the position of the currently de�ned process variable which requires roughly log k
space. Hence it is quite straightforward to see that we can make do with a log-

space work-tape and the resulting reduction is linear in size of the input. And so

we come to the conclusion expressed in the theorem below:

Theorem 4.13 The decidability problem of weak bisimilarity of BPA-processes

is PSPACE-hard.

4.3.1 EXPSPACE-complete problem versus ≈ of BPA

In the light of the current state of knowledge, with the decidability question for

BPA-processes completely open, it seems natural to try to reduce even harder

problems to weak bisimilarity. A natural choice might be to consider the problem

Tot
2 which is a generalisation of Tot stated in terms of regular expressions with

squaring. Just to remind ourselves, the set of regular expressions (r.e.) over some

alphabet Σ is constructed recursively from the basic regular expressions which

are ∅, and a for every a ∈ Σ. If r and s are r.e. then r + s, r · s and r∗ are also

r.e. The languages they determine are L(∅) = ∅, L(a) = {a} for every a ∈ Σ,
L(r + s) = L(r) ∪ L(s), L(r · s) = L(r) · L(s), and �nally, L(r∗) = (L(r))∗. The
regular expressions with squaring (r.e.w.s.) have a special symbol r2 which stands

for r · r and allows a succinct notation for exponentiation. For a more detailed

account the reader should consult [33], [54].

De�nition 4.14 Tot
2 is the following problem:

Instance: A regular expression r with squaring over some alphabet Σ.
Question: Is L(r), the language generated by the regular expression r,

equal to the language Σ∗?

This problem is EXPSPACE-complete, even for a two-letter alphabet (cf. [54],

[33]). We will not go into detail here but roughly speaking, any computation of

a Turing machine that works in space exponential in the size of input can be

encoded by a regular expression with squaring of length polynomial in the size of

input, thanks to the squaring operator. We have seen in previous reductions that

94



(BPA-)processes also permit a succinct way of writing down large (exponential)

strings and so we hoped for a polynomial-time reduction from regular expressions

with squaring to BPA. Unfortunately, it does not appear to work and we will

brie�y sketch why it is so.

For a given r.e.w.s. r over some alphabet Σ we want to compute, in polynomial

time, processes P and Q such that P ≈ Q if and only if L(r) = Σ∗. Following the
spirit of the reduction from Tot to ≈, testing weak bisimilarity will be simpli�ed

to string comparison. Then the goal is to construct the two processes so that they

generate some strings with a
τ=⇒ sequence and when they have stopped generating

they proceed with string comparison, which is done by non−τ actions. Thus

visible actions appear only at the end and all branching is performed exclusively

by τ moves. As in the case of the previous reduction, this simpli�cation seems

necessary as otherwise it may be impossible to ensure bisimilarity.

Assuming we have an r.e.w.s. r′ = (...(r 2)2...)2︸ ︷︷ ︸
n

we need to construct a sequence

of processes of polynomial size that will in some suitable way represent r′. We

may stipulate that a process P represents r if every w is from L(r) i� P w=⇒ ε. It

seems that any reduction method, computable in polynomial time, produces for r′

a slight variation on the following design: assuming that P0 represents r, we de�ne

rules P1
τ−→ P0P0, . . ., Pn

τ−→ Pn−1Pn−1. Then the process Pn will represent r′.

However, the principle of generating complete strings solely with τ actions is

marred. We can see that on an example: if r = a + b then r2 = (a+ b)(a+ b).
We can put P0

τ−→ A, P0
τ−→ B, where A

a−→ ε, B
b−→ ε (that would be done

analogously to the reduction from Tot), and P1
τ−→ P0P0. But then a possible

execution of actions of P1 is P1
τ−→ P0P0

τ−→ AP0
a−→ P0

τ−→ B which clearly

shows that we cannot generate the string AB with
τ=⇒. As we have noted before

this would be a serious hindrance for bisimilarity.

In the reduction from Tot we employed �nite automata which o�ered a

straightforward transformation to BPA-processes. Regular expressions with squa-

ring can be also transformed into nondeterministic �nite automata, however, this

algorithm is in general exponential and hence not useful for our purposes. As

there does not appear to be another way of encoding regular expressions by BPA-

processes that would make it possible to argue about bisimilarity, other than via

�nite automata, we conclude that there does not seem to exist a way of showing

EXPSPACE-hardness of weak bisimilarity for BPA-processes that would be based

on reduction from regular expressions with squaring.

95



4.4 Conclusions

We have shown NP-hardness for the weak bisimilarity decision problem of totally

normed BPA-processes and BPP. Those are the restricted classes of processes

for which weak bisimilarity is decidable [28]. The two decision procedures of

[28] do not produce any immediate complexity estimate of the problem. In the

case of BPP the explicit upper bound is the Ackerman function (as is for the

strong bisimilarity decision procedure for general BPP) which is not even primitive

recursive. However, Hirshfeld also showed that unique prime decomposition holds

for totally normed BPP with respect to weak bisimilarity which might be used

to construct a more e�cient decision procedure.

Rather surprisingly, there is no unique prime decomposition for totally normed

BPA-processes [35]. Also for general BPA-processes there are no known results

concerning decidability of weak bisimilarity. It might be the case that deciding

weak bisimilarity will be harder for BPA-processes than for BPP but up till now

there exist only weak concrete results that support this conjecture.

If we study in detail the structure of the processes that were constructed

by the presented reductions we come to the conclusion that the full power of

alternation between two processes, and hence also branching, is not used. In all

the reductions we use τ transitions to generate an appropriate choice or response

before any visible action is performed. Once we have performed some visible

transition we are only allowed to continue with a single sequence which has been

already determined. Then testing (weak) bisimilarity boils down to comparing

two strings because no branching is available.

To be more concrete, in the Knapsack reduction we use the ability of pro-

cesses to count. Each of the two processes generates a string, one of which is of

a prescribed length. Then by comparing the strings we only compare the lengths

and bisimilarity amounts to both strings being of the same length.

The Tot reduction is more subtle but basically works on the same principle.

Here we compare two languages over a two letter alphabet. That means we

need to compare strings generated from two letters. The two strings are again

determined by a sequence of τ transitions before any visible action is performed.

Then testing bisimilarity boils down to string comparison. A similar approach

for the harder problem Tot
2, however, does not seem to work.

There is a plethora of hard problems from the area of language theory, model

checking, and game theory. It is worth investigating how weak bisimilarity com-

pares with these other problems and it will be a subject of further research.

96



Chapter 5

Connecting BPP and polynomial

rings

Decidability of strong bisimilarity for Basic Parallel Processes was �rst established

by Christensen, Hirshfeld and Moller in [7] for the restricted subclasses of normed

and live BPP. Hirshfeld, Jerrum and Moller later constructed a polynomial time

algorithm for the subclass of normed BPP [29], [30]. Finally, decidability was

demonstrated for the whole class of BPP by Christensen, Hirshfeld and Moller

in [8]. There were other approaches towards decidability of BPP, for instance by

Hirshfeld [27] and Jan£ar [40], [41].

Despite a number of various decision procedures for bisimilarity on Basic Pa-

rallel Processes, so far there does not exist any algorithm whose computational

complexity would be satisfactory. Some algorithms consist of two semidecision

procedures with no available upper bounds. Hirshfeld in [27] constructs a bisi-

mulation tree, a tool for deciding strong bisimilarity which is always �nite. The

width of the tree can be easily calculated from the size of the input processes,

and is fairly small (exponential). The length of branches of the tree constitutes

the real problem. Hirshfeld constructs the branches so that they form proper se-

quences (cf. Chapter 2) and then applies a lemma originally stated and proved

by Dickson in [13] to conclude that every proper sequence of BPP must be �nite.

There is an e�ective upper bound on the length of a maximal proper sequence

of BPP found by McAloon [47]. This bound is expressed as a function of the

number of atoms in the algebra, the size of the �rst process in the sequence, and

of the bound on the growth of the size in each step. Unfortunately, this upper

bound is primitive recursive in the Ackerman function and hence not very useful.

In this chapter we make an attempt at improving the current situation. We

provide a new technique for deciding bisimilarity by exploiting a connection be-

tween Basic Parallel Processes and polynomials. We construct a decision proce-

97



dure which is based on membership test for polynomial ideals. The technique

of Gröbner bases is a powerful technique from the area of computational algebra

that enables us to solve many problems involving polynomials, among others po-

lynomial ideal membership. The resulting decision procedure is constructed in

the spirit of Hirshfeld's bisimulation trees using an analogue of Caucal base (cf.

Chapter 2) expressed in terms of polynomials.

5.1 Polynomial algebra

We will give a brief overview of some basic algebraic notions; for a more detailed

account consult for instance Jacobson [39], Lang [44]. A semigroup (S, ◦) is a set

S together with an associative binary operation ◦ on S. A monoid (S, ◦, e) is a

semigroup with an identity element e, that is e ◦x = x ◦ e = x for every x ∈ S. A
group (G, ◦, �, e) is a monoid (G, ◦, e) together with a unary inverse operation �,
that is x ◦ �x = �x ◦ x = e. G is commutative if the operation ◦ is commutative.

A ring (R,+,−, ·, 0) is a commutative group (R,+,−, 0) and a semigroup

(R, ·), satisfying the laws of distributivity x · (y+ z) = x ·y+x · z and (x+y) · z =
x · z + y · z. A commutative ring is one in which the operation · is commu-

tative. A ring with identity is a ring R together with an element 1 6= 0 such

that (R, ·, 1) is a monoid. A �eld (F,+,−, ·,−1 , 0, 1) is a commutative ring with

identity (F,+,−, ·, 0, 1) and simultaneously a group (F \ {0}, ·,−1 , 1).
Let R be a commutative ring with identity. A nonempty subset I of R is an

ideal if a+ b ∈ I for all a, b ∈ I and ac ∈ I for all a ∈ I and c ∈ R. A set B ⊆ R
generates the ideal I or B is a basis for I if

I =
{ m∑

i=1

ribi | m ∈ N, ri, . . . , rm ∈ R, b1, . . . , bm ∈ B
}

In this case we say that I is the ideal generated byB and we denote it by I = Id(B).
I is �nitely generated if it has a �nite basis.

We are going to work with the two-element �eld F2 = ({0, 1},+,−, ·,−1 , 0, 1) and
the polynomial ring (with identity) F2[x1, . . . , xn]. The two binary operations +
and · of the �eld F2 are given in Fig. 5.1 and the unary operation − and −1 are

de�ned in the obvious way so that they satisfy the appropriate axioms: −(0) = 0,
−(1) = 1, and �nally 1−1 = 1.

For a commutative ring with identity R, we denote the polynomial ring over

R in indeterminates x1, . . . , xn with R[x1, . . . , xn]. Special terms of the form

98



0 + 0 = 0 0 · 0 = 0
0 + 1 = 1 0 · 1 = 0
1 + 0 = 1 1 · 0 = 0
1 + 1 = 0 1 · 1 = 1

Figure 5.1: The summation and multiplication operations on F2

xi11 . . . x
in
n , where i1, . . . , in ∈ N, are called power products. The empty power pro-

duct x0
1 . . . x

0
n is denoted with 1, and the set of power products over R[x1, . . . , xn]

will be denoted with P . Terms of the form a.xi11 . . . x
in
n , where a is a coe�cient

from the ring R and xi11 . . . x
in
n is a power product, are called monomials. A poly-

nomial is then identi�ed with a function p : P → R with a �nite support, that is p

assigns a non-zero coe�cient only to �nitely many terms from P . It is convenient
to express polynomials as sums of monomials where the order is not taken into

consideration, that is the two expressions x1x2
2 +2x1x3 and 2x1x3 +x1x2

2 represent

the same polynomial. When we deal with polynomials in the method of Gröbner

bases it will be convenient to de�ne an ordering on power products. However,

unless explicitly stated we will assume that two expressions represent the same

polynomial if they are identical up to reordering of terms.

We consider polynomials over the �eld F2 which means that the only coe�-

cients are 0 or 1. Hence for the polynomial ring F2[x1, . . . , xn] monomials and

power products coincide. The terms x1x2
2, x

5
1, and 1 are examples of power pro-

ducts from the polynomial ring F2[x1, x2]. We will make a convention that capital

letters P,Q,R, S range over power products, small letters p, q, r range over poly-

nomials.

We will see later how useful ideals of polynomials will be to us. There are special

cases when all polynomial ideals can be �nitely generated. This is expressed in

the following theorem by Hilbert [39], [61]:

Hilbert's Basis Theorem:

If R is a �eld or the ring of integers, then any ideal in the polynomial ring

R[x1, . . . , xn] has a �nite set of generators.

5.2 Ideal membership and Gröbner bases

Now we can explain the method of Gröbner bases which is widely used in computer

algebra to deal with problems concerning polynomials, such as polynomial ideal

99



membership, equivalence of polynomials with respect to a polynomial ideal, and

others. We will only touch brie�y on this method; for a thorough treatment

consult computer algebra textbooks ([12], [18], [62]).

We are going to consider the problem of ideal membership, that is, given an

ideal I (most likely in the form of a basis for I) and given a polynomial p, we want

to determine whether p ∈ I . To decide this problem may not be straightforward

even if we have a �nite basis for I since p ∈ I if and only if p is a linear combination

of some polynomials from the basis of I and there might be an in�nite number of

combinations we might need to check. Therefore we are looking for a special kind

of basis that will provide us with a straightforward test for membership. We will

see that the test will consist of a series of reductions starting from the original

polynomial via smaller polynomials that will terminate with a trivial case. Before

we introduce the de�nition of reduction we need to de�ne an appropriate ordering.

Let us consider polynomials in the variables x1, . . . , xn, the coe�cients of

which belong to a �eld F . An admissible ordering < over power products of

F [x1, . . . , xn] satis�es the following two conditions:

1. for every power product P , 1 ≤ P

2. if P < Q then for every power product R, P ·R < Q ·R

The lexicographic order on the vector of exponents (i1, . . . , in) is an example of

an admissible ordering and we assume a �xed admissible ordering < for the rest

of the section. Let us suppose that every polynomial is written in decreasing

order (according to <) of its power products as
∑m

i=1 aiPi, where ai 6= 0 and

Pi > Pi+1 for every i. The leftmost power product P1 is then called the leading

power product and the term a1P1 is called the leading monomial.

Let G be a �nite set of polynomials, p a polynomial, then we say that p is

reduced with respect to G if no leading power product of an element of G divides

the leading power product of p. If p is not reduced with respect to G then we

can subtract from it a multiple of an element of G to obtain a new polynomial

p′. This polynomial is smaller than p in the sense that the leading power product

of p′ is smaller than the leading power product of p, and also p′ ∈ Id(G) if and

only if p ∈ Id(G). This process is called a reduction of p with respect to G. A

fundamental property of reduction is that a polynomial p cannot have an in�nite

chain of reductions with respect to a �xed set G.

Now we can de�ne the concept of a Gröbner basis for an ideal. A basis G of

an ideal I is called a Gröbner basis (with respect to <) if every reduction of a

100



polynomial p from I to a reduced polynomial (with respect to G) always leads

to 0. Since we already know that no polynomial determines an in�nite chain of

reductions we can determine the ideal membership in this way: given an ideal I

and a polynomial p, compute a Gröbner basis G for I and reduce p with respect

to G. If the outcome is 0 then p ∈ I otherwise p 6∈ I . The following theorem

proves the universality of our approach [12].

Theorem 5.1 Every ideal has a Gröbner basis with respect to any admissible

order.

There is an algorithm originally devised by Buchberger in his Ph.D. thesis [3]

which transforms a �nite basis B of an ideal I into a Gröbner basis G for I . That

justi�es the algorithm for ideal membership test we outlined above. Hence we can

assume in the following text that we can decide polynomial ideal membership.

The computational complexity of polynomial membership test is at least expo-

nential space and the best upper bound on the complexity appears to be �double

exponential or more� [46]. However, as we shall see later, we will only consider

bases that will consist of two-term polynomials. They generate binomial ideals

and in [43] was presented an optimal exponential space algorithm for constructing

Gröbner bases of such ideals.

Example 5.2 Consider the ideal I generated by the polynomials

p1 = xy2z − xyz p2 = x2y2 − z

Then the polynomial p3 = zp2 − xp1 = x2yz − z2 is a linear combination of p1

and p2 and hence belongs to I . However, p3 is reduced with respect to {p1, p2}
which means that {p1, p2} is not a Gröbner basis of I . Next we consider the set

{p1, p2, p3}, however there are still polynomials p4 = xp1 − (y − 1)p3 = yz2 − z2

and p5 = zp3 − x2p4 = x2z2 − z3 which are in the ideal I but do not reduce to 0.

Finally, the set {p1, p2, p3, p4, p5} is a Gröbner basis (for more detail consult [12]).

�

5.3 Bisimulation and polynomial ideals

We are going to relate Basic Parallel Processes with power products and express

the bisimulation condition as a condition de�ned over polynomial ideals and their

bases. We presuppose a �xed set of process variables Σ = {X1, . . . , Xn} and a

101



set of rules ∆. We consider the polynomial ring F2[x1, . . . , xn] where the inde-

terminates x1, . . . , xn correspond to process variables from Σ. Then we can iden-

tify a BPP Xe1
1 ‖Xe2

2 ‖ . . .‖Xen
n from Σ⊗ with a power product xe11 x

e2
2 . . . xenn from

F2[x1, . . . , xn], and parallel composition of BPP corresponds to multiplication of

power products. Hence we see that power products and BPP, and indeterminates

and process variables are closely related and therefore they will be freely inter-

changed in the following text. The process algebra (Σ⊗,∆) and the polynomial

ring F2[x1, . . . , xn] remain �xed for the rest of the chapter and whenever we speak

about a bisimulation relation, resp. an ideal I , we mean a bisimulation relation

with respect to (Σ⊗,∆), resp. an ideal I ⊆ F2[x1, . . . , xn].

We can express a bisimulation relation R in polynomial terms as the set BR =
{P + Q | (P,Q) ∈ R}, and the largest bisimulation relation ∼ in particular

gives rise to the set B∼ = {P + Q | P ∼ Q}. Clearly, these sets are possibly

in�nite and hence it may not be feasible to test membership in them. However we

may consider the polynomial ideals generated by these sets and then make use of

the method of Gröbner bases which allows us to test membership in polynomial

ideals.

Example 5.3 We will consider a Basic Parallel Process Algebra Σ = {X, Y }
together with the transition rules ∆ = {X a−→ ε, Y

a−→ X}. It is straightforward
that for instance the pairs of processes X2 and Y , X3 and X‖Y , and X4 and Y 2

are strongly bisimilar and then from that observation we can easily arrive at the

conclusion that all bisimilar processes are pairs of the form Xi‖Y j and Xm‖Y n

where i + 2j = m + 2n. Therefore the maximal bisimulation relation gives rise

to the set B∼ = {xiyj + xmyn | i + 2j = m + 2n}. Then we consider the ideal

I∼ generated by B∼. Hilbert's Basis Theorem ensures that this ideal has a

�nite basis. Indeed, it is not di�cult to verify that all polynomials from I∼ (and

in particular from B∼) can be obtained as a multiple of the polynomial x2 + y.

�

To be able to test whether a set of polynomials represents a bisimulation relation

we are going to devise a condition which was inspired by Caucal's condition for

bisimulation equivalence. We will denote this Caucal-like condition by CC.

De�nition 5.4 Let B be an arbitrary (�nite) set of polynomials. We say that

CC(B) if for all P +Q ∈ B and for every µ ∈ Act

• for all P
µ−→ P ′ there exists Q

µ−→ Q′ with P ′ +Q′ ∈ Id(B) and

102



• for all Q
µ−→ Q′ there exists P

µ−→ P ′ with P ′ +Q′ ∈ Id(B),

where Id(B) is the ideal generated by the (�nite) set B.

Note that this condition only applies to two-term polynomials fromB. The reason

for that will become clear later. Now we will study the ideal I∼ corresponding

to the maximum bisimulation ∼ and the properties of its (�nite) bases. Firstly,

however, in order to simplify the proofs that will follow, we will show that an

ideal generated by a set A can be also de�ned inductively, as follows:

Lemma 5.5 For every set A ⊆ F2[x1, . . . , xn] the polynomial ideal Id(A) = I(A),
where I(A) is de�ned in the following way:

I0 = A
Ii+1 = Ii ∪ {p+ q | p, q ∈ Ii}

∪ {P · p | p ∈ Ii, P is a power product in F2[x1, . . . , xn]}
I(A) =

⋃
i∈ω Ii

Proof: We assume a �xed set A and the corresponding sets Id(A) and I(A).
We need to verify that Id(A) is included in I(A) and also that I(A) is a subset

of Id(A). Firstly we will check that I(A) ⊆ Id(A), and we will do that by an

inductive argument that follows the de�nition of I(A). The set I0 which is taken

to be A is clearly a subset of Id(A). Assuming that Ii is contained in Id(A), we
consider the elements of the set Ii+1. They either already belong to Ii, hence

also to Id(A), or they are the sum of polynomials p + q with both p and q in Ii,

and hence also in Id(A), or they are of the form Pp where P is a power product

and p belongs to Id(A). Since Id(A) is an ideal, it is closed under summation

and multiplication with arbitrary polynomials therefore the fact that p and q are

elements of Id(A) implies that the terms p+ q and Pp also belong to Id(A). Thus
we have shown that every set Ii is a subset of Id(A) and we can come to the

conclusion that I(A) = ∪i∈ωIi ⊆ Id(A).
The other inclusion is proved in this way. We take a polynomial p from the

ideal Id(A) which can be expressed as a �nite sum λ1p1 + . . . + λkpk, where λi

are arbitrary polynomials from F2[x1, . . . , xn] and pi are from the base set A.

Since I0 = A, clearly the polynomials pi belong to I0. Next, assume that the

polynomials λi = Pi1 + Pi2 + . . .+ Pini , where Pij are power products. Then the

summand λipi can be expressed as Pi1pi+Pi2pi+. . .+Pinipi and from the de�nition

of individual sets Ii, all Pijpi belong to the set I1 and the sum of multiples of pi

with the power products will certainly belong to the set Ini . Therefore the terms

λipi are contained in the sets Ini for the respective ni. Since the set Ii+1 contains

103



all binary sums of polynomials from Ii, the whole sum
∑
λipi must belong to IN ,

where N = n1 + n2 + . . .+ nk (in fact that is an overestimate). Since IN ⊆ I(A),
we have veri�ed that Id(A) ⊆ I(A). �

Now we can show that the polynomials from the ideal I∼ have a very special

shape: they consist of an even number of power products and moreover, they can

be paired up into bisimilar pairs of power products.

Proposition 5.6 Let p be a polynomial. Then p ∈ I∼ if and only if there exist

power products P1, . . . , Pk, Q1, . . . , Qk such that p can be expressed as P1 +Q1 +
. . .+ Pk +Qk and Pj ∼ Qj for all 1 ≤ j ≤ k.

Proof: We are going to use the inductive construction of I∼ as in the above

Lemma 5.5 with I0 = B∼. One implication is easy. If a polynomial p can be

expressed as P1 +Q1 + . . . + Pk +Qk and Pj ∼ Qj for all j then Pj +Qj belong

to B∼ = I0 and hence p will certainly be in Ik.

The other direction will be proved by induction on Ii.

1. p ∈ I0 i� p ∈ B∼ i� p = P +Q and P ∼ Q.

2. p ∈ Ii+1 if and only if p ∈ Ii or p = q + r with q, r ∈ Ii or p = Rq where

q ∈ Ii and R is a power product. The case of p ∈ Ii is trivial so the proof

falls into two parts:

(a) Assume p = q + r, where q = P1 + Q1 + . . . + Pk + Qk with Pj ∼ Qj

and r = R1 + S1 + . . . +Rl + Sl with Rj ∼ Sj. The polynomial p can

be expressed as U1 + V1 + . . . + Um + Vm, where each sum Ui + Vi is

either some Pj +Qj or Rh +Sh, in which case by induction hypothesis

Ui ∼ Vi, or it arises from some Pj + Qj and Rh + Sh in the way that

either Pj = Rh or Pj = Sh or Qj = Rh or Qj = Sh.

Assume that Pj = Rh and thus Ui + Vi = Qj + Sh. As Pj ∼ Qj and

Rh ∼ Sh then by the transitivity of ∼ also Qj ∼ Sh. All the other

cases are symmetrical.

(b) Assume p = Rq, where q = P1 + Q1 + . . . + Pk +Qk, Pj ∼ Qj. Then

p = RP1 + RQ1 + . . . + RPk + RQk and because strong bisimulation

is closed under parallel composition also RPj ∼ RQj for all j. That

concludes the proof. �

104



A simple consequence of the preceding proposition is that we only need to consider

bases for I∼ which consist exclusively of two-term polynomials. If B is a basis of

I∼ that contains a polynomial p with more than two terms (has to be of an even

length) then, as p also belongs to I∼, it has to be of the form P1+Q1+. . .+Pk+Qk

with Pj ∼ Qj. It follows from the de�nitions of B∼ and I∼ that all sums Pj +Qj

are in I∼. Hence the set B′ which arises from B by replacing the polynomial p

with the two-element sums Pj + Qj is another �nite basis for I∼. However, this

may not hold for other ideals which are not generated by the set B∼.

If P and Q are bisimilar then P + Q certainly belongs to B∼. On the other

hand, there might be a smaller bisimulation relation which contains (P,Q). We do

not have any means of checking whether a set B generates the largest relation but

we can �nd out when the subset of two-term polynomials of an ideal I corresponds

to a bisimulation. That is captured in the following condition which will be

denoted by CC ′(I).

De�nition 5.7 We say that an ideal I satis�es the CC ′ condition if every p

from I can be expressed as P1 +Q1 + . . .+ Pk +Qk such that Pj +Qj ∈ I for all

1 ≤ j ≤ k, and for all µ ∈ Act

• for all Pj
µ−→ P ′j there is Qj

µ−→ Q′j such that P ′j +Q′j ∈ I and

• for all Qj
µ−→ Q′j there is Pj

µ−→ P ′j such that P ′j +Q′j ∈ I.

In the de�nition above we take all actions µ from the possibly in�nite set of

actions Act but in fact it su�ces to consider only those actions that are used in

the de�ning rules ∆ of the algebra.

It is easy to show that if CC ′(I) for an ideal I then the set R = {(P,Q) |
P +Q ∈ I} is a strong bisimulation: we consider a pair (P,Q) such that P +Q is

in the ideal I . For any move P
µ−→ P ′ there is a response Q

µ−→ Q′ with P ′+Q′ in
the ideal I , therefore also the pair (P ′, Q′) is in the set R = {(P,Q) | P +Q ∈ I}.
The same is true about all moves of Q hence the set R is closed under expansion

and forms a bisimulation relation.

Lemma 5.8 For an ideal I, if CC ′(I) then the set R = {(P,Q) | P +Q ∈ I} is
a strong bisimulation relation.

This condition however does not have to be �nite since it applies to all elements

of a given ideal, as opposed to pairs P + Q in the case of CC. Therefore we are

looking for a connection between the CC ′ condition for ideals and the (possibly)

105



�nite condition CC for bases. If we have an ideal I with a basis B and CC ′

holds for the ideal I then for any sum P + Q from B and every move P
µ−→ P ′,

there must be a response Q
µ−→ Q′ with P ′ + Q′ ∈ I = Id(B), and the same for

transitions of Q, so the basis B satis�es CC.

Lemma 5.9 Assume that I is an ideal with a basis B. Then CC ′(I) implies

CC(B).

More importantly, the other direction is true as well, that is if CC holds for a

(�nite) basis B then the ideal Id(B) satis�es CC ′ (and hence gives rise to a strong

bisimulation relation). That will enable us to replace a potentially in�nite test

with a �nite one. We will prove that in the following proposition:

Proposition 5.10 CC(B) =⇒ CC ′(Id(B)).

Proof: Again we will make use of Lemma 5.5 and assume that the ideal Id(B)
can be expressed inductively with I0 = B. Then it su�ces to prove that for every

i, every polynomial p from Ii can be expressed as P1 +Q1 + . . . + Pk + Qk such

that all Pj + Qj belong to Id(B) and have an expansion in Id(B). That will be

done by induction on i.

1. For i = 0, I0 = B and CC(B) implies that all pairs P +Q from B have an

expansion in B, hence also in Id(B).

2. p ∈ Ii+1 if and only if p ∈ Ii or p = q+r with q, r ∈ Ii or p = Rq with q ∈ Ii
and R a power product. The case of p ∈ Ii is trivial and we will consider

the two following cases:

(a) Assume that p = q+r, where q = P1 +Q1+. . .+Pk+Qk, r = R1 +S1+
. . .+Rl+Sl and q and r satisfy the claim. p = U1 +V1 + . . .+Um+Vm,

where each Ui + Vi is either some Pj + Qj or Rh + Sh, in which case

we can apply the induction hypothesis, or Ui + Vi arises from some

Pj +Qj and Rh +Sh so that either Pj = Rh or Pj = Sh or Qj = Rh or

Qj = Sh.

Assume that Pj = Rh and Ui + Vi = Qj + Sh. If Ui = Qj
µ−→ U then

by induction hypothesis Pj
µ−→ P so that U +P ∈ Id(B). As Pj = Rh

there has to be a move Sh = Vi
µ−→ S such that P +S ∈ Id(B). As the

ideal Id(B) is closed under addition then both Ui + Vi = Qj + Sh and

U + S ∈ Id(B). Moves of Vi and all the other cases are symmetrical.

106



(b) Assume that p = Rq, q ∈ Ii.
We may assume that q = P1 +Q1 + . . .+Pk +Qk so that all Pj +Qj ∈
Id(B). Let p = P ′1 +Q′1 +. . .+P ′k+Q′k = RP1 +RQ1+. . .+RPk+RQk.

Since all Pj +Qj ∈ Id(B) then also all RPj +RQj ∈ Id(B) and hence

it remains to check the moves:

P ′j
µ−→ P ′: P ′j = RPj so either R makes a move R

µ−→ R′ and P ′ =
R′Pj or Pj makes a move Pj

µ−→ P and P ′ = RP . In the former case

we use the fact that Pj +Qj ∈ Id(B0) hence also R′Pj +R′Qj ∈ Id(B).

In the latter case by induction hypothesis there is a corresponding

move Qj
µ−→ Q so that P + Q ∈ Id(B) and since Id(B) is closed

under multiplication also RP + RQ ∈ Id(B). Similarly for moves of

Q′j. �

5.4 Semidecision procedure

Before we describe the decision procedure we will show how we can use the CC

condition for ideal bases to demonstrate semidecidability of strong bisimilarity

for BPP. This in fact su�ces to demonstrate decidability as BPP are image-�nite

processes and for the class of image-�nite processes we can easily construct a

semidecision procedure for non-bisimilarity (cf. Chapter 2).

The procedure is based on a simple principle of enumerating all �nite bases

that contain the input pair and testing the CC condition for them. If we at

some point come across a set B which satis�es CC then, as a consequence of the

theorems presented above, B must be a basis of a bisimulation that relates the

input pair. Hence we can stop the procedure with con�rmation of bisimilarity.

Here follows an informal sketch of the semidecision procedure which halts with

a positive answer if and only if the two input processes P and Q are strongly

bisimilar. We choose any e�ective ordering of �nite sets of pairs that contain

P +Q starting with the singleton set {P +Q}.

Proposition 5.11 The algorithm presented in Fig. 5.2 halts if and only if the

input pair P and Q are strongly bisimilar.

Proof: We need to verify that the semidecision procedure is correct. Assume we

are given a pair of processes P,Q such that P ∼ Q. Then P +Q is contained in

the set B∼. By Hilbert's Basis Theorem, the ideal I∼ is generated by some

107



1. Put B = {P +Q}.

2. Check whether CC(B).

3. If the condition holds then output P ∼ Q else enumerate

another �nite set B containing the sum P +Q and go to 2.

Figure 5.2: Semidecision procedure for ∼ of BPP

�nite set B. It is easy to see that CC ′(I∼) and hence also CC(B) for any �nite

basis B of I∼. The Caucal-like condition can be veri�ed since checking it for

B means checking ideal membership �nitely many times and ideal membership

is decidable using Gröbner bases. We can e�ectively generate all �nite sets so

eventually we will generate this B, verify that CC(B) and output P ∼ Q.
On the other hand, assume we are given a pair of processes P,Q such that

P � Q. That means there is no bisimulation relation containing the pair (P,Q).
We generate B so that it contains the sum P + Q. Therefore the Caucal-like

condition will always fail for B because otherwise by Proposition 5.10 Id(B)
would correspond to a bisimulation relating P and Q. Hence the procedure will

never give a positive answer in the case of non-bisimilarity. �

5.5 Decision procedure

The principle of the decision procedure is to start from the set consisting of the

input pair P +Q and gradually construct a �nite basis of a bisimulation (if P and

Q are bisimilar) by adding new pairs which are appropriate derivatives of P and

Q. This approach is closely related to Hirshfeld's bisimulation trees (seeChapter

2). The �niteness of this approach is guaranteed by the �nite branching of BPP

and the fact that every increasing chain of ideals has a �nite length (Theorem

5.13).

Now we will explain the basic idea of the decision procedure together with

some new notation. Starting from the basis B0 = {P + Q}, we assume that we

have constructed a basis B such that ¬CC(B). Then there exist P +Q ∈ B, µ
and P

µ−→ P ′ such that for all Q
µ−→ Q′, the sum P ′ + Q′ is not in the ideal

Id(B) (or, symmetrically, there exists Q
µ−→ Q′ such that P ′+Q′ /∈ Id(B) for all

P
µ−→ P ′) and we will say that CC fails on P + Q. We de�ne the set of failed

pairs as

• F(B) = {P +Q ∈ B | CC fails on P +Q}

108



and for P +Q ∈ F(B) and an action µ we de�ne

• P(P +Q, µ) = {P ′ | P µ−→ P ′ ∧ ∀Q µ−→ Q′. P ′ +Q′ /∈ Id(B)}, and

• Q(P +Q, µ) = {Q′ | Q µ−→ Q′ ∧ ∀P µ−→ P ′. P ′ +Q′ /∈ Id(B)},

where P(P+Q, µ) is the set of µ-derivatives of P for which there is no µ-derivative

of Q such that the sum of the two derivatives belongs to Id(B). The latter set

Q(P +Q, µ) is a symmetric analogue for Q.

If we want to maintain bisimilarity we need to modify the failed basis B. For

each P ′ ∈ P(P +Q, µ) we will choose some Q
µ−→ Q′ and add P ′ +Q′ to B. We

will do that symmetrically for every Q′ ∈ Q(P +Q, µ) as well. This is explained
in Step 4 of Fig. 5.3 in more detail. We will do that for all pairs P +Q ∈ F(B).
Therefore each new basis B′ obtained as a result of this one-step nondeterministic

modi�cation of B will satisfy this condition: for each P + Q ∈ F(B), for each
action µ and each P ′ ∈ P(P + Q, µ), there will be a derivation Q

µ−→ Q′ such

that P ′ + Q′ ∈ Id(B′) (and symmetrically for all processes Q′ ∈ Q(P + Q, µ)).
We continue with the modi�ed basis B′.

It can happen that for some P
µ−→ P ′ there is no response Q

µ−→ Q′. In

that case we clearly cannot maintain bisimilarity with the chosen basis and hence

we will stop with B and consider it an unsuccessful leaf. On the other hand, if

we have arrived at a basis B such that CC(B) then we know that B is a basis

of a bisimulation that relates the two input processes. Hence we can output

con�rmation of bisimilarity and stop. The outline of the decision procedure is

given in Fig. 5.3.

It is important that we de�ne the sets Bµ nondeterministically which ensures that

each possible new sum P ′ +Q′ will be considered and appear in some new basis

constructed in Step 4.

Example 5.12 We will demonstrate the algorithm on a simple BPP algebra. We

assume the process variables X,Z,B and C together with the transition rules

X
a−→ X‖B B

b−→ X Z
a−→ Z‖C C

b−→ X

The variables X and Z are obviously strongly bisimilar and we will step by

step follow the computation of the algorithm on the input X,Z. We will express

process terms as power products and will be omitting the symbol ‖. In the context
of polynomial algebra we have the indeterminates X,Z,B,C given in this order.

Hence a power product will be any term XiZjBkC l for natural numbers i, j, k, l.

109



1. Input a pair P,Q.

2. Put B = {P +Q}.

3. Check CC(B).

If CC(B) then CC ′(Id(B)) and so Id(B) represents a bisimu-
lation relating P and Q, hence stop with a positive reply.

If ¬CC(B) then go to 4.

4. If there is a pair P +Q ∈ F(B) such that P �1 Q then stop
without a reply else de�ne a new basis in this way:

B′ := B

For every pair P +Q from F(B) and every µ,

• for every P ′ ∈ P(P + Q, µ) choose Q
µ−→ Q′ and put

B′ := B′ ∪ {P ′ +Q′}
• for every Q′ ∈ Q(P + Q, µ) choose P

µ−→ P ′ and put
B′ := B′ ∪ {P ′ +Q′}.

Put B := B′ and go to 3.

Figure 5.3: Decision procedure for ∼ of BPP

110



For example, the term XB is a power product and the term XB + ZC is a

polynomial. We will also use distributivity in the form (P +Q)R = PR+QR.

We initialise the procedure with the step B0 := {X + Z}. This set will

clearly fail CC because X can do X
a−→ XB and Z can perform Z

a−→ ZC but

XB + ZC cannot be generated from B0. Hence we add the sum to B0 and put

B1 = {X + Z,XB + ZC}, and check CC for this new basis. Now we only need

to check the moves of the term XB + ZC. There are four of them in total:

1. XB
a−→ XB2

2. XB
b−→ X2

3. ZC
a−→ ZC2

4. ZC
b−→ XZ

For both actions a and b, there is a single transition available from XB, resp.

ZC, so the matching derivatives of XB and ZC can be paired up as XB2 +ZC2

and X2 + XZ. We actually �nd out that now we are already �nished since we

can obtain X2 +XZ as (X +Z)X and we can generate XB2 +ZC2 in this way:

(XB + ZC)B + (X + Z)BC + (XB + ZC)C = XB2 + ZBC +XBC +ZBC +
XBC+ZC2 = XB2 +ZC2. Hence the basis B1 satis�es CC and we will conclude

that the two processes are strongly bisimilar. �

In order to prove the correctness of the decision procedure we will need the follow-

ing theorem [61] which is a simple consequence of Hilbert's Basis Theorem:

Theorem 5.13 Let I1, I2, I3, . . . be a sequence of ideals such that Ii ⊆ Ii+1 for

every i. Then there exists an n such that In = In+i for every i. (Or, every strictly

increasing sequence of ideals is �nite.)

We will sketch a proof of the theorem. Assume that we have an in�nite increasing

sequence of ideals I1 ⊆ I2 ⊆ . . . In ⊆ . . .. It is not di�cult to verify that the

union I of all ideals In is also an ideal which, by Hilbert's Basis Theorem,

is also �nitely generated. Therefore there exists a set B = {p1, . . . pk} such that

I = Id(B). But each pi belongs to I and hence to some Ini, and so the whole

set B is a subset of IN , where N is the maximum of ni. Thus I ⊆ IN and from

that follows that I = IN = IN+1 = IN+i for every i. Finally we can establish the

correctness of the algorithm presented above.

111



Theorem 5.14 The decision procedure will always stop for any given input pair

P,Q and the output will be a�rmative if and only if P ∼ Q.

Proof: The proof consists of two parts. First we show that the procedure is

�nite.

The computation of the procedure can be described by a tree whose branching

corresponds to the non-deterministic choices made by the algorithm. The nodes

of the tree are either labelled by some �nite set B or they are leaves. Leaves are

either successful - if we manage to �nd a basis of a bisimulation, or unsuccessful

- if we �nd out that P �1 Q for some pair P + Q. First we are going to show

that all successor nodes of a node B can be constructed in �nite time.

Suppose we are at a node B. B contains a �nite number of pairs P +Q. For

any P +Q and P
µ−→ P ′ we have to check if there is a Q

µ−→ Q′ so that P ′+Q′ ∈
Id(B), and vice versa. There are only �nitely many possible derivatives P ′ of P

and Q′ of Q and the condition P ′+Q′ ∈ Id(B) can be decided using the method

of Gröbner bases. Hence we can check CC(B) in �nite time.

If ¬CC(B) then we proceed to Step 4 in which we construct all possible

successors of B. Here for every failed pair P + Q and every µ we proceed as

follows: for every P ′ ∈ P(P + Q, µ) we choose some Q
µ−→ Q′ and add P ′ + Q′

to B, and symmetrically for every Q′ ∈ Q(P + Q, µ). As P and Q are �nitely

branching there is only a �nite number of successors of every node and hence the

tree is �nitely branching.

It remains to show that all branches are of �nite lengths. There are three types

of nodes in the tree, successful leaves, unsuccessful leaves and nodes labelled by

�nite bases. Obviously a branch containing a leaf is �nite. If there was an in�nite

branch B0, B1, B2, . . . in the tree then each Bi+1 would be constructed from a

node Bi by adding at least one new pair P ′ + Q′ to Bi that would not belong

to Id(Bi). Trivially P ′ + Q′ ∈ Id(Bi+1) and so this branch would generate an

increasing chain of ideals Id(B0) ⊂ Id(B1) ⊂ Id(B2) ⊂ . . .. From the statement

of Theorem 5.13 we know that every such chain must be �nite and hence there

cannot be any in�nite branch in the tree.

We can now deduce that the tree determined by the algorithm is �nite. We

know that at each step there is only �nite branching and also each branch is of

�nite length. As a consequence of König's Lemma we obtain that the constructed

tree must be �nite.

Correctness is a straightforward consequence of �niteness. If there is a branch in

the tree that �nishes with a successful leaf then that means we have found a set

112



B containing P + Q such that CC(B) and by Proposition 5.10 that implies

that the ideal Id(B) constitutes a witnessing bisimulation for P and Q.

On the other hand, if P and Q are bisimilar then, as in Step 4 we consider all

possible extensions of the current node, there will be at least one branch in the

tree that consists of a chain of �nite subsets of B∼. Since all branches are �nite

at one point we will �nd a B so that CC(B) and stop the procedure. �

We can conclude that the procedure that we have described will always halt and

give a correct answer.

5.6 Discussion

The method we have presented in this chapter constitutes a new connection be-

tween process algebra and classical algebra of polynomials. Much e�ort has been

devoted to solving problems from classical algebra using computers which gave

rise to the �eld of computer algebra. By connecting processes with polynomials

we open up new possibilities for developing techniques that would deal with de-

cidability problems, perhaps for a wider range of processes.

There are several directions we might follow now. The �rst is to try to optimise

the presented algorithm in order to obtain a more e�cient decision procedure. The

current state of art decision procedure for strong bisimilarity of BPP is not even

primitive recursive which contrasts with the sequential counterpart of BPP, where

for BPA-processes there is an algorithm running in doubly exponential time. The

complexity of the presented (nondeterministic) algorithm for BPPmainly depends

on two factors. The �rst is the computational complexity of the ideal membership

test which is at least exponential. The second factor concerns the maximal length

of a branch constructed during the computation. Unfortunately, we do not use

any constructive bound on the maximal length; rather, the argument that each

branch eventually reaches an end is an application ofHilbert's Basis Theorem.

It applies to particular sequences of ideals and we do not know whether there

exists any e�cient bound on the maximal length of such sequences.

The other direction one might follow is to apply this technique to other pro-

cess algebras, or equivalences other than strong bisimulation. An example might

be applying this technique to strong bisimilarity of BPA-processes. There are

`reasonable' algorithms deciding the strong bisimilarity on basic process algebras,

however it might be interesting to �nd a way of expressing BPA-processes by

special polynomials and then proceeding in a similar fashion to BPP.

Lastly, we might try to apply polynomial methods to weak bisimilarity. That

113



would involve encoding processes as in�nite polynomials (power series) for which

an equivalent of theHilbert's Basis Theorem still holds ([39], [44]). That might

serve as a tool that will represent in�nite branching thus making manipulation

with a potentially in�nite number of derived processes feasible.

114



Chapter 6

Conclusions and further work

In this thesis we studied decidability of equivalences on simple process algebras,

namely strong and weak bisimilarity on Basic Process Algebras and Basic Parallel

Process Algebras. We also examined some related issues, such as computational

complexity of the decision problems and structural properties of weak bisimula-

tion.

6.1 Strong bisimilarity

We have mentioned on several occasions that strong bisimilarity is decidable for

BPA-processes and BPP. There exist polynomial time decision procedures for

normed BPA-processes and BPP which is a satisfactory result. For general BPA-

processes, the current best decision procedure runs in estimated doubly expo-

nential time. In the case of general BPP, there is much room for improvement.

Without further assumptions we cannot even say whether the existing decision

procedures have a primitive recursive upper bound.

We have attempted to improve the current situation. We presented a new

decision technique which made use of a connection between Basic Parallel Pro-

cesses and polynomials in the polynomial ring over the two-element �eld F2. We

were able to construct a decision procedure which used in a substantial way the

algorithm for testing polynomial ideal membership.

However, we have not been able to pin down the computational complexity of

the presented algorithm. The �niteness is ensured by a theoretical argument and

it is not clear whether some concrete upper bound can be obtained. It seems to

be worthwhile pursuing further analysis and optimisation of this method, as well

as comparison with other techniques, namely Hirshfeld's bisimulation trees. We

might also try to develop this technique to deal with other process algebras and

other equivalences. For instance, we might attempt to encode processes as in�nite

115



polynomials (power series) and hence attempt to construct a decision procedure

for weak bisimilarity.

Another option is to consider sequential composition, that is BPA-processes.

We might try to encode them as non-commutative polynomials and attempt to

construct a decision procedure for BPA-processes based on a similar principle of

ideal membership test. That might provide a uniform way of deciding bisimilarity

for both algebras in the framework of classical algebra of polynomials.

Lastly, we may want to concentrate on lower bounds on the complexity of

deciding strong bisimilarity. So far there is no indication that there may not exist

a polynomial time decision procedure. We have unsuccessfully tried to show that

the complexity has to be at least exponential by reducing some hard problems

from language and automata theory to bisimilarity. With the new connection to

polynomial ideals there arise new possibilities for further research to the problem

of lower bounds.

6.2 Weak bisimilarity

There is a wider spectrum of open problems concerning weak bisimilarity. The

most important question is that of decidability. We know that for the restricted

subclass of totally normed BPA-processes and BPP, weak bisimilarity is decidable.

We also know that for BPP, there exists a semidecision procedure. Unfortunately,

the other cases remain unanswered. In the pursuit of answers to these questions

we also considered related problems of hardness of the decision problem and

structural properties of weak bisimulation.

6.2.1 Hardness results

Since we still do not know in general whether weak bisimilarity is decidable, hard-

ness results have to be interpreted as lower bounds on a decision procedure that

might exist. We have obtained two kinds of results. The �rst is NP-hardness

of weak bisimilarity for totally normed BPA-processes and BPP. Totally normed

processes seem to be an analogue of normed processes with respect to strong

bisimilarity. Hence we can view this result as a comparison of the two equiv-

alences, and we can deduce that deciding weak bisimilarity seems to be harder

than deciding strong bisimilarity.

The other result applies to BPA-processes. We have demonstrated a reduction

from a PSPACE-complete problem to weak bisimilarity of BPA-processes. That

implies that any decision procedure which would decide weak bisimilarity for

116



Basic Process Algebras would be PSPACE-hard.

A direction for further research would be to improve the hardness results. It

seems rather likely that to decide weak bisimilarity may require at least exponen-

tial time although as yet there is no evidence that would support this conjecture.

In particular, the status of weak bisimilarity on BPA is quite puzzling. It might be

the case that it is actually undecidable. That would be an interesting contrast to

strong bisimilarity where it appears that deciding bisimilarity for BPA-processes

is easier than for BPP.

6.2.2 Ordinal characterisation

We investigated an alternative approach to weak bisimulation which consists in

de�ning a non-increasing sequence of weak bisimulation approximants ≈α that

converge at weak bisimulation. These relations were labelled with ordinal num-

bers and we were searching for the least ordinal number at which convergence

occurs. We considered Basic Process Algebras and Basic Parallel Process Alge-

bras separately. To state that precisely, we were looking for the least α such that

for every BPA, resp. BPPA, if the sequence of approximants converges at β then

β ≤ α.
We managed to �nd some lower bounds on these ordinal numbers. For BPA,

we demonstrated that α ≥ ωω, and for BPPA, we showed that α ≥ ω · 2. We

established these lower bounds by means of examples. We examined two con-

jectures, that for BPA, α = ωω, and for BPPA, α = ω · 2. Unfortunately,

the only upper bound that we have been able to produce so far is rather large.

For both classes of algebras, convergence has to occur at the level ω1. This is a

straightforward consequence of a cardinality argument. However, for BPA there

may be a way of settling down this upper bound by trying to prove an analogous

statement for particular preorders from which the conjecture would easily follow.

Following the method of semideciding weak bisimilarity for BPP we managed

to show decidability of each individual approximants ≈n for BPP. That has an

interesting consequence which is semidecidability of 6≈ω. That leaves room for

the possibility of ≈ω and ≈ω+n being decidable for every n which would result in

a semidecision procedure for 6≈.
We may also investigate Milner approximants ≈Mα . We know that ≈Mn are

undecidable for every n > 1, it may be the case that 6≈Mn might be semidecidable.

Then we might investigate the conjecture that ≈ = ≈Mω . If these conjectures

were both proved to be true then they might be combined together to produce a

semidecision procedure for non-bisimilarity.

117



Appendix A

This appendix is devoted to the proof of Lemma 3.7 from Chapter 3.

Lemma 3.7

1. for every α ∈ On, ≈Mα ⊆ ≈α ⊆ ≈sα

2. for every α, β ∈ On, α < β ⇒ ≈β ⊆ ≈α

3. for every α ∈ On, ≈ ⊆ ≈α

4. if there is an α such that ≈α = ≈α+1 then for all β ≥ α, ≈α = ≈β = ≈

5. ≈ =
⋂
α∈On ≈α

6. for BPA and BPPA, ≈ = ≈ω1

Proof: In order to prove these claims we will need the full power of trans�nite

induction. We recall that to verify that some property P holds for the class On we

have to test three cases: the base case P (0), the successor case P (α)⇒ P (α+ 1)
and the limit case (∀α < λ. P (α))⇒ P (λ).

We have expressed the properties 2. to 6. in terms of ≈α and that is how

we will prove them. However, the properties remain valid even for the other

approximants ≈sα and ≈Mα . If we take any two approximants ≈α and ≈β then

clearly ≈β ⊆ ≈α i� for every pair of processes P and Q, P ≈β Q implies that

P ≈α Q. Hence we will prove the inclusions in terms of the latter implication.

1. We will show that for every α, ≈Mα ⊆ ≈α. The proof that ≈α ⊆ ≈sα then

follows along the same lines. The claim is straightforward for α = 0. Assuming

that ≈Mα ⊆ ≈α, we will show that ≈Mα+1 ⊆ ≈α+1. If P ≈Mα+1 Q then for every

sequence of moves P
w=⇒ P ′ there is a response Q

w=⇒ Q′ with P ′ ≈Mα Q′. Hence

also for every single move P
µ=⇒ P ′ there exists a derivation Q

µ=⇒ Q′ with

118



P ′ ≈Mα Q′. From our assumption follows that also P ′ ≈α Q′ and since this is true

for all moves of P and Q, we can conclude that P ≈α+1 Q.

The argument for a limit ordinal λ goes as follows. The approximant ≈Mλ is

taken to be
⋂
α<λ ≈Mα and we assume that for every α < λ, ≈Mα ⊆ ≈α. Hence

also the intersection ≈Mλ ⊆ ≈α for every α < λ and we can conclude that ≈Mλ ⊆⋂
α<λ ≈α = ≈λ.

2. The approximant ≈0 is the universal binary relation hence all other appro-

ximants must be included in it. The next step is to show that if for all α < β,

≈β ⊆ ≈α then also for all α < β + 1, ≈β+1 ⊆ ≈α. We take P ≈β+1 Q and a

move P
µ=⇒ P ′. Then there exists a response Q

µ=⇒ Q′ with P ′ ≈β Q′. From

the induction hypothesis P ′ ≈α Q′ for any α < β and we can conclude that

P ≈α Q for α < β + 1. The limit case is straightforward because we can express

≈λ =
⋂
α<λ ≈α. Then, trivially, ≈λ ⊆ ≈α for any α < λ.

3. Again this statement trivially holds for ≈0 as it is the universal relation.

Next we will verify that if ≈ ⊆ ≈α then also ≈ ⊆ ≈α+1. For every P ≈ Q and

P
µ

=⇒ P ′ there exists a Q
µ

=⇒ Q′ such that again, P ′ ≈ Q′. Then we can claim

that P ′ ≈α Q′ and as a consequence we obtain that the original P and Q are

related at ≈α+1. For a limit λ, if P ≈ Q and P
µ=⇒ P ′ then there is Q

µ=⇒ Q′

such that P ′ ≈ Q′ and hence P ′ ≈α Q′ for any α < λ. Hence, P ≈λ Q.

4. First we verify that if ≈α = ≈α+1 then for every α < β, ≈α = ≈β. To do that

it su�ces to prove that if ≈α ⊆ ≈α+1 then ≈α ⊆ ≈β for all α < β. The other

implication that ensures equality of all the approximants follows from claim 2.

We start with the fact that if ≈α ⊆ ≈β then also ≈α ⊆ ≈β+1. We assume

P ≈α Q and a transition P
µ=⇒ P ′. Since≈α ⊆≈α+1, we also have that P ≈α+1 Q

and so there exists a matching transition Q
µ=⇒ Q′ such that P ′ ≈α Q′. As

≈α ⊆ ≈β, we have that P ′ ≈β Q′ and we can put these facts together to deduce

that P ≈β+1 Q. For a limit ordinal λ, if for every β < λ ≈α ⊆ ≈β then as

≈λ =
⋂
β<λ ≈β, we can conclude that ≈α ⊆ ≈λ.

It remains to be proved that if there is an α such that ≈α =≈α+1 then ≈α = ≈.
The proof of this claim relies on the fact that ≈ is the maximal weak bisimulation

and hence includes all other weak bisimulations. Therefore it su�ces to show that

if ≈α = ≈α+1 then ≈α is a weak bisimulation. We presuppose processes P and

Q such that P ≈α Q. It follows from our assumption that also P ≈α+1 Q and so

for any move P
µ=⇒ P ′ there is a matching response Q

µ=⇒ Q′ with P ′ ≈α Q′.
The same also holds for any moves of Q and we can conclude that ≈α is closed

119



under expansion and thus forms a weak bisimulation relation. That implies that

≈α ⊆ ≈ and �nally, ≈α = ≈.

5. The proof of the fact that ≈ =
⋂
α∈On ≈α involves arguments from �xed-point

theory and it is an analogue of Proposition 2.6.

6. In order to demonstrate this claim we need to use some extra property of BPA

and BPPA. Without loss of generality we �x a BPA (Σ∗,∆). The set of variables
Σ is �nite and so the set of processes which corresponds to the free monoid Σ∗ is
countable. Each approximant ≈α is a subset of Σ∗×Σ∗ and hence also countable.

The approximants form a non-increasing sequence of countable sets. We can use

the property of such sequences that says that in every such sequence, there must

be an α < ω1 such that ≈α = ≈β for all α < β. Then by applying claim 4.

above, we deduce that for this α < ω1, ≈α = ≈ω1 = ≈. The proof would work

analogously for BPPA.

120



Bibliography

[1] Balcar B. and �t¥pánek P. Set theory (in Czech). Academia/Praha,

1986.

[2] Baeten J.C.M., Bergstra J.A. and Klop J.W. Decidability of bisimu-

lation equivalence for processes generating context-free languages, in

Proceedings of PARLE'87, LNCS 259, 1987.

[3] Buchberger B. An Algorithm for Finding a Basis for the Residue Class

Ring of a Zero-Dimensional Polynomial Ideal (in German), Ph.D.

Thesis, University of Innsbruck, Math. Inst., 1965.

[4] Burkart O., Caucal D and Ste�en B. An elementary bisimulation deci-

sion procedure for arbitrary context-free processes, in Aachener Infor-

matik - Berichte 94�28, 1994.

[5] Caucal D. Graphes canoniques de graphes algébriques, in Informatique

Théorique et Applications (RAIRO) 24(4), 339�352, 1990.

[6] Christensen S. Decidability and Decomposition in Process Algebras,

Ph.D. Thesis, University of Edinburgh, 1993.

[7] Christensen S., Hirshfeld Y. and Moller F. Decomposability, Decidabi-

lity and Axiomatisability for Bisimulation Equivalence on Basic Paral-

lel Processes, in Proceedings of LICS, IEEE Computer Society Press

386�396, 1993.

[8] Christensen S., Hirshfeld Y. and Moller F. Bisimulation Equivalence

is Decidable for Basic Parallel Processes, in Proceedings of CONCUR

93, LNCS 715, 143�157, 1993.

[9] Christensen S., Hirshfeld Y. and Moller F. Decidable subsets of CCS,

in The Computer Journal 37, No.4, 1994.

121



[10] Christensen S., Hüttel H. and Stirling C. Bisimulation equivalence is

decidable for all context-free processes, in Proceedings of CONCUR 92,

LNCS 630, 138�147, 1992.

[11] Christensen S., Hüttel H. and Stirling C. Bisimulation equivalence is

decidable for all context-free processes, in Information and Computa-

tion 121(2), 143�148, 1995.

[12] Davenport J.H., Siret Y. and Tournier E. Computer Algebra, Aca-

demic Press, 1993.

[13] Dickson L.E. Finiteness of the odd perfect and primitive abundant

numbers with distinct factors, in American Journal of Mathematics

35, 413�422, 1913.

[14] Eilenberg S. and Schützenberger M.P. Rational sets in commutative

monoids, in Journal of Algebra 13, 173�191, 1969.

[15] Esparza J. Petri Nets, Commutative Context-Free Grammars, and Ba-

sic Parallel Processes, in Fundamenta Informaticae 31, 13�26, 1997.

[16] Esparza J. Petri nets, commutative context-free grammars and basic

parallel processes, in Fundamentals of Computation Theory 95, LNCS

965, Springer Verlag, 221�232, 1995.

[17] Garey M.R. and Johnson D.S. Computers and Intractability: A

Guide to the Theory of NP-completeness. Freeman, San Fran-

cisco, 1979.

[18] Geddes K.O., Czapor S.R. and Labahn G. Algorithms for Com-

puter Algebra, Kluwer Academic Publishers, 1992.

[19] Ginsburg S. and Spanier E.H. Semigroups, Presburger formulas and

languages, in Paci�c Journal of Mathematics 16, 285�296, 1966.

[20] Groote J.F. A short proof of the decidability of bisimulation for normed

BPA processes, in Information Processing Letters 42, 167�171, 1991.

[21] Halmos P.R. Naive Set Theory, Van Nostrand Reinhold Company,

1960.

[22] Hayden S. and Kennison J.F. Zermelo-Fraenkel Set Theory,

Charles E. Merrill Publishing Company, Columbus, Ohio, 1968.

122



[23] Hennessy M. and Milner R. Algebraic laws for nondeterminism and

concurrency, in Journal of the ACM 32, 137�161, 1985.

[24] Hilbert D. and Bernays P. Grundlagen der Mathematik, Edward

Brothers, Inc., Aan Arbor, Michigan, 1944.

[25] Hinman P.G. Recursion-Theoretic Hierarchies, Springer-Verlag,

Berlin Heidelberg New York, 1978.

[26] Hirshfeld Y. Petri Nets and the Equivalence Problem, in Proceedings

of CSL'93, LNCS 832, 165�174, 1993.

[27] Hirshfeld Y.Deciding equivalences in simple Process Algebras, in LFCS

Report Series, University of Edinburgh, 1994.

[28] Hirshfeld Y. Bisimulation trees and the decidability of weak bisimula-

tions, in Proceedings of INFINITY'96, Ste�en B., Caucal D. (Eds.),

ENTCS 5, 1996.

[29] Hirshfeld Y., JerrumM. and Moller F. A polynomial-time algorithm for

deciding bisimulation equivalence of normed Basic Parallel Processes,

in LFCS Report Series, University of Edinburgh, 1994.

[30] Hirshfeld Y., JerrumM. and Moller F. A polynomial-time algorithm for

deciding bisimulation equivalence of normed Basic Parallel Processes,

in Math. Struct. in Comp. Science 6, 251�259, Cambridge University

Press, 1996.

[31] Hirshfeld Y., Jerrum M. and Moller F. A polynomial algorithm for

deciding bisimilarity of normed context-free processes, in LFCS Report

Series, University of Edinburgh, 1994.

[32] Hirshfeld Y. and Moller F. Decidability results in automata and pro-

cess theory, in Logics for Concurrency, Moller F., Birtwistle G. (Eds.),

LNCS 1043, 1996.

[33] Hopcroft J.E. and Ullman J.D. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 1979.

[34] Hüttel H. Decidability, Behavioural Equivalences and In�nite Transi-

tion Graphs, PhD Thesis, University of Edinburgh, 1991.

123



[35] Hüttel H. Silence is golden: branching bisimilarity is decidable for

context-free processes, in LFCS Report Series, University of Edinburgh,

1991.

[36] Hüttel H. Undecidable equivalences for Basic Parallel Processes, in

LFCS Report Series, University of Edinburgh, 1993.

[37] Hüttel H. and Stirling C. Actions speak louder than words: Proving

bisimilarity for context-free processes, in Proceedings of the 6th an-

nual IEEE symposium on logic in computer science (LICS), 376�386,

Amsterdam, 1991.

[38] Huynh D.T. and Tian L. Deciding bisimilarity of normed context-free

processes is in Σp
2, in Journal of Theoretical Computer Science 123,

183�197, 1994.

[39] Jacobson N.Basic Algebra I, II, W.H. Freeman and Company, 1980.

[40] Jan£ar P. Decidability Questions for Bisimilarity of Petri Nets and

Some Related Problems, in Proceedings of STACS'94, LNCS 775, 581�

592, 1995.

[41] Jan£ar P. Undecidability of Bisimilarity for Petri Nets and Some Re-

lated Problems, in Journal of Theoretical Computer Science 148, 281�

301, 1995.

[42] Karp R.M. Reducibility among combinatorial problems, in Complexity

of Computer Computations, Miller R.E. and Thatcher J.W. (Eds.),

85�103, Plenum Press, New York, 1972.

[43] Koppenhagen U. and Mayr E.W.An Optimal Algorithm for Construct-

ing the Reduced Gröbner Basis of Binomial Ideals, in Proceedings of

ISSAC'96, ACM Press, 55�62, 1996.

[44] Lang S. Algebra, 3rd edition, Addison-Wesley, 1993.

[45] Levy A. Basic Set Theory, Springer-Verlag, Berlin, 1979.

[46] Mayr E.W. and Meyer A.R. The Complexity of the Word Problems

for Commutative Semigroups and Polynomial Ideals, in Advances in

Mathematics 46, 305�329, 1982.

124



[47] McAloon K. Petri nets and large �nite sets, in Theoretical Computer

Science 32, North-Holland, 1984.

[48] Milner R. A Calculus of Communicating Systems, LNCS 92,

Springer-Verlag, 1980.

[49] Milner R. Communication and Concurrency, Prentice-Hall, 1989.

[50] Milner R. and Moller F. Unique decomposition of processes, in Journal

of Theoretical Computer Science 107, 357�363, 1993.

[51] Minsky M.L. Computation: Finite and In�nite Machines,

Prentice-Hall, 1967.

[52] Moller F. Axioms for Concurrency, PhD Thesis, University of Edin-

burgh, 1989.

[53] Moller F. In�nite Results, in Proceedings of CONCUR'96, Montanari

U., Sassone V. (Eds.), LNCS 1119, 1996.

[54] Papadimitriou C.H. Computational Complexity, Addison-Wesley,

1994.

[55] Park D.M.R. Concurrency and Automata on In�nite Sequences, in

Theoretical Computer Science, 5th GI-Conference, P. Deussen (Ed.),

LNCS 104, 168�183, 1981.

[56] Presburger M. Über die Vollständigkeit eines gewissen Systems der

Arithmetic ganzer Zahlen, in welchem die Addition als einzige Oper-

ation hervortritt, Sprawozdanie z I Kongresu Matematykow Krajow

Slowianskych, Warsaw, 92�101, 1930.

[57] Sénizergues G. Decidability of bisimulation equivalence for equational

graphs of �nite out-degree, in Proceedings of FOCS'98, IEEE, 120�129,

1998.

[58] Stirling C. Decidability of bisimulation equivalence for normed push-

down processes, in Proceedings of CONCUR'96, Montanari U. and

Sassone V. (Eds.), LNCS 1119, 217�232, 1996.

[59] St°íbrná J. Decidability of strong bisimulation of basic parallel pro-

cesses using Hilbert's basis theorem, in Proceedings of INFINITY'97,

Moller F. (Ed.), ENTCS 9, 1997.

125



[60] St°íbrná J. Hardness results for weak bisimilarity of simple process al-

gebras, in Proceedings of MFCS'98 Workshop on Concurrency, ENTCS

18, 1998.

[61] van der Waerden B.L. Algebra II, Ungar, New York, 1970.

[62] Winkler F. Polynomial Algorithms in Computer Algebra,

Springer-Verlag, 1996.

126


