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Abstract
This thesis examines the use of denotational semantics to reason about control
flow in sequential, basically functional languages. It extends recent work in game
semantics, in which programs are interpreted as strategies for computation by
interaction with an environment.

Abramsky has suggested that an intensional hierarchy of computational fea-
tures such as state, and their fully abstract models, can be captured as violations
of the constraints on strategies in the basic functional model. Non-local con-
trol flow is shown to fit into this framework as the violation of strong and weak
‘bracketing’ conditions, related to linear behaviour.

The language �PCF (Parigot’s �� with constants and recursion) is adopted as
a simple basis for higher-type, sequential computation with access to the flow of
control. A simple operational semantics for both call-by-name and call-by-value
evaluation is described. It is shown that dropping the bracketing condition on
games models of PCF yields fully abstract models of �PCF.

The games models of �PCF are instances of a general construction based on
a continuations monad on Fam(C), where C is a rational cartesian closed category
with infinite products. Computational adequacy, definability and full abstraction
can then be captured by simple axioms on C.

The fully abstract and universal models of �PCF are shown to have an effective
presentation in the category of Berry-Curien sequential algorithms. There is
further analysis of observational equivalence, in the form of a context lemma, and
a characterization of the unique functor from the (initial) games model, which is
an isomorphism on its (fully abstract) quotient. This establishes decidability of
observational equivalence for finitary �PCF, contrasting with the undecidability
of the analogous relation in pure PCF.
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Chapter 1

Introduction and Background

1.1 Control

This thesis is a study of sequential computation based on the ‘flow of control’;
essentially the order in which programs are evaluated. This is a pervasive and
expressive notion, as complex sequential computations are invariably performed
as a series of interdependent processes. Indeed these steps can be so trivial that
the only substantive information contained in the program is contained in the
flow of control.

Data can be represented intensionally using control, a fact which has been known
since the definition of the Church numerals. As a minimal example, the
element tt in the domain of booleans, tt + ff , is represented by passing
control to tt, and stopping.

Functional programs A functional program of type A⇒ B can be considered
as a way of passing control between the ‘argument’ A and the ‘result’ B.
Control flow dictates whether this is done in a ‘demand driven’ or ‘data
driven’ way [73].

Control operators Purely functional programs have a natural order of evalua-
tion; they exhibit only ‘local control flow’. Only the most recently scheduled
task can be completed and so every subprocess which has been started must
be completed (in reverse order) before a result is returned, even if an error
has been encountered. This leads to obvious inefficiencies. The solution
is to include explicit operators giving programs internal ‘access to the flow
of control’. These range from the brutal GOTO, to more elegant exception
handling mechanisms.

Proofs of classical logic It was observed by Griffin [32], that Felleisen’s con-
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trol operator C can be typed as a rule of classical logic, and that its com-
putational rules correspond to normalization of classical proofs. Similarly,
Parigot’s �� [69], a term-language for classical proofs, can be used as a cal-
culus of control. That is the context in which �� appears in this thesis, but
the possibility of using games as a fully complete semantics for constructive
classical logic remains a tantalizing prospect (discussed further in Section
6.1).

An important concept used to formalize these ideas is that of continuation passing.
A continuation is a completion of a program; the evaluation which remains to be
done before a result can be returned. Hence it can be represented as a map from
the current ‘control point’ to a conclusion. Computation can be performed by
continuation passing between parts of the program; in purely functional programs
with local control flow, this corresponds to performing the next task scheduled
by the continuation, and passing it on. However, if continuations are ‘first class
objects’ they can be stored, discarded and substituted, causing jumps in the flow
of control. Syntactically, this gives a ‘continuation-passing-style’ (cps) translation
from functional languages with control operators and data, to a much simpler
functional language representing only control flow.

The discovery of continuation passing was a seminal event; for the first time
control was given its own semantic representation. In fact (as so often), it was
not the result of a single inspiration, but a process of enlightenment. In the
conclusion of a survey by Reynolds [77]:

“... continuations or closely related concepts were first discovered in
1964 by van Wijngaarden, repeatedly discovered in a wide variety of
settings — both intellectual and geographical — during 1970-71, and
occasionally rediscovered thereafter.”

Control was placed in the context of other computational features by the work of
Moggi [62], showing that continuation passing (along with many side effects) could
be represented (and reasoned about) as a monad. More recent work by Thielecke
[82] and others has further abstracted the notion of continuation passing, giving
it an elegant basis in premonoidal categories [74].

The use of first class continuations as ‘control points’ in functional programs
which can be manipulated like ordinary variables can be represented syntactically
using the control operator call-with-current-continuation, or call=cc. This orig-
inated in the language Scheme [17], (following other, similar, constructs such as
Landin’s J -operator [50]). It can be used both for simple ‘escapes’ from nested
computations, and to manipulate the flow of control in more subtle and complex
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ways; for instance to write coroutines [37]. Subsequent work on formalizing con-
trol operators (for instance, by Felleisen and co-workers [25]), has resulted in a
range of ‘idealized’ control constructs. The approach taken here (advocated by
Ong and Stewart [67]) is to adopt the ��-calculus, and a programming language
based on it, as a convenient syntax into which other control operators can be
translated.

Although control is a useful paradigm for understanding several aspects of
computation, it is non-local control flow which requires a specifically control-
based analysis. Thus, modelling this behaviour and relating it to the operational
semantics of control operators is the main feature of this thesis. However, the
intention is to study control within a realistic computational framework so it
has been necessary to synthesize the work on the semantics of control calculi and
PCF, to show how a few basic notions; cartesian closure, infinite products and re-
cursion, can be the basis of a more structured model of computation. A semantics
for a similar language was considered by Sitaram and Felleisen [80], however, it
contained parallel features; this thesis is an analysis of feasible, sequential control.

1.2 A complete analysis

The investigation is grounded in categorical, syntactic and denotational charac-
terizations of control, via continuation passing models, �PCF, and the bracketing
condition of game semantics. None of these can be considered definitive, but by
finding isomorphisms between syntax and semantics, a coherent analysis emerges,
based on soundness, and the following completeness properties.

Categorical completeness: Purely categorical and syntactic reasoning can be used
to show that the representation of functional languages with control operators via
continuation passing is complete as well as sound; that the definable part of all
models of PCF+call=cc arise in this way from a cartesian closed category (so the
cps translation is invertible). This notion of completeness of models of control
was considered by Hofmann, [39] for Felleisen’s ‘C operator’ [25], with subsequent
work on �� by Hofmann and Streicher [40] and Selinger [79].

Denotational completeness: Completeness results of the above kind can be used
to show that one form of syntax (or categorical construction) can be represented
by another. A complete semantics of programming benefits from a more abstract
denotational description of control in order to give a natural interpretation of
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infinitary features such as recursion. Denotational completeness can also lead to
enhanced understanding of the processes at work in computation. But semantics
of this kind can still be given formal, categorical characterizations. In particu-
lar, there is the possibility of giving an axiomatic description along the lines of
Abramsky’s ‘Axioms for full abstraction’ [1].

Full abstraction: This is the natural notion of completeness for models of pro-
gramming languages, based not on what is representable in the language, but on
what is distinguishable. The evaluation of programs induces a notion of observa-
tional equivalence between them.

Definition 1.2.1 [Full Abstraction [60]] Given a language L with an operational
semantics giving a notion of termination ⇓, an observational equivalence can be
defined:
M ' N if (C[M ] ⇓ ⇐⇒ C[N ] ⇓) for every program-context C[·] which accepts
M and N .
A semantics is equationally fully abstract if observable equivalence and denota-
tional equivalence define the same relation, i.e.
[[M ]] = [[N ]] if and only if M ' N .

To define an operational semantics requires some notion of control behaviour,
but observational equivalence ‘bootstraps’ this to a powerful and precise theory.
There are many alternative axiomatizations of control operators such as call=cc

which are sound with respect to the operational semantics, for instance, but the
theory of observational equivalence induced by it is unique. A ‘truly denotational’
and complete model of this theory should therefore constitute a powerful analysis
of control.

It is certainly the case that the search for a fully abstract model for PCF,
from which this study borrows much of its motivation, has generated several
important insights into the semantics of functional languages, starting from the
original observation by Plotkin [71] that full abstraction fails for the Scott contin-
uous functional model of PCF because of the presence of parallel elements. (The
problem with the Sitaram and Felleisen model of control [80] is essentially the
same, but it also contains sequential as well as parallel ‘junk’.) Construction of
fully abstract models can be performed solely by syntactic and categorical meth-
ods, as shown in the case of PCF by Milner [61]. To move beyond a ‘superficial’
analysis, therefore, additional conditions can be applied, — that the presenta-
tion of the model be denotational, or syntax-independent, and (the ‘Jung and
Stoughton criterion’ [44]) that it should also be effective. The existence of such a
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semantics of �PCF is made more significant by the fact that, following a result of
Loader [54], there can be no effectively presentable fully abstract model of PCF.

An important precursor to this thesis came from the observation of Cartwright
and Felleisen [15] that as well as being important programming features, control
operators make the intensional behavour of programs explict. This makes a fully
abstract model a realizable aim. They gave a fully abstract semantics to a lan-
guage called SPCF which extends PCF with control features: errors, and a form
of catch operator. Their SPCF semantics was subsequently shown (with Curien)
to be equivalent to a presentation using sequential algorithms [16]. Their work is
developed here, connecting the sequential algorithms interpreattation of control
flow and control operators to the more general notion of continuation-passing, to
the less toy-like control operator (call-by-value) call=cc and to the local control
flow of the games models of PCF.

1.3 Game semantics
and the intensional hierarchy

Given the categorical completeness result described above, one could argue that
the semantics of control is, in effect, the semantics of cartesian closed categories.
Indeed, this proves to be a useful simplification of the proofs of denotational
definability and full abstraction. However, this reductionist approach can be
compared to that of a naturalist who never leaves the laboratory. He has a
profound knowledge of the anatomy and genetics of his chosen species, but no
understanding at all of their behaviour and place in the environment. Similarly,
a significant part of the analysis of control is contextual, — for instance

• what is local control flow ?

• how does state interact with control ?

There is also a tension between full abstraction and this need for a broader per-
spective embracing other computational effects: a semantics in which objects are
identified up to observational equivalence cannot be naturally extended with more
expressive features. (As this would allow observationally equivalent objects to be
distinguished.)

The outline of a solution can be found in the ‘intensional hierarchy’ pro-
posed by Abramsky; a sound, complete and universal semantic characterization
of computation. It is grounded in game semantics, in which functional-based
computation is modelled by interaction of certain ‘typed processes’, or strategies,
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for computation. This paradigm can be used to give semantics to a wide variety
of computational effects in a coherent way. It can be represented graphically as
a partial ordering with syntactic and semantic reflections as in fig. 1.1

vertices correspond semantically to a combination of constraints on the be-
haviours of strategies, and syntactically, to a ‘function (PCF)-based lan-
guage’ which can be given a fully abstract model in the semantic category
by a semantic collapse; characterizing this collapse is thus the problem of
determining observational equivalence in the language.

In particular, state and control occupy orthogonal ‘axes’ of the hierarchy,
of which state corresponds to restrictions on sharing of information — the
amount of access of a strategy to the history of the game, and control
corresponds to restrictions on copying of requests for information. In both
cases this basic picture has been refined by showing that there are several
‘degrees of freedom’ with computational meaning along each axis.

edges are bidirectional:
one direction corresponding to the embedding of the more constrained model
in the more general one,
the other corresponding to a ‘factorization’ of the more liberated strategies.
This shows that they can be represented by composition with some char-
acteristic group of unconstrained strategies denoting a new feature such as
control operators. It is the key lemma in a full abstraction theorem binding
syntax and semantics together, and building on the basic result for PCF.

The intensional hierarchy developed from the models described by Abramsky,
Jagadeesan and Malacaria [6], Hyland and Ong [43], and Nickau [65] which ap-
peared, more-or-less simultaneously, as a solution to the full abstraction problem
for PCF. The AJM work used ideas from the Geometry of Interaction [30], and
the game semantics of Blass [13], whilst the Hyland-Ong approach grew from the
work of Lorenzen [57] and subsequent researchers, which used games to study the
semantics of logic (Felscher’s paper [26] is a useful survey). Subsequent develop-
ments include games for recursive types [59], call-by-value [3], and games models
of state[2], and higher-type references [4].

A connection between games and control is in any case a natural step; both are
offered as paradigms for explaining a variety of computational features, modelled
intensionally. More specifically, sequential games are represented as the passing of
a token between two participants, this can be thought of as the system interacting
with the environment (or the system interacting with the current continuation).
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Such plays are a concrete representation of the history of the control flow in the
computation, moreover this is the only information which is carried by plays,
confirming the expressive power of control. The games models of PCF showed
that it is possible to capture local control by labelling moves as questions and
answers, and imposing a ‘well-bracketing’ constraint. This condition requires that
processes must be terminated in the reverse order to which they were initiated.
Implicit in the definition of well-bracketing is the notion which is analysed here,
that access to the flow of control is gained by dropping this condition. It is a
possibility which has also been studied by Herbelin [38], as well as in previous work
by the author [48]. Here it is developed, and the relationship with continuation
passing studied in detail.

1.4 The contents and contributions of the thesis

Chapter 2 is a more technical introductory chapter, combining material on cate-
gorical models of continuation passing, and PCF and its extensions with compu-
tational effects. This becomes a basis for a more detailed programme of analysis
into the denotational and operational semantics of control, which is summarised
in Section 2.6, and pursued in the succeeding three chapters.

Chapter 3 is about game semantics. It describes a novel development of the
intensional hierarchy, based on the specification of games by the application of
rules to arenas. A ‘linear decomposition’ of this category is described, which
allows the construction of a cartesian closed category in a manner consistent with
different combinations of rules (allowing, for instance, the modelling of references
in the style of [4] in this setting). A generalized axiomatic decomposition which
applies to the category of games and innocent strategies extends some results
of Abramsky by giving both a soundness and a full completeness result for this
category as a model of control calculi. The modelling of local and non-local control
flow in games via ‘bracketing rules’ is analyzed. It is shown that the result of
dropping this condition on the models of PCF (and imperative extensions) can be
represented as a continuation passing semantics. Also, there are strong and weak
versions of the bracketing condition, with violation corresponding to ‘first-order’
use of control operators (escapes and exceptions) and ‘second-order’ (‘upward
continuation passing’).

Chapter 4 is a study of the operational and denotational semantics of the
‘functional language with control’, �PCF. A new, simplified, one-step opera-
tional semantics of call-by-name and call-by-value �PCF is given, and a general
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description of computationally adequate models with respect to this semantics
is described and verified. Existing continuation passing translations for control
calculi are extended to �PCF. In particular, this entails giving a new cps-based
interpretation of datatypes such as the natural numbers. Because these transla-
tions are surjective, the axiomatic definability results for models of the �-calculus
can be applied to the semantics obtained by dropping the bracketing condition
on the original games models of PCF. In the case of the call-by-value calcu-
lus, a metalanguage based on the computational lambda-calculus is used to show
soundness of the model (by showing that the ‘deGroote translation’ into �C is
sound and complete in this case, pace call-by-name).

Chapter 5 is an analysis of the fully abstract model, and its effective presen-
tation in the category of sequential algorithms. The definability result from the
previous chapter is used to derive context lemmas for �PCF and these, together
with the continuation-passing-style translations already given are shown to have a
number of straightforward but significant consequences. For instance, this yields
a way to model call-by-value languages using sequential algorithms for the first
time. It is also observed that the fact that the fully abstract model is effectively
presentable (in contrast to PCF) means that it yields a semantic characteriza-
tion of the ‘minimal model’ of the �-calculus [68], and hence a solution to a part
of the higher-order matching problem. Extending full abstraction, universality
is proved, the first example of a universal model of this kind of language with-
out error terms. The relationship between the two fully abstract models is then
investigated. The most significant findings are translations between the two mod-
els which capture observational equivalence semantically. One removes repeated
queries from innocent strategies, mapping observationally equivalent elements to
the unique sequential algorithm denoted by the same lambda terms. The other
saturates sequential algorithms with repeated queries, sending each one to a inno-
cent strategy representing a ‘normal form’ for its observational equivalence class.
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Chapter 2

Models of Control

This chapter consists of background on the semantics of functional based lan-
guages in general, and continuation passing models of functional control in par-
ticular. A semantic basis for the ‘intensional hierarchy’ is given, embracing call-
by-name and call-by-value evaluation, and side-effects via computational monads.
Control is, of course, the specific example of a non-functional feature which will
be studied semantically. The construction of simple computational ‘models of
control’ is described, together with conditions for full abstraction to hold. In do-
ing so, a series of problems of denotational and operational semantics emerge, and
these are distilled to give the outline of an analysis of the semantics of control.
Much of the following material is standard, and the proofs are correspondingly
sketchy.

2.1 The �-calculus and its semantics

The simply-typed �-calculus and its semantics have two distinct rôles in this
thesis. One is as the basis of functional programming languages, extended with
non-functional features in general, and control operators in particular. Its other
rôle (specific to control) is as the target language for continuation-passing-style
translations. In other words, the simply typed �-calculus without values is used
as a low-level language into which languages with control can be compiled. An
important observation showing the suitability of the �-calculus for this second
purpose is that the translations are in several senses complete, — in appropriate
circumstances they will be invertible, or at least surjective. There are, there-
fore, associated isomorphisms between models of these languages. This means
that many problems in the semantics of control (such as full abstraction) can
be reduced to analogous, but more simply stated problems in the semantics of
the �-calculus. Accordingly, some of these problems and associated notions are
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reviewed here, although as cartesian closure, the �-calculus and the connections
between them, are now standard, the reader is referred to e.g. Lambek and Scott
[49] for background on semantics, and Barendregt [8] for syntax.

The main distinguishing feature of the models of control considered here (as
opposed to [39], [79] etc.) is that they include a notion of partiality ab initio, as
the intention is to model programming languages in which there is a possibility of
non-termination. (Extension to infinitary types and fixpoints can be added later
(see Section 2.5) as a natural procedure of chain completion.) Following Braüner
[14], and [1], the basic notion used is the ⊥-map.

Definition 2.1.1 A category C has ⊥-maps if every hom-set C(A;B) contains a
distinguished morphism ⊥A,B such that for every f : C → A, f ;⊥A,B = ⊥C,B.

If C has a terminal object, then ⊥-maps can be specified by giving only the
morphisms ⊥A = ⊥1,A and letting ⊥A,B = tA;⊥B.

In particular, the models of control boil down to a continuation passing con-
struction applied to a cartesian closed category with ⊥-maps.

Definition 2.1.2 Define a pointed cartesian closed category to be a CCC with
⊥-maps such that for all objects A;B, ⊥A×B = 〈⊥A;⊥B〉, and ⊥A⇒B = Λ(⊥A,B).

⊥-maps can be used to define the useful notion of strictness.

Definition 2.1.3 In a category C with ⊥-maps, the strict maps are morphisms
f : A→ B such that ⊥A; f = ⊥B. Hence idA; and ⊥A,B are always strict, and the
composition of strict maps is strict, so the strict morphisms form a subcategory
of C, written CS (as in [1]).

As the pointed CCCs used here will be generated over a set of base type-objects
S, ⊥-maps need be specified only at base type, defining ⊥A⇒B = ‘⊥A,B’. In fact,
any CCC gives rise to a pointed CCC of this sort, by adding partiality at ‘ground
type’ by freely adjoining a product of the objects in S to the domain of each
morphism in C.

Proposition 2.1.4 Let C be a cartesian closed category, with non-terminal ob-
jects freely generated from some finite set S = {s1; s2; : : : sn} by ×;⇒. Then
there is a pointed cartesian closed category C⊥, with the same objects as C, and
morphisms
C⊥(A;B) = C(A× (s1 × : : :× sn); B).
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Proof: C⊥ is the co-Kleisli category of the co-monad × (s1 × : : : sn) : C → C,
which sends f : A→ B to f × id(s1×...sn)

with canonical natural transformations �A1 : A× (s1 × : : : sn)→ A, and
idA × 〈id; id〉 : A× (s1 × : : : sn)× (s1 × : : : sn)→ A× (s1 × : : : sn).
For each base object si, there is a ⊥-map, ⊥si = �2; �i. �

Although partiality will not be modelled in this way in the setting of game se-
mantics (as it proves to be more basic than totality) this will be a useful way of
adding distinct ‘error elements’ to a CCC.

Definition 2.1.5 For any set S, the free pointed CCC over S is the initial object
in the category of pointed CCCs whose objects include those of S, and functors
which preserve ⊥-maps and the universal properties of the terminal object, product
and exponentials. As in the case of the free CCC [49], it can be constructed as the
category in which objects are freely generated from {S}∪{1}, with the constructors
× and ⇒, and morphisms are freely generated from {⊥x | x ∈ S}, {idx | x ∈ S},
and the terminal morphisms t : 1 → A for each object, by forming products,
�-abstractions and applications, and equated modulo the universal properties for
these operations.

Theorem 2.1.6 The free pointed CCC over S is well-defined and initial in the
category of pointed cartesian closed categories and structure-preserving functors.

Proof: is by minor adaptation of the proof given in Lambek and Scott [49] to
cover ⊥-maps. �

The analogous extension of the �-calculus with constants for non-termination is
straightforward.

Definition 2.1.7 Following Barendregt, [8] define Λ(Ω)S to be the simply-typed
�-calculus over the base types S, together with constants ΩS : S for non-termination
at each base type. The equational theory of Λ(Ω) is (the compatible closure of)
�� equality.

Λ(Ω) has an obvious interpretation in a pointed CCC by fixing the base type-
objects, and setting [[ΩS]] = ⊥[[S]]. That pointed CCCs are canonical models of
Λ(Ω) can be expressed by observing that the theory of Λ(Ω) is sound and complete
for pointed CCCs.

Definition 2.1.8 (Sound and complete theory of Λ(Ω)) An equational the-
ory T of Λ(Ω) is:
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• sound with respect to interpretation in pointed CCCs, if every equation in
T is valid in every model, — i.e.
For all terms s; t of the same type, s =T t implies that in any pointed CCC,
C, [[s]]C = [[t]]C.

• complete if every equation which is valid in every pointed CCC is in T , —
i.e. if [[s]]C = [[t]]C in every model, then s =T t.

Proposition 2.1.9 The Λ(Ω)-theory (��) is sound and complete for pointed
CCCs.

Proof: is by minor adaptation of the proof of [49]. �

By observing that there is a bijective correspondance between terms-in-context
Γ ` t of Λ(Ω), and terms-in-context of the simply-typed �-calculus with an ad-
ditional, non-clashing free-variable, x substituted for Ω in t, it can be shown
that:

Proposition 2.1.10 If C is (isomorphic to) the free CCC over S, then C⊥ is
isomorphic to the free pointed CCC over S.

Attention will henceforth be restricted to the �-calculus with a single base type,
�. Models of this calculus will be given as a pair (C; a) where C is a pointed CCC
C and a is a (non-terminal) object C interpreting �.

2.1.1 Full abstraction in CCCs

A second ‘canonical’ example of a pointed CCC will also prove to be central to the
discussion of fully abstract models of control. This is the ‘fully abstract’ model of
Λ(Ω), where the relevant observational equivalence (of Definition 1.2.1) is defined
with respect to ‘termination’ at the function type � ⇒ �. (A Λ(Ω) term of this
type is said to terminate if it is ��-equivalent to �x:x.)

Definition 2.1.11 Define the following congruence on terms of Λ(Ω):
s : T 'T t : T if for all contexts C[· : T ] : �⇒ �,

C[s] =βη C[t]

(And s vOBST t if for all contexts, C[· : T ] : �⇒ �]:
C[s] =βη �x:x implies C[t] =βη �x:x) A model of M of Λ(Ω) is fully abstract if
[[s]]M = [[t]]M if and only if s ' t.
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The semantic counterpart to this notion of observational order and equivalence
on a pointed cartesian closed category is its intrinsic preorder. In a pointed CCC
with non-⊥ morphisms, the elements in a ⇒ a which are definable (denotations
of Λ(Ω)-terms) form a ‘Sierpinski space’ — i.e. a pointed two element set.

Definition 2.1.12 (Intrinsic preorder and equivalence) Let (C; a) be a model
of Λ(Ω). Writing ‘f ’ : 1 → A ⇒ B for the ‘name of f : A → B’, and f ↓ for
f 6= ⊥, define the following preorder and equivalence relation on the hom-sets of
(C; a).

f .A→B g ⇐⇒ ∀h : A⇒ B → (a⇒ a) : (‘f ’;h ↓)⇒ (‘g’;h ↓):

f ≡A→B g ⇐⇒ (f .A→B g) ∧ (g .A→B f):

The intrinsic equivalence and preorder preserves the categorical structure of a
model of control.

Proposition 2.1.13 For any pointed CCC C, ≡ is a congruence on the hom-sets
of C, — i.e. the following conditions hold.

i f ≡A→B f ′ and g ≡B→C g′ implies f ; g ≡A→C f ′; g′.

ii f ≡C→A f ′ and g ≡C→B g′ implies 〈f; g〉 ≡C→A×B 〈f ′; g′〉

iii f ≡A×B→C f ′ implies Λ(f) ≡A→(B⇒C)

(Similarly, the preorder . is a pre-congruence, — a preorder satisfying the above
conditions.)

Proof: is straightforward (see [6]). �

This ‘higher-type’ notion of observational equivalence is the strongest non-trivial
congruence on a pointed CCC.

Proposition 2.1.14 If l is a congruence on terms of Λ(Ω) properly extending
', then it is the trivial equivalence which holds between all terms.

Proof: Suppose l is a compatible relation on terms properly extending '.
Then there are terms a; b : T such that a l b but there is a term f : T ⇒ (�⇒ �)
such that (w.l.o.g.) f a =βη �x:x and f b =βη �x:Ω.
So �x:x l �x:Ω, and given any t : S ⇒ �,
t =βη �w:(�x:x) (t w) l �w:(�x:Ω) (t w) =βη �w:Ω.
i.e. every term at each type is congruent to Ω. �
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A fully abstract model of Λ(Ω) can be derived by the quotient construction from
any non-trivial pointed CCC in which every morphism is the denotation of a
Λ(Ω)-term) by ‘collapsing under the intrinsic equivalence’. This is a simplified
version of the construction of the fully abstract models of PCF in [6], [43].

Proposition 2.1.15 Suppose C is a pointed CCC with a congruence ≡. Then the
category C= ≡ with the objects of C, and the equivalence classes of ≡ as morphisms
between them, is a pointed CCC (with ⊥-maps given by [⊥A,B]).

Proof: is direct by the fact that ≡ is a congruence. �

Corollary 2.1.16 Suppose C is isomorphic to the free pointed CCC over a, then
(C= ≡; a) is a fully abstract model of Λ(Ω).

In particular, this means that a syntax-free characterization of the free pointed
CCC gives rise automatically to a syntax independent presentation of the fully
abstract model of Λ(Ω). However, effectiveness of the presentation is not guar-
anteed (for a formal presentation of this notion, see [70]). Indeed it is impossible
in the analogous case of finitary PCF, as Loader’s result shows [54]. As in PCF,
the problem boils down to decidability of observational equivalence.

Proposition 2.1.17 The fully abstract model of Λ(Ω) is effectively presentable
if and only if ' is decidable.

Proof: If the fully abstract model is effectively presentable then ' is decidable
by comparing denotations of �-terms. Conversely, suppose ' is decidable. The
free pointed CCC is certainly effectively presentable as the ��-long normal forms
of Λ(Ω). The intrinsic collapse of this model can then be effectively presented
by recursively enumerating a series of unique representatives of each equivalence
class at each type, using decidability of ' to discard equivalent terms. The
canonical operations on the CCC, such as application, are clearly also effective
by decidability of '. �

It will be shown in Chapter 5 that decidability of ' is a corollary of decidability
of observational equivalence in the �-calculus with two constants (in fact, the
problems are equivalent) which has been shown by Padovani [68]. However, the
goal of that chapter is a construction of the fully abstract model (and an infinitary
extension) which is both syntax-independent and effective. These properties can
be combined in a purely semantic and ‘local’ characterization of observational
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equivalence, through the observation that the unique functor � from the initial
to the fully abstract CCC has (by definition) the property that

�(e1) = �(e2) ⇐⇒ e1 ≡ e2:

Hence a semantic solution of the observational equivalence and effective pre-
sentability problems can be found by giving an effective syntax-free character-
ization of the functor between the initial and fully abstract models.

2.2 The fam(C) construction

In order to interpret datatypes in a programming language, some notion of sums
will be required in the semantics. These will be obtained via the action of a strong
monad (of continuations) on a category with co-products. The latter are incom-
patible with pointedness in a CCC. However, it is not necessary to define new
categories of ‘predomains’ concretely, to extend the full completeness and full ab-
straction results. The process of freely constructing co-products from an arbitrary
category (the ‘co-product completion’) can be described in a syntax-independent
way, as a category of indexed families of objects and fibred morphisms of C. Dis-
tributivity, and duality of products and co-products, then allows cartesian closure
to be extended to the category fam(C).

The category of indexed families of games was first used to construct a fully
abstract semantics of call-by-value languages by Abramsky and McCusker [3].
In this work, it was presented as a general method of obtaining a call-by-value
semantics from a call-by-name one, given the basic ingredients of a pointed order
enriched cartesian closed category, (from which a bicartesian closed category of
‘predomains’, fam(C), can be constructed) and a weak co-product on C (which
yields a strong monad on fam(C)). Their claim, that it is a broadly applicable way
to transfer full abstraction results from call-by-name to call-by-value, is supported
by a growing body of evidence. It has been applied to well-bracketed games and
innocent and history-sensitive strategies in [3], and visibility-free strategies in [4],
with fully abstract models of call-by-value PCF (an alternative presentation of
Honda and Yoshida’s [41]), and function-based languages with references being
found as a result.

In this thesis, however, it seems appropriate to take a slightly different perspec-
tive. In fact, both call-by-name and call-by-value semantics can be interpreted
in fam(C); the interpretation of sum types in the call-by-name semantics being
weak, distributive co-products derived from a strong monad (rather than obtain-
ing a strong monad from a weak co-product). This description seems particularly
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suited to the semantics of control, in which both call-by-name and call-by-value
semantics can be given by continuation-passing-style translations based on a sin-
gle strong monad on a bicartesian closed category.

Definition 2.2.1 Given a category C, form the category fam(C); the free com-
pletion of C with respect to co-products having

• as Objects, families of objects of C indexed over finite sets.

• as Morphisms from {Ai | i ∈ I} to {Bj | j ∈ J}, a pair consisting of a
reindexing function f : I → J and a family of morphisms �i : Ai → Bfi in
C, indexed over the source family:
i.e. fam(C)({Ai | i ∈ I}; {Bj | j ∈ J})
= {〈f; {�i | i ∈ I}〉 | �i ∈ C(Ai; Bf(i)); f : I → J}.

Without making any demands of C, it is immediate that fam(C) has an initial
object, the empty family {}, and more generally:

Proposition 2.2.2 fam(C) has all finite co-products.

Proof:

{Ai | i ∈ I}+ {Bj | j ∈ J} = {Ck | k ∈ I + J}

where Ci = Ai for i ∈ I , and Cj = Bj for j ∈ J . �

Proposition 2.2.3 If C is cartesian closed, then fam(C) is cartesian closed.

Proof: Definition 2.2.4 Products:

{Ai | i ∈ I} × {Bj | j ∈ J} = {Ai ×Bj | 〈i; j〉 ∈ I × J}:

The terminal object is the singleton family {1} containing the terminal object of
C.
The operation of exponentiation simply forms a family indexed over functions
from I to J , where the object indexed by f is the product of the exponentials
Ai⇒ Bfi indexed over i ∈ I .

Definition 2.2.5 Exponentials:

{Ai | i ∈ I} ⇒ {Bj | j ∈ J} = {Πi∈I(Ai⇒ Bf(i)) | f ∈ J I}:

�

If C is (continuous) partial-order enriched, then so is fam(C):
〈f; {�i | i ∈ I}〉 ≤ 〈g; { i | i ∈ I}〉 if f = g and ∀i ∈ I : �i ≤  i.
Pointedness of the ordering (⊥-maps), however, is not preserved.
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2.2.1 Strong Monads on fam(C)
Computational monads, as introduced by E. Moggi [62] can now be employed to
obtain call-by-name and call-by-value semantics from fam(C). As this is a well
established notion, only a few facts are recalled here; for further details see [64].

Definition 2.2.6 A strong monad on a category C with cartesian products and
⊥-maps is specified by a quadruple T; �; �; t (Kleisli triple with tensorial strength
t) where:

T 3A
µTA //

TµA
��

T 2A

µA

��
T 2A µA

// TA

TA
ηTA //

idTA ""F
FF

FF
FF

FF T 2A

µA
��

TA
TηAoo

idTA||xx
xx
xx
xx
x

TA

Figure 2.1: Defining equations of a monad

• T : C → C is a functor giving the appropriate structure for the ‘notion of
computation’,

• � : 1→ T is a natural transformation giving the inclusion of elements of C
as values (i.e. fully computed elements) which are trivial computations,

• � : T2 → T is a natural transformation which ‘computes’ the computation
of a computation,

• tA,B : A× TB → (TA × TB) is a tensorial strength. (A natural transfor-
mation such that the following diagrams commute):

A×B
idA×B //

idA×ηB
��

A×B
ηA×B

��
A× TB

tA,B // T (A×B)

A× T 2B

idA×µB

OO

tA,TB
// T (A× TB)

T tA,B
// T 2(A×B)

µA×B

OO

1×TA
t1,A //

uTA
&&NN

NNN
NNN

NNN
T(1× A)

TuA
��

TA

(A×B)×TC
tA×B,C //

assA,B,TC

��

T((A×B)×C)

TassA,B,C
��

A× (B ×TC)
idA×tB,C// A×T(B × C)

tA,B×C// T(A× (B ×C))
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The tensorial strength allows a pair of computations to be constructed from the
computation of a pair, in two ways, which, in the general case in which T is
non-commutative, will be distinct. This corresponds in a sequential language to
the choice of which component to evaluate first. Taking the option of evaluating
left-first:

Definition 2.2.7 Let

 A,B : (TA×TB)→ T(A×B) = cTA,TB; tTB,A;T (cTB,A; tA,B);�A×B

where cA,B : A×B → B × A is the ‘twist’ map.

TA× TB
tTA,B//

ψA,B
��

T (TA×B)
TcTA,B// T (B × TA)

T tB,A
��

T (A×B) T (B × A)
TcB,A

oo T 2(B × A)µB×A
oo

Figure 2.2: Definition of  A,B

Definition 2.2.8 A monad T : C → C is pointed (w.r.t. the order enrichment
on C):
if for each object there is a ⊥-map in C, ⊥TA : 1→ TA, and ⊥A,TA 6= �A.
In fam(C), (C pointed), ⊥-maps exist only for singleton families, so if T is a
pointed monad on fam(C), the image of T consists of singleton families of objects
of C, i.e T resolves as an adjunction between a functor from fam(C) to C, and
the inclusion { } : C → Fam(C).

Compare this with the notion of a weak co-product on a pointed category C.

Definition 2.2.9 C has weak (distributive, pointed) co-products if
for each finite family {Ai | i ∈ I} of objects of C, there is an object Σi∈IAi such
that there are:

• injections ini : Ai→ Σi∈IAi, for each i ∈ I, and

• for any family {fi : Ai → B | i ∈ I}, there is a ‘co-pairing’:
A unique strict map [fi | i ∈ I ] : Σi∈IAi → B, such that
ini; [fi | i ∈ I ] = fi.

• A distribution map for each object B,
distB : B × Σi∈IAi→ Σi∈I(B × Ai) such that
〈f; [gi | i ∈ I ]〉; dist = [〈f; gi〉 | i ∈ I ].
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• a ⊥-map ⊥Σi∈IAi : 1→ Σi∈IAi, such that ⊥Ai,Σi∈IAi 6= ini.

Abramsky and McCusker [3] have observed the following correspondence between
weak co-products and strong monads on fam(C).

Definition 2.2.10 Suppose C is a category with a notion of pointed, distributive
weak co-products, Σ, satisfying the following additional condition:
for fi : Ai→ B; i ∈ I, and g : B → C, [fi | i ∈ I ]; g = [fi; g | i ∈ I ].
Then define the following strong monad:
TΣ : fam(C)→ fam(C)
TΣ({Ai | i ∈ I} = {Σi∈IAi}
TΣ〈f : I → J; {�i : Ai → Bfi | i ∈ I}〉 = {[�i; infi | i ∈ I ]}
with natural transformations

• �{Ai | i∈I} : {Ai | i ∈ I} → {Σi∈IAi} = {ini | i ∈ I}

• �{Ai | i∈I} : {Σ(Σi∈IAi)} → {Σi∈IAi} = {[idΣi∈IAi]}

• t{Ai | i∈I},{Bj | j∈J} : {Ai × Σj∈JBj | i ∈ I} → {Σ〈i,j〉∈I×JAi ×Bj}
= {distAi | i ∈ I}}

Proposition 2.2.11 TΣ is a strong pointed monad.

Proof: It is straightforward to show that the families of morphisms so defined
are natural transformations, and that they satisfy the equations given above. �

2.2.2 Call-by-value and call-by-name semantics in fam(C)
Moggi ([62], etc.) describes the semantics of the call-by-value computational
�-calculus in the Kleisli category of a strong monad. A point made effectively in
this work is that the order of evaluation (or flow of control), which is relevant to
all forms of side-effects, can be studied using the computational �-calculus and its
theory, which is complete for these models. As will become apparent in Chapter
4, the case of non-local control itself is special, in that the �-transformation of the
monad is the denotation of a control operator. It will accordingly prove useful to
define a monadic metalanguage along the lines of the computational �-calculus;
more detail is contained in [62] [64]. This language is exploited in Chapter 4 by
relating it directly to calculi with control operators.
Models of �c(Ω) (the computational �-calculus with constants for non-termination)
are given by a strong, pointed monad T on a cartesian closed category C which
has all exponentials over the image of T in the following sense.
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Definition 2.2.12 A cartesian category C has all exponentials of (the C-object)
B if there is a contravariant functor ⇒ B : COP → C, with an evaluation map
AppA : A ⇒ B × A → B at each A, with the standard universal property that
for every f : C × A → B, there is a unique map Λ(f) : C → A ⇒ B such that
Λ(f × idA; AppA) = f .

The types of �c are formed from a non-empty set of base types, B by making the
action of the monad in the Kleisli category explicit.

A ::= A ∈ B | TA | A⇒ TB

The core typing system can be extended with product and sum types.
Terms are formed as shown in Figure 2.3.

• The operations of �-abstraction and application, which are interpreted using
the monad strength, and exponentials of the base category. An undefined
term denoting ⊥-elements has also been added.

• A let constructor, which is interpreted using composition in the Kleisli
category ( let x = s in t is computed by evaluating s to a value, substitut-
ing it for x in t, and evaluating). This is a useful programming feature in its
own right, and it also allows the equational theory to be extended beyond
��-equality, to reflect the order of evaluation. Note, however, that uses of
let can be eliminated by replacing let x = s in t with the equivalent
(�x:t) s.

• Operations [ ] and �, corresponding directly to composition with the natural
transformations of lifting (�), and flattening, �.
These maps define an isomorphism between terms of type TA, and values of
type T2A, (a ‘monadic reflection’ [27]) which in the case of control defines
an ‘idealized’ control operator.

The call-by-name interpretation of the simply-typed �-calculus in the cartesian
closed category fam(C) is completely standard. The problems come with the
addition of sum types due to the inconsistency of pointed order enrichment and
cartesian closure with true co-products. One solution, adopted in [14], and [59],
is to take weak co-products, giving separated sums. (Hence the claim that the
fam(C) construction represents a way to generalise call-by-name semantics to
call-by-value.) But one can also use co-products and a strong monad to define a
call-by-name semantics of sums.
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[[Γ,xn:A`xn:TA]]=πn;η[[A]]

[[Γ`t:TA]]=f [[Γ,x:A`s:TB]]
[[Γ` let x=t in s:TB]]=〈id[[Γ]] ,f〉;t[[Γ]],[[A]] ;Tg;µ[[B]]

[[Γ`Ω:TA]]=⊥T[[A]]

[[Γ,x:A`t:TB]]=f
[[Γ`λx.t:T(A⇒B)]]=Λ(f);ηA⇒TB

[[Γ`t:TA]]=f [[Γ`s:T(A⇒TB)]]=g
[[s t:TB]]=〈g,f〉;ψ[[A]]⇒T[[B]],[[A]] ;TApp[[A]],T[[B]] ;µ[[B]]

[[Γ`t:A]]=f
[[Γ`[t]:TA]]=f ;η[[A]]

[[Γ`t:T2A]]=f
[[Γ`µ(t):TA]]=f ;µ[[A]]

Figure 2.3: Term formation and semantics for �c(Ω)

Proposition 2.2.13 Suppose T is a strong monad on Fam(C), together with a
natural transformation % : T → Id, such that �; % = id, and for any strict map
f : TA → B, if %A; �A; f = g, then f = g. Then T(A+B) is a weak co-product
of A and B in C.

Proof: Injections into T (A + B) are given by inl; �A+B and inr; �A+B , where
inl; inr are the injections into the true co-procuct.
The co-pairing of f : A → C; g : B → C is %A+B ; [f; g] : T (A+ B) → C, so that
this is a weak co-product: (inr; �A+B); %A+B ; [f; g] = inr; [f; g] = f , and %; [f; g] is
unique as if {f; g} : T (A+B)→ C is a strict map such that inl; �A+B ; {f; g} = f ,
and inr; �A+B ; {f; g} = g, then �A+B ; {f; g} = [f; g]. Hence by uniquenes of [f; g],
%A+B ; �A+B ; {f; g} = %A+B ; [f; g] and hence {f; g} = %A+B ; [f; g] as required.
The distributivity transformation is derived from the monadic strength, together
with distributivity for the true co-product:
tA,T(B+C); TdistA,B+C : A×T(B + C)→ T(A×B +A× C). �

2.3 Models of continuation-passing

The semantics of the specific computational feature of access to the flow of control
can now be described, based on the key notion of continuation passing style (cps)
semantics. But it is necessary to make a choice. There are several possible
semantic frameworks for continuation passing, although (see Section 2.3.2 below)
there is a sense in which each is representable in terms of the other. In any
case, the more concrete models of simple programming languages considered here
can be given in terms of simple cps translations to which the differences between
styles of continuation-passing semantics seem less relevant. In fact, an observation
made in Chapter four (see Example 4.1.1) is that the finite parts of the models of
PCF with control are given by a continuation-passing interpretation over a single,
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empty type. Since definability of this finite fragment is the key to full abstraction,
attention will be focussed on this simple and specific notion of model.

Say that an object a of a cartesian category C is an answer object of C if C
has all exponentials of a.

Proposition 2.3.1 For any answer object a,
the contravariant functor ⇒ a : COP → C is self-adjoint.

Cartesian closure of C is not necessary, although as shown by Hofmann [39] any
Kleisli category of a continuations monad can be embedded in one constructed
from a cartesian closed category (using the Yoneda lemma). It is also the case
that if C is bicartesian closed, there is a cartesian closed full subcategory of C
with objects freely generated from a by the operations of ×;⇒.
Write aC for the category of exponentials of a, with C-morphisms between them
(‘the category of a-continuations’).

Proposition 2.3.2 If C has co-products and all exponentials of a, then aC is
cartesian closed, and so if C is a cartesian closed category constructed from a
single base object a, then {a}fam(C) ∼= C

Proof: For the first part, define:
(A⇒ a)× (B ⇒ a) = (A+B)⇒ a,
(A⇒ a)⇒ (B ⇒ a) = (A⇒ a×B)⇒ a.
The objects of {a}fam(C) are the singletons {((B1 ⇒ a)× : : :× (Bn ⇒ a)}, where
each Bi is either terminal, or an object of C. �

Hence the call-by-name �-calculus with control over a single, empty type can be
interpreted in a category of continuations. This is a degenerate example of the
more general call-by-name cps models described by Hoffman and Streicher [40]
(see Remark 4.5.10).

2.3.1 The continuations monad

It was observed by Moggi [63] that continuation-passing is an example of a ‘notion
of computation’ which can be represented as a strong monad, and has since been
studied widely using this paradigm, for instance by Filinski, in his thesis [27]. As
⇒ a is a self-adjoint functor, it resolves a monad, which can be described as

follows.

Definition 2.3.3 (Continuations Monad) For a category C and answer object
a define the following ‘monad of a-continuations’:
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TX = (X ⇒ a)⇒ a

T(f : A→ B) = [[x : (A⇒ a)⇒ a ` �y : B ⇒ a:x (�z : A:y (f(z)))]]
�A : A→ TA = [[x : A ` �y : A⇒ a:(y x)]]
�A : T2A→ TA

= [[x : ((((A⇒ a)⇒ a)⇒ a)⇒ a) ` �y : (A⇒ a):x (�z:((A⇒ a)⇒ a):z y)]]
and monad strength:
tA,B : A×TB → T(A×B)
= [[x : (A× ((B ⇒ a)⇒ a)) ` �y : ((A×B)⇒ a):(�2(x) (�z : B:y 〈�1(x); z〉))]]

If C has all exponentials over a, it has all exponentials over (A ⇒ a)⇒ a. (Any
exponential B ⇒ (A ⇒ a) ⇒ a is isomorphic to an exponential ((B × (A ⇒
a)) ⇒ a) over a.) Hence the Kleisli category of continuations on C will be a
�c(Ω)-model.

The requirement that the continuations monad is pointed restricts the possible
answer objectss in fam(C) to singletons of non-terminal objects.

Proposition 2.3.4 For any pointed CCC, C, the monad of O-continuations on
fam(C) is pointed (with the ⊥-maps of fam(C)) if and only if O = {a} for some
non-terminal object a of C.

Proof: If {Ai | i ∈ I} is a non-singleton, non-empty family, then ({Ai | i ∈ I} ⇒
O)⇒ O is a singleton (and hence pointed), if and only if O is a singleton. �

Remark 2.3.5 The continuations monad (by Proposition 2.2.13 above) can be
described as a weak co-product on an appropriate category; it is the sum which is
definable in the CCC of type-objects freely constructed from a as the weak dual of
the product:

A+B = ((A⇒ a)× (B ⇒ a))⇒ a:

The categorical models of control which will be used throughout this thesis can
now be defined. The interpretation of a functional basis (�+(Ω): the simply-typed
�-calculus with sums and constants for non-termination) is described here, the
extension with control operators described in Chapter 4.

Definition 2.3.6 (A model of control) is designated by a pair of a category
with ⊥-maps, C, and an object a such that C has all exponentials of a. The
full subcategory of C consisting of objects freely constructed from a with × and ⇒
yields interpretations of �+(Ω) (via the fam(C) construction and the monad of {a}
continuations) as detailed in Section 2.2.2. The call-by-name and call-by-value
interpretations will be respectively called call-by-name and call-by-value models of
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control.
The denotations of types in these models is therefore as follows:

The call-by-value control model is the Kleisli category of the a-continuations
monad on fam(C) giving the following interpretation of the 0;×;⇒;+ types.

• [[0]]v = {} (so T[[0]]v ∼= {a})

• [[S⇒ T ]]v = [[S]]v⇒ T[[T ]]v

• [[S × T ]]v = T[[S]]v ×T[[B]]v

• [[S + T ]]v = [[S]]v + [[T ]]v

For each finite set X, a ‘ground type’ X̃ corresponding to {1x | x ∈ X},
can be defined from the empty type.
[[1]]v = [[0⇒ 0]]v, and X̃ =

∐
x∈X 1.

The call-by-name control model is the pointed CCC with weak co-products
given by T(A + B), giving the following interpretation of the 0;×;⇒;+
types.

• [[0]]n = {a}

• [[S⇒ T ]]n = [[S]]n⇒ [[T ]]n

• [[S × T ]]n = [[S]]n× [[T ]]n

• [[S + T ]]n = T([[S]]n + [[T ]]n) ∼= (([[S]]n⇒ {a})× ([[T ]]n⇒ a))⇒ a

Other ground types (flat domains) can be constructed from 0 as weak co-
products: X̃∗ = Σx∈X1 = (Πx∈Xa)⇒ a.

Proposition 2.3.7 The full subcategory of type-objects in a model of control spec-
ified by (C; a) (call-by-name or call-by-value) is isomorphic to the full subcategory
of C with objects freely constructed from a with ⇒.

Proof: This is trivial for the call-by-name model. In the call-by-value model it
is necessary to show that for every non-terminal object A in (C; a) there is a type
S such that T[[S]] = {A}

• {a} = T{0} = T[[0]]v

• suppose {A} = T[[S]]v, and {B} = T[[T ]]v.
Then [[(S⇒ 0) + T ]] = T(([[S]]v⇒ {a}) + [[T ]]v)
∼= ((([[S]]v⇒ {a})⇒ {a})× ([[T ]]v⇒ {a}))⇒ {a} = {A⇒ B}

�
29



2.3.2 The continuations monad and other control models

A natural question which arises is whether the semantics of control based on a
models of continuations is the simplest and most general choice. The semantics of
continuation-passing via translation uses a notion, cartesian closure, which is not,
on the face of it, specifically relevant to control, as the operation of continuation
forming need not be described in terms of exponentiation by an answer object.
An attempt to describe the semantics of control at a more fundamental level
has recently been developed, based on the notion of premonoidal category. Initial
work by Thielecke [82] took a self-adjoint, contravariant ‘not-functor’ as primitive,
rather than any notion of exponentiation, an approach which has been developed
by Führmann [28].

Particularly relevant in this context is a recent paper by Selinger [79]. This
describes ‘control categories’, certain premonoidal categories, in which the call-by-
name ��-calculus can be soundly interpreted. Their duals, co-control categories,
are (essentially) tensor-not categories, which are models of the call-by-value ��
calculus. These models have strong completeness properties.
The key to a comparison between the monadic and premonoidal approaches is
the ‘not-functor’ ⇒ a which resolves the continuation monad, and its image, the
(premonoidal) category of continuations. A premonoid [74] is a binary operation
on a category which is functorial in its arguments individually, but not jointly.
For instance, in the Kleisli category of a monad on a cartesian category, the
cartesian product from the base category is not cartesian, but it is a premonoid
⊗. A tensor-not category is a premonoidal category with a not-functor, ¬, as a
primitive, so that the call-by-value function-space A ⇒ B can be represented as
¬(A⊗ ¬B).

Working in the dual setting of categories of continuations and call-by-name
cps gives an example of a premonoidal ‘disjunction’.

Proposition 2.3.8 If a is an answer object for a cartesian category C, then the
category of a continuations on C is a symmetric premonoidal category, with the
premonoid ⊕ defined by: (A⇒ a) ⊕ (B ⇒ a) = A×B ⇒ a

The call-by-name function-space A ⇒ B can then be represented as ¬A ⊕ B.
Thus each category of continuations is a control category, and its dual is a tensor-
not category (there are further requirements to satisfy, see [82] and [79]). The
question posed by Führmann [28], (for tensor not) and Selinger [79], is: which
control categories arise in this way? The answer is that they all do.
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Theorem 2.3.9 (Structure theorem for control categories [79]) Every
control category is equivalent to a category of continuations RC .

Hence generality is not gained or lost by choosing the premonoidal presentation
of control models. This means that the simply-typed �-calculus is a completely
expressive language for expressing control (notwithstanding its other roles as the
basis of functional languages). Given the similarity in motivation behind the
introduction of monads and premonoidal categories, as corresponding to a general
notion of computation with side effects, could there be other results of this kind?

The deciding factors in the choice of presentation of the semantics of control
are therefore philosophical and pragmatic, depending on the way in which control
is to be analysed. Continuation-passing creates complex high-level objects from
a simple cartesian closed category; for the ‘reductive’ analysis of denotational
models of control which form the major part of the technical contribution of
this thesis (for instance the axiomatic definability result in Section 3.7), it is
the simplicity of this basis which is important. For understanding behaviour in
the model, reductionism is not appropriate, but structuring tools are required.
Monads and premonoidal categories are both examples of such tools; of the two,
control categories offer perhaps a more direct and elegant presentation of the
semantics of control. In the context of other computational behaviour, however,
understood via the intensional hierarchy of game semantics, the continuations
monad is more directly relevant (see, for instance the work of Abramsky and
McCusker on structuring games for purely functional languages and state with
monads [3], [4]). An interesting possibility is a similarly general investigation of
game semantics via premonoidal categories.

2.3.3 Complete languages and models of control

Having fixed on a notion of model, it will also be necessary to find an extension
of the �-calculus with control operators to interpret in it. As in the case of the
semantics, there are a number of possible (and broadly equivalent) alternatives.
A natural property to demand is that the chosen language also has a theory which
is sound and complete for an interpretation in models of control, in the sense of
Definition 2.1.8. (A related requirement (see e.g. [79]) is for a �-calculus extension
which is an internal language of models of control.) Instead, this requirement can
be expressed in terms of syntax, by asking for a relationship with the language
Λ(Ω) which is analogous to the semantic relationship between models of control
and pointed CCCs.
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Definition 2.3.10 A language L of typed terms-in-contexts is an extension of
�+(Ω) if the types, terms and contexts of �+(Ω) are included in the types, terms
and contexts of L, and the operations of application, �-abstraction, and their
associated typing judgements, are also included in L.

Definition 2.3.11 (A complete syntax of control) ia a language L, extend-
ing the �+(Ω)-calculus, such that there are translations ( )∗ from L into Λ(Ω).
These are required to be surjective on ��-equivalence classes, and have the property
that for any pointed CCC, C, and associated model of control M, interpretation
of �+(Ω)-terms in M coincides with translation into Λ(Ω), and interpretation in
C, i.e. for all t:

[[t]]M = [[t∗]]C

A principal aim of this thesis is to describe denotational models of control with
completeness properties, which will form the finite part of a fully abstract model.
(It is not straightforward, for instance, to obtain a continuous order-enrichment on
the free constructions). The notion of full and faithful completeness (originating
in the semantics of proofs [5]) captures the property which is sought, — that
elements of the model are all denotations of terms of the language which are
unique up to equality in its theory.

Definition 2.3.12 Let L be a language extending the �+(Ω)-calculus and T an
equational L-theory. A model of L is fully complete if for every map between
type-objects, f : [[A]] → [[B]], there is an L-term-in-context x : A ` tf : B such
that f = [[x : A ` tf : B]]. It is fully and faithfully complete if each tf is unique
up to equality in T .

Although denotationally fully complete models will be the main objective , cate-
gorical completeness has a part to play. As they are constructed by continuation-
passing construction, finding such models will boil down to finding a fully com-
plete model of Λ(Ω), and a complete syntax of control.

Proposition 2.3.13 If L is a complete syntax of control, and C is isomorphic to
the free CCC over a single object, then the models of control defined from (C; a)
are fully and faithfully complete models of L.
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2.4 Models of programming languages

The simply-typed �-calculus with control operators is not sufficiently expressive
for the analysis of functional control in a programming context, which requires
(at least) the natural numbers and recursion. PCF [78], which includes these
features, can be considered not only as the prototypical functional language, but
also as a basis for languages which combine the �-calculus with non-functional
features like state, concurrency or access to the flow of control. This choice also
allows the semantic techniques which have been developed in the study of PCF,
for modelling recursion and proving full abstraction, to be adopted (with minor
adaptations) in the case of control. They are described succinctly here, reverting
to the general framework of �-calculus based languages interpreted via a strong,
pointed monad.

To give a semantics of recursion requires a fixpoint operator. The standard
solution for PCF [10] is to assume a continuous order-enrichment on the model, so
that least upper bounds of all directed sets exist. Definability of compact elements
is then sufficient to construct a fully abstract model from an algebraic category.
In practice, this is a good syntax-independent way to present a model. However,
the ‘collapsed’ categories on which the fully abstract PCF semantics is based may
not have continuous order-enrichment (although, as will be shown in Chapter 5,
the fully abstract models of PCF with control can be cpo-enriched). A minimal
solution is to use the implicit order-structure on definable elements defined by
pointedness and monotonicity of application and �-abstraction in a CCC. Instead
of general chain-completeness, recursion can be based on the existence of least
upper bounds of chains of endomorphisms (following AJM [6]).

Definition 2.4.1 In a category with ⊥-maps, for each endomorphism f : A→ A,
define the chain
{f i : 1→ A | i ∈ !} (such that f i v f i+1)
f0 = ⊥A,
f i+1 = f i; f .
A category is rational with respect to some order-enrichment v of its hom-sets if
all !-chains of the above form have least upper bounds,

f∇ =
⊔
i∈ω

f i

and for every g : A→ B, f∇; g =
⊔
i∈ω(f i; g):

It is also important to have access to recursively defined datatypes, such as the
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natural numbers. Infinite (small) sum types can be interpreted in FAM(C), the
category of families of objects of C indexed over infinite sets, defined as for fam(C).

Proposition 2.4.2 If C has all small products, then FAM(C) is cartesian closed.

Proof: is by extension of the definition of exponential for fam(C) to infinite
families and products, recalling that

{Ai | i ∈ I} ⇒ {Bj | j ∈ J} = {Πi∈I(Ai⇒ Bf(i)) | f ∈ J I}:

�

In particular, there is a natural numbers object in FAM(C)

Definition 2.4.3 Let N = {1i | i ∈ !}. This is a natural numbers object with
zero = 〈id1; 0〉, and successor = 〈id1; succ 〉.

The weak !-indexed co-product TN is a flat domain of natural numbers, or ‘object
of numerals’ in the terminology of [43]. By the assumption that ⊥TN 6= ini for
any i, it is also a standard datatype, — numerals correspond to distinct non-⊥
elements.

2.4.1 PCF and its semantics

PCF was introduced as a programming language by Plotkin [71]. It extends the
�-calculus with arithmetical constants, conditionals, and a recursion combinator
(to which sum and products can be added).

Definition 2.4.4 (Call-by-name semantics of PCF) Types are freely gener-
ated from the ground type nat by an arrow constructor ⇒, and interpreted as
follows:
[[nat]] = TN = Σi∈ω1i, — the flat domain of natural numbers or !-indexed sepa-
rated sum of empty domains,
[[T1⇒ T2]] = [[T1]]⇒ [[T2]]:
The original presentation of PCF also contained a ground type of booleans, with
relevant constants, which is omitted here.
The interpretation of terms is described in Figure 2.4.4.

Numerals are interpreted as the relevant injection n : 1 → Ñ∗ = inn into the
object of numerals.
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Conditionals at type T are interpreted by the composition (in context) of the
tested term, which is an injection into Σi∈ω1i, with the co-pairing of the
‘zero case’, (as a map into [[T ]]) with (inifinitely many instances of) the
non-zero case.

The Y combinator can be interpreted in a rational category as the least fixed-
point of FA : ((A⇒ A)⇒ A)→ ((A⇒ A)⇒ A)
= Λ((id(A⇒A)⇒A × idA→A); App(A⇒A)⇒A,A⇒A × idA⇒A; conA⇒A)
So for any endomorphism, f : A→ A, f ; [[Y]] = f∇

For any type T , there is an ‘undefined term’ of type T , ΩT = Y(�x : T:x):

Note also that a series of case-splitting constructs can be defined along the lines
of IF0 with the intended meaning that casekt|i≤ksi evaluates to si if t evaluates
to i. These have proved useful for definability results, but full abstraction is not
affected, as they can be simulated up to observable equivalence using IF0 as
follows:

case0 M | N0 | N ′ = IF0 M then N0 else N ′;

casen+1M | N0| : : : | Nn | Nn+1 | N ′ =

casenM | N0 | : : : | Nn | IF0 (predn+1 M) then Nn+1 | N ′:

The definability results for call-by-name PCF were given with respect to PCFc,
which extends PCF with these constructs, but the related full abstraction results
hold for PCF itself because of this simulation.

[[Γ; x : T ` x : T ]] = �r : [[Γ]]× [[T ]]→ [[T ]]

[[` 0: nat]] = in0 : 1→ TN

[[Γ ` succ M : nat]] = [[Γ `M : nat]]; plus1

[[Γ ` pred M : nat]] = [[Γ `M : nat]];minus1

[[Γ ` �x:M : T ⇒ U ]] = Λ([[Γ; x : T ` M : U ]])

[[Γ ` M N : U ]] = 〈[[Γ ` N : T ]]; [[Γ `M : T ⇒ U ]]); App

[[Γ ` (IF0 L then M else N) : nat]] = ([[Γ ` L : nat]]; [[[Γ `M : nat]]; [[Γ ` N : nat]]]

[[Γ ` YTM : T ]] = [[Γ `M : (T ⇒ T )]];F∇

Figure 2.4: Terms of PCF in contexts, with a call-by-name interpretation
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Definition 2.4.5 (Call-by-value semantics of PCF) The interpretation of call-
by-value PCF in Fam(C)T is similar to that described above, with the following
modifications.

• �-abstraction and application are interpreted in the Kleisli category of a
strong monad on Fam(C) (as described in Section 2.2.1).

• The type nat denotes the !-indexed co-product {1i | i ∈ !}, with the same
interpretation of numerals as injections, and conditionals as co-pairing.

• Recursion behaves quite differently in call-by-value to call-by-name. As ev-
ery endomorphism f : A → A in the Kleisli category is strict,all least fix-
points are trivial, so one cannot add recursion by taking f∇ =

⊔
n∈ω f

n.
The solution generally adopted is to take ‘�-expansions’ at each iteration,
— based on the following conversion for the Y combinator:

YM −→M (�x:((YM) x)):

So YM is approximated by Ω;M(�x:Ωx);M (�y:(M(�x:Ωx)y)); : : :
Provided C is rational, these fixpoints can be modelled in the Kleisli category.

Definition 2.4.6 For objects A;B in the Kleisli category, define
�A,B : T(A⇒ TB)→ T(A⇒ TB) =
Λ(tA,A⇒TB ; T(AppA,A⇒TB);�B); �A⇒TB.
(So for any t : TA ⇒ TB, [[�x:(tx)]] = �A,B; [[t]].)
Now define a fixpoint operator ( )∆ for the Kleisli category:
If f : T((A⇒ TB)→ T(A⇒ TB))

f∆ = (�A→TB ; f ;�A→TB)∇ =
⊔
n∈ω

(�A→TB ; t;�A→TB)n:

Hence the call-by-value Y-combinator can be interpreted
[[Γ ` YM ]]v = [[Γ `M ]]v;F∆.

An operational semantics for PCF was defined in [71]. By soundness, rationality,
and standardness of datatypes, the crucial property of computational adequacy (a
program denotes a value if and only if it reduces to that value) of the denotational
model with respect to this semantics can be established. (See Section 4.4 and [14]
for more details.)
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2.4.2 Fully abstract models of PCF-based languages

The notion of observational equivalence defined in Chapter 1 (Definition1.2.1)
can be generalised to an observational preorder on terms.

Definition 2.4.7 For a language L extending PCF (in the sense of Definition
2.3.10), define the observational preorder between terms in (the same) context,
Γ `M and Γ ` N
M vOBS N if for every compatible context C[·] : nat, C[M ] ⇓ implies C[N ] ⇓.
Full abstraction for partial-order-enriched models is equivalent to demanding that
M vOBS N if and only if [[M ]]v [[N ]].

The key properties for full abstraction for PCF and extensions are computational
adequacy and finite definability, although these can be combined in a variety of
ways.

Proposition 2.4.8 Let M be a cpo-enriched denotational semantics of a lan-
guage L (extending PCF) which is computationally adequate with respect to the
operational semantics of L. Suppose that every morphism between type-objects of
M is the least upper bound of a chain of L-definable elements, then for any closed
terms (values in the case of call-by-value) M;N : T ,

M vOBS N ⇐⇒ ∀h (definable) : A→ T(N) : f ;h ↓ =⇒ g;h ↓ :

Proof: Suppose M 6vOBS N , then there is some L-context C[· : T ] : nat such
that C[M ] ⇓ and C[N ] 6⇓, and hence by adequacy, [[C[M ]]] ↓, and [[C[N ]]] ↑, hence
[[M ]]; [[�x:C[x]]] ↓ and [[N ]]; [[�x:C[x]]] ↑ as required.

In the other direction, suppose there is some h such that [[M ]];h ↓ and [[N ]];h =
⊥, then h =

⊔
i∈ω hi for some chain of definable hi, so

⊔
i∈ω[[M ]];hi ↓, so [[M ]];hi ↓

for some i such that [[N ]];hi ↑.
By the assumption of finite definability, hi = [[L]] for some term L : T ⇒ nat such
that [[L M ]] ↓ and [[L N ]] ↑, so by computational adequacy L M ⇓, and L N 6⇓,
so M 6vOBS N . �

(This is shown to extend to terms with free variables in Lemma 4.6.8.)

Corollary 2.4.9 Suppose M is an adequate, cpo-enriched model of L such that
all elements are suprema of chains of definable elements,
and for all elements f; g : A, ∀h : A → [[nat]]; f ;h 6= ⊥ =⇒ g;h 6= ⊥ implies
f v g, then M is fully abstract.
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Alternatively, the ‘intrinsic preorder collapse’ of a cpo-enriched model satisfying
definability will be fully abstract.

Definition 2.4.10 Let M be a model of L (a PCF extension) in a (cartesian
closed) category C, and define the intrinsic preorder

f .A→B g ⇐⇒ ∀h : A⇒ B → TN ‘f ’;h ↓ =⇒ (‘g’;h ↓);

and in the call-by-value model

f .A g ⇐⇒ ∀h : A→ TN ‘f ; �B’;h ↓ =⇒ ‘g; �B’;h ↓):

Define the collapse ofM= . as in Definition 2.1.15, — type-objects are as inM,
morphisms are equivalence classes of M-morphisms partially-ordered by ..

Proposition 2.4.11 Supppose M is a cpo-enriched model of L such that every
element is a supremum of a chain of definable elements, and that its collapse
M= . is an adequate model of L. Then M= . is fully abstract.

Proof: By Proposition 2.4.8, for all terms M;N : T , M vT N if and only if
for all definable h : [[T ]] → TN in M, [[M ]]M;h ↓ implies [[N ]]M;h ↓. As every
element of M, is approximated by definable elements, M vT N if and only
[[M ]]M .[[T ]] [[N ]]M, as required. �

Collapse under the intrinsic preorder preserves the key features of PCF adequacy
at least, — cartesian closure, as in Proposition 2.1.13, and rationality.

Proposition 2.4.12 The collapse of a cpo-enriched CCC under its intrinsic pre-
order is rational.

Proof: Given [f ] : A→ A, define [f ]∇ = [f∇], — to show that this is consistent
and rational it is necessary to show that for any g : A→ B, f∇; g is a least upper
bound (with respect to .) for {f i; g | i ∈ !}. (and if g ≡ f , then f∇ ≡ g∇). So
it suffices to show that if f i; g . h for all i ∈ !, then f∇; g . h.
Suppose f∇; g 6.B h, then there is some k : B → Tnat such that h; k = ⊥
(
⊔
i∈ω f

i; g); k =
⊔
i∈ω f

i; g; k 6= ⊥, hence for some i, f i; g; k 6= ⊥, so f i; g 6.B h as
required. �
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2.5 Models of PCF with control

The language �PCF will be obtained by extending PCF with certain operations
from the control calculus ��. Proceeding from the basis of finitary models of
control on the other hand, it is relatively straightforward to describe the passage
to ‘computational models’ of control with recursion as a process of completion
which is in some respects simpler than the general notion of PCF-model.

Definition 2.5.1 Computational models of control (call-by-name and call-by-
value) are specified by a pair (C; a) of a rational pointed CCC with !-indexed
products and non-terminal answer object a.

Definition 2.5.2 A category C has !-indexed products, if for every object A,
there is an object Aω, with projection maps
head : Aω → A and tail : Aω → Aω with the following universal property:
for every pair of maps f : B → A; g : B → Aω, there is a unique map
f ::g : B → Aω such that f ::g; head = f and f ::g; tail = g.

(Informally), Aω is the least solution to A = A× Aω.

Definition 2.5.3 Let A0 = 1, Ai+1 = A× Ai. Then a series of embeddings and
projections ei : Ai → Aω and pi : Aω → Ai can be defined such that ei; pi = idAi ,
and pi; ei v idAω , viz:
e0 = ⊥Aω ; ei+1 = �l::ei
p0 = 1Aω ; pi+1 = 〈head ; tail ; pi〉

These embeddings and projections can be used to define embeddings and projec-
tions between type-objects constructed from finite products, and from !-indexed
products.

Definition 2.5.4 Define the Λ(Ω)ω-types as follows: T ::= � | T ω | S ⇒ T

and interpret them in a pointed CCC C with !-indexed products and answer object
a:
[[�]](C,a) = a, [[T ω]](C,a) = [[T ]]ω(C,a), [[S ⇒ T ]](C,a) = [[S]](C,a)⇒ [[T ]](C,a).
For each Λ(Ω)ω-type T , form Ti by ‘truncating all !-indexed products at i’
i.e. �i = a; (T ω)i = (Ti)i; (T ⇒ S)i = Ti ⇒ Si,
Then there is an embedding/projection pair [[T ]](C,a)→pTi

[[Ti]](C,a)→eTi
[[T ]](C,a)

• eS⇒Ti = Λ(id[[Si⇒Ti × pSi ; App; eTi ),
pS⇒Ti = Λ(idS⇒T × eSi ; App; pTi );
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• eSωi = Πj≤ieSi ; ei,
pS

ω

i = pi; Πj≤ieSi .

Proposition 2.5.5 For every Λ(Ω)ω-type T , and i ∈ !, eTi ; pTi = idTi.

Proof: is by induction on the structure of T , using the definition of ei; pi and
the universal properties of a CCC. �

Although all set-indexed products are required for cartesian closure of FAM(C)
(and the specific models considered will have such products), the semantics will
require only countable co-products. So attention will be restricted to Fam(C), —
the category of countably indexed families of objects of C. Fam(C) is clearly not
cartesian closed. However, the observation that a continuations model requires
only limited exponentials can be used here, as provided C has !-indexed products,
Fam(C) has all exponentials of {a}.

Proposition 2.5.6 If C has !-indexed products, then the monad of a-continuations
on C is well-defined, and for any object A, C has all exponentials of TA.

Note that it is still not necessary to introduce ground type values into control
models, — data is modelled intensionally. For instance, in the domain correspond-
ing to nat, TN = (N ⇒ {a}) ⇒ {a} ∼= {aω ⇒ a}, each numeral corresponds
to a projection from aω, ‘the countable list of as’. This is the basis for fully
abstract translations of PCF with control into the simply-typed �-calculus with
fixpoint combinators and infinite lists. This is described, with the call-by-name
translation, in Section 4.5.

Because the initial model of control is constructed by a process of completion
from a simple cartesian closed category, there is a direct relationship between the
CCCs with the associated properties, — the fully complete and fully abstract
models of Λ(Ω) described in Section 2.1, — and the fully complete and fully
abstract models of control.

In order to give a full abstraction result based on finitary definability, a contin-
uous order-enrichment is assumed (although rationality, together with continuity
of composition is all that is used).

Definition 2.5.7 A continuous model of control is specified by a pointed cpo-
enriched CCC, with !-indexed products such that for every embedding/projection
pair ei : Ai→ Aω; pi : Aω → Ai,⊔
pi; ei = idA.
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Lemma 2.5.8 In a continuous control model, the above property extends to all
of the defined embeddings and projections eTi : [[Ti]]→ [[T ω]]; pTi : [[T ω]]→ [[Ti]],
i.e.

⊔
i∈ω pi; ei = id[[T ]].

Proof: is by continuity of composition, and the universal properties of pairing
and �-abstraction. �

Say that a morphism of a computational control model (between Λ(Ω)ω type-
objects) is definable if it can be defined via �-abstraction, application, the opera-
tions (head ; tail ; ::) of the countable product, and taking least fixpoints, ( )∇. The
following proposition shows, in essence, that the definable part of a continuous
model of control is !-algebraic, with a finite basis of finitary definable elements
embedded from the definable elements of a model of control.

Proposition 2.5.9 If (C; a) specifies a continuous computational model of con-
trol, then every definable morphism is the least upper bound of a chain of mor-
phisms definable in the model of control specified by (C; a),
i.e. if f : [[S]]→ [[T ]] is definable, there is a series of morphims fi : [[Si]] → [[Ti]]
such that { pSi ; fi; eTi : [[S]]→ [[T ]] | i ∈ !} is an !-chain, and

f =
⊔
i∈ω

(pSi ; fi; eTi ):

Proof: is by induction on the possible definitions of morphisms in the compu-
tational model of control. By the Lemma 2.5.8 above, id[[S]] =

⊔
i∈ω p

S
i ; idSi; eSi

If f = Λ(f ′) for some f ′, then the hypothesis extends to f by the universal prop-
erty.
Suppose f = 〈g; h〉; App, then by hypothesis, there are chains of finitary elements
such that g =

⊔
i∈ω p

S
i ; gi; eT⇒Ri and h =

⊔
i∈ω p

S
i ;hi; eTi .

Thus g =
⊔
i∈ω p

S
i ; gi × pTi ; App; eRi , and so by continuity of composition,

h = 〈id[[S]]; g〉; f × id[[S]]; App
=
⊔
i∈ω(〈id[[S]]; p

S
i ; gi; ei〉; pSi ; f × pTi ; App; eRi

=
⊔
i∈ω(pSi 〈id[[Si]]; gi〉; f × id[[Ti]]; App; eRi as required.

If f = g∇ for some g : A → A, then by hypothesis, g =
⊔
pSi ; gi; eSi , for some

series of morphisms {gi : [[Si]]→ [[Si]] | i ∈ !}.
Let fi = gii, then fi; ei = gii; ei v gi+1

i+1 ; ei+1 = fi+1; ei+1. �

Recall that a complete syntax of control is an extension of the �-calculus (includ-
ing sums) with control operators, such that there are surjective translations into
the simply-typed �-calculus.
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Definition 2.5.10 A complete computational syntax of control is an extension
of PCF (with the empty type), such that there is a translation ( )∗ into the simply-
typed �-calculus with lists, Λ(Ω)ω (see Section 4.5) which is surjective on Λ(Ω)ω-
equivalence classes at translated types T ∗, and such that for all PCF terms M ,
interpreted in a PCF modelM, constructed from a computational model of control
(C; a):

[[M ]]M = [[M∗]]Λ(Ω)ω

Corollary 2.5.11 If M, specified by (C; a) is a continuous computational model
of control, and L is a complete computational syntax of control then every mor-
phism between type-objects of M is a least upper bound of a chain of L-definable
elements, in the form

⊔
i∈ω(pAi ; fi; eBi ).

Similarly, the intrinsic preorder on the finitary part of a computational control
model characterizes the preorder on the whole model.

Proposition 2.5.12 Suppose (C; a) specifies continuous models of control via the
monad of a-continuations on Fam(C), such that every element is a least upper
bound of definable elements. Then the intrinsic preorder on the call-by-name and
call-by-value PCF models in Fam(C) given by Definition 2.4.10 is equivalent to
the preorder induced by by taking observations on a ⇒ a in the CCC generated
from a. i.e. if f : A→ B =

⊔
i∈ω p

A
i ; fi; eBi , and g =

⊔
i∈ω p

A
i ; gi; eBi , then

f .A→B g if and only if for every i ∈ !, there exists j > i such that fj .Ai→Bi gj .

Proof: is by Proposition 2.5.9 together with continuity. �

Together with Proposition 2.1.14, this yields the following corollary.

Corollary 2.5.13 The observational equivalence ≡ is the strongest non-trivial
congruence on computational models of control.

Note that this is not an extensional equivalence on models of control (pace, for
instance PCF). This is simply the semantic counterpart of the non-extensionality
of observational equivalence in the presence of control operators (for further dis-
cussion see Chapter 5).

Thus if (C; a) defines a computational model of control, (C= .; a) defines a
model of control such that [[M ]]C/. = [[[M ]]C]. So there are two routes to a syntax-
free presentation of the fully abstract model of control; take the quotient of a
continuous model of control for which the restriction to finite types is isomorphic
to the free CCC, or more directly, give a continuous model for which the restriction
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to finite types is the fully abstract pointed CCC. The first (based on Hyland-Ong
games) is taken in Chapter 4, the second (based on sequential algorithms) in
Chapter 5, where they are compared.

Corollary 2.5.14 The fully abstract computational model of control is effectively
presentable if and only if the observational equivalence on Λ(Ω) is decidble.

Proof: By Proposition 2.5.9 every element of the fully abstract model is a least
upper bound of (embedded) elements of the fully abstract pointed CCC , and
by Proposition 2.1.17, this is effectively presentable if and only if observational
equivalence on Λ(Ω) (or the simply-typed �-calculus itself) is decidable. �

2.5.1 Universality

A good solution to the full abstraction problem will be a cpo-enriched and fully
abstract model of control satisfying the following conditions:

The Jung and Stoughton criterion (as posed for PCF in [44]) The (finitary)
fully abstract model of control is effectively presentable.

Universality All recursive elements of the model are definable.

The requirement that these conditions be satisfied together is significant, because
it suggests that as well as being effective, such a presentation will be syntax
independent. For instance, one could give a syntactic construction of a fully
abstract model of �PCF along the lines of Milner’s construction of a fully abstract
model of PCF [61], and even make it effective by giving a decision procedure for
finitary observational equivalence. To give a universal presentation, however,
requires some identification of the computable infinitary elements of the model,
as in the AJM [6] and HO [43] game-based universal models of PCF. But there
is no obvious notion of computability for syntax-based models which leads to
universality.

Universality is also a highly relevant condition because it allows an equational
full abstraction result to be strengthened to ‘logical full abstraction’ (described
by Longley and Plotkin in [56]). This extends full abstraction from the single
test of program-context equality, or observational equivalence, to formulas of a
first-order logic for reasoning about programs.

Definition 2.5.15 For an extension of PCF, L, let JL be the language of first-
order logic with equality which has the terms (with arities) given by the signature
of L, and the single predicate ⇓ for termination. A JL-structure is thus defined
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by the assignment of meanings to the terms, and truth values to the predicates of
JL in the standard way, with the following natural examples.

• An operational semantics of L based on evaluation to ground type defines a
JL structure over the observational equivalence classes of terms of JL (with
constants interpreted as their own equivalence class, and ⇓ as operational
convergence).

• A denotational semantics M for L defines a JL structure over M in which
valuations can range over the whole domain, and constants receive the inter-
pretation given to them by M, with the predicate ⇓ corresponding to some
set of non-⊥ elements. (Under certain ‘standardness assumptions’, see [56],
— it is certainly sufficient to require that M is given by a strong pointed
monad and a rational CCC, as in Definition 2.4.4. )

This allows the following definition to be made.

Definition 2.5.16 A model of L is logically fully abstract with respect to an
operational semantics if the formulas of JL valid in the corresponding denotational
structure coincide with those which are valid in the operational structure.

The following theorem captures the intuition that logical full abstraction requires
the effective elements of a fully abstract model to be identifiable.

Theorem 2.5.17 (Longley and Plotkin [56]) Let I be a standard model of
L. Then it is logically fully abstract for JL if and only if it is both universal and
fully abstract.

(The implication from right to left is in fact quite simple to prove: equational
full abstraction implies that atomic formulae are valid in the observational struc-
ture if and only if they are valid in the denotational structure, and this extends
naturally to quantifier-free formulae. A universally quantified formula is valid
in the observational structure if there is no valuation of terms which gives a
counter-example, it is valid in the denotational structure if there is no valuation
of elements yielding a counter-example. Hence if all elements are definable, the
valid first-order formulas of the structures coincide.)

2.6 Summary

A programme for the construction and analysis of an effectively presented fully
abstract syntax-independent model of control has been established. It is imple-
mented in Chapters 3, 4 and 5, as follows.
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Chapter 3 Gives denotational and axiomatic characterizations of the free pointed
CCC, and hence the initial models of control. This falls naturally into three
parts.

• A presentation of the intensional hierarchy of game semantics based on
modelling types through some invariant structure, and computational
effects through constraints on the copying and sharing of information.

• An axiomatic proof that the category of ‘unbracketed’ games and in-
nocent strategies is isomorphic to the free (pointed) CCC.

• An examination of control flow within the control model, characterizing
‘upwards’ and ‘downwards’ continuation passing and local control flow,
using linear moves and the ‘bracketing condition’.

Chapter 4 Describes a ‘syntax of control’, ��(Ω), and a PCF extension �PCF,
showing that its equational theory and operational semantics are sound
and complete for models of control. This is proved using invertible cps
translations into the simply-typed �-calculus, and a monadic metalanguage
for reasoning about computation with continuation passing.

Chapter 5 Gives an effective presentation of the fully abstract, universal model
of control (in the category of sequential algorithms).
Characterizes the observational preorder semantically, and compare the
fully abstract models using a syntax independent description of the functor
from the initial games model.
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Chapter 3

Game semantics of control

3.1 Introduction

The primary object of this chapter is to develop a game semantics from which
the continuation passing models described in the previous section can be con-
structed. The basic requirements are thus quite simple: pointed cartesian closed
categories of games, and in particular, models of Λ(Ω) with the definability prop-
erty. An axiomatic characterization of the free pointed CCC over one object is
also presented, adapting existing results to models of control.

But a second aim is to study the semantics of the intensional hierarchy. A
development of existing work is the formalization of a notion of rule, which is
used to build up a general symmetric monoidal closed category of games with
finer structure created by the imposition of rules. The focus is naturally on the
‘control-axis’ of the hierarchy. It is shown that constraints on copying information
(or demands for information) by repeating moves can be expressed as such global
rules. This can be used to give a semantics for classical, intuitionistic, and linear
fragments of the category of games, such that relaxing the rule corresponds locally
to a translation (such as double negation translation or ‘linear decoration’).

This sheds some light on the the ‘bracketing condition’ (used in the models
of PCF in [6], [43]) as corresponding to local control flow and an intuitionistic
typing discipline, showing that this rule has two (separable) roles, each with
a clear computational meaning. On this analysis, it is essentially a linearity
condition, requiring that ‘answers’ to demands for information be given at most
once, preventing repeated invocation of continuations (see [82]), and at least once,
preventing discarding of continuations, and hence escapes or jumps. (Similarly,
there are two levels at which classical principles such as Peirce’s law can be
introduced into deduction systems; as ‘stability rules’ for atomic formulas, or at
all levels, to reach full classical logic.)
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3.2 A basic framework for games

The game semantics used is based on the Hyland and Ong approach [43] (which
is similar to that of Nickau [65], and descended from the work of Lorenzen [57]).
‘Dialogue games’ are defined using justified sequences of moves. This choice was
based on the following considerations.

• A neat division of labour between the apparatus of justification, which
defines the possible ‘logical’ connectives for games, and rules, which enrich
this repertoire by controlling the order in which moves can be played. The
basic structural operations on arenas together with a few simple rules suffice
to generate all of the games which will be required.

• A second concept introduced by Hyland and Ong, based on justified se-
quences, is the notion of the view as the relevant history of the play. The
definability results rely on the restriction to innocent strategies, which have
access only to the information in the view. But views have a useful sec-
ondary role in the intensional hierarchy; by hiding Opponent’s ill behaviour,
they allow all strategies with the same ‘innocent function’ to be identified.
This means, for instance, that there is a faithful embedding of strategies on
well-bracketed games into the wilder world via their reponses to views.

A significant development of the Hyland-Ong framework was described in Mc-
Cusker’s thesis [59]. This included a ‘linear decomposition’ of the cartesian closed
structure, which is used in a modified form here. The clarity of exposition in this
work also make it valuable background reading.

However, McCusker defines each game as being specified by a particular arena
and a set of plays in the style of the AJ and AJM approach [5],[6]. These are sub-
sets of the justified sequences over an arena which satisfy both the global rules (of
visibility and bracketing) introduced by Hyland and Ong, — the ‘legal sequences’,
but are also subject to some local characterizations. This is incompatible with
the perspective advocated here, — that the only distinctions between games on
the same arena are to be found in the rules. (And, more importantly, the ‘pro-
jection conditions’ on which his constructions are based simply fail in the games
used to model computation with higher-type references [4].) Instead, games here
are simply sets of justified sequences, which are specified (but not uniquely) by
an arena, and a set of rules. Thus, for instance, removing the question/answer
tagging from an arena specifies exactly the same game as retaining the labelling,
but dropping the rule (bracketing condition) which refers to the tags.
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3.2.1 Arenas and justified sequences

Lorenzen [57] introduced ‘dialogue games’ to semantics, and the analogy with a
debate is a useful one. Debates can be categorized under two headings; their
subject, and the rules under which they are held. Arenas specify the subject; the
structure of the information relevant to the debate. This information is carried
by a set of tokens representing actions, historically called moves, (although this
almost immediately engenders a confusion between the token itself, and a specific
instance of its use in the game). Moves are statements relevant to the subject,
possibly distinguished by additional labels saying which side may utter them, in
which order, whether they can be repeated, and whether they are incompatible
with other statements.

The analogy also lends itself to the notion of justification. In the midst of
a debate, for instance, one has a basic choice between opening an entirely new
line of argument or attacking the assumptions underlying one of the opponent’s
more recent assertions. Attacks of the latter sort, which refer directly to a single
earlier utterance are justified by it, according to this terminology. To determine
when such a contingent attack can be made, there is an enabling relation between
moves.

Definition 3.2.1 (Arenas) An arena A is a quadruple:
〈MA;`A⊆ (MA)∗ ×MA; L; �A : MA → P(L)〉 which specifies a tree-like structure
with labelled nodes, as follows:
The objects of MA, are called moves,
`A⊆ (MA)∗ ×MA is a relation called enabling, such that the transitive closure
of `, hereditary enabling, is an irreflexive partial order. Moves enabled by the
additional node ∗ added to MA are said to be initial.
L is a set of labels, and the labelling function �A : MA → P(L) specifies the set
of labels attached to each move.

In general l;m; n : : : will be used to denote the moves of an arena, and a; b; c; : : :

to denote occurrences of these moves in sequences r; s; t.

Definition 3.2.2 For any sequences s; t, Occ(t) is the set of occurrences of moves
in t, and s v t means ‘s is a prefix of t’,
sa denotes the sequence s extended by the move a, and s·t the sequence s extended
by the sequence t.

Attention will be restricted to finite sequences here, although transfinite plays
remain an interesting possibility.
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Definition 3.2.3 A justified sequence in an arena A, is a sequence of (occur-
rences of) moves s, together with a function � : Occ(s) → Occ(s)∗ such that for
every occurrence a of a non-initial move, �(a) is an occurrence of a move pre-
ceding a, which enables it. (And if a is initial then �(a) = ∗.) This relationship
between occurrences of non-initial moves and a unique, preceding, enabling move,
is called justification, and the function � is said to define ‘justification pointers’
for each non-initial move. The set of justified sequences of an arena A is denoted
JA.

The prefix-ordering extends straightforwardly to justified sequences. The tran-
sitive closure of the justification relation on occurrences is referred to as hereditary
justification.

3.2.2 Constructions on arenas

Arenas can be connected in a few simple ways.

Definition 3.2.4 Products A product of arenas is formed by placing its com-
ponents ‘side by side’. For any set-indexed family of arenas {Ai | i ∈ I},
form the product A = Πi∈IAi as follows:

• MΠi∈IAi =
∐

i∈IMAi ,

• 〈m; i〉 `Πi∈IAi 〈n; j〉 if i = j and m `Ai n, and ∗ `Πi∈IAi 〈n; j〉 if
∗ `Aj n,

• LΠi∈IAi =
⋃
i∈I LAi,

• �Πi∈IAi(〈m; i〉) = �Ai (m).

The empty arena, containing no moves (the empty product of arenas) is
denoted 1.

Function Space This is an asymmetric version of the product arena; the set of
moves is again a disjoint union with labelling inherited from the components,
but the (formerly) initial moves of the arena which occurs negatively are
enabled by the initial moves of the arena occurring positively.

• MA(B = MA +MB,

• 〈m; i〉 `A(B 〈n; j〉 if i = j and m ` n
or m ∈MB, n ∈MA and ∗ `B m and ∗ `A n,
∗ ` 〈m; i〉 if m ∈MB and ∗ `B m.

For m ∈ A × B;A ( B, write m @−A if m is a move from the A component,
etcetera.
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Justified sequences over these constructions can be projected into their constituent
components.

Definition 3.2.5 For a justified sequence s over an arena A, formed from subare-
nas B;C; : : : by the above constructions, the restriction s�(B;C; : : :) is a justified
sequence defined as follows:
"�(B;C; : : :) = "

sa�(B;C; : : :) = s if a 6@−B;C; : : :
sa�(B;C; : : :) = (s�(B;C; : : :))a if a @−B;C; : : :.
The justifier of a in sa�(B;C; : : :) is the most recently played move from B;C; : : :

which hereditarily justifies a. (If there is no such move, then a is initial.)

Similarly, a sequence can be restricted to the occurrences of moves hereditarily
justified by some single occurrence.

Definition 3.2.6 Let s be a justified sequence in an arena A, and a an occurrence
of a move of A in s. Then the ‘thread of a in s’, written s�a, consists of the
moves of s hereditarily justified by a, in the order in which they have occurred,
with justification pointers from s.

Note that if s is a justified sequence such that s ∈ JA×B or s ∈ JA(B , then
s�A ∈ JA and s�B ∈ JB. If a is initial, and s ∈ JA then s�a ∈ JA. Even with this
minimal amount of structure, a basic category of processes and agents (games
and ‘pre-strategies’) can be defined, leaving scope for obtaining particular effects
by applying different constraints.

Definition 3.2.7 The category A has arenas as objects:
morphisms f : A → B are non-empty, prefix-closed sets of justified sequences
(pre-strategies) over the function-space A( B.
Following Abramsky and Jagadeesan [5], composition of strategies can be described
as ‘parallel composition with hiding’:
Given f : A→ B and g : B → C

f ; g = (f‖g)=B = {s�A;C | s ∈ f‖g}, where f‖g is the uncovering of f played
against g:
f‖g = {s ∈ J((A(B)(C) | s�(A;B) ∈ f ∧ s�(B;C) ∈ g}.
There is a difference here with previous definitions of composition in Hyland-Ong
style games — the use of the restriction operation on justified sequences to ‘mend’
justification pointers following the ‘hiding’ of moves in B.

For any arena A, the identity morphism idA : A → A is the ‘copycat’ which
copies moves from the left hand component into the right hand and vice-versa.
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Canonical morphisms are in general copycat strategies. They can be formalised
(similarly to [6]) as follows.

Definition 3.2.8 Suppose F : A → B;G : B → A are order-preserving maps on
arenas:
i.e. partial functions from MA to MB such that:
F (∗A) = ∗B and a ` b if and only if F (b) defined implies F (a) defined and
F (a) ` F (b).
Then let copyF,G : A→ B be the least set of justified sequences closed under the
following definition:

• " ∈ copyF,G

• s (even− length) ∈ copyF,G, and a @−A implies saF (a) ∈ copyF,G

• s (even− length) ∈ copyF,G, and b @−B implies sbG(b) ∈ copyF,G

where the justifier of F (a) (or G(b)) is the move succeeding the justifier of a (or
b).

Thus, for each arena A, if ID(A) is the identity map from A to itself,

idA = copyID(A),ID(A):

Definition 3.2.9 Suppose F : B → C is an order-preserving map of arenas.
This naturally extends to maps FA

r from justified sequences over A ( B, to
justified sequences over A( C, and FA

l from JC(D to JB(D.
FA
r (") = "

FA
r (sa) = FA

r (s)a, if a @−A
FA
r (sb) = FA

r (s)FA
r (b), if b @−B

where these are defined, with �(F (a)) = F (�(a)) for non-initial moves in B.
So FA

r sends morphisms on A→ B to morphisms on A→ C and
FA
l : A(C;D)→A(B;D).

Proposition 3.2.10 If F : B → C is an order-isomorphism of arenas, then for
any pre-strategies f : A→ B, and g : C → D

f ; copyF,F−1 = FA
l (f), and copyF,F−1 ; g = FA

r (g).

Proof: Note that
s ∈ copyF,F−1 if and only if for all even prefixes t v s, F (t�B) = t�C.
Hence by definition of parallel composition of strategies, sa ∈ f‖copyF,F−1 , if and
only if sa�A;B ∈ f and Fl(t�A;B) = F−1

l (t�A;C) for all prefixes t of s such that
t�A;B is even-length.
Hence s ∈ f ; copyF,F−1 if and only if s = Fl(s′) for some s′ ∈ f ; i.e. s ∈ Fl(f). �
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For any pre-strategy f : A → A, ID(A)l(f) = ID(A)r(f) = f , so idA is a
well-defined identity.

Proposition 3.2.11 (A is a well-defined category)

Proof: It remains to show associativity of composition, for which it is sufficient
to show that for pre-strategies f : A→ B, g : B → C, h : C → D,
f ; g;h = (f ; g);h = f ; (g;h) (for which the cases are similar)
where f ; g;h = (f‖g‖h)�(A;D), and f‖g‖h =

{s�A( D | s ∈ ((A( B)( C)( D) ∧ s�A;B ∈ f ∧ s�B;C ∈ g ∧ s�C;D ∈ h}

If s ∈ f ; g;h, then there is some t ∈ ((A( B)( C)( D such that t�A;D = s,
and t�A;B ∈ f , t�A;B;C ∈ f‖g, hence t�A;B;D ∈ (f ; g)‖h, and
t�A;D = s ∈ (f ; g);h.
To prove the converse:
Suppose s ∈ (f ; g)‖h then by definition of composition, there is some t ∈ f‖g
such that s�(A;C) = t�(A;C). It is sufficient to show by induction on length of
s that there exists r ∈ f‖g‖h such that r�A;D = s�A;D and r�A;B;C = t, and
hence s�A;D ∈ f ; g;h.
So given sa ∈ (f ; g)‖h, and t · u ∈ f‖g, such that sa�(A;C) = t · u�(A;C) and
s�(A;C) = t�(A;C), applying the inductive hypothesis to s yields r ∈ f‖g‖h
such that r�A;B;C = t, and r�A;D = s�A;D. Then either a is a move in D

(so u = "), and let r′ = ra, or a is a move in A;B;C, — let r′ = r · u. Then
r′ ∈ f‖g‖h, and r′�A;B;C = t · u, and r′�A;D = s�A;D as required. �

Proposition 3.2.12 The empty arena 1 is a terminal object in A, as A( 1 = 1

for any arena A.

Hence A( B ∼= 1( (A( B) for any A;B, and so each morphism in A(A;B)
has a unique ‘name’ in A(1; A( B).

Proposition 3.2.13 (Symmetric monoidal closure) A;⊗;1;(; is a symmet-
ric monoidal closed category, where A⊗B is the product of arenas A and B, the
unit 1 is the empty arena, and A( B is the ‘function space’ arena defined above.

Proof: The isomorphisms of arenas Assoc : (A × B) × C → A × (B × C); I :
A× 1→ A, and twist : A×B → B × A define copycat strategies which are the
canonical morphisms for the monoid, and satisfy the coherence conditions for a
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symmetric monoid.
For f : A→ C and g : B → D

f ⊗ g = {s ∈ J(A⊗B)((C⊗D) | s�A;C ∈ f ∧ s�B;D;∈ g}

Bifunctoriality of ⊗ (i.e. (f ⊗ g); (h⊗ k) = (f ;h)⊗ (g; k) for f : A→ C; g : B →
D; h : C → E; k : D→ F ) is shown as follows.
Suppose s ∈ (f ⊗ g); (h ⊗ k), then there exists t ∈ (f ⊗ g)‖(h ⊗ k) such that
t�A;C = f , t�D;E ∈ g, t�C;E ∈ h, t�D;F ∈ k. Then t�A;C;E ∈ f‖h, and
t�B;D; F ∈ g‖k, so s = t�A;B;E; F ∈ f ;h⊗ g; k.
To show that f ;h⊗ g; k ⊆ f ⊗ g;h⊗ k:
If s ∈ f ;h⊗g; k, then there exists r ∈ f‖h such that s�A;E = r�A:E, and t ∈ g‖k
such that s�B;F = t�B;F . It is sufficient to show by induction on length of s
that there exists u ∈ f ⊗ g‖h⊗ k such that s = u�A;B;E; F , and r = u�A;C;E,
and t = u�B;D; F , and hence s ∈ f ⊗ g;h ⊗ k as required.
Suppose sa ∈ f ;h ⊗ g; k, t ∈ f‖h, and r ∈ g‖k such that sa�A;E = t · v�A;E,
and sa�B;F = r · w�B;F , and s�A;E = t�A;E, and s�B;F = r�B;F . Then
there is some u ∈ f ⊗ g‖h ⊗ k, satisfying the inductive hypothesis with respect
to s; r; t. Form u′ = u · v · w, satisfying the inductive hypothesis with respect to
sa; r · v; t · w.
Finally, there is an order isomorphism LAMBDAA,B,C : A⊗ B( C ∼= A( (B( C),
which defines an adjunction between ⊗A and A( .
Writing, ’f ‘ : A→ B for the inverse to the naming operation:
Λ(f : A⊗B → C) = ’Λr(‘f ’)‘.
The copycat strategy
AppA,B : (A( B)⊗ A→ B = LAMBDA−1A,B,A(B(‘idA(B’) is the co-unit. �

3.3 Rules and Games

If arenas give a general notion of subject for debate, or type, games correspond
to a more specific, and more extensional notion; the interactions possible under
a given set of rules.
To define games, the labelling on the moves is used, along with rules which govern
when they can be played.

Definition 3.3.1 A rule consists of a pair 〈R;LR〉 of a predicate R on justified
sequences, with a set LR of ‘R-relevant’ moves. So the labelling function �A can
be ‘projected’ to a function �RA : MA → LR, where
�RA(m) = �A(m) ∩ LR.In cases where �RA is always either empty or a singleton,
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�RA may be given as a partial function from MA to LR.
The predicate R must satisfy the following requirements:

Prefix Closure s v t implies R(t) =⇒ R(s)

R-relevance R(s) ∧ �R(a) = ∅ =⇒ R(sa).

Note that because equality of justified sequences is defined only in terms of having
the same justification pointers, and labellings on moves, a rule can only ‘observe’
these properties, and not, for instance, whether a sequence was generated from
a particular arena. The rules discussed in this thesis can be easily seen to have
these properties, as they can be given as inductive definitions of the form:
‘R(sa) if and only if R(s) and �R(a) 6= ∅ =⇒ ΦR(s; a)’,
where ΦR is a formula in a semi-formal ‘language of justified sequences’ containing
predicates such as “s is a prefix of t”, “a is the justifier of b in t” and so on.

For a finite set of rules R = {〈r1; L1〉; : : : 〈rn; Ln〉}, R will also be used, by
abuse of notation, to denote their conjunction, 〈r1 ∧ : : : ∧ rn; L1 ∪ : : : ∪ Ln〉

Proposition 3.3.2 The conjunction of of well-defined rules is a well defined rule.

Since each rule is directly relevant to a labelling �RA : MA → P(LR), and applies
to moves only on which this labelling is defined, rules can be relaxed over an
arena simply by removing labels.

Definition 3.3.3 Given an arena A and a set of moves M ⊆MA, the rule R is
relaxed on M in A to give a new arena A′ by removing all of the relevant tags
from the moves, — i.e. defining A′ = 〈MA;`A; L; �A′〉 where
�A′(m) = �A(m)=LR if m ∈M , and �A′(m) = �A(m) otherwise.
If a rule is relaxed over the entire arena (M = MA) to form A=R then it is said
to have been abandoned.

Definition 3.3.4 A game is a set of justified sequences of moves which is specified
(up to equality of justified sequences) by some arena and rule.
For a rule set R, and arena A, R(A) will denote the game with arena A, and
plays subject to the rules R, i.e.

R(A) = {s ∈ JA | R(s)}

Thus games are in some sense more extensional objects than the arenas which
‘realize’ them, although this should not be confused with the (more significant)
point that strategies are intensional.
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Proposition 3.3.5 For any rule-set S containing a rule R, and arena A, the
game specified by abandoning R on A and applying S, is equivalent to applying S
without R to A (S={R})(A) = S(A=R).

Proof: is direct by definition. �

A strategy on a game G is a prefix-closed set of even-length plays in G.

Definition 3.3.6 For any rule R, form the ‘category’ GR with
objects: games R(A) for some arena A
morphisms from A to B: pre-strategies on R(A( B), with composition defined
using uncovering:

�; � = {s�A;B | s ∈ �‖� ∧R(s�A;B)}:

In order for this to define a SMCC [51], it is necessary to make the following
further requirements of rules:

Copycats: If F : A → B is an isomorphism of arenas, then R(copyF,F−1) :
R(A( B) = {s ∈ copyF,F−1 | R(s)} is an isomorphism. So, in particular,
for each A, R(copyID(A),ID(A)) is an identity on R(A).

Associativity: If s ∈ ((A( B)( C)( D is such that R(s�A;B),
R(s�(B;C)); R(s�(C;D)), and R(s�(A;D)) then R(s�(A;C)) if and only if
R(s�(B;D)).
To show that this means that composition is associative, suppose R is asso-
ciative, and � : A → B, � : B → C and � : C → D. Then if s ∈ (�; � ); �,
by Proposition 3.2.11 there exists t ∈ ((A ( B) ( C) ( D such that
t�A;B ∈ �, t�(B;C) ∈ � , t�(C;D) ∈ � and t�A;D = s, and R holds of all
these subsequences. So by assumption, R(s�(A;C)) implies R(s�(B;D)),
so s ∈ �; (� ; �). The converse is entirely similar, so (�; � ); � = �; (� ; �) as
required.

Proposition 3.3.7 Each category GR defined from such a rule R is symmetric
monoidal closed.

Proof: For games R(A); R(B), define the tensor product and exponential,
R(A)⊗R(B) = R(A⊗B), and R(A)( R(B) = R(A( B).
The isomorphisms of arenas between A× B and B × A, (A × B)× C and A ×
(B × C) and (A × B) ( C and A( (B( C) define isomorphisms in GR by
Definition 3.3.6, so the proof of symmetric monoidal closure goes through just as
in Proposition 3.2.13. �
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A result which depends on using rules and arenas to specify games is the following.

Proposition 3.3.8 Every game is specified by an arena which is a forest. (i.e.
one in which every non-initial move is enabled by a unique move).

Proof: is for finite arenas, but can be extended to arenas of any size. Call a
move a ‘branching node’ if it is enabled by two or more different moves. Then
a finite arena is a tree (with respect to hereditary enabling) if it contains no
branching nodes. So the proof is by induction on the number of branching nodes,
that every arena is play-equivalent to a tree. Assuming A is not a tree, choose
m ∈ MA such that ni `A m : i ≤ k for some distinct n1; n2; : : : nk ∈ MA, but
there is no branching node hereditarily enabled by m.
Let A�m be the arena of moves hereditarily enabled by m (including m) with
enablings as in A. Define the arena A′ to be the same as A, except that it has
a separate copy of the subtree A�m attached below each ni. Then A′ has fewer
branching nodes than A, and JA = JA′ , as in any justified sequence over A, each
occurrence of m is justified by a unique occurrence of some ni, which defines
an obvious isomorphism of justified sequences (which preserves the labelling on
occurrences of moves). Hence R(A) = R(A′) for any rule R. �

Note that the one-move arena, o, with a single move (appropriately labelled), is
sufficient to define all finite arenas using the function space and product construc-
tions.

3.4 ‘Linear’ Games

This section describes a cartesian closed category and associated ‘linear decom-
position’ of a category of games, based on a single rule. The notion of linear
decomposition is borrowed from (intuitionistic) linear logic [29] and its categor-
ical models [11], but the purpose is not to define a full linear type structure.
Instead linearity is used to analyze how restricting repetition of moves can define
sound and complete models of control (i.e. pointed CCCs) and identify strategies
which correspond to functional programs with local control. This is organised
along the lines of [6] and [59]; in addition to the SMCC, a cartesian product
and co-monad ! such that !(A×B) ∼=!A⊗!B are described, so that the co-Kleisli
category of the ! is cartesian closed. So the ‘intuitionistic’ function type A⇒ B

is modelled as !A( B.
The novel feature is that this is done using a notion of ‘linear’ move. The

role of the ! can then be explained in terms of relaxing linearity. In addition,
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using distinguished moves to define linear connectives will allow the ‘bracketing
condition’, describing local control flow, to be presented and analyzed using the
decomposition of classical and intuitionistic types into linear logic.

Definition 3.4.1 (Linearity rule) Any two distinct linear moves (those labelled
‘L’) occurring in the same justified sequence have different justifiers.
More formally:
L(sa) if �L(a) = L implies that for all b ∈ Occ(s), �L(b) = L implies �(a) 6= �(b).
(Note that non-initial linear moves can occur more than once, so long as the dif-
ferent occurrences have different justifiers.)

However, there is a problem with this rule: — associativity of composition fails.
(This is an old problem, going back to Blass’ game semantics of linear logic ([13],
see also [5]).

Proposition 3.4.2 Composition of strategies on linear games is not associative.

Proof: Consider the following games and strategies � : A( B and � : B ( A,
where the initial move of B is linear, but the initial move of A is not (otherwise
they are the same)
� and � just play copycat, which are valid strategies, as if B repeats its initial
move, the repeated linear move made in A is justified by the new move. Hence
�; � = idA, and so (�; �); � = � for any � : A( C.
But suppose � repeats the initial move in A, justified by the same initial move
of C (again legitimate, as this is not a linear move). But this cannot be the
restriction to A ( C of a sequence in �‖� , however, as such a sequence would
also contain the initial move in B twice, justified by the same move, violating
linearity. Hence this play is not in �; (�; � ) either. Thus �; (�; � ) 6= � . �

This problem is caused by the possibility of forming arbitrary constructions with
linear moves. The solution adopted here is to restrict some of these possibilities.

Definition 3.4.3 An arena is well-opened if all of its initial moves are linear.
An arena is freely-opened if none of its initial moves are linear.

Compare this with McCusker’s definition of well-openedness for games [59] (Hyland-
Ong games are implicitly defined to be well-opened):

Definition 3.4.4 A game G is well-opened if sa ∈ G and a is initial implies
s = ".
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So under the linearity rule, the well-opened games are precisely those specified
by a well-opened arena.
Well and freely opened games can also be combined.

Definition 3.4.5 The category of well-opened games W, has well-opened games
as objects and pre-strategies on A( B as morphisms.
The category of freely-opened games F , has freely-opened games as objects and
pre-strategies on A( B as morphisms.
The well and freely opened games form a category O in which
Objects are the well-opened and the freely opened games.
Morphisms from A to B are pre-strategies on A ( B, provided that A is well-
opened implies B is well-opened (if A is freely opened and B is well-opened then
O(A;B) is defined to be empty).

In none of these cases can the pathology described above arise, and without this
possibility, associativity of composition is implied by the stronger property of
compositionality.

Definition 3.4.6 A rule is compositional if for all s ∈ (A( B)( C,
R(s �A;B) and R(s �B;C) implies R(s �A;C), so that if � : R(A ( B) and
� : R(B ( C) then �; � is a set of plays in R(B ( C).

Proposition 3.4.7 Linearity of moves is compositional, and hence the categories
of well and freely-opened games and its subcategories of well-opened, and freely
opened games are well-defined.

Proof: Suppose s ∈ (A( B)( C, and L(s�A;B); L(s�B;C) , so L(s�A) and
L(s�C). Thus the only possible violation of linearity in L(s�A;C) is if some initial
move in A is linear, but an initial move in C is not. But if C is not well-opened,
then A is freely opened, so this impossible.
The copycat strategy L(idA) is an identity in the category, as moves in s ∈
idA‖f : A( B are repeated with the same justifier only if they are repeated in
s�A;B ∈ f with the same justifier, and are therefore not linear. �

The product of a well-opened and a freely opened arena is neither well, nor freely
opened, so this will not in general specify a well-defined operation in O. However,
it can be applied in both of its subcategories, with different results.

Proposition 3.4.8 The product of arenas (Definition 3.2.4) defines a cartesian
product on the category of well-opened linear games.
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Proof: For well-opened games L(A) and L(B), define

L(A)&L(B) = L(A×B)

which is also well-opened.
Then L(A)&L(B) = {s ∈ JA×B | s ∈ L(A)∨ s ∈ L(B)}, — since the initial move
is unique, it must represent a choice to play in one of the two components for the
rest of the game.
(Note that this is the definition of cartesian product of AJ games, and in [59]
etcetera.)
So for maps f1 : L(A)→ L(B); f2 : L(A)→ L(C) there is a unique pairing

〈f; g〉 = {s ∈ L(A)( (L(B)&L(C)) |s @−f ∨ s @−g}

such that 〈f1; f2〉; �i = fi.
(The pairing operation for the tensor exists, but is not unique.) �

Not only is the subcategory of freely opened games a symmetric monoidal closed
category with respect to ⊗;(, but the closure extends over the combined cate-
gory in the following sense.

Proposition 3.4.9 For any freely opened game B, the map
B( : O → O is functorial, and the co-unit of the adjunction between
(B( )�F and ⊗B

App : ((B( C) ⊗B)→ C

extends (with its co-universal property) to all objects C of O.
i.e. O(A⊗B;C) ∼= O(A;B( C) for any C.

Proof: is by extension of Proposition 3.2.13. �

3.4.1 The linear exponentials

The linear exponentials, ! and its dual ?, are introduced to linear logic to restore
the possibility of performing structural rules, with some measure of restraint. The
various translations of classical and intuitionistic types and proofs into linear logic
[29], [22], [31] are based upon the ‘decoration’ of linear formulas with sufficient
exponentials to permit the translation of all of the structural rules in the proof.
Such linear decomposition of the Hyland-Ong games has already been given, in
a different form, by McCusker. The main difference here is that the ! is modelled
as a local relaxation of the linearity conditions. Thus there is a direct connection
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between the linear decomposition, and decoration, and the global relaxation of
the linearity conditions. In the presence of the global rules applied in [59] (visi-
bility and well-bracketing) the interpretation of the relevant parts of the negative
fragment (!;⊗;&;() proves to be play-equivalent to McCusker’s, so [59] is an
important source of detail. Both constructions are somewhat ad hoc, because the
Hyland-Ong games lack the structure to support the full range of linear types
satisfactorily. (The problem with the ! in [59] is that it is not a co-monad, as
there is in general no interpretation of the ‘dereliction map’ !A( A. McCusker
goes on to show, however, that a true co-monad can be defined (an infinite tensor
product with an equivalence on strategies) which yields an equivalent CCC as
its co-Kliesli category.) Combining the well and freely opened games in a single
category here allows the ! to be described as a co-monad (at the cost of some
restriction of symmetric monoidal closure).

In order to define a co-monad, attention is restricted to a certain subset of
the pre-strategies, essentially those identified in [4] as being thread independent.

Definition 3.4.10 A (pre-)strategy � : A is thread-independent if sa; t ∈ � and
(s�c) = t�c (where c is the initial move hereditarily justifying a) then ta ∈ �.

So thread-independent strategies are defined by their sets of threads. They are
employed (with a notion of polarity and determinacy) by Abramsky, McCusker
and Honda to give a semantics of general references [4].

Proposition 3.4.11 The thread-independent pre-strategies on linear games form
a well-defined category.

Proof: The identity is thread-independent, since s ∈ idA if and only if r�c ∈ idA
(c initial) for every prefix r v s. Hence if sa; t ∈ idA and s � c = t � c, then
sa�c ∈ idA, so ta�c ∈ idA, so ta ∈ idA.
The composition of thread-independent strategies � : A → B and � : B → C is
thread-independent.
First observe that the uncovering �‖� is itself ‘thread independent’. Suppose
sa�b ∈ �‖� , and t ∈ �‖� . Then by thread independence of �; � , ta�A;B ∈ �, and
ta�B;C ∈ � , hence ta ∈ �‖� .
The difficulty for going on to prove thread-independence for �‖� �B;C is that
t�A;C�a = s�A;C�a does not necessarily imply that t�a = s�a; the parts of the
thread which are hidden may be different. However, threads are in some sense
interchangeable, as shown below.

Lemma 3.4.12 Suppose s; t ∈ �‖� , where s is single threaded (well-opened), and
there is an initial move a in t such that t�a�A;C = s (but this is not necessarily
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the current thread). Then there exists t′ ∈ �‖� such that t′�A;C = t�A;C, and
t′=(t′�a) = t=(t�a) and t′�a = s.

Proof: is by induction on the length of t:
Suppose s; tb ∈ �‖� , and tb�a�A;C = s.
Suppose b is not hereditarily justified by a, then by inductive hypothesis there
exists t′ ∈ �‖� such that t′ �A;C = t�A;C, and t′=(t′ �a) = t=(t�a). Thus in
particular t′�c = t�c, where c hereditarily justifies b. So by thread independence
of �‖� , t′b ∈ �‖� , and t′b satisfies the above conditions.
Suppose b is hereditarily justified by a, then either b @−B — in which case the t′

satisfying the inductive hypothesis for t will also satisfy it for tb,
or b @−A;C, so s = s′b · u for some suffix u of moves wholly in B, and justified by
a. Then by inductive hypothesis there exists t′ ∈ �‖� such that t′�A;C = t�A;C,
and t′=(t′ � a) = t=(t � a), and t′ � a = s′. By repeated applications of thread
independence, t′b · u ∈ �‖� , (and t′b · u satisfies all of the other conditions as
well). �

So to show thread independence of �; � , suppose sa; t ∈ �; � , and sa�b = ta�b.
Then by the lemma there exists t′a ∈ �‖� such that t′�A;C = t, and t�A;C�b =
sa�b, and hence t′c�A;C = ta ∈ �; � .

Definition 3.4.13 For any arena, A, obtain !A by relaxing the linearity condi-
tion on the initial moves of A. For any game G = L(A),

!G = L(!A):

For thread-independent � : A→ B, define the pre-strategy !� to be the least prefix-
closed set of sequences of L(!A(!B) such that
if s ∈!�, and sa�b ∈ �, for some b hereditarily justifying a, then sa ∈!�.

The following facts are immediate:

• the image of ! is the category of freely opened games and thread-independent
strategies,

• its restriction to that category is the identity,

• hence it is idempotent.

Proposition 3.4.14 ! is a co-monad on the category of well and freely opened
games and thread-independent strategies.
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Proof: ! is an endofunctor on O:
For � : A→ B; � : B → C, !(�; � ) =!�; !� : — proof is by induction on sequence
length.
Suppose sa ∈!(�; � ), so that s ∈!�; !� by hypothesis, and sa�b ∈ �; � , and hence
sa�b ∈!�; !� so by thread-independence of !�; !� , sa ∈!�; !� as required.
If sa ∈!�; !� , then s ∈!(�; � ), and there exists t ∈!�‖!� such that t�A;C = sa.
t�b�A;B ∈ �, and t�b�B;C ∈ � , by thread independence,
hence t�A;C�b = sa�b ∈ �; � , and so sa ∈!(�; � ), by definition of !.
There are natural transformations, — dereliction, der :! → Id, and promotion,
prom :!!→!. But these are both trivial copycats as ! =!!, and derA :!A → A is
just given by the same function from threads to moves as the identity.
For A;B ∈ O which are both well-opened or freely opened

!(L(A)&L(B) =!L(A×B) =!L(A)⊗!L(B)

so in particular, there is a contraction map conA :!A(!A⊗!A which is the strategy
!�A, where � : A→ A× A is the diagonal map for ×.
The following naturality property for contraction is then reducible to functoriality
of ! and ×.

!A
!σ

��

conA// !A⊗!A

!σ⊗!σ
��

!B conB
// !B⊗!B

�

Since ! is a co-monad, it has a co-Kleisli category, O!, which has the same objects
as O, and as morphisms from A to B, thread-independent strategies on !A( B.

Proposition 3.4.15 O! is cartesian closed.

Proof: The generalised product has been shown to be cartesian on well-opened
games; it remains to show cartesian closure.
O!(A×B;C) = O(!(A×B); C) = O(!A⊗!B;C).
By the extended symmetric monoidal closure (Proposition 3.4.9)
O(!A×!B;C)∼= O(!A; !B( C)
= O!(A;B ⇒ C) as required. �

Thus a global relaxation of the linearity rule yields a CCC.

Corollary 3.4.16 The category of arenas and thread-independent pre-strategies
(the image of the well-opened games under !) is cartesian closed.
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3.5 Two-player arenas

A fundamental and distinctive aspect of game semantics is that interaction is
modelled as a dialogue between different agents. The simplest and most important
case simply distinguishes ‘Player’, — the system, from the rest of the world, —
the environment (‘Opponent’). Games need not be seen as competitive, however,
but as co-operative efforts between program and input, to produce a useful result.

Definition 3.5.1 An alternating arena, 〈M;`; {O;P} ⊆ L; �〉 is an arena in
which the set of moves is partitioned between Opponent ‘O-moves’ and Player
‘P -moves’. In other words, the projection of the labelling function as �OP : M →
{O;P} is total. (Sometimes the complementarity O = P; P = O will be used.)
It is further required that

• All initial moves are Opponent’s: ∗ ` m implies �OP (m) = O,

• Enabling alternates between Opponent and Player: m ` n implies �OP (m) =
�OP (n).

Definition 3.5.2 A justified sequence satisfies the alternation rule if its moves
are made alternately by Player and Opponent:
A(sab) if and only if A(sa) and �OP (b) = �OP (a).

Now that there is a notion of polarity, pre-strategies can be refined to strategies.

Definition 3.5.3 A strategy on game A is a non-empty even-prefix-closed set of
alternating sequences in A.

The adjustment from pre-strategies as prefix-closed sets, and strategies as even-
prefix closed does not radically alter the structure which has been built up so
far. A pre-strategy over an alternating game can be transformed to a strategy by
erasing all of its odd-length sequences. Odd-length sequences are re-introduced
to strategies in a limited way, to represent escapes, in Chapter 5, Section 5.3.2.

In fact, it is necessary to modify the definition of the ‘function space’ con-
struction( slightly in order to define an alternating arena, as the initial moves
of A in A( B were originally Opponent moves, but are justified by the initial
(Opponent) moves of B. (Suggesting that alternation is a rather more funda-
mental kind of rule to the others considered here.) The solution is to invert the
Player/Opponent labelling on moves in A, in accordance with the fact that A
appears negatively.
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Definition 3.5.4 Form the alternating function-space arena A( B as in Defi-
nition 3.2.4, except that
�OPA(B(m) = �OPB (m), if m @−MB,
�OPA(B(m) = �OPA (m), if m @−MA.

However, the ‘switching condition’, (of [5], for instance) which says that Opponent
must play in the same component as the previous move in a game A( B (and
similarly Player must do so in A⊗B) is neither implicitly nor explicitly included in
this definition (it does not hold in the games model of references [4], for instance).

Composition of strategies over alternating arenas is defined as for pre-strategies,
except that the Player/Opponent labellings on arenas of the form (A( B)( C

are ignored (necessarily, as there is no coherent way to label the moves in the
B component). The labelling is restored by inference from the ‘alternation of
justification’: i.e. initial moves of s�A;C are Opponent moves, and the polarity
of any other move is the complement of its justifier.

Proposition 3.5.5 Alternation of even-length sequences is a well defined rule,
and the category of alternating games and strategies is well-defined.

Proof: Prefix closure and invariance under isomorphism is obvious. For any
alternating arena A, every justified sequence in idA is alternating, as each odd
(Opponent) move is followed by a copy from the other component, which will
have complementary polarity by the Player/Opponent inversion described above.
To show associativity, first note that a sequence s of even-length is alternating if
and only if for every even segment t (continuous subsequence) of s, the number
of Opponent and Player moves is equal (write O(t) = P (t)).
Suppose s ∈ ((A( B)( C)( D is such that all of
(s�A( B); (s�B( C); (s�C ( D); (s�A( D) are alternating and even length.
Then it is necessary to show that s�A( C is alternating and even-length if and
only if s�B ( D is (for which the two cases are entirely similar).
Proof is by induction on sequence length, so suppose every even segment of s�
A ( C is alternating and even-length. Then by induction, every proper even
segment of s�B( D is alternating. So it is sufficient to show that
O(s�A;C) = P (s�A;C) implies O(s�B ( D) = P (s�B ( D).
But O(s�B ( D) = O(s�A( D) +O(s�B ( C)−O(s�A( C)
= P (s�A( D) + P (s�B ( C)− P (s�A( C) = P (s�B( D) as required. �

Note that the alternating version of the one-move arena, o, specifies the one move
game, as there are no Player responses. This game will also be written o.
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Strategies are further required to be deterministic, although there is clearly
scope to study the semantics of concurrent languages by allowing non-determinism
(this ‘axis of the intensional hierarchy’ is currently being explored by Harmer [34]).

Definition 3.5.6 (Deterministic Strategies) A strategy is deterministic if

sa; sb ∈ � ⇒ a = b:

Thus a deterministic strategy on G is determined by a partial function from odd-
length sequences of moves inG (situations with player to move) to justified moves.
As expected, the identity strategy (and all other copycats), are deterministic
strategies, and determinacy is preserved by composition.

It has now been established that the category of of alternating games and
thread-independent deterministic strategies is a pointed CCC (with the one-move
game as answer object), and so this specifies call-by-name and call-by-value mod-
els of control, via the families construction and the monad of o-continuations.

Proposition 3.5.7 (Galt; o) specifies a continuous computational model of con-
trol.

Proof: Galt is cpo-enriched with the inclusion ordering on strategies as sets of
plays, which is complete, as for any chain {�i : A | i ∈ !} (or directed set),⋃
i∈ω �i is a thread-independent strategy. Moreover, composition in the cartesian

closed category is continuous with respect to this ordering, because:

• composition by ‘parallel composition with hiding’ in the symmetric monoidal
category is clearly continuous,

• the promotion operation for the co-monad ! preserves least upper bounds:
�† :!A(!B is defined by the same function from single threads to moves
as � :!A( B and hence for any chain

⋃
i∈ω �

†
i = (

⋃
i∈ω �i)

†.

McCusker shows in [59] that recursive domain equations can be solved in cat-
egories of games such as Galt. In particular, G has !-indexed products as a
particular case of the generalized product (Definition 3.2.4).

Definition 3.5.8 Given any arena A, define the arena Aω = Πi∈ωA.
For any i, there are obvious (partial) structure-preserving maps
Ei : Ai → Aω; Pi : Aω → Ai such that Ei;Pi = IDAi and

⊔
i∈ω Pi;Ei = IDAω .

So the embedding and projection pairs for the countable product are given by
ei : A = copyF,G, and pi = copyG,F .

�
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3.6 Views and innocence

Following Hyland and Ong, constraints on games and on strategies which reflect
functional behaviour by restricting access to the history of the computation can
now be described. The Player and Opponent views of a justified play give a
notion of ‘relevant history’ which proves important for understanding several as-
pects of the intensional hierarchy. They are related to the restriction operation
which projects the current ‘thread’ of play, and defines the thread-independent
strategies, but in quite a subtle way.

Definition 3.6.1 (Player and Opponent views.)

The Player view of a finite, justified alternating sequence s, is written psq and
defined inductively on the length of s, as follows
p"q = ":

psaq = psqa; if a is a P-move.
psaq = a; if ∗ ` a.
psa · tbq = psqab; if b is an O-move justified by a.

There is a dual notion of Opponent view, xsy:
x"y = ":

xsay = xsya; if a is an O-move.
xsa · tby = xsyab; if b is a P-move justified by a.

In order for the (Player or Opponent) view of a justified sequence to be a
justified sequence itself, he must respect the constraint of visibility.

Definition 3.6.2 (Visibility) A justified sequence sa obeys the visibility rule V ,
if for every occurrence a in s, the unique move in s justifying a is in the view (of
whoever is making the move a).
V (sa)⇐⇒ V (s)∧ sa even =⇒ �s(a) ∈ Occ(psq)∧ sa odd =⇒ �s(a) ∈ Occ(xsy).

As noted in the previous section, games without the visibility condition, and
thread-independent strategies, form a cpo-enriched CCC, and hence a basis for
models of PCF. Moreover, Abramsky, Honda and McCusker showed in [4] (in
essence) that as well as PCF, higher-type references can be interpreted in this
category. This built on the work of [2] which gave semantics of ground-type as-
signments by dropping the condition of innocence on strategies (see Section 3.6.1).
As visibility can be considered as a rule applying only to Player strategies (which
is sufficient for Player views to be justified sequences) the innocent strategies
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satisfying this rule form the purely functional core of this model, which can be
shown to be finitely definable using the results for PCF on its own. There are fac-
torization results showing that all thread-independent strategies can be written
as the composition of one obeying visibility (and innocence), and some canonical
representation of storage cells. These results were obtained in the presence of an
additional rule, — the ‘bracketing condition’, but they extend naturally to control
models as well. Anticipating the definability result for the innocent games model
of �PCF, the following working hypothesis can be given:
the models of control generated from the CCC of thread-independent strategies,
and the one move game are fully abstract for �PCF with higher-order references.
The work that remains to be done to prove this concerns soundness and adequacy.
The model without visibility is not yet well understood; the wild behaviour of
strategies can be counterintuitive. With the the addition of control operators,
things become even more complicated, one can use references and call=cc to
store continuations and invoke them in unusual places.

The visibility rule is assumed to apply to all plays of the games considered
henceforth (these are the ‘legal’ sequences, as in [43] etc.). This, however, is the
only rule strictly required for the initial games model of control.

Definition 3.6.3 An ‘unbracketed’ game is one generated from an alternating
arena by the rule visibility alone. (So called because the major difference from the
games of Hyland-Ong and McCusker is the absence of a bracketing condition.)

The following results about visibility appeared in [43].

Proposition 3.6.4 Every Player and Opponent view of a sequence satisfying
visibility is a well-formed justified sequence.

Proof: is straightforward by induction on sequence length. �

Closure under views can thus be added retrospectively as a well-definedness crite-
rion for rules (it is satisfied by linearity and alternation). The following properties
of plays satisfying visibility appear previous work such as [5],[6], [59] (often in def-
initions of games), going some way to explaining the significance of this rule as
a measure of ‘good behaviour’.

Proposition 3.6.5 (Switching condition) if sab ∈ V (A ⊗ B) is an even-
length sequence then a @−MA implies b @−MA and a @−MB implies b @−MB.
(Similarly if sab ∈ V (A ( B) is an odd-length sequence such that b is in the
same thread as a (or B is well-opened), then a @−MA implies b @−MA and a @−MB

implies b @−MB.)

67



Proof: is by induction on sequence length, showing that if Opponent’s last move
in s ∈ V (A⊗B) is in A, then psq is wholly in A, so Player’s next move must be
in A, and if Opponent’s last move is in B then psq is wholly in B. �

Proposition 3.6.6 (Projection condition) For unbracketed games A;B
A⊗B = {s ∈ JA⊗B | s�A ∈ A ∧ s�B ∈ B},
A( B = {s ∈ JA(B | s�A ∈ A ∧ s�B ∈ B},
!A = {s ∈ J!A | ∀a (initial) s�a ∈ A}.

Proof: is in [43] (in essence). It is also a corollary of Lemma 5.4.9, in which it
is shown that the projection condition holds for plays which are innocent. �

Each additional rule R preserves the projection condition provided that for s ∈
V (A( B), R(s) implies R(s�A) and R(s�B).

Proposition 3.6.7 The unbracketed games form a category.

Proof: The identity strategy always obeys the visibility condition with respect
to Player moves:
If sab ∈ idA then b is a copy of a, and is justified by the move preceding the
justifier of a, (of which the latter is a copy). This is the penultimate Opponent
move in the view. Associativity is a consequence of the fact that the visibility
rule is compositional (i.e. the composition of strategies satisfying the visibility
condition satisfies the visibility condition.) The is proved in depth in [59] following
[43]. It is a corollary of the fact that innocent strategies compose, which is
established in there and indirectly in Section 3.7. �

3.6.1 Innocent functions and strategies

The cartesian closed category of well-opened games and strategies was constructed
by placing a linearity constraint on (initial) Opponent moves. Composition of
well-opened strategies was defined using a projection from games without this
constraint (restriction to the current thread). The projection also defined (as its
image) a cartesian closed subcategory of the well-opened games, — the thread-
independent strategies.

In order to identify the functionally definable part of this CCC, corresponding
constraints and projections are applied to all of the Opponent moves and threads
in a game. This defines the innocent functions, — strategies which have responses
only to sequences in which Opponent plays linearly, using the Player view to
project less restricted sequences into these games. The image of this projection
consists of the innocent strategies [43].
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Definition 3.6.8 An innocent function on an arena A is an even-prefix-closed
and evenly branching set of Player views of plays in A. This definition can be
expressed in another way, by saying that an innocent function is a deterministic
strategy on the game obtained by labelling all of the Opponent moves in A as
linear. The views act as a projection from sequences in A to sequences in the
‘Opponent-linear’ game with the same arena.

Each innocent function � : A defines a strategy on the unbracketed game A by
composition with the view-function from sequences to views. Or this can be
written as a set of traces.

Definition 3.6.9 For an innocent function �, define the strategy �χ as the in-
ductive closure of the following definition (assuming sequences are alternating and
justified):
" ∈ �χ,
s ∈ �χ ∧ psabq ∈ � =⇒ sab ∈ �χ
(So �χ satisfies visibility.)

The image of this embedding consists of the ‘innocent strategies’.

Definition 3.6.10 A strategy is innocent if its moves are determined only by the
view of the game so far: i.e.

sab; t ∈ � ∧ psaq = ptaq⇒ tab ∈ �:

Note that this includes a certain ‘liveness’ condition which is redundant in the
setting of unbracketed games; not only does a strategy have the same response
to every view, if it ever has a response to a given view, that response is always
valid, hence.

Proposition 3.6.11 An innocent function � specifies an innocent strategy on a
game G if s ∩G is even-length for all s ∈ �χ.

Definition 3.6.12 For any strategy � : A, let p�q = {psq | s ∈ �}, so that p�q
is an innocent function on A if � is an innocent strategy on R(A).
Define the composition of innocent functions: � : A→ B and  : B → C:
�; = p�χ; �ψq.

For this definition to make sense, it is to show that the composition of inno-
cent strategies is innocent. This is a non-trivial fact which is verified (for well-
opened, well-bracketed games) in [43], and [59], and, less directly, in the proof
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of full and faithful completeness in the next section. For the moment, assume
that the composition of innocent, unbracketed strategies is innocent. So the un-
bracketed games and innocent strategies form a category, which will be written
G. The following proposition is a formalization of the remark made above, that
views/innocence are a generalization of thread projection/thread-independence.
This an important part of the proof of definability.

Proposition 3.6.13 (Bang lemma) For any innocent strategy � : A,

�!σ = �σ:

Proof: is by noting that only (part of) the current thread is visible to Player,
i.e. the Player view of s ∈ P!A(!B is the same as the Player view of s�a ∈ PA(B ,
where a is the occurrence of an initial move in B hereditarily justifying the last
move in s. �

It is a useful additional property of views that by concealing Opponent’s bad
behaviour, they can be used to project strategies over games governed by rules
into unbracketed ones, thus embedding models of purely functional languages,
for instance, into models with non-local control. (This remains a problem for
knowing (i.e. non-innocent) strategies: one can, for instance, use state to define
a strategy which detects manipulation of the control flow by the Opponent, but
without using local control flow itself.)

Definition 3.6.14 A rule is embeddable if it obeys the projection condition, and
for every justified sequence on A( B such that R(s�A) and R(s�B), but s itself
violates R, s ∩ R is odd-length. In other words, if a play on A( B violates R,
but its restriction to each component does not, then the fault is Player’s.

(So linearity, for instance, is embeddable.)

Proposition 3.6.15 For a category of (visibility satisfying) games and innocent
strategies GR, based on a compositional, embeddable rule R,

R(A) −→ V (A):

� =⇒ �pτq

defines a faithful functor into the category of unbracketed games and innocent
functions.
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Proof: Given � : R(A)→ R(B); � : R(B)→ R(C), it is necessary to show that
�pρq; �pτq = �pσ;τq.
The inclusion from right to left is straightforward.
From left to right it is sufficient to show that as long as Opponent adheres to the
rule R on �pρq; �pτq, then so does Player. So suppose sab ∈ �pρq‖�pτq is such that
b is a Player move in A or C, and sa�A;C obeys R. It is sufficient to show that
this entails that R(sa�A;B) and R(sa�B;C). Then sa�A;B ∈ � and sa�B;C ∈ �
and so sab�A;C ∈ �; � as required.
By the projection condition, R(sa�A;C) implies that R(sa�A) and R(sa�C).
Hence also R(sa�B), as otherwise � or � violate R. By definition of an embeddable
rule, if sa�A;B violates R, then the first move to do so is a Player move, which
is not possible, as � obeys R, and similarly, sa�B;C obeys R. �

Remark 3.6.16 A consequence of the above observation is that the set of views
of an innocent strategy is sufficient to determine whether it originates from a
game satisfying the rule R. A natural question follows: is there a simple charac-
terization of innocent R-strategies in terms of their view-functions, allowing the
relevant subcategory to be identified. In the cases of visibility (Player views are
justified sequences) and the well-bracketing rule which will be introduced (Player
views are well-bracketed), the answer is yes.

3.7 The pointed CCC of games and innocent
strategies is initial

Rather than showing separately that unbracketed games and finite innocent strate-
gies form a category, that it is cartesian closed, and finally that it is a full and
faithfully complete model of Λ(Ω), these facts are established together, by identi-
fying it as the image of the functor from the free partial cartesian closed category
over a single object. This is an economy of space; the direct proof that innocent
strategies compose, which can be found in [43], and [59] is detailed but not es-
pecially illuminating. It does not seem inappropriate to establish soundness and
completeness jointly; the innocent strategies can reasonably be defined as the
image of the initial functor, and their composition can be described accordingly.
(The fact that there is a well-defined notion of composition on Böhm trees, in a
sense the syntactic counterpart of innocent functions, has been shown by Curien
and Herbelin [20].) In addition, the isomorphism of the unbracketed model to the
free CCC is quite a general result in that it characterizes innocent composition
in the whole category of finite games and strategies.
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Proposition 3.7.1 The category of finite unbracketed games is isomorphic to the
(pointed) cartesian closed category of games freely generated from the one-move
game o. (With ⊥-maps given by the empty strategy in each case).

Proof: Proof is by induction on depth of the game tree; i.e. the longest justi-
fication sequence. Suppose G is a finite, non-empty unbracketed game. Then by
Lemma 3.3.8, G is generated by an arena which is a forest. So G is generated
by some arena A1 × A2 × : : :An, where A1; A2; : : : An are trees, and so each Ai

is equal to Bi ⇒ o, for some forest-arena Bi of strictly smaller depth, and so by
hypothesis, Bi can be constructed form o with × and⇒, hence A can as well. �

Hence the unique functor from the free pointed CCC over a single object to the
pointed CCC of finite games and strategies is surjective on objects. The image
of the functor is identified by proving the following theorem.

Theorem 3.7.2 The image of the unique functor from the free partial CCC to the
category of games and strategies consists of precisely the finite, innocent functions.

Corollary 3.7.3 The innocent functions form a pointed CCC, of which the fini-
tary part is a fully and faithfully complete model of Λ(Ω).

3.7.1 Characterizing the initial model

The fact that the free pointed CCC is a fully complete model of the simply-typed
�-calculus with non-termination defined in the previous chapter allows the functor
from it into the games model to be defined by inductive decomposition as follows.

Definition 3.7.4 (Evaluation trees of Λ(Ω)) The ‘evaluation trees’ of Λ(Ω)
are familiar as ��-long normal forms. Writing t ∈ N(Γ;T ) for ‘t is an evaluation
tree of type T over context Γ’, they can be defined as the closure of the following
inductive definition (products and the terminal type are omitted):

Ω ∈ N(Γ; �)

ti ∈ N(Γ; y : T ⇒ �;Ti) : i ≤ n
(((y t1) t2) : : :) tn ∈ N(Γ; y : T ⇒ �; �)

t ∈ N(Γ; x : S;T )
�x:t ∈ N(Γ;S ⇒ T )

Proposition 3.7.5 Every finitary term of Λ(Ω) is ��-equivalent to a finite eval-
uation tree.
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Proof: for the simply-typed �-calculus without constants is in [8]; this extends
readily to Λ(Ω) by considering Ω as an unbound, ground-type variable. �

Corollary 3.7.6 A model (C; a) of Λ(Ω) is fully and faithfully complete if and
only if every map f : A→ a has a unique decomposition in the following sense:
either f = ⊥A,a or
f = (〈�i; 〈[[M1]]M; [[M2]]M; : : : [[Mn]]M〉〉; App)
for some evaluation trees Mi ∈ E(Γ;Ai) : i ≤ n.

Definition 3.7.7 The unique functor from the initial model to (C; a) can there-
fore be defined on objects as F ([[�]]) = a, and F ([[S ⇒ T ]]) = F ([[A]])⇒ F ([[B]]),
and on morphisms:
F (⊥[[ι]]) = ⊥a,
F (〈�i; 〈g1; g2; : : : gn〉〉; App) = 〈�i; 〈F (g1); F (g2); : : : F (gn)〉〉; App.
F (Λ(g)) = Λ(F (g)).

Thus to identify the fully complete model inside C it is sufficient to find a set of
morphisms I(A;B) ⊆ C(A;B) at each A;B such that for each
A = Πi≤n(Σj≤miBi,j)

I(A; a) ∼= (
∐
i∈I

Πj∈JC(A×Bi,j; a))∗

(writing Σj≤miBi,j for the weak co-product (Πi≤mi(Bij ⇒ a)) ⇒ a and
∐

for
disjoint union of sets).
The isomorphism is given by

〈f; i〉 −→ 〈�i; 〈gi1; g2; : : : gini〉〉; App:

Moreover this must be a least solution to the above recursive equation so (follow-
ing Abramsky [1]) a norm function ]A,B : I(A;B)→ N is required such that

](〈�i; 〈g1; g2; : : : gn〉〉; App) > ](gi) i ≤ n:

As this identifies I as the image of a structure preserving functor into C, soundness
is automatic.

Proposition 3.7.8 If C is a pointed CCC, with a normed set of morphisms I
satisfying the above criteria, then the subcategory of C with objects freely generated
from a, and morphisms in I is isomorphic to the free pointed CCC.

Proof: is via Corollary 3.7.6 above, by induction on norms;
if f ∈ I(A; a) 6= ⊥, then f = 〈�i; 〈g1; g2; : : : gn〉〉; App, for some i, and g1; : : : gn

such that ](f) > gj for each j, so by induction each gj = [[Mj]] for some evaluation
tree Mj . �
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3.7.2 Axioms for denotational completeness in models of
control

It is now possible to present an axiomatic characterization of denotational models
of Λ(Ω) which are fully and faithfully complete, being (least) solutions to a recur-
sive equation on hom-sets. This gives a relatively elegant and economical proof of
definability for the games model, and by identifying precisely the assumptions on
which it is based, could allow the results achieved in this thesis to be generalised
to new models of control (using games, or some other presentation). Well cho-
sen axioms may even help to identify more elegant constructions as they contain
implicitly an abstract characterization of the initial model of control.

This approach was initiated by Abramsky in ‘Axioms for full abstraction and
full completeness’ [1]. This axiomatised definability results for models of (call-by-
name) PCF, and full (and faithful) completeness for models of the pure simply
typed �-calculus over a single base type (i.e. the free CCC over a single object)
(‘sequential’ and ‘pure sequential’ categories, in his terminology). The axioms
given here, and the resulting definition, are somewhere between the two, incor-
porating the partiality structure of one with the simple structure at ground type
(no values) of the other. In fact this allows the axiomatization to be simpli-
fied slightly. The major extension in their scope, however, is that via the (fully
complete) cps translations, they can be regarded as ‘axioms for definability in
models of control’. Notwithstanding the indirectness of the interpretation, the
axioms themselves are directly relevant to models of control; as will be shown,
they characterize the answer object as minimal, continuations as �-atomic, and
the underlying category as sequential.

It is also necessary to state the axioms differently, as soundness of the models
was assumed in ‘Axioms’, whilst here it is simply assumed that the axiomatized
maps form a subset of each hom-set of a pointed CCC. Refining the axioms in
this way makes sense in the context of the intensional hierarchy, as it is consis-
tent with the aim of identifying fully complete models of functional languages as
subcategories of more general categories with fewer constraints.

The axioms assume the following structure on a pointed cartesian closed cat-
egory C:

• a linear decomposition into a symmetric monoidal closed category L with
a co-monad ! such that C(A;B) = L(!A;B), and A⇒ B =!A( B.

• proposed definable morphisms I in L. These are given as a specified,
normed subset I(A;B) of each hom-set of L, containing the identity, ter-
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minal and bottom maps, and preserving products
(i.e. I(A;B × C) = {〈f; g〉 | f ∈ I(A;B); g ∈ I(A;C)).
All further requirements for I are contained in the following axioms (it need
not be assumed to be a category, for instance).

Recall also the notion of strict map; morphisms f : A→ B such that⊥A; f = ⊥B,
and the subcategory CS with the objects of C, and strict maps as morphisms
between them. In the various categories of games, the (non-⊥) strict strategies
from A to B are those which follow the initial move with a move in A.

The axioms have a uniform flavour — each takes the form of a statement that
a canonical mapping between hom-sets of L is a bijection on the restriction to
maps in I which preserves or reduces their norms. Hence they are presented as
an isomorphism between sets of I-morphisms, although the additional structural
details are crucial. (The first three characterize the answer object, and the latter
two are more general lemmas about sequentiality which have appeared in some
form in the decompositions of [6], [43], [59].) The intended interpretation of I in
the category of games is the innocent strategies. Although the ‘linear decompo-
sition’ for G described in Section 3.4 is not standard, the properties required by
the following axioms are present, so the proof goes through for G.

3.7.2.1 Minimality of the answer-object

I(1; a) = {⊥a}:

Anticipating the use of a as an ‘answer object’ for a continuations monad, this
condition can be seen as a necessary condition for preventing ‘junk’ from being
introduced into the semantics by a choice of answer object which is ‘too large’,
since an interpretation of a term over (A( a)( a

must either be⊥ or the lifting of an element of A. An answer object which includes
other possibilities, such as the choice of the flat domain of natural numbers as an
answer object in [80] violates this axiom.

Lemma 3.7.9 It is equivalent to the following condition from [1]:
All maps into the answer object are strict:
for any A, IS(A; a) = I(A; a).

Proof: For a non-strict map into a to exist, there must be a non-⊥ map from 1

to a, whilst if all maps into a are strict, in particular, if f : 1→ a, is strict, then
⊥1; f = id1; f = ⊥1. �

This axiom can in certain circumstances be subsumed into the following property.
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3.7.2.2 Contravariance of (linear) continuations

Is(A( a; B ( a) ∼= I(B;A)∗:

More precisely, there is an inclusion of maps of L(B;A)∗ in Ls(A( a; B( a):

∗ −→ ⊥A(a,B(a

(f : B → A) −→ Λ(idA(a ⊗ f ; App);

and the axiom stipulates that:

• its restriction to the maps in I is an isomorphism,

• it is strictly increasing with respect to the norm function
(i.e. ](f : B → A) < ](Λ(idA(⊥ ⊗ f ; App)))

(In G, any strict, non-bottom strategy from A ( a to B ( a responds to the
initial move in B( a by playing the initial move in A( a, Opponent plays an
initial move in A, henceforth Player must play according to a (smaller, innocent)
strategy on B( A.)
This axiom is essentially a form of Abramsky’s ‘linear functional extensionality’[1].
In a control setting it can be seen as stipulating that a (non-⊥) morphism between
linear continuations is always in the image of a the functor ( a. In the situation
in which I itself is given to be a SMCC, however, it also characterises a as a
minimal ‘standard datatype’, making the first axiom redundant.

Proposition 3.7.10 If the contravariance axiom holds for the SMCC L, then it
entails minimality of a, and hence that all maps into a are strict.

Proof: a and 1 ( a are still isomorphic in Ls, as all isomorphisms are strict
maps, and so by the contravariance axiom
Ls(a; a) = Ls(1 ( a;1 ( a) ∼= L(1;1)∗. Therefore there are just two distinct
maps in Ls(a; a), ida and ⊥a (these are distinct, as otherwise
⊥a : 1 → a is an isomorphism, and a is terminal, contradicting the fact that
there are two maps from a to itself).
Hence if f : 1 → a, ta; f = ⊥a,a, (where tA is the terminal map from a) as f is
not an isomorphism either.
So ⊥a = ⊥a;⊥a,a = (⊥a; ta); f = id1; f = f as required. �
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3.7.2.3 �-atomicity of continuations

IS(B;A( a) + IS(C;A( a) ∼= IS(B × C;A( a):

Specifically, there is a map into LS(B × C; (A ( a)) from the coalesced sum
LS(B; (A( a)) + LS(C; (A( a)), which sends f : B → A ( a to �l; f and
f : C → A( a to �r; f . For morphisms of I, this is required to be a bijection
such that ](f) = ](�i; fi)
This property of (target) objects is called �-atomicity in [1], following Joyal. In
G, all objects A( o are �-atomic, because they have a unique initial move. So
the first Player move in a strict strategy on B × C ( (A( o) is always in B or
C, and by definition of the cartesian product, the remainder of the play is a play
in B( (A( o) or C ( (A( o)

3.7.2.4 Linearization of head occurrence

Is(A; !A( B) ∼= Is(!A;B):

i.e. the canonical map from Ls(A; !A( a) into Ls(!A; a):
f −→ conA; ((f⊗ derA); App) is a bijection on maps in I, and
](f) = ](conA; ((f⊗ derA); App)).
Linearization of head occurrence in a strict strategy � :!A ( B in G is simply
a matter of relabelling the first opened thread in !A as a play in an additional
premise A, to yield � : A ( (!A ( B). This preserves innocence, as in any
play according to a strict strategy on !A( B, the initial move in the first thread
opened in !A appears in every subsequent Player view. (Compare with e.g. Danos,
Herbelin and Regnier’s notion of ‘linear head reduction’ [21].)

!A con //

f

��

!A⊗!A
id⊗der

��
B !A⊗ A

f̂

oo

Figure 3.1: Linearization of head occurrence (f −→ f̂ )

3.7.2.5 Uniformity of threads

I(!A; (B( a)) ∼= I(!A; !(B( a)):

That is, the ‘promotion’ mapping from L(!A; (B( a)) to L(!A; !(B( a)) which
sends f :!A→ (B( a) to f † :!A(!(B( a) = promA; !f is a bijection on maps
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in I. Since by definition of promotion, f †; der(B(a) = f , this means that for all
g ∈ I(!A; !(B( a)), (g; der(B(a))

† = g. The fact that this holds for all innocent
strategies in G has already been noted as the ‘Bang lemma’ (Proposition 3.6.13).

Definition 3.7.11 A partial sequential category is a pointed CCC, C, together
with a specified non-terminal object, a, which decomposes into a pointed affine
category L.

The category of AJM games and strategies (where I is the subset of history free
strategies) provides another example of a sequential pointed CCC, — almost!

3.7.3 Axiomatic decomposition

Theorem 3.7.12 (Decomposition in a sequential, pointed CCC) Let (C; a)
be a category with a linear decomposition L, and normed subsets of maps I sat-
isfying the axioms above.
If A1; A2; : : :An are objects of S such that Ai = Πj≤miBi,j ⇒ a =!(Πj≤miBi,j)( a
then

I(!Πi≤nAi; a) ∼= (Σi≤nΠj≤miI(!(A); Bi,j))∗:

Proof: (along similar lines to the decompositions in [1])
By Minimality of answer-object, or Proposition 3.7.10

I(!Πi≤nAi; a) ∼= IS(!Πi≤nAi; a)

by Linearization of head occurrence, this is isomorphic to

∼= IS(Πi≤n(!(Πj≤miBi,j)( a); !(A)( a)

by �-atomicity of (!(A)( a), to

∼= (Σi≤nI(!(Πj≤miBi,j)( a; !(A)( a))

so by Contravariance of continuations, to

∼= Σi≤nI(!(A); !(Πj≤miBi,j))∗

and hence by Uniformity of Threads, to

∼= Σi≤nI(!(A);Πj≤miBi,j)∗

and by definition of the product, to

∼= Σi≤nΠj≤miI(!(A); Bi,j)∗
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(Note also that the norm of each map is strictly greater than the greatest norm
in its decomposition.)
Moreover, the inverse of each component of the isomorphism has been character-
ized as a canonical map in the linear category, so by composing these maps the
decomposition can be given as follows:
For any f ∈ I(!A; a), either f = ⊥A,a or there is a unique i ∈ n and family of
morphisms {gj ∈ I(A;Bi,j) | j ≤ mi} such that

f = conA; (derA; �i)⊗ 〈g1; : : :gj; : : :〉†; App

where ](f) < max{](g1); : : : ](gn)}. �

B Bi1 in

Ai

B

A

B

A

ini1

Figure 3.2: Decomposition of an innocent strategy on A→ o

This simplifies to a decomposition in C as follows.

Corollary 3.7.13 In any pointed sequential category with objects A = Πi≤nAi

where Ai = (Πj≤miBi,j ⇒ a)⇒ a

I(A; a) ≡ Σi≤nΠj∈miI(A;Bi,j)

79



where the bijection is characterized

〈f; i〉 −→ 〈�i; 〈g1; : : : gmi〉〉; App

for unique gj : j ≤ mi such that ](gj) < ](f).
Hence the category which has objects generated form a by × and ⇒, and mor-
phisms from I is isomorphic to the free CCC.

Corollary 3.7.14 A normed sequential partial CCC is isomorphic to the free
partial CCC, and is a fully and faithfully complete model of Λ(Ω).

Danos, Herbelin and Regnier [21] show that the correspondence with �-terms
extends to the interaction between strategies. They describe a process of eval-
uation of �-terms to weak head-normal form by ‘linear head reduction’, and an
abstract machine (due to Krivine) for implementing it. The pointers generated
by the machine in the course of evaluating the application of one term to another
are in bijective correspondence to the ‘uncovering’ of the interaction between the
strategies which denote the terms.

3.8 The games models of control

The constructions described in the previous chapter can be applied to the cat-
egories of games and innocent and knowing strategies, to give games models of
call-by-name and call-by-value control.

Proposition 3.8.1 The models of control specified by (G; o) (by the strong monad
of o-continuations on fam(G)) are initial.

Proof: is by the proof of full completeness above, together with the proof in the
previous chapter (Proposition 2.3.7) that any model of control given by (C; a) is
initial if C is the free pointed CCC over a. �

A significant point is that (unlike the abstract, categorical case) the completion of
the games presentation of the initial model of control as a cpo-enriched ‘continuous
model of control’ is now straightforward.

Proposition 3.8.2 (Galt; o) specifies a continuous computational model of con-
trol.

Proof: is as for the CCC of games and thread independent strategies (Proposi-
tion 3.5.7), noting that the least upper bound of a chain of innocent strategies is
innocent. �
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By Proposition 2.5.9, every definable morphism of a control model is a supremum
of an !-chain of morphisms from the CCC, and by the Definability Theorem, these
are the innocent strategies with finite norms (view-functions). This generalises
simply as follows:

Proposition 3.8.3 G is !-algebraic, with the compact strategies being precisely
those with finite view-function.

Thus the denotational part of the definability problem has been solved; all
that remains is to give a complete syntactic and operational characterization
of models of control. However, the non-reductionist project of characterizing
control within the intensional hierarchy remains. The notion of ‘weak co-product’
monads on Fam(G) which yield call-by-name and call-by-value semantics provides
a convenient structuring principle for this problem. Three such monads will be
defined, each of which gives a different level of access to control flow. These can
be characterized as higher-order control, first-order control, and strictly local.
The can be derived from the ‘linear decomposition’ of the category of games
which has already been described, based (albeit with various degeneracies) on
the translations of intuitionistic and classical types into linear logic described in
Figure 3.3 (to which there are several alternatives; [29], [22]). The obstacle to

Intuitionistic Intuitionistic Classical Classical
(call-by-name) (call-by-value) (call-by-name) (call-by-value)

A×B = A&B A×B =!(A&B) A×B = A&B A×B =?!A&?!B)
A⇒ B =!A( B A⇒ B =!A(!B A⇒ B =!A( B A⇒ B =!A(?!B
A+B =!A⊕!B A+B = A⊕B A+B =?(!A⊕!B) A+B = A⊕B

Figure 3.3: Linear decompositions of call-by-name and call-by-value types (⊕ is
the dual to &).

defining sums as dual to products in the category of alternating games, however,
is its ‘asymmetry’; Opponent always starts, so the true involution operator which
just swaps the roles of Player and Opponent does not give a well-defined game.
(There are ways to allow Player to start — see [7], but in this case the possibility
of modelling the additives (cartesian closure) is lost.) However, true involution is
in this case not necessary (or desirable, being incompatible with the pointedness
which is a crucial feature of the weak co-product monad). Instead, the one-move
game (which is a weakly initial object) is used as a ‘weakly dualizing object’ which
both lifts and dualizes at the same time,

81



defining (A)⊥ = A( o.
(This operation, forming linear continuations, — is a self-adjoint ‘not-functor’
[82] on the SMCC of games (see Proposition 3.8.7).)
Thus the ‘intuitionistic’ sum-monad is modelled by ((!A( o)× (!B( o))( o,
and the ‘classical’ sum-monad by !((!A( o)× (!B( o))( o, which is equal to
((A⇒ o)×(A⇒ o))⇒ o— the sum given by the continuations monad. Recalling
the definition of the ! as the lifting of the linearity condition on initial moves,
the difference between the classical and intuitionistic sum games is therefore the
following:
in the intuitionistic sum, the move justified by the initial move is linear, in the
classical sum, it is not.

In the following section, these alternative notions of weak co-product and
the associated monads are studied. The linearity conditions placed on the sec-
ond move in the monad are shown to correspond to different types of control
behaviour, in particular:

• there is a finer distinction between sum types, based on refining the linearity
rule, to exclude control behaviour corresponding to ‘logical stability’.

• the ‘bracketing condition’ of [43], [6] etc. corresponds to a stricter version
of the linearity rule, which enforces local control flow.

3.8.1 The unbracketed sum

First, consider the monad of ‘one-move continuations’ TX = (X ⇒ o)⇒ o, and
the associated ‘weak co-product’, A+B = ((A⇒ o) × (B ⇒ o))⇒ o

The natural transformation �T : T2 → T can itself be used as the denotation
of the control operator C (see Chapter 4). However, the games interpretation of
the call=cc operator can be given a more intuitive description. (Recall that this
is typed with (((S ⇒ T ) ⇒ S) ⇒ S) which is the simplest type which can be
given to control operators but not (generally) to functions; it is also the simplest
example of a classical (minimal) tautology which is not provable in intuitionistic
logic.)

Definition 3.8.4 Let A = Σi∈IAi, then for arbitrary B,

peircenA : ((A⇒ B)⇒ A)⇒ A)

(Figure 3.4) is the strategy which plays copycat between the outermost occurrences
of A, until forced into (A⇒ B) by a move in B, after which it plays the opening
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move in the innermost occurrence of A and then copycat between the outermost
A, and both of the other A components.
For call-by-name type-objects other than weak co-products, the denotation cor-
responding of call=cc can be derived from these instances via cartesian closure,
just as the operator itself can be ‘bootstrapped’ from instances at sum-types in the
�-calculus.
The call-by value version can be described directly for all families of games:
for a family A = {Ai | i ∈ I},

peircevA : Πi∈I(Ai⇒ Σj∈JBj)⇒ Σi∈IAi⇒ Σi∈IAi

is the strategy which plays copycat between the positive and negative occurrences
of Σi∈IAi, until Opponent plays an initial move in the ith component of
Πi∈I(Ai ⇒ Σj∈JBj). Player then selects the ith component in the (positive)
Σi∈IAi, and plays copycat between the positive Ai and whichever of the negative
Ai Opponent chooses to play in.

A control-specific analogy for the Player/Opponent duality, consistent with the
general notion of System versus Environment, is to consider the role of Opponent
as representing the current continuation. This is suggested by the correspondence
between Player strategies on A ( o and Opponent strategies (odd-branching,
odd-prefix closed sets of moves) on A. peirce takes a strategy interpreting a
term of type S with a free ‘continuation variable’ of type S ⇒ T , and binds it to
the current continuation by copying Opponent’s strategy on [[S]] as an input.

3.8.2 An alternative monad for control

To understand control flow in games, it is useful to return to the notion of a
dialogue, and consider the distinction between demands for information, and
information made in direct response to such a demand.
Call the initial move in the game TA a question, and any moves enabled by
it, answers. (Note that no move can be both a question and an answer.) The
intuition (see [59]) is that the weak co-product Σi∈IAi adds the following protocol:

• an initial Opponent question Oq: ‘which Ai shall we play in ?’

• followed by a Player answer Pi, allowing play to proceed in Ai.

In order for this to define the usual ‘separated sum’ (and in the unary case, a
lifting) it is necessary that what follows is a play in Ai. This is the case just if
answer moves must be played linearly, as Player cannot revisit this choice and
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A

A

A

B

Figure 3.4: The strategy peircenA

Figure 3.5: Contrasting plays in the different sum games.
Top: in the ‘linear’ or well-bracketed sum
Below: in the unbracketed sum, or continuations monad
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either choose a new component, or open a new thread in Ai. In other words,
non-⊥ elements in A+B correspond either to an element in A, or one in B.

Note that the result of composing a strategy on (A ⇒ TB) ⇒ TA which is
non-linear in its argument, with peircevA, will be a strategy on TA which repeats
the answer to the initial question each time the initial question in (A⇒ TB) is
asked (so the current continuation is ‘called’). This multiple ‘upward continua-
tion passing’ behaviour violates the principle that a term of ‘lifted’ type should
correspond denotationally and operationally to a value, or to the undefined ob-
ject ⊥. Game semantically, it corresponds to the condition that answers should
be unique and non-repeatable, — strategies cannot ‘change their minds’ about
answers. By constraining answers to behave linearly it can be excluded from the
model whilst retaining some level of non-local control.

Definition 3.8.5 For a family of arenas {Ai | i ∈ I} define the linear (affine),
or ‘weakly bracketed’ sum ΣL

i∈IAi to be the arena consisting of
a single initial (linear) opponent move, enabling each one of a family of linear
Player moves {li | i ∈ I}, each of which enables the initial moves of Ai.

This can be defined in a more general setting as a continuations monad of sorts.

Definition 3.8.6 Given a category C with a ‘linear decomposition’, of morphisms
on C(A;B), as morphisms on L(!A; !B) for some linear category L and an object
a of L, define the (strong) ‘linear a-continuations monad’ on C

TL
aX = (X ( a)( a

Proposition 3.8.7 This is a strong monad on L (and on C).

Proof: is by observing that T La can be resolved into the self-adjunction of a
contravariant ‘not-functor’ which forms linear a-continuations: ¬A = A ( a.
The fact that L(A;B ( o) ∼= L(B;A ( o) is immediate; the definitions for
the Kleisli triple and monadic strength are ‘linearized’ versions of the standard
continuations monad described in Section 2.2.6. �

(Alternatively, in categories with a linear decomposition of A ⇒ B as !A( B,
the monad can be defined as TX = X ⇒ a)( a (see [47]).)

Proposition 3.8.8 In the category of (families of) linear games,

TL
o {Ai | i ∈ I} = {ΣL

i∈IAi}:
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(In fact, a notion of tensor product and closure on Fam(C) has not been defined
here, but this is not really necessary, as only singleton families are involved.)

The fact that, given � : (A ( o) ( o, either � = ⊥, or � is the ‘lifting’ of
some strategy on A has already been observed in the axiomatic characterization
of the answer object. Thus at a local level the linear continuations monad defines
a separated or intuitionistic sum type. However, control is a non-local issue:
the linearity (or rather affinity) condition does not prevent ‘jumps in the flow of
control’ in games. At the level of atomic games, the control strategies peirce

described above are still well-defined:

Definition 3.8.9 For any set X, define the atomic game X̃∗ to be the game
consisting of a single (Opponent) question and a set of answers, indexed over X.
(So these correspond to ‘flat domains’ or weak co-products over the a family of
terminal objects, {1x | x ∈ X}.)

Proposition 3.8.10 If X is a family of terminal objects, {1x | x ∈ X}, so that
TL
oX is the atomic game X̃∗, then the strategies peircenΣX and peircevX are valid

strategies, which give unique and non-repeated answers to questions.

Proof: peircenX (see Figure 3.6) copies the initial X̃∗-question in the second
component, and copies back any answer. If none is forthcoming, it copies the
X̃∗-question again in response to Opponent’s X̃∗ question, until it receives an
X̃∗-answer, which it copies as an answer to the initial question, closing the game.

�

((N +3 N) +3 N) +3 N
Oq

Pq

Oq

Pq

On

Pn

Figure 3.6: A typical play of peircen at atomic types

In fact, this is the only type of control behaviour possible in the arenas of the
Hyland-Ong model of call-by-name PCF, which uses sums (implicitly) only to
define ground types. In fact, by definition, the answer moves of Hyland-Ong
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games do not enable any other moves, and as a consequence, must be linear
moves.

Proposition 3.8.11 In a sequence satisfying visibility, any move which does not
enable other moves

• occurs at most once,

• does not share its justifying move with any other such moves.

Proof: is by induction on the length of sequence, with the hypothesis that if d
is a Player move justified by c in the sequence sc · td · r and d does not justify any
subsequent move, then the following joint hypotheses hold:

• if it is Opponent’s turn to move, none of the moves between c and d (exclu-
sive) are in his view.
This is clearly the case when the move d has just been made.
Suppose d′ is some subsequent Player move. Then by the induction hy-
pothesis on Player views (below), and visibility, it cannot be justified by a
move between c and d. If d′ is justified by a move prior to c, then all moves
between c and d are hidden in the Opponent view.
If d′ is justified by a move e after d, then this move occurs in the Oppo-
nent view at d′ by the visibility condition. Hence by induction hypothesis
applied at e, the moves between c and d are not in the Opponent view of
this sequence.

• if it is Player’s turn to move, none of the moves between c and d (inclusive)
are in his view. (Hence, by visibility, he cannot make a move justified by c,
QED).
If the last move is an Opponent move, then it cannot be justified by d itself
by assumption, and by induction hypothesis and visibility, it is justified
either by a move before c or one after d. In the former case, the moves
between c and d are hidden from the Player view, whereas in the latter
case, the induction hypothesis can be applied to give the same result.

�

This is closely connected with the fact that call-by-name PCF cannot be aug-
mented with ‘higher-order’ control features expressively distinct from ground-
type call=cc. The factorization described by the author in [48], shows that all
bracketing violations in the call-by-name model of PCF can be represented as the
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application of the ground-type peirce strategy. The situation is slightly more
complicated in the call-by-value model, as this contains answers which do justify
questions, and strategies which are do not factorize via peirce. However, it can
be shown (by factorization) that all weakly bracketed strategies can be simulated
up to observational equivalence as the composition of a well-bracketed strategy,
and the Peirce’s law strategy at atomic types. Thus from a proof-theoretical
standpoint, this model corresponds to ‘stability’; classical rules for atomic formu-
las, from which all classical rules for the negative fragment of propositional logic
can be derived.

Thus the category of games with linear answers can be seen as a semantics
of ‘first-order’ control, with ‘downward continuation’ passing behaviour allowing
jumps in the flow of control corresponding to functional variations of GOTO; aborts,
escapes, exceptions etcetera, contrasting with the ‘upwards continuation passing’
of higher-typed call=cc in its (usual) call-by-value setting. This could be said to
mark a boundary between control as a simple extension of functional languages,
and continuation-passing as a programming style in its own right.

3.9 Linearity and the bracketing condition

An explanation for the existence of ground type ‘control strategies’ such as peirce
in the weakly bracketed model, is that the linearity rule is not, strictly speaking,
linear (precisely once), but affine (at most once). In addition to validating weak-
ening (as the terminal object is a unit for ⊗), this also introduces the possibilities
of limited contractions associated with the ‘weak initiality’ of the one-move game.
As shown in Figure 3.6, the strategy peirce works at ground types (i.e. oX ( o)
by missing out answers rather than repeating them. peirce is also a total strat-
egy (via its view function) on ((A( B)( A)( A, for atomic A, although this
is not a tautology of affine logic.

By giving a refined, stricter definition of linearity, this behaviour can be ex-
cluded. This can be done most simply by considering only the case in which
linear and non-linear moves alternate according to the question/answer discipline
dictated by the sum game, giving a neat connection with the bracketing condi-
tion. This correspondence between intuitionistic and linear behaviour suggests,
however, that an analysis of local control flow via decomposition into linear logic
is possible.

The connection between linear moves and questions and answers in bracketed
arenas can be formalized as follows.

88



Definition 3.9.1 A non-initial (strictly) linear move is an answer. Any move
which is not an answer is a question, — that is, initial moves and non-linear
moves.
An arena is bracketed if only questions may justify answers (the original require-
ment of [43]).

Note that the constructions A ⇒ B, A × B and, importantly, the linear sum,
can be carried out in bracketed arenas. The linearity rule can be strengthened,
to require that linear moves also occur at least once, by imposing the following
‘liveness’ condition.

Definition 3.9.2 A legal sequence s is strictly linear if it can be extended to a
(finite) legal sequence in which every question justifies exactly one answer.

Interestingly, in the presence of visibility, it is possible to characterize this con-
dition solely in terms of the moves already played, rather than by quantification
over possible extensions. The following condition states that question-answer
pairs must be ‘nested’ in an appropriate way, and was used in both game seman-
tics of PCF but is older (see e.g. Felscher’s paper [26]).

Definition 3.9.3 (Bracketing Condition) Suppose A is a bracketed arena; a
legal sequence over A is well-bracketed if every answer is always justified by the
last-asked, unanswered question, — formally, assuming a LJ definable predicate
a ≺s b - ‘ a precedes b in s’, define
WB(sab) if WB(sa) and (�WB(b) = A implies
(�WB(a) = Q =⇒ �sab(b) = a)∧ (�WB(a) = A =⇒ �sab(b) ≺sab �sab(a)).
Only one label, for answers, is really required. The condition is equivalent to
requiring that there are equal numbers of questions and answers between each
question and its answer.

Well-bracketed sequences are clearly (weakly) linear, as questions can be answered
only once — in fact they are strictly linear, as questions can be answered in the
reverse of the order that they were asked. Sequences over Hyland-Ong games
which are not well-bracketed are not strictly linear, as unanswered questions
become ‘hidden’ between two answers as described in Proposition 3.8.2 — in
fact (surprisingly) this holds in general; once the balance between questions and
answers has been lost by violating the bracketing condition, there is no way to
regain it (see Figure 3.7).

Proposition 3.9.4 If s is a (odd/even-length) well-bracketed legal sequence, then
the last-asked open question in s is in the view (Player/Opponent) of s.
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Figure 3.7: A sequence violating the bracketing condition (with justification
pointers): Opponent questions are denoted ‘[′, Player questions ‘)′.
Note how the first violation of well-bracketing destabilises the sequence so that
there is always a prematurely closed unanswered question.

Proof: is by induction on sequence length. Suppose sb is an odd-length well-
bracketed sequence, then if b is a question, the hypothesis holds directly. If b is
an answer, then sb = s′q · tb, where q is a question justifying b. As s is well-
bracketed, every question between q and b has been answered, and so the most
recently asked unanswered question is in s′, and by induction hypothesis appears
in the view of ps′q and so in psq = ps′qqb. �

Definition 3.9.5 Say that a question is ‘prematurely closed’ (whether it has been
answered or not) if a previously asked question has already been answered, and
‘open’ if it is unanswered and not prematurely closed.

Proposition 3.9.6 Suppose A is an arena in which every question has an an-
swer, then a legal sequence over A is strictly linear if and only if it is well brack-
eted.

Proof: Suppose s ∈ JA is well-bracketed, then every question in s is answered
at most once. Moreover, s can be extended to a sequence in which all of the
questions have exactly one answer by answering open questions in the reverse
order to which they were asked. (Note that if s is a well-bracketed legal sequence,
then the most recently asked open question is in the relevant view of s.)
The converse is a corollary of the following:

Lemma 3.9.7 Any extension qt (to some s such that s · qt is a legal sequence)
in which q is a prematurely closed question contains an unanswered, prematurely
closed question.

Proof: is by induction on the length of extension.
Suppose qta is an extension to s in which q is prematurely closed. Then if a is not
an answer to a prematurely closed question in qta, qt contains an unanswered,
prematurely closed question by induction hypothesis, which is still unanswered
in sq · ta.
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It is also safe to assume that a is an answer to q, as if it is an answer to some
later prematurely closed question, then the induction hypothesis can be applied
to the shorter extension starting from this question.
So suppose a answers q. Now consider the move preceding a; if this is a question,
then it is prematurely closed by a, and unanswered, and we are done. So suppose
that it answers some question q′; by the visibility condition, the justifier of a,
which is q, must occur prior to q′. There are two possibilities:

• the answer prematurely closing q occurs after q′, so that it also prematurely
closes q′. Then the induction hypothesis can be applied to the extension
starting at q′.

• the answer prematurely closing q occurs before q′. Then applying the in-
duction hypothesis to the extension from q to q′, there is a prematurely
closed question in this segment, unanswered (at q′). If this is answered in
t (between q′ and a), then the answer prematurely closes q′, and applying
the induction hypothesis to the segment from q to a gives an unanswered
prematurely closed question as required.

�

Consequently, any (finite) sequence containing a prematurely closed question con-
tains an unanswered question. So no sequence which is not well-bracketed can be
extended to a finite sequence in which all questions are answered.

Proposition 3.9.8 Well-bracketing preserves the identity and associativity con-
ditions and hence defines a category of games.

Proof: is straightforward. In the presence of visibility, and the switching con-
dition, compositionality can be proved as follows.
Note that as a consequence of the switching condition, a move from A in
(A( B)( C can never be directly followed by one from C and vice versa, but
must be followed by an odd number of B moves.

So suppose sa is a justified sequence in (A( B)( C, and sa � (A;B)and
sa�(B;C) are well-bracketed. If a is an answer in A, then it answers the most
recently asked open question in s�A;B. Hence any questions which were asked
in C since this question was asked have been answered, as to ‘get back’ to A,
an odd number of moves must have been made in B, the last of which must
have answered an earlier question. By well-bracketedness of sa�B;C, all of the
questions asked in this spate of moves in C have been answered.
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Similarly, if a answers a question in C, there are no more recent open questions
in A. �

As it is a rule, the bracketing condition preserves the symmetric monoidal closed
and co-monad structure (and the product is still cartesian).

Proposition 3.9.9 The category of well-bracketed games and innocent strategies
is cartesian closed.

Thus the original categories of Hyland-Ong and McCusker games has been recov-
ered (although not requiring well-openedness simplifies the definition of composi-
tion). A crucial property of the bracketing condition for both versions of the game
semantics of PCF is that it prevents innocent strategies from making intensional
observations.

Proposition 3.9.10 The intrinsic preorder on the categories of well-bracketed
games and innocent (and history-free) strategies is order extensional.

Proof: is given in detail in [43] and [59], but observe that a (strict) well-
bracketed strategy on A → Ñ∗ must have an answer to the first question in
A before it gives an answer in Ñ∗, and if it is also innocent, then this answer is
the only one in the view. �

As well-bracketing is a well-defined rule, the category of well-bracketed games
and innocent functions can be embedded in the category of unbracketed games
via their innocent functions (Proposition 3.6.15). Moreover, there is a simple
characterization of the image of this embedding in terms of view-functions.

Proposition 3.9.11 An innocent strategy is well-bracketed if and only if it al-
ways answers the most recently asked open question in the view.

Proof: It is immediate that any innocent strategy on a well-bracketed game
always answers the most recently asked question in the view, so it remains to
show that any strategy � which does so will never violate the bracketing condition
before Opponent. But by Proposition 3.9.4, if s is a well-bracketed sequence, then
the most recently asked open question in s is visible. �

Answering the most recently asked question in the view can then be adopted as
the definition of well-bracketedness for strategies which are not innocent.
The well-bracketed sum is shown in [59] to define a pointed weak co-product, so
it is a strong monad on Fam(GWB), (with the same copycat strategies yielding
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a Kleisli triple and strength as for the continuations monad). It thus yields
models of call-by-name and call-by-value PCF as described in Section 2.4.4. The
call-by-name model is equivalent to the original model described by Hyland and
Ong in [43], as the atomic types denote the flat domain of natural numbers, and
exponentiation. The well-bracketed sum was used by Abramsky and McCusker
to give a fully abstract semantics of PCFv in [3]. In each case, finite definability
results (based on an inductive decomposition similar to the axiomatic result in
this chapter) yield a fully abstract model by collapse under the (extensional)
intrinsic preorder).

Theorem 3.9.12 (Hyland and Ong [43], Abramsky and McCusker [3])

The semantics of call-by-name and call-by-value PCF in the category of well-
bracketed games and innocent strategies has the finite definability property (and
its extensional collapse is fully abstract).

Dropping the bracketing condition transforms the well-bracketed sum from a
linear ‘double negation translation’ on games, to an intuitionistic double negation:
the interpretation of function types (the exponential in the Kleisli category of the
lifting monad), A⇒ (B ⇒ o)( o becomes A⇒ (B ⇒ o)⇒ o.

Remark 3.9.13 The connection between intuitionistic functional types, and the
monad ( ⇒ o)( o which has been established by showing the connection between
well-bracketing and strict linearity leads to the following conjecture:
there is an invertible ‘linear cps’ translation from (call-by-name and call-by-value)
PCF into the linear �-calculus (with partiality and !-indexed products) based on
the single ground type �. This is analogous the translation for the ‘classical (un-
bracketed) sum monad’ and �PCF described in the next chapter (Section 4.5.1).

Remark 3.9.14 (The stack discipline as an analogy for well-bracketing)

A further intuition connecting the bracketing condition with control, is that it rep-
resents a stack-discipline for the (computation represented by the) interaction of
Player and Opponent. A formal connection with stack-based computation via
abstract machines have been established in [21]. There it is shown how the in-
teractions between strategies in unbracketed Hyland-Ong games can be computed
using a stack-based abstract machine.

The correspondence between bracketing and the stack discipline suggests how
this work can be extended to games with the additional control flow information
represented by the question/answer distinction. Suppose that the stack is used to
hold only the ‘open questions’, — those demands for information which remains
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to be supplied in order for the computation to be completed. Giving some of this
information by making an answer move corresponds to ‘popping the answered
question’ from the stack, together with any other questions which no longer need
to be answered.

Well Bracketed Games correspond to rigidly maintained stack discipline; only
the question at the top of the stack can be popped, (answered).

Weakly bracketed Games In games in which answers cannot be repeated, but
can be missed out, prematurely answering a question ‘closes’ all of the more
recently asked questions as far as Player is concerned. This corresponds to
‘popping the stack downwards’ (to the point of the last unclosed, unanswered
question). The following lemma shows that the weak bracketing condition
can be seen as a way to prevent an innocent strategy from violating linearity
by answering the same question twice.

Lemma 3.9.15 If Player is playing according to an innocent linear strat-
egy on a bracketed arena, then he cannot answer any questions prematurely
closed by himself.

Proof: (sketch) Suppose Player answers a prematurely closed (Opponent)
question. Then this question appears in Opponent’s view and can be re-
peated, with the same justifier. Player will then have the same view as when
the question was first asked, and will make the same response. Opponent
can then copy his initial response to this move, and so on, until Player is
forced to repeat the answer move which closed the Opponent question, which
is a violation of linearity. �

Unbracketed games As well as ‘popping the control stack downwards’, which
simply discards some of the current demands for information, call/cc can be
used to reset the stack to other previous states. This means that demands for
information which has already been supplied can become ‘live’ once again,
and new information (not necessarily the same) given in response. This cor-
responds to the situation in unbracketed games, where any previous (visible)
questions can be ‘answered’. The notion of ‘open’ question is now extended,
to say that a question is open if the answer to any previous question occurs
before the answer to some succeeding question. (So a question is open if it
has not been closed, or if it has been closed, but the closing move, considered
as a question, has itself been closed.)
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Answering a closed question thus corresponds to ‘Popping the stack upwards’
as it always opens up some closed questions.
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Chapter 4

The syntax and semantics of
�PCF

4.1 A minimal basis for computation

What is the simplest way to define a functional language for doing higher typed,
sequential computation? PCF, or something similar, in which datatypes are
‘built in’ at ground types, with constants for construction (0; pred; succ) and
decomposition (a conditional), is a possible and widely accepted answer to this
question. Control operators fit in to this perspective as a useful non-functional
extension to this minimal language. There is another possibility, however, which
is to define data objects as simple functions, in the style of the original Church
numerals, and latterly System F, the Calculus of Constructions, etc.

Example 4.1.1 (Finitary PCF) Recall Λ(Ω), the (call-by-name) �-calculus with
single base type � with a constant for non-termination. Define a type of ‘Church
Booleans’: bool := � ⇒ (� ⇒ �). Non-termination, call-by-name �-abstraction
and application based on this ‘ground type’ can be extended with the constants of
boolean PCF defined as macros:

• tt =df �x:�y:x

• ff =df �x:�y:y

• IF r then s else t =df �x:�y:r (s xy)(t xy).

However there are terms of Λ(Ω) which are not (�� equivalent to) the translation
of a term of boolean PCF. Such terms can use the intensional way in which data
has been defined to extract intensional information about their arguments (pace
PCF). For example, the following strictness test returns tt on a function which
evaluates its argument (as the only way for a Λ(Ω)-term to use argument is by
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applying it to something, which will be discarded). If f is not strict, then the
test returns ff as it applies its result (which is a projection) twice to its second
argument.
strict?: (bool⇒ bool)⇒ bool = �f : bool⇒ bool:�x : �:�y : �:f (�z:�z:x) y y

The strictness test can, of course, be written using control operators: — this
chapter will show that they bridge the gap between PCF and computation by
continuation-passing by supplying the missing expressive power. The cps trans-
lation can thus be viewed as a compilation which structures procedures of the
low-level control language �(Ω) so that they can be written as functional pro-
grams using control operators at lower types. This gives the best of both worlds;
a simple semantics for a powerful language.

The second section of the chapter describes the syntax of the ��-calculus
and �PCF, the third gives a unified call-by-name and call-by-value operational
semantics, which is proved complete with-respect-to a minimal notion of adequate
model in the fourth part. The fifth section describes a denotational semantics for
the call-by-name language via a cps translation. Full abstraction for the games
model is proved by showing that the translation restricts to a bijection between
‘finite normal forms’ in the next part. Sections 7, 8 and 9 define denotational
models of the call-by-value language, show that ��v is a complete syntax of
control, and give definability and full abstraction results.

4.2 Representing functional control

Control operators such as strict?, or the catch operators of SPCF are a sim-
ple way to add escapes to call-by-name PCF. However, more complex control
manipulation involving continuations, requires a more expressive syntax. The
��-calculus has been chosen here as it defines control manipulations in a way
which is easy to represent in a model of control, and can be given an operational
semantics and an equational theory in a straightforward way. It originated as a
calculus for classical natural deduction in the work of Parigot [69], who noted the
existence of terms corresponding to control operators. �� has migrated via the
extended Curry-Howard correspondence: it has subsequently been proposed as
a ‘foundation for functional computation with control’ by Ong and Stewart [67],
who developed a call-by value version, and used it to extend PCF with control
features. Important confirmation of its suitability as a syntax for control has been
provided recently by Selinger [79], who has proved that it is the internal language
of a ‘control category’ (as outlined in Section 2.3.2).
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x:A`x:A Ax

Γ;x:A`t:B;∆
Γ`�x:t:A⇒B;∆ ⇒-intro

Γ`s:A⇒B;∆ Γ`t:A;∆
Γ`s t:B;∆ ⇒-elim

Γ`s:A;∆
Γ`[�:A]s;∆;�:A 0-intro

Γ`s:0;∆;�:B
Γ`��:s:B;∆ 0 -elim

Figure 4.1: Terms-in-context of the �� calculus

�� is a convenient, and in some senses canonical choice of syntax but it does
not provide any greater expressive power than call=cc, or its idealized brother,
Felleisen’s C [25]. To make this claim more precise: one of the advantages of
�PCF is that it can be considered with or without admitting the empty type.
It will be shown that the closed terms which can be written with the empty
type are expressible using C (and vice-versa), whilst those which can be written
without the empty type are expressible using call=cc. �� is syntactically more
complicated than either, as it adds a new ‘continuation binding’ operation to the
�-calculus, (this step was already present in Reynolds’ definition of the Escape

operator [76] (1972)). This has the advantage of making the control aspect of the
calculus more explicit, and separate from the functional part.

4.2.1 The �� calculus: call-by-name and call-by-value

Terms of the �� calculus are obtained by adding the operations of naming and
�-abstraction to the �-calculus. A term-in-context t is supplied with sets Γ con-
taining the free variables of t, and ∆ containing its free names (represented as
small-case greek letters) so weakening, permutation and contraction hold for both
contexts. The variable convention of [8] is adopted for names as well as variables.
Terms-in-context are formed as set out in the table (Figure 4.1). To name a term
of type T requires a name � of type T , the named term has type 0 (the empty
type). There are no names of type 0. Any free name � : T in a term t : 0 can be
bound by a �-abstraction, written ��:t : T .

Partiality is added to the ��-calculus by extending it with the single constant
Ω : 0, from which ΩT : T = ��:Ω0 can be derived at any type. Extension with
product types and pairing is not described, but is completely straightforward.

The intuition upon which the continuation-passing semantics of �� is based is
that a term of type T can be interpreted as a map from continuations of type T ,
to the answer object. This is just the standard interpretation of a functional lan-
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guage in the Kleisli category of the monad of continuations described in Chapter
2. Names of type T are simply variables of type T ⇒ 0 representing continu-
ations of type T . Naming corresponds to applying the current denotation to a
continuation variable, and getting something of answer type. �-abstraction is the
�-abstraction of such a variable from a term of answer type, giving a denotation
of type T .

In order to define an operational interpretation based on this intuition, it is
useful to have a syntactic representation of the current continuation. This is
provided by the notion of ‘evaluation context’. (Note that there are a variety of
subtly different definitions of this in the literature.)

Definition 4.2.1 Values (written u; v; : : :), range over variables and �-abstractions,
i.e.

v ::= x | �x:t:

Contexts with a hole of type T will be written as ET [·], (as distinct from E[·] : T ,
where the result of filling the hole is a term of type T ).
Call-by-name evaluation contexts are defined inductively over the following gram-
mar (respecting the typing rules for ��):

ET [·] ::= [·] : T | [�]ET [·] | ET [·] t

and call-by-value evaluation contexts over:

E[·] ::= [·] : T | [�]ET [·] | ET [·] t | v ET [·]

where t ranges over general terms, and v over values.

The equational theory of each version of the ��-calculus is given (up to
�-equivalence of names and variables) by the standard ��-equalities of the �-
calculus, together with the following rules.

(��) ��:[�]t =µ t (� not free in t),

(��) E[��:t] : 0 =µ t[E[·]=�] (note the type restriction on E[·]).

In the call-by-name version, �, �, and the notion of evaluation context are call-by-
name, in the call-by-value version, they are call-by-value. (Completeness of the
call-by-value theory for control models requires minor additional axioms discussed
in Section 4.9.)
The operation which requires some explanation is the substitution of a context for
a name used in ��. (This is essentially a simplified form of the mixed substitution
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of [69].)
t[E[·]=[�]] means: replace occurrences of named subterms [�]r in s with E[r].
i.e. suppose t = C[[�]r1] : : : [[�]rn], where � does not occur free in C[·] : : : [·] or
r1; : : : rn; then t[E[·]=�] = C[E[r1]] : : : [E[rn]].
Formally, it can be defined by induction on term-structure:

Definition 4.2.2 (Named-substitution)
x[E[·]=�] = x [�]t[E[·]=�] = E[t[E[·]=�]]

(s t)[E[·]=�] = s[E[·]=�] t[E[·]=�] (�x:t)[E[·]=�] = �x:(t[E[·]=�])
(��:t)[E[·]=�] = ��:(t[E[·]=�]) ([�]t)[E[·]=�] = [�](t[E[·]=�])

This is a slight modification to the axiomatizations proposed by Parigot [69] and
by Ong [66], firstly in its presentation via evaluation contexts instead of single
applications (but this is a minor change, which is implicit in Ong and Stewart’s
paper [67]). There is also a change to the rules: the presentations cited above
have an additional rule,
(��) [γ]��:t = t[γ=�]
and a separate ��-rule covering non-zero typed contexts, which is (presented using
evaluation contexts)
�� : ET [��:t] = ��:t[[�]E[·]=�]:

Proposition 4.2.3 The �� theory proposed here is equivalent to those in [69]
and [66].

Proof: �� is derivable as an instance of �� as [�][·] is an evaluation context:
[�]��:t = t[�=[�][·]].
�� is derivable using ��0 and ��:
ET [��:t] = ��:[�]:E[��:t]T = ��:t[[�]E[·]=�]. �

The presentation given here is closer to the continuation passing interpretation
which will be developed, making soundness and adequacy proofs for the semantics
a little simpler. (Although the original rules were derived from the normalization
of classical proofs, so it could be argued that this is moving further from the
Curry-Howard correspondence, and towards a purely control-based analysis.)

4.2.2 Sum types in ��

One advantage of �� is that it provides a natural syntax for terms at sum types,
compared to the �-calculus alone. (As one would hope, moving to a multiple
conclusion logic simplifies the behaviour of disjunction.) Among several possibil-
ities for annotating sums, rather than allowing names to take disjunctive types,
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naming of a term of type A + B requires a pair (tuple) of names of type A and
type B. (Thinking of names as variables of type A ⇒ 0 an B ⇒ 0, naming of
t : A+B with � : A; � : B is by applying the co-pair [�; �].)

Definition 4.2.4 Form the ��+ calculus by extending the types over which for-
mulas (and variables) may range with finite sum types A+B.
Names may take only types with a main connective which is negative (i.e. A⇒ B,
A×B), which is a natural extension of the rule that names may not take the empty
type.
Extend the typing judgements of �� as follows:

Γ ` t : A+B; ∆
Γ ` [�; �]t : 0;� : A; � : B;∆

Γ ` t : 0;� : A; � : B;∆
Γ ` �[�; �]:t : A+B; ∆

This extends naturally to all finite sums The equational theory of ��+
v is given by

adapting the (Ong and Stewart) theory for �� by

• retaining �� at all types,

• restricting ��
E[�[�; �; : : :]:t] : 0 =µ t[E[·]=[�; �; : : :]]
to cases where �; �; : : : only occur conjointly in t,

• Adding ��, without the above restriction
i.e. [γ : A; � : B; : : :]�[� : A; � : B]:t =µ t[γ=�; �=�].

Standard constructors for sum types can be derived; for instance, define:
inl(t : A) = (�[�; �]:[�]t) : A + B; inl(t : A) = (�[�; �]:[�]t) (assuming �; � not
free in t),
and given t : A⇒ C, s : B ⇒ C, r : A+B, define
(case r of t; s) : C = �γ : C:[γ]t (��:[γ : C]s (�[�]:[�; �]r))
(so case inl(t) of u; v =µ u t, and case inr(t) of u; v =µ v t).

One could therefore use ��+ to add a sum type constructor to PCF. However
an additional reason for introducing it is that by including sum types in the call-
by-value language, a cps translation can be given which is surjective onto types
and terms of Λ(Ω), showing that ��+

v (Ω) is a complete syntax of control (see
Section 4.9).
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4.2.3 �PCF: variations on the control theme

Definition 4.2.5 Form the language �PCF by extending �� with the constants
of PCF, forming terms-in-context over function types generated from the atomic
basis 0; nat. The equational theory of �PCF is given by the extension of the ��
theory with the rules for the constants (and fixpoint operator) of PCF.

In a further, minor departure from the standard presentation of PCF, the
conditional is given at type 0. i.e.

Γ ` N : nat; M : 0; L : 0
Γ ` IF0 N then M else L : 0

and similarly for each case statement.
This proves to be a canonical choice in the semantics, but the original condi-
tional can be recovered as ��:[�]IF0 N then [�]M else [�]L, where � is not free
in L;M;N .

An equational theory for �PCF can be given by extending the theory of PCF with
the rules ��, and ��, extending the notion of evaluation context appropriately as
follows.

Definition 4.2.6 (Evaluation contexts of �PCF) Call-by name evaluation con-
texts are defined inductively as::
E[·] ::= [·] |

[�]E[·] | E[·] M |
IF0 E[·] then M else N | succ E[·] | pred E[·]

and call-by-value evaluation contexts as:
E[·] ::= [·]|

[�]E[·] | E[·] M | V E[·] |
IF0 E[·] then M else N | succ E[·] | pred E[·].

The type 0 (or ⊥) appears to have an important role in ‘idealized’ control calculi
such as �C and ��. However, ‘real’ control operators like call=cc do not use such
an empty type. It is the very fact that 0 has no values which makes it useful in
the semantics of control; if the current continuation takes arguments of type 0 to
results of type 0 then it can safely be discarded. In terms of the Curry-Howard
correspondence, the idealized control operators correspond to full classical logic,
and (typed) call=cc to minimal logic. Both systems are of interest, and one of
the advantages of the �� calculus (as opposed to Felleisen’s C and call=cc) is
that it is flexible in allowing both within the same framework. Thus a single
denotational and operational semantics proves to be sufficient.

One can admit the type 0 to the type-system of PCF as a base type alongside
nat. Or one can form the language, designated �PCF− by Ong and Stewart, in
which the use of the type 0 is restricted to namings.
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Definition 4.2.7 Form the language �PCF− (call-by-name or call-by-value) by
restricting the typing judgements of �PCF as follows:
the terms-in-context of �PCF−; Γ ` t : T;∆, are formed as for �PCF with the
restriction that Γ;∆ contain only PCF-types, and T is 0, or a PCF type.
(So every subterm of t has a PCF-type or the empty type.)

(The only well-formed terms of type 0 in �PCF− are namings and conditionals,
and any naming must be immediately followed by a �-abstraction, and any �-
abstraction must follow a naming.)
There will be some further comment on the semantic distinctions between �PCF
and �PCF−, but as the operational semantics and associated proofs can be pre-
sented so as to apply to both, they will be assumed to do so unless otherwise
noted.
The following system with ‘first-order’ control can also be defined.

Definition 4.2.8 Form the language �PCF1 (call-by-name or call-by-value, with
or without 0-types) as for �PCF, but restrict the use of names to the type nat.
(This system is closed under the operational semantics which will be introduced.)

Three different variations on the �� calculus, giving eight different languages
have now been defined, however, the distinction between first and second order is
empty in the call-by-name versions. This can be seen as a syntactic counterpart
to the observation that the only violations of the bracketing condition possible
in the games models of call-by-name PCF are weak, representing only downward
continuation passing [82]. Or, from the logical standpoint, that all of propositional
classical (or minimal) implicational logic can be deduced from intuitionistic logic
with ‘atomic stability’, — classical rules at atomic (or disjunctive) types. Rules
‘bootstrapping’ double-negation to higher types (as described below) were given
by Prawitz [75].

Proposition 4.2.9 With or without 0-types, �PCF1
n is equivalent to full �PCFn

(in that the latter can be soundly translated into the former).

Proof: Naming at arrow-types in call-by-name can be eliminated as follows.
For a �PCF-type T = A ⇒ B, assuming B 6= 0, to each �-name � of type T ,
associate a �-name �′ of type B and a variable xα : A. Now translate higher-type
naming and �-abstraction in a term M as follows:
Replace every named subterm ofM , [�T ]N with [�′](N xα), and every �-abstraction
with �xα:��′:M . (This can be defined formally as an inductive translation on
terms.)
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To show that all of the theory of �� holds with respect to this translation, the
following simple lemma can be proved by structural induction.

Lemma 4.2.10 For any �PCF term M ,
M [[�′][·]] xα=�][N=xα][E[·]=�′] = M [E[[·] N ]=�]:

Hence the translation is sound:
�� holds, because if EA⇒B [·] : 0 is a �PCFn evaluation context, then either
E[·] = E′[[�]·], in which case EA⇒B [��:M ] translates as E[[� ′](�x:��′:M ′ xβ)] =
E[� ′]��′:M ′] = M ′[E[·]=�] as required.
Or E[·] = E′[· N ], for some term N : A, so ignoring other names, E[��:M ]
translates as E′[�xα:��′:M [([�′][·] xα)=�] N ] =µ M [([�′][·] xα)=�][N=xα][E′[·]=�′]
and by the lemma, this is equal to M [E′[[·] N ]=�] as required.
The rule �� translates as �xα:(��:[�]M) xα =µ M by ��, and ��.
Hence �-names of type T = A1 ⇒ (A2 ⇒ : : :⇒ (An ⇒ At) : : :), can be replaced
by a ground-type name, and a set of n variables, xα1 : T1; : : : xαn : Tn. �

With respect to call-by-value, (or call-by-name with disjunctive types) the situa-
tion is different: the above method of ‘bootstrapping’ first order �� to higher order
gives terms which are type-correct, but which are not observationally equivalent
to true higher-order �-abstraction. (As pointed out to me by Hayo Thielecke.)
Moreover, one can show by the fact that the fully abstract semantics of �PCF1

v and
�PCFv are inequivalent, that any such attempt at defining higher-order call=cc
using first-order instances is doomed to failure.

4.3 Operational Semantics

The main difficulty with giving an operational semantics of �PCF is that it is
necessary to evaluate terms ‘inside’ a �-abstraction. Ong and Stewart described
a one-step operational semantics of �PCFv in [67] which is quite complicated (it
requires two separate evaluation relations). The simplified semantics described
here is based on evaluation-contexts. Thus it dovetails with the presentation of
the equational theory of ��. It is intuitive, as these contexts give an obvious
notion of the ‘next redex’ to be reduced in evaluating a program. And it is
general; adapted to both call-by-name and call-by-value semantics by the trade-
off between the more restricted notion of �-reduction in call-by-value, and the
richer notion of evaluation context that it allows.

Definition 4.3.1 (PCF reductions) Let the small-step PCF reduction relation
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−→, be given by the following rules:

(�) (�x:M) N −→M [N=x]

IF0 0 then M else N −→M

IF0 succ n then N else N −→ N

YM −→M (�x:(YM) x)

pred (succ n) −→ n

pred 0 −→ Y�x:x

The call-by-value reductions are given by stipulating that N must be a value in
the �-reduction clause.

The following proposition partially captures the way in which evaluation contexts
‘pick out’ the next reduction step.

Proposition 4.3.2 Any term M of �PCF or �PCF− (call-by-name or call-by-
value) with no free variables (but possibly free names) is uniquely in one of the
following forms:
M = n | �x:N | E[��:N ] | E[r] | E[[�]V ]
where N is any term, r is a PCF-redex, V is a value, and E[·] an evaluation
context.

Proof: is by structural induction on terms.
If M = �x:N , M = ��:N , M = n, M = [�]V , or M = YN , then the hypothesis
holds directly.
Otherwise, if M = IF0 N then L else L′, and N is either a numeral (so M is a
PCF-redex, or N = E[N ′], where N ′ is a naming, �-abstraction, or PCF-redex,
so M = E′[N ′], is also in this form. The cases M = succ N , and M = pred N

are similar.
If M = [�]N , where N is not a value, then N is E[N ′] where N ′ is a named
value, redex, or �-abstraction. If M = L N , then it is necessary to distinguish
call-by-name and call-by-value cases.
For call-by-name, either L = �x:L′, and so M is a �-redex. Or L = E[r] for some
redex r, and so M is also of this form.
For call-by-value, suppose L = �x:L′, then if N is a value, M is a �v redex.
Otherwise, N = E[N ′], where N ′ is a named value, PCF-redex or �-abstraction,
in which case M is also of this form. If L is not a value, then by induction
hypothesis, it is equal to E[L′], where L′ is a named value, �-abstraction or
PCF-redex, and so M is of the same form. �
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Corollary 4.3.3 �PCF programs (closed terms of type nat) are either numerals,
or uniquely in one of the following ‘reducible forms’:
M = E′[��:N ] | E[r] | ��:[�]n | ��:E[��:N ] | ��:E[r]
where E[·] ranges over all evaluation contexts, and E′[·] only over non-trivial
ones, and r over PCF redexes.

Proof: By Proposition 4.3.2 above, M is either a numeral, or in the form E[r]
for a PCF redex r, or in the form E[��:N ] for some N , where E[·] is either trivial
(E[·] = [·]) or non-trivial.
If E[·] is trivial, so M = ��:(N : 0), then by Proposition 4.3.2 either N = [�]n
or N is (uniquely) of the form E[r] for a PCF redex r, or N = E[��:N ′]. �

Corollary 4.3.3 means that the operational semantics can be given in the follow-
ing simple format, based on a combination of Plotkin’s ‘Structured Operational
Semantics’ [72], and Felleisen’s use of unique decomposition of programs into a
redex and an evaluation context, with one clause for each of the ‘reducible forms’.

n ⇓ n ��:[�]n ⇓ n

r−→s E[s]⇓n
E[r]⇓n

r−→s ��:E[s]⇓n
��:E[r]⇓n

��:M [[�]E′[·]=�]⇓n
E′[��:M ]⇓n

��:M [E[·]=�]⇓n
��:E[��:M ]⇓n

(E′[·] is non-trivial.)

Figure 4.2: One-step operational semantics of �PCF

(Note that the terms of �PCF1 are closed under reduction, and that the first two
rules in the left column give a sound and complete PCF semantics).

Proposition 4.3.4 (Determinism) If M ⇓, (i.e. M ⇓ n for some n) then the
derivation in the operational semantics is unique. Hence M ⇓ n implies M 6⇓ n′

for n 6= n′.

Proof: is direct by Corollary 4.3.3. �

For the purposes of this thesis (considering fully abstract models), it is quite suf-
ficient to consider only the evaluation of ground-type terms to numerals. Giving

106



an operational semantics of programs also has the advantage that all terms either
converge to a value, or diverge (this is a corollary of computational adequacy).
Significantly, this is not the case for higher-order terms of �PCFv, — for terms
of the form ��:[�]�x:N , where � occurs in N (see [67]).
However, the operational semantics given here can be used to evaluate higher-
order terms, (change the first rule in the right hand column to ��:[�]V ⇓ V if
� is not free in V ) and it is complete (in the sense that evaluation of any term
which denotes a value terminates at avalue). Note also that the notion of obser-
vational equivalence used (program-type contextual equivalence), is equivalent to
all-type contextual equivalence in an operational semantics based on evaluation
of higher-type terms to values.

Proposition 4.3.5 For terms M;N : T ,
M vOBST N ⇐⇒ ∀CT [·] C[M ] ⇓ V =⇒ C[N ] ⇓ V .

Proof: The implication from right to left is trivial, for the converse, suppose
there is some higher-typed context C[·] such that C[M ] ⇓ V , and C[N ] 6⇓ V , then
(�x : S:0) C[M ] ⇓ 0, and (�x : S:0) C[N ] 6⇓ 0, so M 6vOBST N as required. �

The operational semantics is complete, and hence sufficient for the principal aim
of proving full abstraction, however, it does not make any connection between
the interactions of the game semantics, and the computation of programs. This
possibility offers a new line of enquiry into the dynamics of computation with
control, in light of the fact that the games models of �PCF are based on the CCC
of one-move games. Danos, Herbelin and Regnier [21] have already given a close
correspondence between interaction of strategies in both AJM and Hyland-Ong
versions of these categories of games, and abstract machines for performing ‘linear
head reduction’ in the �-calculus. At a different level, Streicher and Reus [81] and
Bierman [12] have suggested that an appropriate way of evaluating languages with
control is to give an abstract machine which stores continuations (as evaluation
contexts). Connecting these developments could be a way to optimize reduction
strategies for languages which can be implemented using continuations, such as
�PCF.

4.3.1 Expressing control in �PCF

Although �PCF is an ‘idealized’ language, it is suitable to represent a variety
of control constructs based on continuation passing; this has been known since
Parigot devised the ��-calculus [69], and is a theme of the paper of Ong and
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Stewart [67], in which �PCF is introduced. The call-with-current-continuation
operator of Scheme, which is perhaps the most natural control extension of a
functional language from a programming point of view, provides a useful example
showing how �-abstraction and naming correspond to ‘catch and throw’ of the
current continuation. Parigot observed that the term of �� corresponding to a
natural deduction proof of Peirce’s law has the same operational behaviour as
call=cc [69], and a more formal connection with the callcc of SML of New
Jersey [35] is described in [67]. In the other direction, there is the question of
whether �� terms can be written using call=cc. The result proved in [48], that
unbracketed games give fully complete model of PCF + call=cc establishes that
all closed �PCF−n terms are definable with call=cc. The definability of terms ��v
using C (Felleisen’s ‘idealized call/cc’), and vice-versa, is shown in Section 4.8.

Expressing the catch and error terms of Cartwright and Felleisen’s SPCF
establishes a link with the fully abstract semantics of this language in the cat-
egory of sequential algorithms, which will be studied semantically in the next
chapter. However, �PCF cannot express control operators such as the exception
handler of ML, which use dynamic, rather than static variable bindings (such as
�-abstraction and �-abstraction).

Definition 4.3.6 (Call-with-current-continuation) The operational seman-
tics of PCF can be extended with call=cc by evaluating terms within a context
of ‘continuation variables’ bound to evaluation contexts (a similar semantics for
�PCF is described by Bierman in [12]). The role of call=cc is to bind the current
continuation to a variable; applying a continuation variable replaces the current
continuation with the one which has been bound to the variable. As in Lemma
4.3.2, every �-closed term is uniquely in the form E[r], where r is the next redex
to be evaluated, or E[call=ccM ], or E[kM ], where k is a continuation variable.
So terms can be completely evaluated with the following rules.

V;∅⇓cV
r−→s; E[s];K⇓cV

E[r];K⇓cV

E[M ];K∪{k→E[·]}⇓V
E[call=cc �k:M ];K⇓cV

E[M ];K⇓V; k→E[·]∈K
E′[k M ];K⇓cV

Definition 4.3.7 For any term M : (T ⇒ S) ⇒ T , (call=cc M) will be written
in �PCF as (�� : T:[�]M (�y : T:�� : S:[�]y)).

Proposition 4.3.8 Let M be any program of PCF + call=cc (interpreted in
�PCF as defined above), then

M;∅ ⇓c⇔M ⇓µ
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Proof: To prove this claim, generalize it to include non-empty sets of continu-
ation variables as follows.
Let M be a term such that there is an assignment KM of appropriately typed
evaluation contexts without free variables, Ek[·] to each of the continuation vari-
ables k ∈ Cont(M).
Define the substitution Kµ such that if K(k : T ⇒ S)) = E[·] then
Kµ(k) = �x : T:��S:[�]E[x]. Then

M;K ⇓c ⇐⇒ ��:[�]MKµ ⇓µ :

Proof is by induction on the length of evaluation, of which the key induction steps
are like this.

• Suppose M = E[call=cc �k:s], then (proving the implication from left to
right)
E[s];K ∪ (k → E[·]) ⇓c, with a shorter derivation, by definition of the
evaluation relation for call=cc.
Hence by hypothesis, ��:[�]E[s[�x:��:[�]x=k]]Kµ ⇓µ, so
��:[�]E[�γ:[γ]�k:s (�x:��:[γ]x)] ⇓µ as required.
In the opposite direction, ��:[�]E[s[k=�x:��:[�]E[x]] ⇓µ by definition of ⇓µ
and by hypothesis E[s]K∪ k→ E[·] ⇓c, and so E[call=cc �k:s];K ⇓c

• Suppose M = E[k V ] for some k ∈ Cont(M) such that K(k) = E′[·],
then E′[V ];K ⇓c and so by hypothesis, ��:[�]E′[V ]Kµ ⇓µ,
and so ��:[�]E[��:[�]E′[V ]]Kµ ⇓µ and ��:[�]E[k V ]Kµ ⇓µ as required.
In the opposite direction:
��:[�]E[�x:��:[�]E′[x]V ]Kµ ⇓µ implies ��:[�]E′[V ]Kµ ⇓µ
and by hypothesis, E′[V ];K ⇓c, henceE[k V ];K ⇓c

�

4.3.2 �PCF and SPCF

SPCF(E) is call-by-name PCF extended with a set of errors E (possibly empty),
and a group of ‘catch’ constructs which take a term
M : (S1 ⇒ (S2 ⇒ : : : (Sn ⇒ nat) : : :)) and return n if the first argument consulted
by M is the nth, and (t Ω) + n + 1 if M is non-strict. This procedure can be
defined in �PCF, as

catchT = �f : T:�� : nat:[�](((f (��:[�]0)��:[�]1) : : :��:[�]n) + (n+ 1)):
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A control feature of SPCF of a somewhat different kind is the inclusion of con-
stants for reporting run-time errors by terminating evaluation and returning an
‘error value’. It is not possible to simulate errors directly in �PCF, as a whole new
notion of evaluation is required, but it is possible to represent errors in �PCFE,
which is a generalization of the errors of SPCF, as ‘uncaught’ continuations.

Definition 4.3.9 Form the language �PCFE (call-by-name or call-by-value �PCF
with errors) by extending the syntax of �PCF with an !-indexed set of error terms
{ei | i ∈ !}.
Errors are assumed to be polymorphic, taking any type (as they are intuitively of
type ∀X:X = 0). The unique reducible forms Lemma 4.3.2 can be extended to
show that a program of �PCFE is uniquely in one of the the following forms

M = v | E′[��:N ] | E[r] | ��:[�]n | ��:E[��:N ] | ��:E[r] | E[ei] | ��:[�]E[ei]

where E[·] ranges over all evaluation contexts, and E′[·] only over non-trivial
ones.
The range of the termination relation ⇓ is extended to include error-terms and
the operational semantics can then be extended with the rules

E[ei] ⇓ ei

��:[�]E[ei] ⇓ ei:

One can show with a routine induction that reduction of �PCFE programs is
deterministic, and either non-terminating, terminated by convergence to a value,
or terminated by abortion to an error term.

Errors can be represented in �PCF itself by allowing ‘closed’ terms to contain
a single free name " of type nat, which can only be used as an error generator,
writing ei = ��:["]2:i, where � is typed appropriately for the context in which
the error appears. Hence for any evaluation context ET [·] : nat,
E[ei] =df E[��:["]i] =µ �� : nat:["]2i =df ei.

Proposition 4.3.10 This can be formalised as a translation �PCFE terms in
context Γ ` t : A; ∆ to �PCF terms Γ ` t∗; ∆; " such that M =µ(e) N if and only
M∗ = N∗

Evaluation of Programs (ground-type closed terms) with errors can be simulated
by translating, and binding the free �-variable as follows.

M −→ �":["](succ (2:M∗))
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Proposition 4.3.11 M ⇓ n if and only if �":["](succ (2:M∗)) ⇓ 2n+ 1, and
M ⇓ ei if and only if �":["](succ (2:M∗)) ⇓ 2i.

Errors can be represented semantically in much the same way as the ⊥-elements
were added to the free CCC. A semantics of �PCF based on names as continuation
variables can be generalised to a semantics of �PCFE by ‘freely adjoining’ a type-
object representing a continution of type nat to ∆-contexts.

(In other words, attaching a set of ‘top’ elements to each domain: see Section
5.3.2.) A simple generalization of a context lemma for �PCF proved in Chapter
5 can be used to show a fact stressed by Cartwright, Curien and Felleisen, that
operational equivalence in the presence of errors is order extensional (see Corollary
5.1.7). Error values alone are clearly less expressive than full call=cc: they allow
the current continuation to be aborted (‘thrown’), but there is no recovery, it
cannot be ‘caught’.

4.4 Completeness of the operational semantics

Like PCF (see [14]), the proof of adequacy of the �PCF semantics can be ab-
stracted from any particular denotational framework, and based on soundness,
together with two inequational conditions. In fact, these requirements are (un-
surprisingly, but pleasingly) the same as those which have been used to axiom-
atize adequacy for PCF. A further pleasant feature of the dual purpose call-by-
name/call-by-value operational semantics is that a single proof suffices to establish
the completeness of the semantics for all of the variants of �PCF which have been
defined.

The adequacy conditions must exclude the trivially sound model of �PCF in
which all terms are identified. In other words, it is necessary for termination and
non-termination to be distinguishable at ground type, which can be achieved with
the following definition:

Definition 4.4.1 (Standard Datatypes) A semantics for �PCF has standard
datatypes if each numeral is interpreted as a distinct denotation n, and ⊥[[nat]] 6= n.
(In fact, in a sound model, this is equivalent to requiring only that ⊥[[nat]] 6= n for
all n.)

The following lemma partially formalises the intuition that any term appearing
inside an evaluation context must be evaluated.

Lemma 4.4.2 (Strictness of evaluation contexts) Let M be a semantics of
�PCF (call-by-name or call-by-value), such that the �� rule is soundly interpreted
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in M . Then for every nat-typed evaluation context ET [·] : nat:

[[E[ΩT ]]]M = [[Ωnat]]M:

Proof: Recall that ΩT for T 6= 0 is defined to be ��T :Ω0. By ��, [[ET [��:Ω0]]M =
[[�� : nat:Ω0]]M = [[Ωnat]]M. �

A second condition (adapted from [14]) is based on the fact that the Y combinator
is interpreted as a least fixpoint. Hence it can be ‘unwound’.

Definition 4.4.3 (Continuous Observability) A semantics of �PCF is con-
tinuously observable if for every program of the form C[YM ] : nat

[[C[YM ]]] 6= ⊥ =⇒ ∃k ∈ ! : [[C[Mk]]] 6= ⊥

where M0 = Ω, and Mk+1 = M(�x:(Mkx)).
(So Mk+1 = M Mk in call-by-name �PCF.)

Lemma 4.4.4 For all k ∈ !, and (closed) �PCF contexts CT [·] : nat,
C[Mk] ⇓ n implies C[YM ] ⇓ n.

Proof: is by induction first on k, and then on the length of derivation of
C[F k] ⇓ n.
The important case is where C[·] is an evaluation context E[·]. Then E[Mk+1] ⇓ n
implies E[M �x:Mk x] ⇓ n, so C ′[Mk] ⇓ n, where C ′[·] = C[M �x:[·] x], hence
by inductive hypothesis, E[M �x:YM x] ⇓ n thus E[YM ] ⇓ n. �

Theorem 4.4.5 Let M be a sound denotational semantics for �PCF which is
continuously observable, and has standard datatypes. Then the operational se-
mantics of �PCF is computationally adequate with respect to M i.e.
For all terms M of type nat, [[M ]] = n if and only if M ⇓ n.

Proof: The soundness part (M ⇓ n implies [[M ]] = n) follows from a simple
induction on the derivation of M , using the assumption thatM is a sound model
of the equational theory.
It remains to show completeness ([[M ]] = n implies M ⇓ n). The following lemma
shows that it is sufficient to consider terms without the Y combinator.

Lemma 4.4.6 SupposeM is a continuously observable semantics which is com-
plete for Y-free terms, then M is complete for all terms.
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Proof: that [[N ]] = n impliesN ⇓ n is by induction on the number of occurrences
of Y in N .
Assuming this is greater than zero, choose a context such that N = C[YM ],
where M is Y-free. By continuous observablility, there exists k ∈ ! such that
C[Mk] = n, and then by inductive hypothesis, C[Mk] ⇓ n, and by Lemma 4.4.4
above, C[YM ] ⇓ n as required. �

So it remains to prove completeness for recursion-free terms (as for PCF [71], by a
now standard reducibility style argument based on a ‘computability predicate’).
This is complicated, however, by the fact that the operational semantics (un-
avoidably) allows reduction inside a �-abstraction. So it is useful to distinguish a
single name � of type nat, and define the notion of computability first for terms
containing (at most) � free, which will be called �-closed.
Say that a term M of type T1 ⇒ (T2 : : : (Tn ⇒ nat) : : :), with no free variables or
names (except �) is computable if whenever N1; : : :Nk are computable �-closed
terms,

[[(��:[�](MN1; : : : Nk)]] = n

implies
��:[�](MN1; : : :Nk) ⇓ n

Define a computable evaluation context (call-by-name or call-by-value) to be an
evaluation context E[·] of type nat with no free variables or names except �, such
that every �-closed subterm of E[·] is computable.

Lemma 4.4.7 An �-closed term M is computable if and only if [[��:E[M ]]] = n

implies ��:E[M ] ⇓ n for all computable evaluation contexts.

Proof: The right to left implication is trivial, left to right can be proved by a
simple induction on the structure of E[·]. �

Definition 4.4.8 For any term M , a computable variable-substitution for M is
an assignment of computable �-closed terms to variables at each type T ,
a computable name-substitution for M is an assignment of a computable evalua-
tion context [�]ET [·] to the free names of M (other than �) at each type T .
For each computable substitution � of names and variables, Mσ is given by car-
rying out the replacements specified by �.

Now say that term M with free variables and names is computable if Mσ is
computable for every computable substitution � such that Mσ is �-closed.
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Proposition 4.4.9 Every term of �PCF is computable.

By the lemma above, this is equivalent to the proposition that for every term
M : T , every computable substitution � such that Mσ is �-closed, and every
computable evaluation context ET [·] : 0, [[��:E[Mσ]]] = n implies ��:E[Mσ] ⇓ n.

Proof: is by structural induction on M .
Let � be any computable substitution for M , such that [[��:[�]:E[Mσ]]] = n

By Lemma 4.3.2 ��:E[Mσ] is in one of the ‘reducible forms’ (and one of the latter
three). Hence it is (uniquely) covered by one of the following cases.

• ��:[�]:E[Mσ] = ��:E′[Ω] for some computable context E′[·]. But in this
case [[��:[�]:E[Mσ]]] = ⊥n by strictness of evaluation contexts, contradicting
the hypothesis above.

• If ��:[�]:E[Mσ] = ��:[�]n, ��:[�]:E[Mσ] ⇓ n as required.

• If ��:E[Mσ] = ��:E′[r], for a computable context E′[·], and PCF-redex r,
which is either pred (succ n), IF0 n then N else N ′, or a � redex. The
former case is trivial.
If r is a conditional, it reduces to N or N ′, both of which are computable
by the induction hypothesis as they are subterms of Mσ.
In case r is a � redex, it reduces to a computable substitution r′ = N [N ′=x]
which is therefore computable.
So ��:[�]E′[r′] ⇓ n, and also ��:[�]E′[R] ⇓ n as required.

• If ��:E[Mσ] = ��:E′[��:N ], for some non-trivial evaluation context E′[·],
then N is shorter than Mσ, and computable by inductive hypothesis.
[[��:E′[��:N ]]] = n = ��:N [E′[·]=�], by soundness. Since N is computable,
and [E′[·]=�] is a computable substitution,
so ��:N [E′[·]=�] ⇓ n, and hence ��:E′[��:N ] ⇓ n as well.

�

To prove the completeness theorem, a simple lemma can first be established by
induction on the length of evaluation.

Lemma 4.4.10 For any closed term M , if ��:[�]M ⇓ n then M ⇓ n.

Proof of the completeness theorem
Suppose M is a closed term such that [[M ]] = n. Then [[��:[�]M ]] = n and so by
computability, ��:[�]M ⇓ n, and by the above lemma M ⇓ n as required.

Corollary 4.4.11 Any sound model of PCF + call=cc with standard datatypes
and continuous observability is computationally adequate.
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4.5 Denotational semantics of �PCF via cps trans-
lation

It can now be shown that �PCFn can be adequately interpreted in a compu-
tational control model, along the lines outlined in Chapter 2. That is, given
a pointed and rational cartesian closed category with !-indexed products, and
a non-terminal answer object R, form the co-product completion Fam(C), and
strong monad of continuations T = (( ⇒ a) ⇒ a), and interpret product and
function types as product and exponential in Fam(C), and co-product types A+B
as T([[A]] + [[B]]). Naming and �-abstraction are interpreted as application and
abstraction of continuation variables. Note, however, that only T({}) ∼= a, in-
terpreting the empty type, and T({1n | n ∈ !} ∼= aω ⇒ a, interpreting nat are
required for the full abstraction result. This yields a rational CCC head; tail ; ::
(and hence every embedding-projection pair ei; pi) is definable.

The call-by-name cps translation of �PCFn into the simply-typed �-calculus
with !-indexed products and least fixed points is probably the simplest route
to this interpretation. It is described here both for its intrinsic interest (it is
fully abstract), and because it provides a clearer way to understand naming and
�-abstraction as catch and throw of continuations. The role of names in call-by-
name �� is more subtle than in call-by-value; in the latter, they can be replaced
by lambda-variables of ‘negated type’ (see Section 4.8.1), together with a double
negation elimination. The call-by-name cps translation is simpler, however, as
�-abstraction and naming need be defined at ground type only.

To interpret infinite datatypes such as the natural numbers by cps translation
requires infinite datatypes in the target language: it is sufficient to add a type
constructor ( )ω (T ω being the infinite streams, or lists or products of type T ),
and its constructor ::, and deconstructors head and tail , to the simply-typed
�-calculus, to form the infinitary calculus Λ(Ω)ω.

Definition 4.5.1 Types and terms of Λ(Ω)ω are given by the following grammar:
T ::= � | T ω | S ⇒ T

t := x : T | (�x : S:t : T ) : S ⇒ T | (t : S ⇒ T ) (s : S) : T | t : T ::s : T ω :
T ω | head(t : T ω) : T |tail(t : T ω) : T ω | Y(t : T ⇒ T ) : T .
The equational theory of Λ(Ω)ω is given by the standard call-by-name �� equality,
and the following rules for lists and fixpoints:

• head(t::s) =Λ(Ω)ω t

• tail(t::s) =Λ(Ω)ω s
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• Yf =Λ(Ω)ω f(Yf).

Definition 4.5.2 The following familiar operations on infinite lists can be de-
fined:
For each type T there is a diverging element of type T , ΩT = Y(�x : T:x).
Finite products 〈t1; : : : ; tn〉 are defined as t1::t2:: : : : tn::Ωιω

and projections are defined by iterating the tail -operation: �it = head(tail i−1(t)).
For any t : �, an infinite list of copies of t, �(t) can be defined using the recursion
combinator: �(t) = Y(�x : �ω:t::x):

Proposition 4.5.3 The following equalities can be derived from the theory of
Λ(Ω)ω:
�i(〈t1; t2; : : : tn〉) =π ti,
head(�(t)) = t,
tail(〈t1; t2; : : : tn〉) = 〈t2; : : : ; tn〉.

It is clear that any rational pointed cartesian closed category with !-indexed
products (C; [[�]]) is a sound model of Λ(Ω)ω, and in particular that:

Proposition 4.5.4 The model of Λ(Ω)ω in the category of unbracketed games,
(G; o) is sound.

4.5.1 Continuation passing translation of �PCFn

This can be seen as an application to �PCF of previous work on the pure calculus.
The novel feature here is the use of infinite lists to model continuations of type nat.
de Groote [23] described a wholly syntactic continuation-passing-interpretation of
the ��n-calculus which is similar to the one given here. Hofmann and Streicher
[40] gave a continuation semantics for ��n, and showed that it is universal in
that any ��n model is isomorphic to such an interpretation (see the discussion in
Remark 4.5.10 below).

Definition 4.5.5 (CPS translation of call-by-name �PCF) The translation
on types is given by

• 0� = �

• nat� = �ω ⇒ �

• (S ⇒ T )� = S� ⇒ T�
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Note that to translate �PCFn requires only !-indexed products in Λ(Ω)ω at ground-
type, (written Λ(Ω)ω1 ).
Terms-in context are translated by assuming a correspondence between �PCF vari-
ables x : T and Λ(Ω)ω variables x� : T�, and between names � : nat, and Λ(Ω)ω-
variables �� : �ω.
So (Γ ` t; ∆)� = Γ�;∆� ` t�, where t� is defined by induction:

• (x)� = x�

• (�x:M)� = �x�:M�

• (M N)� = M� N�

• 0� = �x : �ω:head(x)

• (succ M)� = �x : �ω:M� (tail(x))

• (pred M)� = �x : �ω:M� (Ω::x)

• (IF0 M then L else N)� = M� (L�::�(N�))

• (YM)� = YM�

• ([�]M)� = M� (��)

• (��:M)� = ���:M�

The interpretation of terms of �PCFn in the games model can now be given via
translation into Λ(Ω)ω, and interpretation in G; i.e.

[[M ]]G = [[M�]]G

The well-bracketed model of PCF embeds into the semantics of �PCFn as de-
scribed in Chapter 3.

Proposition 4.5.6 The denotations of the PCF types (as games) and PCF terms
(as innocent functions) under the above interpretation are play-equivalent to those
in the Hyland-Ong model of PCF without the bracketing condition.

The proof of soundness of the translation uses the following lemma.

Lemma 4.5.7 For every 0-typed, nat-holed �PCFn evaluation context
Enat[·] : 0, there is a term N : �ω of Λ(Ω)ω such that for any �PCF term M : nat,
E[M ]� =Λ(Ω)ω M

� N .
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Proof: is by induction on �PCFn-evaluation contexts. There are two base cases,
the conditional and naming:
(IF0 M then L else N)� = M� L�::�(N�)
([�]M)� = M� ��

For the inductive step in which Enat[·] : 0 = E′[succ [·]] for some smaller E′[·],
the induction hypothesis gives N ′ : �ω such that E′[M ′]� = M ′� N ′ for any M ′.
Let N = tail(N ′), then E′[succ M ]� =Λ(Ω)ω (succ M)� N ′

= (�z : �ω:M� tail(z)) N ′ =Λ(Ω)ω M
� N as required.

The case E[·] = E′[pred ·] is similar. �

Lemma 4.5.8 If Enat[·] : 0 is a �PCFn evaluation context, and N the associated
term of Λ(Ω)ω such that for all M : nat, E[M ]� =Λ(Ω)ω M

�N , then for all �PCF
terms L, L[E[·]=�]� = L�[N=��].

Proof: is by induction over the structure of L, for example,
([�]M [E[·]=�])� = E[M [E[·]=�]]�

= (M [E[·]=�])�N = (M� ��)[N=��] = ([�]M)�[N=��]. �

Proposition 4.5.9 The translation is sound with respect to the equational theo-
ries of �PCFn and Λ(Ω)ω.

Proof: The �� equalities are preserved by the translation, and it is easy to
check that the Peano axioms and equalities for the conditional are satisfied.
�� : (��:[�]M)� =µ ���:M� �� = M�

The �� rule translates to a �-substitution: by Lemma 4.5.7 above,
(E[��:M ] : 0)� =Λ(Ω)ω ��

�:M� N =Λ(Ω)ω M
�[N=��].

By Lemma 4.5.8, M�[N=��] = M [E[·]=�]� as required. �

Remark 4.5.10 (Relation to Hofmann-Streicher Models of ��) By the com-
pleteness theorem of Hofmann and Streicher mentioned above, every sound model
of �� is isomorphic to a category of continuations constructed from a category C
as follows: select an answers object R from C.
For each type T , define the continuations of type T as
[[0]]c = 1C, and [[S⇒ T ]]c = R[[S]]c × [[T ]]c.
(Leaving open the interpretation of continuations of ground types other than 0.)
The denotations of type T are given in R[[T ]]c (So that a denotation corresponds
to a map from a continuation to an answer, and a continuation at arrow type to
pair of a denotation of argument type and a continuation of result type.)
Hence for a PCF-type T = A1 ⇒ (A2 ⇒ : : : (An ⇒ nat) : : :),
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[[T ]]c ∼= [[A1]]D × : : :× [[An]]D × [[nat]]c,
[[T ]]D ∼= R[[A1]]D×...×[[An]]D×[[nat]]c ∼= ([[A1]]D × : : :× [[An]]D)⇒ [[nat]]D.
So denotations at PCF-types are given the standard interpretation, and a contin-
uation at higher type is given by a product of denotations with a continuation at
ground type. This is how higher-type names are interpreted using the ‘bootstrap-
ping’ described in Proposition 4.2.9.

Another perspective on the semantics of call-by-name �� is given by Ong in ‘A
Semantic view of Classical Proofs’ [66]. This paper describes categorical and game
semantic notions of ��-model, both of which are quite different to anything which
appears here. The categorical model characterizes the operation of ‘mixed substi-
tution’ directly, rather than by continuation-passing. Ong’s ‘��-categories’, are
split fibrations; CCC’s (i.e. �-models) fibred over cartesian products representing
�-contexts. (So continuations models are a trivial example of such a fibration, in
which the fibre for each �-context is the CCC with the corresponding context of
continuation variables adjoined to it.) Because of the various completeness results
for cps semantics (such as [40]) it is known that every ��-category can be written
as a category of continuations in this way.

The relationship of the games semantics of ��n in [66] to the unbracketed one
is less clear. Ong’s model retains the well-bracketing condition, but adds a notion
of state via ‘scratchpads’. These allow Player to give ‘dummy’ answers to ques-
tions which he would just skip over in the corresponding unbracketed strategy. It
seems fair to say that the unbracketed games model, based on relaxing conditions
rather than adding structure, is a simpler category; it has also been possible to
connect local and non-local control semantically in a natural way. However the
extra structure of scratchpads and control questions could prove useful in studying
control-flow in games, using information which could be extracted from a for-
mal connection between the games via the relationship between the corresponding
categorical models.

Proposition 4.5.11 If (C; a) specifies a computational model of control (i.e. C
is a rational CCC with !-indexed products, and a is non-terminal) then the se-
mantics of �PCFn in (C; a) given by translation into Λ(Ω)ω is computationally
adequate with respect to the operational semantics.

Proof: The semantics in G meet the adequacy criteria stated in Theorem 4.4.5,
as the translation into Λ(Ω)ω is sound, and G has standard datatypes and is
continuously observable.

Datatypes are standard Suppose a is non-terminal: then ⊥a,a = ta;⊥a 6= ida.
Hence for every i ∈ !, [[n]] = ‘�n’ : aω ⇒ a 6= ‘⊥aω,a’.
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Continuous observability If C is rational, then the semantics of �PCFn given
by (C; a) is continuously observable.
Given a closed term of ground type, C[Y(M : T ⇒ T )],
C[YM ] = [[�x:C[x M ] (�y : T ⇒ T:Yy)]] = F∇; [[�x:C[x M ]]].
(where F : [[((T ⇒ T )⇒ T ))]]→ [[(T ⇒ T )⇒ T ))]] = [[�H:�f:f(Hf)]])
By rationality, C[YM ] =

⊔
i∈ω F

i; [[�x:C[x M ]]] =
⊔
i∈ω[[C[M i]]].

Hence if C[YM ] 6= ⊥, there exists k ∈ ! such that C[Mk] 6= ⊥, as required.

�

4.6 Definability and full abstraction in �PCFn

Definability of finitary morphisms now follows from the axiomatic characteriza-
tion of the category of unbracketed games and finite strategies as a fully complete
model of Λ(Ω). It is also, trivially, a fully complete model of the ��n(Ω)-calculus
over the empty type 0, because by Lemma 4.2.9, naming and �-abstraction at all
types can be simulated using �-variables. The extension to the infinitary types
are given by the numerals and case statements.

Definability for �PCFn can be established in greater detail by describing an
inverse to the � translation with respect to finitary evaluation trees. Recall
(Proposition 2.5.9) that all definable morphisms of a computational control model
(C; a) are least upper bounds of the form

⊔
i∈ω(pAi ; fi; eBi ), where each fi : Ai→ Bi

is a definable morphism of the free CCC over a. In conjunction with the unique
representation of morphisms in the CCC as ��-long forms of Λ(Ω), this gives a
unique representation of a finitary basis of a model of Λ(Ω)ω.

Definition 4.6.1 The finitary normal forms of Λ(Ω)ω1 are given by the following
inductive definition.

Ω ∈ N(Γ; �)

t ∈ N(Γ; x : S;T )
�x:t ∈ N(Γ;S ⇒ T )

x : �ω ∈ Γ
�n(x) ∈ N(Γ; �)

s1; s2; : : : ; sn ∈ N(Γ; �)
〈s1; s2; : : : ; sn〉 ∈ N(Γ; �ω)

si ∈ N(Γ;Si) x : S1 ⇒ (S2 ⇒ : : : Sn ⇒ �)
(: : : ((x s1) s2) : : :) ∈ N(Γ; �)
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Proposition 4.6.2 If (C; a) is a model of Λ(Ω)ω, every finitary definable mor-
phism is the interpretation of a (unique) finitary normal form.

Proof: is by a straightforward structural induction, proving that every denota-
tion of a finite evaluation tree is equal to eAi ; fi; pAi , where fi is the denotation of
a unique ���-long normal form of Λ(Ω) (given by Definition 3.7.4 extended with
finite products at ground type). �

The Definability Theorem (Theorem 3.7.2) then yields the following corollary.

Corollary 4.6.3 If (C; a) defines a computational control model, and satisfies the
axioms for definability, then every finitary morphism of (C; a) is the interpretation
of a finitary normal form of Λ(Ω)ω.

The evaluation trees of �PCFn follow essentially the same pattern.

Definition 4.6.4 (Evaluation trees of �PCFn) The set of evaluation trees
E(Γ;∆;T ) of type T over the contexts Γ = x1 : T1; : : : ; xn : Tn;∆ = �1 : nat; �2 :
nat; : : : �n : nat is generated (up to �-equivalence) by the following inductive
definition:

Ω ∈ E(Γ;∆; 0)

� ∈ ∆
[�]n ∈ E(Γ;∆; 0)

M ∈ E(Γ;∆; �; 0)
��:M ∈ E(Γ;∆; nat)

M ∈ E(Γ; x : T ;U)
�x : T:M ∈ E(Γ;T ⇒ U)

M1;M2; : : : ;Mn ∈ E(Γ;∆;Ti); f : (T1 ⇒ (: : : (Tn ⇒ 0) : : :)) ∈ Γ
(((f M1) M2) : : :) Mn ∈ E(Γ;∆; 0)

Mi ∈ E(Γ;∆;Ti) : i ≤ n; f : T ⇒ nat) ∈ Γ; Ni ∈ E(Γ;∆; 0) : i ≤ k

case k(((f M1) M2) : : :) Mn|iNi ∈ E(Γ;∆; 0)

For the evaluation trees of �PCF−n , delete the fifth clause.

Proposition 4.6.5 Suppose t ∈ E(Γ�;∆�;T�) is a finitary normal form of
Λ(Ω)ω, over a context of translated variables and names. Then there is a unique
finitary evaluation tree of �PCFn M ∈ E(Γ;∆;T ) such that M� =Λ(Ω)ω t.

Proof: is by induction on finite normal forms of Λ(Ω)ω, which is routine as there
is a direct correspondence with evaluation trees, as follows.
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• Ωι = (Ω0)�

• y� : � = (y : 0)�

• �y�:M = (�y:M)�

• �n(� : �ω)� =Λ(Ω)ω ([�]n)�

• ���:M� = (��:M)�

• (((y� M�
1 ) M�

2 ) : : :) M�
n =Λ(Ω)ω ((((y M1) M2) : : :) Mn)�

• (((y� M�
1 ) M�

2 ) : : :) M�
n 〈N�

1 ; N
�
2 ; : : :N

�
k 〉

= (case k((((y M1) M2) : : :) Mn)|iNi)�

�

Corollary 4.6.6 Every finite morphism in the games model of �PCFn (and any
model constructed from (C; a) satisfying the axioms for definability) is the deno-
tation of a unique evaluation tree.

Theorem 4.6.7 (Full abstraction for �PCFn) Any model of control specified
by a category and answer-object (C; a) satisfying the axioms for definability will
collapse under its intrinsic preorder to give a fully abstract model.

Proof: by Corollary 4.6.6 above, any such model will have the definability prop-
erty, which by Proposition 2.4.11 means that its collapse will be fully abstract
for closed terms. It remains only to show that full abstraction for closed terms
extends to full abstraction for all terms. �

Lemma 4.6.8 Suppose full abstraction holds for all closed terms; i.e for closed
s; t : A, s vobs t if and only if [[s]] vOBSA [[t]]. Then full abstraction holds for all
terms.

Proof: It is observed in [6], for example, that it is sufficient to prove soundness
and completeness for terms without free variables, as given any terms M;N : T
with free variables Γ = x1 : A1; x2 : A2; : : : ; xn : An, then
[[Γ `M ]] .[[Γ]]⇒[[T ]] [[Γ ` M ]] if and only if [[�x:M ]] .[[Γ]]⇒[[T ]] [[�x:N ]], and
M vOBSΓ;T N if and only if �x:M vOBSΓ;T �x:N .
Here, it is shown how this observation extends to free names.
Suppose that Γ ` M : A; � : B;∆ and Γ ` N : A; � : B;∆ are terms in context
with a free name � : B.
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Let x : A⇒ 0 be a variable not free in s; t, and define
M ′ = �x : A⇒ 0:��:(x M) and N ′ = �x : A⇒ 0:��:(x N)
Then M vOBSΓ;∆,B;A N if and only if M ′ vOBSΓ;∆;A⇒0⇒B N

′.
The implication from right to left is obvious; to prove the converse, suppose that
M ′ vOBSΓ;∆;⇒A N

′, and C[·] is a program context such that C[M ] ⇓.
Then let D[·] = C[[·] �z : :[�]z], so that
[[D[M ′]]] = [[C[M [�y:[�]y=�]]]] = [[C[M ]]], and D[M ′] ⇓ by computational ade-
quacy, hence D[N ′] ⇓ and C[N ] = D[N ′], so C[N ] ⇓ as required. �

Hence another example of a fully abstract model of �PCFn is given by dropping
the bracketing condition on the Abramsky-Jagadeesan-Malacaria games model of
PCF, since this coincides with the semantics given by translation into Λ(Ω)ω, and
interpreting � as the one-move game. Because these games satisfy the axioms for
definability, this model will also give rise, by collapse, to a fully abstract model.

4.7 Call-by-value: higher-order control

Call-by-value �PCF can be soundly interpreted in a control model, giving a fully
complete games model, and a fully abstract translation into the simply typed
�-calculus, just as for call-by-name. However, although the continuation-passing
interpretation based on the monad is in principle simple, translation of A⇒v B

as A ⇒n ((B ⇒n �) ⇒n �) has the effect of radically increasing the depth of
the types concerned, making the direct translation into the �-calculus less than
transparent. What is required is a set of higher-level reasoning principles to
structure the translation.

As remarked by Moggi [62], control flow is the key to a general system of rea-
soning about function-based programming; in the presence of phenomena such as
partiality, state, non-determinism, exceptions, etcetera, the order in which com-
putation occurs is critical in determining its result. Monads provide a way to
structure this information. A variant of one of Moggi’s metalanguages for rea-
soning about the semantics of call-by-value functional langauges in general Kleisli
categories, — the ‘computational �-calculus’ has been described in Chapter 2. By
making the typing of the continuations monad explicit, a ‘control’ version of �c
can be described (which is effectively Felleisen’s �C [25]). ��v can be translated
soundly and invertibly into this calculus, so its interpretation in models of control
is sound and complete. Using the computational �-calculus to structure the cps
translations of �C and �� thus has two advantages:
it comes with a complete set of high-level reasoning principles, which yield a sim-
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let x = t in x =c t
let y = ( let x = t1 in t2) in s =c let x = t1 in ( let y = t2 in s)

let x = v in t =c t[v=x]
�(t) =c let x = t in �(x)
�([t]) =c t
[�(x)] =c x
�x:t s =c let x = s in t

(�x:v (x)) =c v

Figure 4.3: Equational theory in �c

ple equational proof that the intended model of �PCFv is sound,
it also allows the project described in Chapter 3, of giving fully abstract se-
mantics to a variety of computational features via the intensional hierarchy, to
be connected to this elegant and well-established paradigm for modelling such
side-effects using monads.

There is in fact quite a venerable tradition of using the monadic nature of con-
tinuations to study them; Moggi gave continuations as one of the first examples
of a computational monad, and Hatcliff and Danvy [36] used Moggi’s computa-
tional metalanguage (not the computational �-calculus) as a unifying framework
for factoring the cps translation, but not control operators. It has also been
known [27],[39] that the action of the �-transformation on continuation models
is that of a control operator such as Felleisen’s C. In this section this observation
is combined with the power of let -based reasoning about the flow of control to
describe the semantics and theory of ��, and show that it too can prove stronger
equalities for purely functional terms than ��-equality alone.

4.7.1 Control in the computational lambda-calculus

Recall the language �c defined in section 2.2.2.

Definition 4.7.1 A value of �c is a variable, or �-abstraction, or lifting, i.e.

v ::= x | �x:t | [t]

where t ranges over all terms of �c.

The equational theory of =c is given by the reflexive, transitive, compatible closure
of the rules in table 4.3.

Proposition 4.7.2 The above theory is sound with respect to the interpretation
of �c in a computational model (the theory is also complete)(Figure 2.3).
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Proof: is direct from the definition of �c model, see [62]. �

Even without identifying continuation-passing as the notion of of computation,
�c permits reasoning about the flow of control which is unavailable in the call-by
value �-calculus. In particular, the intuition behind the definition of evaluation
contexts, that t is always evaluated in computing E[t], can be formalised, by
requiring that the meanings of E[t] and �x:E[x] t (evaluate t, substitute it into
E[x], and compute that) should be the same in a computational model, and
so E[t] =c (�x:E[x]) t should be derivable from the above theory. Since the
evaluation context has been used as a syntactic representation of the current
continuation, this is a directly useful fact.
First define the let-free �c evaluation contexts by induction over the following
grammar.

Definition 4.7.3 (Let-free evaluation contexts)

E[·] ::= [·] | E[·] t | v E[·] | �E[·]:

As in �PCF, terms can be uniquely decomposed into an evaluation context and
a value.

Proposition 4.7.4 Let t be any term of �c. Then there is a unique value v, and
evaluation context E[·], such that t = E[v]

Proof: is by routine induction along the lines of Proposition 4.3.2. �

Proposition 4.7.5 (Evaluation Contexts Lemma) For all evaluation contexts
ET [·] with x not free in E[·], and terms t : T ,

(�x:E[x]) t =c E[t]:

Proof: First, observe that the proposition is equivalent to the following :

Lemma 4.7.6 For all t:

i (�x:x) t =c t;

ii (�x:(x s)) t =c t s;

iii (�x:v (u x)) t =c v (u t);

iv (�x:�(x)) t =c �(t)

(where u; v denote values, s; t arbitrary terms, and x is not free in s; u; v).
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Proof: Each of the above equations is an instance of the evaluation contexts
lemma.
On the other hand, one can prove by induction on the definition of evaluation
context that they jointly entail the axiom schema. Given an evaluation context
E[·], either:
E[·] = [·], so E[t] = t, and by (i), �x:x t =c t.
or E[·] = E′[K[·]] where K[·] is just one level deep.
Then E[t] =c �x:E′[x] K[t] by inductive hypothesis.
K[t] =c �y:K[y] t by the appropriate clause above,
and E[t] =c �z:(�x:E[x] (�y:K[y] z)) t =c �z:E[z] t by clause iii above. �

Now it remains to show that i− iv hold in �c:

i (�x:x) t =c let y = t in (�x:x) y =c let y = t in t =c t

ii (�x:x s) t =c let y = t in (�x:x s) y =c let y = t in y s =c t s

iii (�x:v (u x)) t =c let y = t in (�x:v (u x)) y
=c let y = t in v (u y)
=c let y = t in ( let z = u y in v z)
=c let z = ( let y = t in u y) in v z =c let z = u t in v z =c v (u t)

iv is by direct application of let µ.

4.8 Relating �� to �c via �C

�c is a potential basis for a metalanguage for reasoning about a variety of effects
in games via sum monads and the Fam(C) construction. However, in the case
of control, the calculus can be simplified by observing that for any continuation
monad T with answer object a, over a category with an initial object 0,

[[T0]]c ∼= a

and hence for any type X, TX can be equated with (X ⇒ T0) ⇒ T0. So all
references to T in the type system can be suppressed, by hiding the use of T
in function types (as in the standard call-by-value interpretation, [[A ⇒ B]] =
[[A]]⇒ T[[B]]), and replacing the type-constructor T with (( ⇒ 0)⇒ 0). So the
typing rules for � and [·] become:

Γ ` t : A
Γ ` [t] : (A⇒ 0)⇒ 0
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Γ ` t : (A⇒ 0)⇒ 0
Γ ` �(t) : A:

A further simplification is that the lifting operation, [ ] can be replaced by �x:x ,
as for any term in context, [[Γ ` [t]]]T = [[Γ ` t]]T ; � = [[Γ ` �x:x t]]T.
Finally, note that the typing of � given above is that suggested by Griffin for the
C-operator introduced (in an untyped setting) by Felleisen and Hieb [25]. This
allows the equational theory of �c to be appropriated as an equational theory of
for �C, with �v; �v, and the additional axioms below: the Evaluation contexts
lemma, together with the rules defining C and �x:x as a monadic reflection, —
an isomorphism between values of type TA, and terms of type A (see [27]).

�E[·] (�x:E[x]) t =C E[t]

Cη C�x:x t =C t

Cβ �x:(x (Cv)) =C v:

This is still not quite a complete axiomatization of continuation models of �C, —
it is also necessary to capture the initiality of 0 — see [39], and Section 4.9. It is,
however, sufficient to establish soundness of ��v models by translation.

Remark 4.8.1 (Relationship to other axiomatizations of �C-models) The
equational theory of �C supplied by Felleisen and Hieb is sound but not fully com-
plete with respect to continuations models. (So it is properly contained in the
above theory.) The description by Hofmann [39] of models of �C essentially sim-
ilar to control models (without co-products) has already been mentioned. This
paper goes on to give an axiomatization of �C-theory which is sound and com-
plete, and similar to the one which has been derived here. (The real difference
with Hofmann’s account is that here the rules are derived from the general notion
of monad.) Sitaram and Felleisen [80] also gave a similar axiomatization of �C,
and a syntactic completeness result in the form of invertible cps translations.

4.8.1 The call-by-value de Groote Translation

��v can now be translated into �C, and the equational theory used to prove that
any continuations monad on a CCC is a sound ��v-model. In fact, the translation
has already been described by de Groote in [23], where it was considered for the
call-by-name case only. As noted by Ong and Stewart [67], soundness of the
translation into call-by-value �C seems more problematic. This not due to the
inadequacy of the rules for C itself, but the weakness of �v on its own, for reasoning
about the flow of control. This can be remedied by adopting the let -rules of
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�c (or Hofmann’s complete axiomatization of �C), which are encapsulated in the
single rule �E[·].

Using the presentation of ��-theory via evaluation contexts, it is a simple
matter to show that the translation is sound with respect to the �C and ��v

theories. Hence the apparatus of naming and �-abstraction can be seen as simply
a (useful) syntactic sugaring of call-by-value �C. The correspondence of the call-
by-value calculi can thus be said to be closer than in the call-by-name case, as
the rules of ��n (in particular ��) cannot be consistently translated to a sound
rule of call-by-name �C in this style (see Proposition 4.8.7).

Definition 4.8.2 (The ‘de Groote translation’) from terms of �� to �C is
defined by structural induction as follows:
Define a distinguished collection of variables xα; xβ; : : : in bijective correspondence
with �-names, such that if � : A then xα : A⇒ 0.
For each �� term t : A, define the �C term btc : A:

• bxc = x,

• bs tc = bsc btc,

• b�x:tc = �x:btc,

• b[�]tc = xαbtc,

• b��:tc = C�xα:btc.

Definition 4.8.3 The semantics of terms-in-context Γ ` t; ∆ of ��v in a con-
trol model (C; a) is given by translation into �C and interpretation in the Kleisli
category of continuations on Fam(C):

[[Γ ` t; ∆]]µ = [[bΓc; b∆c ` btc]]C:

4.8.2 Correctness of the translation

Using the axioms obtained for �C as a particular form of the �c calculus, and in
particular the Evaluation Contexts Lemma, it is simple to show the translation
is sound with respect to the equational theory of call-by-value ��. First extend
the translation to (many-holed) contexts by adding the clause b[·]c = [·] to its
inductive definition.

Lemma 4.8.4 For any context of ��, C[·], and for any compatible term t, bC[t]c =
bC[btc]c.
And if C[·] is an evaluation context then so is bC[·]c.
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Proof: is by simple structural induction. �

Proposition 4.8.5 (Correctness of the Translation) For any ��v-terms s; t,
s =λµv t implies bsc =C btc.

Proof: it is necessary to show that the translations of �� and �� of ��v hold in
�C (��; �� translate directly to their �C counterparts).

�η ��A[�]s = s (� 6∈ FN(s))
b��A[�]c = CA�xα:x t =C t by Cη.

�ζ E[��T :t] : 0 = t[E[·]=�]
bE[��A:t]c = bE[b��A:tc]c =C bE[CA�xα:btc]c (by the lemma above)
bE[CA�xα:btc]c =C (�yA:bE[y]c) CA�xα:btc), by the Evaluation Contexts
Lemma
=C (�xα:btc) (�yA:bE[y]c) by Cβ

=C btc[(�yA:bE[y]c)=xα], by �v
Now make the �-named terms of t explicit:
suppose t = C[[�]s1][[�]s2] : : : [[�]sn].
Then btc = bC[xα bs1c] : : : [xα bsnc], and by �v; �E[·],
btc[(�yA:bE[y]c)=xα] =C bC[xβ bE[s1]c] : : : [xβ bE[sn]c]c
= bt[bE[·]c=�]c, as required.
(That the variable substitution of �y:bE[y]c for xα is equivalent to the
named substitution of E[·] for � can be proved formally by structural in-
duction using the definition of substitutions as in Lemma 4.5.8.)

�

Remark 4.8.6 By way of comparison with the original call-by-name translation,
note that the deGroote translation is not sound with respect to any non-trivial
axiomatization of call-by-name �C. The translation of the �� rule is inconsistent
with b[�]��:tc = x C�y:btc.

Proposition 4.8.7 Suppose T is a theory of �C such that the deGroote transla-
tion is sound with respect to T . Then for any terms s; t : S of �C, s =T t.

Proof: If b c is sound w.r.t. T, then T contains all instances of �n; �n, together
with b��c,
i.e. C�x:x t =T t for all t not containing x free,
and b��c , i.e. xS⇒0 C�y:t =T t[x=y] for all t.
Consider the term C�x : S ⇒ 0:(�y : S ⇒ 0:y C�z : S ⇒ 0:(x t)) �w : S:(x s)
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=β C�x:(�w:(x s)) C�z : S ⇒ 0:(x t) =β C�x:(x s) =T s

But also C�x : S ⇒ 0:(�y : S ⇒ 0:y C�z : S ⇒ 0:(x t)) �w : S:(x s)
=T C�x:(�z:(x t)) �w:(x s) =β C�x:(x t) =T t.

�

4.9 Completeness and full abstraction in �PCFv

To form a complete theory of ��, add the following rules to the call-by-value
equational theory ��; ��; ��; ��.

(�µ) (�x:[�]x) t =µ [�]t
This makes the correspondence between naming and applying a continu-
ation variable direct; that it is sound in a model of control is clearly a
consequence of �v.

(0-init) For any values v; u : 0⇒ T , v =µ u.
This makes the status of 0 as initial in a model of control explicit by

stating that all values taking arguments of type 0 are equivalent.

Finally, it can be observed directly that the rules for the co-product extension
are sound, establishing the following

Proposition 4.9.1 Let (C; a) be a model of control, then the semantics of ��+
v

in (C; a) is sound.

(As de Groote notes) an inverse to the translation into �C can be given by trans-
lating Ct as ��:t �x:[�]x, (and C0t as t �x : 0:x).

Proposition 4.9.2 The inverse of the de Groote translation is sound with respect
to the rules of �C.

Proof: The monadic reflection rules translate to sound rules of �� as follows:

• ��:((�y:y t) (�x:[�]x)) =µ ��:�x:[�]x) t =µ ��:[�]t =µ t

• �y:y (��:v (�x:[�]x)) =µ �y:v (�x:y x) =µ �y:v y =µ v.

That the let -rules translate to valid equations of �� is equivalent to showing
that �E[·] holds in ��v.
First note that for all t : T t =µ ��:(�z:[�]z) t by �µ, and so
�x:E[x] t =µ �x:E[x] (��:(�z:[�]z) t)
=µ ��:((�z:[�](�x:E[x]) z) t) =µ ��:((�z:[�]E[z]) t)
=µ E[(��:(�z:[�]z) t)] =µ E[t] as required. �
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Note in particular that the theory of ��v is not a conservative extension of ��v.
So although the rules �� and �� are manifestly about manipulation of first-
class continuations, they can be used to reason about control flow even in purely
functional programs.

Completeness of the ��-theory can thus be achieved as a corollary of Hof-
mann’s completeness theorem for the axiomatization for �C. However, the ad-
dition of co-products allows a simple proof of completeness to be given more
directly, based on the following observation:
any model of ��+

v (Ω) over the empty type is a model of the simply-typed call-by-
name �-calculus Λ(Ω).
This can be proved by giving an ‘inverse’ to the cps translation into Λ(Ω) which is
implicit in the continuations model, and hence proving that ��v(Ω) is a complete
syntax of control (recall Definition 2.3.11). Notwithstanding the brutal nature of
the syntax, this is merely the syntactic counterpart of the observation in Chapter
2, Proposition 2.3.7, that every object generated from a in (C; a) corresponds to
a call-by-value type in the associated control models.

Definition 4.9.3 Define the following translation from the simply-typed Λ(Ω)-
calculus to the +; ⇒ 0 fragment of ��+

v (Ω)
Types translate as follows

• �N = 0

• (A⇒ �)N = AN ⇒ 0

• (A⇒ B)N = (AN ⇒ 0) +BN (B 6= �).

Terms in context Γ ` t are translated to ��+ terms in context ` tN; ΓN as
follows:

• Ω: �N = Ω0

• (x : T )N = �γ : T N:[�x : T N⇒ 0]�y[γ]y

• ((t : S ⇒ T ) s : S)N = �� : T N:((��:[� : SN ⇒ 0; � : T ]tN) s : SN)

• (�x : S:t : T )N = �[�x : SN ⇒ 0; � : T N]:[�]tN

Proposition 4.9.4 The above translation is sound with respect to ��-equality.

Proof: �-equality: ((�x : S:t : T ) s : S)N

=µ �� : T N:(�� : SN ⇒ 0:[�; �](�[�x : SN ⇒ 0; � : T N]:[�]tN) (sN))

131



(where the Λ(Ω)-variable x is translated in t as �γ:[�x]�y:[γ]y)
=µ ��:((��:[�]tN) sN) =µ ��:[�]tN[sN=(�γ:[�](�y:[γ]y)] =µ t[s=x]N as required.
(As �γ:(�y:[γ]y)sN = sN.)
�-equality: (it is sufficient to show that this holds for (the translation of) variables,
i.e. (�x:y x)N = yN)
(�x:y x)N = �[�x; �]:[�]�γ:((��:[�; γ]�[�; "]:[�y]�w:[�; "]w) (� :[�x]�z:[ ]z))
= �[�; �]:((��:[�y]�w:[�; �]w) � :[�x](�z:[ ]z)) (by repeated application of ��)
Using the derived rule s t =µ (�x:x t) s, this is equal to
�[�x; �]:(�u:[�x]y) (��:[�y]�w:[�; �]w)
=µ �[�x; �]:[�y](�w:[�x; �]w) which is equal by �-conversion to yN as required.

�

Sum types, and the continuation forming operation ⇒ 0 are thus, in a sense
‘expressively complete’ for the simply-typed call-by-value calculus.

Corollary 4.9.5 The initial model of the ⇒ 0;+ fragment of ��+(Ω)v is iso-
morphic to the free pointed CCC.

Completeness for the whole of ��v(Ω) can now be established by translating
implicational types into the ¬;+ part of the language.

Proposition 4.9.6 The initial model of ��(Ω) is isomorphic to the initial call-
by-value control model.

Proof: Having shown completeness for the ( ⇒ 0;+) fragment, it remains only
to show that every function type of ��v(Ω) is equivalent to one formed from +
and ⇒ 0, (essentially by defining a sort of co-currying operation between sum
and arrow types).
So let (0⇒ B)4 = 0, and
(A⇒ 0)4 = A4 ⇒ 0 (A 6= 0)
(A⇒ B)4 = (A4 + (B4 ⇒ 0))⇒ 0 (A;B 6= 0).
Note that under the interpretation of ��+

v in a control model,

[[T ]] = [[T4⇒ 0]]:

Lemma 4.9.7 There is a (��+ definable) bijection (up to ��-equality) between
values of type T and values of type (T4 ⇒ 0).

Proof: is by structural induction, defining an isomorphism �T from values of
type T to values of type T4 ⇒ 0 and an explicit inverse �−1.
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• For T = 0⇒ A, define �T as the constant �x : 0:x and
�−1 = �x : 0:�� : A:x, as all terms at these types are equal by 0-init in any
case.

• For T = A⇒ 0, define �T (v) = �x : A4:v (�−1
A (x)) and

�−1
T (t) = �x : A:(�A(x) t). so that �−1

T (�(v)) = v, and �−1
T (�T (v))

• For T = A⇒ B (B 6= 0), �T (v) =

�γ : T:�[� : A4; � : ((B4 ⇒ 0)]:�−1
B⇒0(�z:[�]z) (v �−1

A (�y:[�]y))

and define the inverse �−1
T (v) =

�x : A:�� : B:�B⇒0(�z:[�]z) ((�γ:�A(x) (��:v (�y:[� : A4; γ : B4 ⇒ 0]y))))

So �−1
T (�T (v)) =µ �x:��:�(�−1(�z:[�]z)) (v �−1(�(x))) =µ v,

and similarly �T (�−1
T (v))

=µ �w:w �[�; �]:�−1(�(�z:[�]z)) ((�(�−1(�y[�]y))) �γ:v (�u:[γ; �]u))
= �w:w �[�; �]:v (�u:[�; �]u)) =µ v:

�

Hence the maps [[x : T ` �T (x)]] : [[T ]] → T[[T4 ⇒ 0]], and [[x : T4 ⇒ 0 `
�T (x)]] : T[[T4⇒ 0]]→ [[T ]]]] define an isomorphism on type-objects in the Kleisli
category of the continuations monad.

Corollary 4.9.8 If (C; a) satisfy the axioms for definability, then the control
models of ��v(Ω) constructed from (C; a) are fully complete.

4.9.1 Control models of �PCFv

The interpretation of �PCFv in a computational control model (C; a) can now
be given by combining the semantics of ��v with the semantics of call-by-value
PCF outlined in Chapter 2. As in the call-by-name case, the semantics is ade-
quate, — the assumption of non-terminality of a yields standard datatypes, and
rationality entails continuous observability. If (C; a) also satisfies the axioms for
definability, then the semantics also has the finite definability property. Hence
dropping the bracketing condition on the Honda and Yoshida [41], and Abramsky
and McCusker [3] models of pure PCF yields such a model.

Recall the definition of a computational control model (Section 2.4); a rational
pointed CCC with !-indexed products and non-terminal answer-object. This
gives a semantics of call-by-value PCF in the Kleisli category of the monad of a

continuations(see Section 2.4.4).
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Proposition 4.9.9 The semantics of �PCFv in a computational control model
(C; a) (rational C, non-terminal a) is adequate.

Proof: Soundness follows from the soundness of the translation of �� into �C.
(That the Evaluation Contexts Lemma extends to the �PCFv evaluation contexts
is straightforward.)
Completeness follows from the application of the Adequacy Theorem (Theorem
4.4.5) for the operational semantics, together with the fact that the adequacy
conditions of continuous observability and standardness of datatypes apply, for
which the proof is entirely similar to the call-by-name case (Proposition 4.5.11).

�

Definability is a consequence of the full completeness of the ��(Ω)v semantics,
together with definability of embeddings and projections into PCF-types. As in
the the call-by-name case, more detail can be given by defining the finitary evalu-
ation trees of �PCFv and showing that they correspond bijectively via denotation
to unique ���-long normal forms of Λ(Ω)ω.

Definition 4.9.10 (Finite Evaluation trees of �PCFv) Thus there are two dis-
joint sets of trees of type T over the higher-type context Γ;∆; the values, V (Γ;Σ;T ),
and the non-values NV (Γ;Σ;T ), formed by mutual induction as follows.

Ω ∈ NV (Γ; ∆; 0)

n ∈ V (Σ; ∆; nat)

M ∈ NV (Σ;∆;B)
�x:M ∈ V (Σ; ∆;A⇒ B)

{Mi ∈ NV (Σ; ∆;T ) | i ≤ k};
(�x:case k x |i≤k Mi) ∈ V (Σ; ∆; nat⇒ T )

M ∈ NV (Σ; ∆; � : A; 0)
��:M ∈ NV (Σ; ∆;A)

M ∈ V (Σ; x : S ⇒ T ; ∆;T ⇒ 0); N ∈ V (Σ; ∆; S)
M (x N) ∈ NV (Σ; x : S ⇒ T ; ∆;0)

M ∈ V (Σ; x : S ⇒ T ; ∆; � : T ;T )
[�]M ∈ NV (Σ; x : S ⇒ T ; ∆; � : T ; 0)

These normal forms are complicated by the ‘eager evaluation’ of ground-type
values. To simplify matters, 0 is assumed not to occur to the right of an arrow,
or as the type of a variable, (as by initiality of 0, all values at such types are
equivalent). Variables of type nat are tested once, as soon as they are introduced,
and so contexts are restricted to higher-type variables.
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In addition, trees are split between values and non-values. It is only possible
to reach a higher-type value by lambda-abstraction from a non-value, and it is
only possible to reach a higher-type non-value by �-abstraction.

This gives a notion of ‘normal form’ for continuation passing (which is very
different, for instance, from the version arising from the well-bracketed games
model given in [41]): apply a variable to an argument, and a continuation to the
result, abstract a continuation variable, abstract an argument, and so on.

There is a cps translation from Λ(Ω)ω into �PCFv along the lines of the call-
by-name � translation but it is substantially more complicated, due to the fact
that variables of type nat do not translate to Λ(Ω) variables but operations on
infinite lists. As there are no free variables in the finite evaluation trees of �PCFv,
however, an invertible cps translation into the finitary normal forms of Λ(Ω)ω can
be described simply, and used to show finite definability. First a (slightly non-
standard) cps translation on types is defined.

Definition 4.9.11 Define the ♦-translation on �PCF function types as follows.

• (nat⇒ 0)♦ = 0ω

• (nat⇒ nat)♦ = (�ω ⇒ �)ω

• (nat⇒ T )♦ = ((T♦ ⇒ �)⇒ �)ω, if T 6= nat;0

• (S ⇒ 0)♦ = S♦ ⇒ �, if S 6= nat;0

• (S ⇒ nat)♦ = S♦ ⇒ (�ω ⇒ �), if S 6= nat;0 (S ⇒ T )♦ = S♦ ⇒ (T♦ ⇒
�)⇒ �, if S; T 6= 0; nat.

Thus for any higher �PCF type T , the interpretation of T in a model of control
is isomorphic to the interpretation of T♦ in a model of Λ(Ω)ω.

Proposition 4.9.12 If C; a is a CCC with !-indexed products specifying a (call-
by-value) model of control, then for any �PCFv type T , [[T♦]](C,a)

∼= [[T ]](C,a).

The finitary normal forms of Λ(Ω)ω (Definition 4.6.1) are extended to translations
of �PCFv types by adding the clause:

y : (S ⇒ �)ω ∈ Γ; t ∈ N(Γ;S)
�i(y) t ∈ (Γ; �):

A correspondence is assumed at each type T between �PCFv variables x : T
and Λ(Ω)ω-variables, x♦ : T♦, and between names � : T and Λ(Ω)ω-variables,
�♦ : T♦⇒ 0.
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Definition 4.9.13 The ♦-translation takes trees of type 0 to finitary normal
forms of type �, �PCFv values of type T to normal forms of type T♦, and �PCF
non-values of type T to normal forms of type (T♦ ⇒ �)⇒ �. i.e.

NV (Γ;∆; 0) −→ N(Γ♦;∆♦; �)

V (Γ;∆;T ) −→ N(Γ♦;∆♦;T♦)

NV (Γ;∆;T ) −→ N(Γ♦;∆♦; (T♦⇒ �)⇒ �)

• Ω♦ = Ω : �

• (�x : nat:casek x |i≤k Mi)♦ = 〈M♦1 ;M♦2 ; : : : ;M♦k 〉

• (�x : T:M)♦ = �x♦:M♦, for T 6= nat

• (��:M)♦ = ��♦:M♦

• ([�]n)♦ = �n(�♦)

• ([�](V : T ))♦ = �♦V ♦, for T 6= nat

• (U (x n)♦ = �n(x♦) U♦

• (U (x (V : T )))♦ = (x v♦) U♦, for T 6= nat.

Proposition 4.9.14 The ♦ translation is sound and surjective.
If (C; a) is a computational model of control, then for any M ∈ NV (Γ;∆;T ),

[[Γ ` M ; ∆]](C,a)
∼= [[Γ♦;∆♦ `M♦]](C,a)

and for any V ∈ V (Γ;∆;T ),

[[Γ ` V ; ∆]]C,a ∼= [[Γ♦;∆♦ ` V ♦]](C,a); �[[T ]]:

Proof: is direct by induction over the definition of the translation. �

Proposition 4.9.15 If (C; a) is an computational model of control satisfying the
axioms for definability, then every morphism over a �PCFv type-object is the least
upper bound of a chain of definable elements.

Proof: Is by surjectivity of the ♦-translation, together with the Definability
Theorem (Theorem 3.7.2), and Proposition 2.5.9 (all morphisms are least upper
bounds of the form

⊔
i∈ω(piA; fi; eBi )). �
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Applying Proposition 2.4.11 yields a full abstraction result (which extends to
open terms as in the call-by-name case described in Lemma 4.6.8).

Corollary 4.9.16 (Abstract full abstraction) If (C; a) is a continuous con-
trol model satisfying the axioms for definability, the semantics for �PCFv con-
structed from the collapse of C under its intrinsic preorder is fully abstract.

Corollary 4.9.17 (Concrete full abstraction) The call-by-value control model
constructed by dropping the bracketing condition on the Abramsky and McCusker
model of PCF and collapsing under the intrinsic preorder is a fully abstract se-
mantics for �PCFv. The collapse of the games model of �PCFv under its intrinsic
preorder is fully abstract.
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Chapter 5

Analysis of the fully abstract
model

This chapter is a study of the fully abstract models of control in greater depth,
establishing further semantic properties such as universality, and also some of the
syntactic information which can be extracted from them; in particular a context
lemma for �PCF. The most important step towards a significant analysis of
syntax and semantics, however, is that the fully abstract model can be presented
effectively, — in fact directly, in the category of sequential algorithms.

Conceptually, the existence of a model which satisfies the (�PCF version of
the) ‘Jung and Stoughton criterion’ is important because it contrasts with the
purely functional case; by Loader’s result [54], a PCF semantics cannot pass
this test. One could consider extending the application of the criterion, to ask
which (if any) meaningful sequential functional languages have effectively pre-
sentable models, and using it to delimit the applicability of full abstraction and
of denotational semantics in general. The negative result for PCF reveals a deep
incompatibility between sequentiality and full abstraction on the one hand, and
a certain conception of denotational semantics in terms of (appropriately con-
strained) set-theoretic functionals on the other.

The nature of the of the analogous problem for �PCF is somewhat different
because observational equivalence is not extensional, so there cannot be a presen-
tation of the fully abstract model without (implicit) reference to its behaviour.
Nonetheless, it is significant that there is such a construction which is both inde-
pendent of the syntax, and mathematically more tractable. (Another advantage
of a direct presentation of the model is that it can be seen to be cpo-enriched;
this is still not known in the case of PCF). Moreover, the problem of determin-
ing observational equivalence in the presence of non-local control is a significant
one in its own right, as most languages can use non-local control flow to distin-

138



guish between extensionally equivalent procedures. Another feature of the direct
presentation described here is that it makes use of the category of sequential al-
gorithms, and thus forms a connection between the ‘intensional hierarchy’ and
another attempt to define a category of intensional ‘realizers’ for sequential func-
tions. The existence of fully abstract models of of SPCF (in essence equivalent
to �PCFn) based on sequential algorithms, and due to Cartwright, Curien and
Felleisen [16] has already been noted. What is lacking in this semantics is a con-
nection of its analysis of sequential control flow to other, more general accounts,
in terms of the syntax (how does catch relate to call-by-value call=cc?) and the
semantics (is there a connection with continuation passing?).

Although an effectively presented fully abstract model is technically a solution
to the problem of deciding equivalence of finitary terms, as one can compute the
denotation of terms and compare them, this is not especially illuminating. The
problem with limiting attention to full abstraction is that in order to achieve it,
the fine structure, which is not internally observable but which distinguishes terms
which are intuitively intensionally distinct, has been thrown out. (Specifically,
there is no repetition of moves in the sequential algorithms model, so a function
which consults its argument once can be indistinguishable from one which does
so several times). The finer structure is restored by establishing a connection
with the innocent strategies model (which identifies denotations at the level of
��-equivalence). The unique structure-preserving functor from the games model,
which exists by initiality, is given a syntax-free characterization and shown in
a precise sense to be a removal of copied queries. Moreover, it is surjective —
there is a way of saturating sequential algorithms with copies so that they become
innocent strategies. Since the sequential algorithms model is equivalent to its own
collapse, the ‘copy removing’ functor maps two strategies to the same algorithms
if and only if they are observationally equivalent. In other words, considered
as a functor on equivalence classes, it is the unique isomorphism between the
fully abstract models. Thus the copy-removing functor characterizes intrinsic
equivalence of innocent strategies, and the the copy-saturating translation gives
a unique normal form for each equivalence class. This is the semantic invariant
which truly characterises observational equivalence in control models.

5.1 Observational equivalence and control

Recall from Chapter 2 (Corollary 2.5) that effective presentability of the fully
abstract models of control is equivalent to decidability of the intrinsic preorder
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and equivalence on the free pointed CCC (the strongest non-trivial equivalence
containing ��-equality). The precise syntactic analogue of this problem is de-
cidability of contextual equivalence on the language Λ(Ω), for contexts of type
� ⇒ �. (And in fact in the pure simply-typed �-calculus, for contexts of type
�⇒ (�⇒ �).)

By the full completeness result of Chapter 3, this is equivalent to a question
of game semantics; to decide the intrinsic preorder on (finite) strategies of the
unbracketed games model. With the lifting of the bracketing condition comes
the power to make observational distinctions between extensionally equivalent
strategies by ‘exploring’ them with a strategy on A→ (o⇒ o) which behaves in
A as an Opponent, until some intensional feature is detected, then jumping out
of A into o ⇒ o to record this. The problem is to determine which intensional
differences between strategies are detectable in this way.

Example 5.1.1 As a simple example, consider the �PCF terms
L;M;N : nat⇒ (nat⇒ nat), where
L = �x:�y:IF x then (IF y then 0 else 0) else 0
M = �x:�y:IF y then (IF x then 0 else 0) else 0
N = �x:�y:IF y then (IF x then (IF y then 0 else 0) else 0) else 0
L, M , and N are all observationally equivalent with respect to PCF contexts, — a
consequence of Milner’s Context Lemma for PCF [61], which states that function-
type terms are observationally distinguishable if and only if they have they have
distinguishable results when applied to the same argument.
L and M are, however, distinguishable in �PCF, using the ‘catch’ term defined
in Section 4.3.2:
��:[�]((L (��:[�]0)) (��:[�]1)) ⇓ 0, whilst ��:[�]((M ��:[�]0) ��:[�]1) ⇓ 1.
But M and N are �PCF observationally equivalent; unnecessary repeated calls to
a variable are not detectable using only control flow. But how to prove this?

5.1.1 A Context Lemma for �PCF

Proving ‘ad hoc’ that no context exists which can distinguish equivalent terms
is difficult even in the trivial example above. However, definability in the games
model, and its axiomatic characterization, can be used to extract a useful practical
reasoning principle; context lemmas for Λ(Ω) and �PCF.

Lemma 5.1.2 (Linear observers suffice) Suppose �; � : A are innocent un-
bracketed strategies such that � 6.A � , i.e. there is some (innocent) � :!A( (o( o)
such that �; � ↓ and � ; � 6↓. Then there is some � : A( (o( o) such that �;� ↓
and � ;� 6↓
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Proof: is by induction on the size of the uncovering of �‖�.
Applying the ‘linearization of head occurrence’ of Section 3.7.2 to � (which must
be strict), yields a strict strategy �′ : A( (!A( (o( o)) such that:
�; (〈�′; �〉; App) = �; � (simply by relabelling the first-opened thread as play in
the new component).
Either � ; (〈�′; �〉; App) 6↓ or � ; (〈�′; �〉; App) ↓.
In the former case let � = �′ × �; App, then �;� ↓ and � ;� 6↓ as required. In the
latter case, apply the induction hypothesis to idA × (�; �′); App : A → (o( o),
as �‖(idA × (�; �′); App) = �‖�=(s�a) (where s�a is the initial thread in A), —
so this is a strictly smaller uncovering than �‖�, whilst �; (idA × (�; �′); App) ↓
and � ; (idA × (�; �′); App) 6↓. �

Proposition 5.1.3 Suppose A = B ⇒ o, then for innocent strategies �; � : A,
� .A � if and only if for all innocent strategies � : o⇒ B,

�; � ↓ =⇒ �; � ↓ :

Proof: Given �; � : A, by Lemma 5.1.2,
� .A � if and only if for all � : B → (o( o), �; � ↓ implies � ; � ↓.
Recall the ‘Contravariance of continuations’ axiom for the category of innocent
strategies from 3.7.2. This states that the map from strategies on D ( C to
strict strategies on (C ( o)( (D( o):

(f : D → C) −→ Λ(idC(⊥ ⊗ f ; App)

is an isomorphism. So � .A � if and only if for all % : o → B (in the linear
category)
%; � = �; Λ(idB(o ⊗ �; App) ↓ implies %; � = �; Λ(idB(o ⊗ �; App) ↓. �

A simple context lemma along the lines of the Context Lemma for PCF is a
corollary of full completeness, together with the above result.

Corollary 5.1.4 (Context Lemma for Λ(Ω)) For any closed terms of Λ(Ω),
s; t : S1 ⇒ (S2 ⇒ : : : (Sn ⇒ �) : : :)
s vOBS t if and only if
∀r(x)1 : T1; r(x)2 : T2; : : : r(x)n : Tn,
�x:(s r(x)1 r(x)2 : : : r(x)n) ⇓ =⇒ �x:(t r(x)1 r(x)2 : : : r(x)n) ⇓
(where t ⇓ if and only if t =βη �x:x).

Corollary 5.1.5 There are finitely many observational equivalence classes at
each type of Λ(Ω).
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Proof: is by a straightforward induction on type, using the Context Lemma,
together with a hypothesis that given maximum depth and size measures for types
as follows,
d(�) = 0, d(S ⇒ �) = max{d(Si) | i ≤ n}+ 1,
and s(�) = 0 s(S ⇒ �) = max{s(Si) | i ≤ n} ∪ {n}
then there are at most 2d(T ):s(T )ˆˆd(T ) observational equivalence classes in
�⇒ T (that is, a tower of s(T ) exponents, of height d(T )).
This is obvious for T = �, so suppose � ⇒ T = (S; �) ⇒ �. Then s 6vOBSι⇒T t if
and only if there exist q(x) : �; p1(x) : S1; : : : pn(x) : Sn (with x : � free) such that
�x:(s q(x)) p1(x) : : : pn(x) ⇓ and �x:(tq(x))p1(x) : : : pn(x) 6⇓. By hypothesis, there
are at most 2d(T )−1:s(Si)ˆˆd(Si) equivalence classes of � ⇒ Si for each i (and 2
for � ⇒ �), hence at most 2d(T ):s(T )ˆˆd(T ) many inequivalent combinations of
q(x); p1(x); : : : ; pn(x). �

The Context Lemma for �PCF itself is reminiscent of the Context Lemma for
PCF. It says that evaluation contexts plus a single top-level continuation suffice
to distinguish inequivalent terms.

Proposition 5.1.6 (Context Lemma for �PCF) For any closed terms M;N :
T of �PCF (call-by-name or call-by-value), M vOBST N if and only if for all
ground-type evaluation contexts ET [·] : 0,

��:E[M ] ⇓ =⇒ ��:E[N ] ⇓ :

Proof: Suppose M;N : T are terms of call-by-value �PCF, such that M 6vOBST

N , then [[M ]] 6.[[T ]] [[N ]] By Proposition 5.1.1 there is a (finitary) element � : oω →
([[T ]]⇒ o) such that Λ(�× [[M ]]; App) ↓ and Λ(�× [[N ]]; App) 6↓.
By definability, there is a value with a free name � : nat ` V : T ⇒ 0 such that
[[V ]] is the lifting of �.
[[��:V M ]] = Λ(�× [[M ]]; App), and [[��:V N ]] = Λ(� × [[N ]]; App) and hence by
adequacy ��:VM ⇓ and ��:V N 6⇓ as required.
Similarly if M;N : T = S ⇒ nat are terms of call-by-name �PCF such that
M 6vOBST N , then there are finite strategies �1 : o→ [[S1]]; : : : ; �n : o→ [[Sn]], and
�′ : o⇒ o such that
Λ(〈�1; : : : ; �n〉 × [[M ]]; App) ↓ and Λ(〈�1; : : : ; �n〉 × [[N ]]; App) 6↓.
By definability, there are terms L1(�); : : : ; Ln(�) denoting �1; : : : ; �n.
Either �′ = ido or �′ = ⊥o,o, — in the former case set E[·] = ��:[�][ ]L1 : : : Ln,
— in the latter E[·] = ��:IF [·] then Ω0 else Ω0, to give the required evaluation
context. �
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The Context Lemma allows a simple proof of the following observation of Cartwright
and Felleisen [15], that adding errors makes all control behaviour observable and
hence:

Corollary 5.1.7 Observational equivalence in �PCFE is extensional.
i.e. M vOBST N if and only if for all evaluation contexts ET [·] : nat,
E[M ] ⇓ ei =⇒ E[N ] ⇓ ei:

Proof: Recall that terms M∗ of �PCFE are soundly translated into terms M∗

of �PCF by including an additional free variable �, labelling errors ei as ��:[�]2i.
Hence M 6vOBST N if ��:E[M∗] ⇓ and ��:E[M∗] 6⇓ for some evaluation context
E[·], containing only � free, by the Context Lemma. As E[·] can be assumed to
consist of the finite evaluation trees given in the Definability Theorem, � is used
to name only integers, and can be replaced with error terms to give an evaluation
context E′[·] such that E′[M ] ⇓ ei and E′[N ] 6⇓ ei as required. �

Although the search for witnesses to observational inequivalence can be restricted
using the Context Lemma, this is still not sufficient to show decidability of the
intrinsic preorder in the games model, as the set of plays in most innocent strate-
gies over arenas of depth greater than one is unbounded, as Opponent can simply
repeat a move ad infinitum. However, this is not constructive opposition; al-
though it may be necessary to repeat moves to obtain intensional information,
there is an intuition that in a finite arena, one can observe only finitely many
different Player responses (as there are only finitely many different paths through
the ‘game tree’). Therefore it should be possible to bound the size of the Op-
ponent strategies needed to distinguish inequivalent finitary strategies. This is a
non-trivial but feasible task, as a comparison with the problem of decidability in
the ‘minimal model’, below, shows.

5.1.2 Observational equivalence in the �-calculus

Although finitary PCF is not effectively presentable, there are even weaker exten-
sional languages which are; notably PCF over a ground type with a single value,
and the ‘minimal’ functional language:
the �-calculus with a finite number of constants at a single ground type �.
(Λ(Ω) fits into this definition but ground-type contextual equivalence for Λ(Ω) is
trivial.) The simplest meaningful version of the problem is thus: determine obser-
vational equivalence for the �-calculus Λ(Ω;>) with two constants, one denoting
divergence, Ω, and the other convergence, >. The observational equivalence on
this language was shown by Padovani to be decidable [68].
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It is shown below that the contextual equivalence decision problems for Λ(Ω)
(at first-order) (and hence finitary �PCF) and Λ(Ω;>) (at ground type) are equiv-
alent (and establishing this is much simpler than the solution to either problem).
Thus the undecidability in the case of finitary PCF appears as an increasingly
isolated result: not only are there decision procedures for the problem in both
strictly weaker (unary PCF, linear PCF) and stronger versions (�PCF, idealized
Algol), but in the case of Λ(Ω;>) and �PCF there is also a simple connection
between these results.

Definition 5.1.8 As with Λ(Ω) one can define a notion of reduction for Λ(Ω;>)
(this time to ground type), defining an evaluation relation on closed terms of type
� using the strong normalization theorem,
i.e. M ⇓, if M : � =βη >, and M 6⇓ if M =βη Ω.

As one would expect, the observational preorder is extensional, in other words,
the following context lemma holds.

Proposition 5.1.9 For all closed terms s; t : T1 ⇒ (: : : (Tn ⇒ �) : : :),
s vOBSΛ(Ω,>) t ⇐⇒ ∀a1 : T1; : : : an : Tn;
s a1 : : : an ⇓ ⇒ t a1 : : : an ⇓.

Proof: is standard, simplified version of the proof of the Context Lemma for
PCF [61]. Or it can be deduced from the Context Lemma for Λ(Ω). �

Just as for Λ(Ω), the Context Lemma can be used to show that there are only
finitely many observational equivalence classes at each type. Hence observational
equivalence can be decided by giving an algorithm which generates a finite list of
terms at each type, containing at least one representative from each equivalence
class. Such an algorithm for Λ(Ω;>) was described by Padovani (a simpler version
is described by Loader [53], following Schmidt-Schaüss’s analysis for unary PCF).

Theorem 5.1.10 (Padovani) The ‘minimal model’ of Λ(Ω;>) is effectively pre-
sentable.

Despite the obvious differences between the two preorders, and hence the fully
abstract models, the closeness of the syntax and notion of reduction allows each to
be used to reason about the other. In fact, the problems of effective presentability
for the two models are easily shown to be equivalent.

Proposition 5.1.11 The observational preorder on Λ(Ω) is decidable if and only
if it is decidable in Λ(Ω;>).
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Proof: Proposition 5.1.12 For all terms s; t : T of Λ(Ω), (which are also
terms of Λ(Ω;>))

s vOBSΛ(Ω,>) t ⇐⇒ s vOBSΛ(Ω) t:

Proof: Suppose s 6vOBSΛ(Ω,>) t, then for some context CT [·] : � ⇒ �, C[s] ⇓ and
C[t] 6⇓, hence (C[s] >) ⇓ > and (C[t] >) 6⇓ >, so s 6vOBSΛ(Ω) t as required.
Suppose s 6vOBSΛ(Ω) s, then for some ground-typed Λ(Ω;>) context CT [·],
C[s] ⇓ and C[t] 6⇓. Then as there are no reduction rules for the constants,
C[s][x=>] normalizes to x, and C[t][x=>] normalizes to Ω.
Hence �x:C[s][x=>] ⇓ and �x:C[t][x=>] 6⇓, i.e. s 6vOBSΛ(Ω,>) t as required. �

Corollary 5.1.13 Fully abstract models of Λ(Ω) (and thus �PCF) are effectively
presentable.

However, the converse can also be shown.

Proposition 5.1.14 If the minimal model of Λ(Ω) is effectively presentable, then
so is the minimal model of Λ(Ω;>).

Proof: The observational preorder on Λ(Ω;>) is decidable as follows.
Given terms of Λ(Ω;>), s; t : T , by the Context Lemma, M 6vOBSΛ(Ω,>) N if and
only if there exist r1; : : : rn such that s r1 : : : rn ⇓ > and t r1 : : : tn 6⇓ >.
Thus s 6vOBSΛ(Ω) t if and only if there exist Λ(Ω)-terms p1(x); : : : pn(x) such that
(s[x=>] p1 : : : pn) normalizes to x, and (t[x=>] p1 : : : pn) normalizes to Ω (take
ri = pi[>=x]),
i.e. �x:s[x=>] p1(x) : : : pn(x)) ⇓ and �x:(t[x=>] p1(x) : : : pn(x)) 6⇓ .
If pi(x) ≡Λ(Ω) p

′
i(x), then �x:s(x) p1 : : : pn(x) ⇓ if and only if �x:s(x) p′1 : : : p

′
n(x) ⇓.

So it is only necessary to test s[x=>]; t[x=>] against all combinations of represen-
tatives of the different Λ(Ω) observational equivalence classes of p1; : : : pn, of which
there are finitely many, so assuming a listing algorithm for Λ(Ω), observational
equivalence for Λ(Ω;>) is decidable. �

The effective presentability problem for �PCF has been answered in the affirma-
tive. However, reasoning syntactically and indirectly via a (quite complex) proof
for another language is not a very informative analysis. The solution to the effec-
tive presentability problem, as for full abstraction, should be syntax independent.

Remark 5.1.15 Padovani’s result was achieved in the course of investigation
into the ‘higher order matching problem’ (given r : S ⇒ T , and T : T , is there
some s : S such that r s =βη t?) of which it gives a solution in the case where

145



t is an atom. Thus the characterization of Λ(Ω)-equivalence given here will be a
semantic solution to this problem, and will also solve a similar problem: decid-
ability of higher-order matching with respect to the largest non-trivial congruence
containing �� equivalence.
Given a listing algorithm, higher-order matching with respect to ' is decidable as
observational equivalence classes of ' are finite.

Thus far little attention has been paid to the question of which are the exten-
sional functions computed in models of control, with the justification that control
is intrinsically an intensional affair. The order-extensionality of the fully abstract
model of SPCF with errors might be considered as contradicting this last as-
sertion. However, the significance of the extensionality of control with errors is
that it exposes an incompatibility between the formal definition of extensionality
(which it satisfies), and a more informal notion of extensional model as given by
some order-theoretic or topological description of set-theoretic functions (such as
continuity, stability etcetera). The SPCF result highlights the ambiguities cre-
ated by conflating these notions, as it shows that using errors it is possible to
determine precisely how a function computes purely from the results of applying
it to different arguments. Because intensional behaviour is made explicit by the
error values, there can be no way of giving such an abstract description of the
model.

A different strategy is to consider the extensional functions which are ‘com-
puted’ (in some sense) by a category of intensional objects. The fully abstract
model of PCF for instance, can be obtained as the extensional collapse of the
highly intensional games and strategies model.

Berry and Curien’s definition of the sequential algorithms [9] is also in this
vein. It developed from an attempt by Kahn and Plotkin [45] to define a notion
of sequential function made by structuring domains as concrete data structures
(CDS). This allows higher-order computation to be modelled as a process of
information-gathering by filling cells with values. A function between CDSs is
sequential if it can be computed in a concrete data structure in a deterministic
way; that is, there are ‘sequentiality indices’ at each point in the computation
specifying the next cell which must be filled in the argument, to give more in-
formation at the output. The category of sequential functions is not, however,
cartesian closed; to gain this semantic ‘good behaviour’ it is necessary to spec-
ify them along with sequentiality indices bearing witness to their sequentiality,
forming the category of sequential algorithms.

An alternative notion of sequential functional ‘realized’ by the sequential al-
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Figure 5.1: Relationship of three models of call-by-name PCF

gorithms has been considered by Ehrhard [24], who proved that the extensional
collapse of the sequential algorithms model of PCF is isomorphic to Bucciarelli
and Ehrhard’s strongly stable model, or, in other words, that every strongly sta-
ble functional over a PCF-type is computed by a sequential algorithm. The proof
that the intensional collapse of the unbracketed games model is isomorphic to
the sequential algorithm can thus be ‘composed’ with this one, to yield the result
that the extensional collapse of the unbracketed games model is also isomorphic
to the strongly stable model (see Figure 5.1, and Corollary 5.4.23). Work by Lon-
gley [55], amongst others, has connected this sequentiality to the formal notion
of realizability.

5.2 A sequential algorithms model of control

The description of the rich category of sequential algorithms, is necessarily some-
what terse, and slanted towards game semantics. A wealth of further material,
including relationships with other semantics of for sequential languages is to be
found in Curien’s book [18], and article [19].

Following Cartwright and Felleisen’s discovery that SPCF has a fully abstract
semantics in terms of ‘decision trees’, it was observed by Curien that the model
could be given an alternative presentation using sequential algorithms, which was
adopted by Cartwright, Curien and Felleisen in [16]. This theme was developed in
Curien’s article [19], which also made some connections with the game semantics.
The content of this connection is that at the affine level, the structures of Abramsky-
Jagadeesan (and subsequently Hyland-Ong) games, and Sequential Data struc-
tures are essentially the same. The differences lie in the way constraints are used
to enforce functional behaviour, whilst permitting non-linearity. In sequential
data structures, access to data is shared (strategies can see the whole game his-
tory), but any given test can be applied to a variable only once, so it doesn’t
get the chance to behave inconsistently. By contrast, information which is not
relevant to an innocent strategy, (such as how many times a variable has been
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used) is hidden from it, but it can (and must) copy information as required. This
contrast between global and local constraints can be observed directly in the dif-
fering ways of modelling a co-monadic !, to yield an intuitionistic type-structure
in the co-Kleisli category.

• Plays (or paths) in the sequential algorithms ! are more constrained, in
that repeated queries are not allowed, and Player must respond to the most
recent Opponent move.

• The strategies on dialogue games are constrained by visibility and inno-
cence; although repetitious queries are allowed, Player must make the same
response to them every time.

The games models of state [2], [4] are given by succesively dropping innocence and
visibility, reflecting a setting where both copying and sharing of data is allowed,
to model local binding of imperative variables. One consequence of interpreting
functional behaviour in sequential algorithm style by allowing sharing but limiting
copying is that this hierarchy of models is not available (sequential algorithms
model of state could be constructed by allowing repetitions of moves but even
strategies such as the identity will behave differently from the purely functional
model).
The structure of arenas and games defined in Chapter 3 can be used to define a
category of sequential data structures and sequential algorithms (as a particular
category of games and strategies). In fact, they are rather ‘over-defined’, the
roles of enabling and justification being somewhat superfluous. So the following
definitions differ in terminology from Curien’s definition of ‘concrete sequential
algorithms’ [19], but they can readily be seen to be equivalent. (‘addresses’ cor-
respond to Opponent moves, ‘data’ to Player moves, ‘queries’ to positions with
Player to move (odd-length plays), and ‘responses’ to positions with Opponent
to move (even length plays)).

Definition 5.2.1 A Sequential Data Structure (SDS) arena
A = 〈MA;`A; P ∪{O;P}∪{Q;A}; �A〉 is an alternating, bracketed arena with an
additional labelling of moves as paths — i.e. non-empty sequences of moves over
an SDS arena (without their justification pointers). These will be called path-
moves. Rather than extend the labelling function, each path-move will be written
as the corresponding sequence.

A sequential data structure is the game generated from a SDS-arena by alter-
nation, the bracketing condition, and the following rule.
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• No repetitions of moves in plays: If sa @ tb, then a 6= b

The product and function space constructions on SDS arenas are exactly as in
Definition 3.2.2.

The path-moves for the SDS arenas used in the models of control will be con-
structed from the plays of a SDS, and hence will satisfy these rules as well (but
they need not be required to do so). The above rules satisfy the identity and
compositionality conditions and hence define a category. (This is easy to see,
— as no moves can be repeated by any sequential algorithms, there can be no
repetitions of moves in the ‘interaction sequence’ of two sequential algorithms,
and hence none in the plays of their composition.) The standard constructions of
Section 3.2.2 forming function-space and product arenas then give a symmmetric
monoidal closed structure (together with the empty and one-move arenas).

Definition 5.2.2 A sequential algorithm is a deterministic, history sensitive strat-
egy over a sequential data structure A (i.e. a prefix-closed set of evenly-branching
even-length paths of A, in which the final move can depend on the entire history
of the play).
The category of affine sequential algorithms has sequential data structures as ob-
jects, and sequential algorithms on A ( B (defined in the standard way) as
morphisms from A to B.

Comparison with the original definition of the Berry-Curien Sequential algorithms
over concrete data structures is described formally and in detail in [19]. This
shows that the sequential data structures are equivalent to filiform concrete data
structures. The latter are defined by a quadruple (C; V;E;`) of cells, values,
events (⊆ C × V ) and enablings (⊆ (E × C) ∪ C). An event consists of the
filling of a cell with a value; this enables further cells to be filled, and so on. A
(consistent and safe) state of the CDS is a set of events such that each filled cell is
enabled and contains at most one value. Filiform CDS are assumed to be stable,
— each cell which is filled within a state has a unique enabling in that state.
Each SDS defines a stable filiform CDS in which:

• cells are odd-length paths,

• values are Player moves, and

• events are even-length paths (filling a cell with a value is thus extending an
position with player to move with a Player move),
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• An event enables a cell if the latter (odd-length path) is the direct extension
of the former (even-length path) with an Opponent move.

Thus states of the filiform CDS correspond via consistency and safety to even-
prefix closed sets of plays; i.e. strategies.
Conversely, given a stable fcds, an equivalent sequential data structure can be
constructed by taking Opponent moves to be cells, Player moves to be events,
and the paths to be all alternating sequences of moves such that each Player
move is the filling of the previous cell with a value, and each Opponent move
(cell) is enabled by the previous Player move (event). Sequential algorithms
over these equivalent structures can be defined in an abstract or concrete way;
‘Concrete’ (affine) algorithms from A to B are just strategies on A ( B as in
the standard linear category. Abstract algorithms (the original presentation) are
sequential functions between the states of A and B together with sequentiality
indices, which can be defined in various ways described in [19]; they form a CCC.

A subcategory, the abstract affine sequential algorithms over sequential data
structures is axiomatized and shown to be equivalent to the concrete affine algo-
rithms. The inclusion of the affine algorithms into the cartesian closed category
has a left adjoint, and resolving this defines a co-monad on the affine (concrete)
category, such that the co-Kleisli category is equivalent to the CCC of abstract
algorithms. This can be described at the level of games semantics as follows.

As moves of a sequential data structure are, in general, sequences of moves,
the paths of A can be used as the moves of !A. By definition of a sequential
data-structure, paths in !A are thus non-repetitive sequences of path-moves such
that Opponent moves (questions) are odd-length and extend some previous move
and Player moves (answers) are even-length and extend the preceding path-move.
In other words, a path in !A consists of a sequence of different interrogations of
a single Player strategy on A.

Definition 5.2.3 For a sequential data structure A, define !SA to be the SDS
with the arena:

• M!SA = PA — the sequences over A satisfying the bracketing and no-
repetitions rules.

• �OP (m) = O, and �QA(m) = Q if m is an odd-length path in A.
�OP (m) = P and �QA(m) = A if m is an even-length path in A.

• ∗ `!SA m, where m is a path in A consisting of a single move,
p `!SA pa where pa is a direct extension of p.
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Note that this agrees with the convention that answers should be justified by
questions. Defining moves of !SA as paths of A is not strictly necessary — one
could use the same moves as A, and use justification pointers to reconstruct path-
moves, but it allows the linearity (i.e. non-repetitivity) condition to be used in a
straightforward way, by packaging the ‘justification history’ of a move up with it.

Proposition 5.2.4 P!SA consists of alternating, non-repetitive sequences of moves
subject to the following condition:
If �OP (pa) = O, then s(pa) ∈ P!SA if and only if s ∈ P!SA and pa is a path-move
of length one, or there is some previous Player move p in s such that pa extends
p.
If �OP (pa) = P , then s(pa) ∈ P!SA if and only if s ∈ P!SA and pa extends the
preceding Opponent move.

Proof: is direct by application of the bracketing condition �

Note that the rôle of the bracketing condition is rather different here than in the
previous chapters. It does not enforce ‘local control flow’, but permits presen-
tation of the sequential algorithms ! as a game generated on an arena. Further,
whilst the ‘switching condition’ does not hold in general, it does hold for all
games of the form !(A⊗B), and !(A⊗B)( o, which is sufficient for it to hold
throughout the CCC with objects freely constructed from o (as defined below).

The sequential data structure and dialogue games versions of the ! both con-
struct ‘linearized’ versions of the game tree, allowing Opponent to explore dif-
ferent branches of Player’s strategy (see Figure 5.2. The key difference is that
branches of the tree (from root to tip) are represented as interleaved ‘threads’ —
(i.e. subsequences) of a dialogue, and as single moves of the SDS, without the
same possibilities for interleaving.

Proposition 5.2.5 !S is a co-monad, and its co-Kleisli category is cartesian
closed.

Proof: is direct from the description of !S in [19] as the resolution of an adjoint
inclusion of an affine category into a CCC. However, it will prove useful to have
a concrete description of !S as a functor and co-monad.

Definition 5.2.6 Define the following projection d e from sequences J!SA(!SB to
paths over A( B PA(B which is similar to the view function, except that it also
reduces path-moves to moves of A or B by extracting the last move.
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• ds(p) · t(pa)e = ds(p)ea, if pa is an Opponent move justifying (i.e. directly
extending) p,

• ds(pa)e = dsea if pa is a Player move.

Let � : A( B be a sequential algorithm expressed as a function fromodd-length
paths to moves, and define the function !S� :!SA(!SB from sequences of path-
moves to path-moves as follows:
If (�(dse) is a move in in B, then !S�(s) = (dse �A)�(dse). Otherwise, it is
necessary to consider whether the move p = (dse�A)�(dse) occurs in s or not. If
it does, then it is succeeded by some Opponent move pa which extends it. Then
let !S�(s) =!S�(s(p)(pa)), otherwise, let !S�(s) = p.
Note that !S� is necessarily defined on sequences which contain repetitions, so that
the sequential algorithm is in fact the restriction of !S� to sequential algorithm
paths. Verification that !S is a functor is now straightforward. The co-monadic
structure of the !S can be summarised as follows. For each SDS A, there are
sequential algorithms

• derSA :!SA( A is essentially a copycat defined as follows:

– " ∈ derSA

– sa(sa�A) ∈ derA, if s ∈ derSA and a @−A (so (sa�A) is a path move in
!SA)

Figure 5.2: Plays in dialogue games and sequential algorithms ‘banged’ games:
thick lines represent different threads of play
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– s(pab)b ∈ derSA, if s ∈ derSA and pab @−!SA

• A promotion algorithm promsA :!SA(!S!SA

– s(p(ua))ua ∈ promsA if s ∈ promsA and p(ua) ∈M!S !SA and ua ∈M!SA

does not occur previously in s

– s(p(ua))(p(uab)) ∈ promsA if s ∈ promsA and p(ua) ∈ M!S !SA and
ua ∈ M!SA does occur previously in s, where it is directly followed by
uab.

– s(p(ua))(ua)(uab)(p(uab)) if s(p(ua))(ua) ∈ promsA

• for any SDS A;B, there is an isomorphism !S(A × B) (!SA⊗!SB, yield-
ing a contraction mapping conSA :!SA− (!SA1⊗!SA2 definable as follows:
s(pa)ipa− ∈ conSA if s ∈ conSA and pai @−MAi does not occur in s�A−

spaipabi ∈ conSA if s ∈ conSA and pai @−MAi does occur in s�A−, where it
is immediately followed by pab.
spab−pabi ∈ conSA if s ∈ conSA and pab extends (uniquely) some move
pai @−MAi already played in s.

These morphisms satisfy the conditions described in Chapter 3. �

Note that the natural transformations giving the co-monadic structure of !S, — in
particular promotion and contraction — are not true copycats; they rely critically
on the history of the interaction to determine whether a move has already been
played, and so avoid repetititions.

Having defined a CCC of sequential algorithms, S, models of call-by-name and
call-by-value �PCF are accessible by standard constructions. The one-move game
o is a sequential data structure, and there are bottom maps (empty strategies),
and !-indexed products for each object. As in the rest of the category of games,
set-inclusion of strategies is a cpo-enrichment.

Proposition 5.2.7 (S; o) defines a computational (continuous) model of control:
i.e. S is a cpo-enriched CCC with !-indexed products, and o is non-terminal.

The following example contrasts computational behaviour in the sequential algo-
rithms and innocent strategy models.

Example 5.2.8 Consider the sequential algorithms and innocent strategy inter-
pretations of �f : nat→ nat:f (f 0) : (nat→ nat)→ nat (Figure 5.3). This is
the simplest term to exhibit imbrication (the application of a function variable to
an argument which calls the variable itself). This ‘diabolical’ non-linearity is what
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makes determining observational equivalence a hard problem. In innocent strate-
gies it corresponds directly to interleaving; returning to a thread after opening
another in the same component. Plays in the innocent strategy (top) are uniform;
it is just blindly, innocently copying moves, unlike the corresponding sequential
algorithm, which makes a devious exit if it discovers that zero is a fixed point of its
argument. (Otherwise the repetition condition would be broken). The sequential
algorithm has already done some computation, — the innocent strategy can only
compute by composition with other strategies.

A significant point about the ‘no-repetitions’ condition is that it is symmetric
between Player and Opponent: an Opponent strategy on A can be turned into a
Player strategy on A( (o⇒ o) just by adding additional initial and final moves.
Consequently the category is isomorphic to its own ‘observational collapse’.

Proposition 5.2.9 The intrinsic preorder and equivalence on sequential algo-
rithms is trivial — i.e. if ⊆A is the subset relation on the concrete representations
of algorithms as strategies, then

f .A g ⇐⇒ f ⊆A g:

Proof: The implication from right to left is trivial; for the converse, suppose
that f 6⊆ g,
Then the promotion of f is not included in the promotion of g, i.e. !f 6⊆!g.
By prefix closure, there is some path p ∈ P!SA of finite length, such that p ∈!f

(N +3 N) +3 N (N +3 N) +3 N (N +3 N) +3 N
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Figure 5.3: Contrasting plays for computing f (f 0):
Left is the general innocent strategy, Centre is the sequential algorithm (assuming
f 0 6= 0), Right is the sequential algorithms play for f 0 = 0
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but p 6∈!g.
Then form the sequential algorithm h :!SA( (o⇒ o) consisting of even prefixes
of op · o′ (where o; o′ are the initial move and the response in o( o).
Then f ;h ↓ and g;h 6↓ and so f 6.A g as required. �

Corollary 5.2.10 The semantics of Λ(Ω) (and hence �PCF) in (S; o) is fully
abstract if every finite sequential algorithm is definable.

5.3 A fully abstract and universal model of �PCF

In fact, it is relatively straightforward to prove that every recursive element of the
sequential algorithms model of control is �PCF definable. A universality result
for the observably sequential functional model of SPCF has been achieved by
Kanneganti, Cartwright and Felleisen [46]; this is dependent on the existence of
errors, and is presented rather differently to the main result of this section, which
is the following:

Theorem 5.3.1 The semantics of �PCFn in the category S of sequential data
structures and computable sequential algorithms is universal.

(The result is proved for �PCFn for the sake of simplicity but there is no obstacle
to extending it to include the call-by-value version.) As observed in Chapter 2,
Section 2.5.1, this has the following corollary.

Corollary 5.3.2 The semantics of �PCFn in S is logically fully abstract.

5.3.1 The computable sequential algorithms

The Universality Theorem is proved (as in [6],[43]) by defining a family of ‘uni-
versal terms’ for the language, relative to an effective enumeration of a finitary
basis for the category.

Definition 5.3.3 An effective coding of the computable sequential algorithms is
a family of (effective) surjective functions indexed over the �PCF types,
{�T : nat → [[T ]]S | T ∈ TYµPCF}, giving a listing of the computable sequential
algorithms on each type-object [[T ]].
A universal term with respect to � is a family of �PCFn terms indexed over the
�PCF types, {UT : nat→ T | T ∈ TYµPCF} such that

[[UT (n)]]S = �T (n):
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The first step in defining such a term is thus to fix a definition and encoding of
the computable sequential algorithms.

Definition 5.3.4 Suppose p0; p1; : : : ; pn; : : : is an effective presentation of a fini-
tary basis of a domain A (in this case a sequential data structure).
i.e. a recursive enumeration of compact elements such that every sequential algo-
rithm is a supremum of some directed set.
A sequential algorithm � : A is computable if it is the least upper bound of a
recursively specified set, i.e.
there is a partial recursive function fσ : N→ N such that

⊔
n∈ω p(fσ(n)) = �.

Assuming a (computable) listing of the partial recursive functions on N → N in
the form of a surjective recursive functional,  : N → (N → N), this yields a
listing of the computable elements of the domain as �1; �2; : : :,
where �i =

⊔
n∈Npψ(i)(n).

Thus it remains to give an effective presentation of a finitary basis for the sequen-
tial algorithms, (which differs from the standard notion of effective presentation
only in that the effective operations defined on the basis are described so as to
simplify the proof of universality). Every sequential algorithm is the supremum
of its set of finite paths. Thus the effective presentation of this finite basis takes
the form of an injection from paths over A to natural numbers.

Definition 5.3.5 (Encoding of paths) Define pathA : A → N, by structural
induction on the SDS A.
At the base cases: patho(") = 0, patho(o) = 1
pathoω(") = 0, pathoω(mi) = i+ 1.
Now suppose A = B1 ⇒ (B2 ⇒ : : : (Bn ⇒ o) : : :), and define:
pathA(") = 0; pathA(o) = 1
pathA(s(pa)) = (6:pathA(s) + 1):2pathBi(p):3i, where p is a path in Bi.

Thus pathA is essentially an encoding of finite lists (of lists).

Proposition 5.3.6 There are recursive (�PCF definable) functions for the fol-
lowing operations on the effective presentation:

• init : nat → nat and last : nat → nat for taking initial segments and last
elements, such that:
init(pathA(sa)) = pathA(s) and if a is a move in Bi,
last(pathA(sa)) = pathBi(a)
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• compA : nat → nat for returning the subgame in which the last move was
made.
For each type-object A = B1 ⇒ (B2 ⇒ : : : (Bn ⇒ �))), if a is a move from
Bi then compA(pathA(sa)) = i

Proof: is by definability of all recursive functions in �PCF. �

It is also possible to (recursively) extract the code for the substrategy manifested
in a path over B ⇒ o, in a given subcomponent Bi, using the representation of
strategies as least upper bounds of directed sets.

Proposition 5.3.7 For each sequential data structure B ⇒ o, there are �PCF-
definable functions strati : nat→ nat such that
if s is a path in B ⇒ o, and Ri(s) = {p ∈ Occ(s) | p ∈ PBi} is the strategy on Bi

manifested in s, then �(strati(pathA(s))) = Ri(s).

Proof: is by recursive definition of strati as follows.
Assume that our listing function for the partial recursive functions comes with a
partial recursive functional hotel : nat × nat → nat, which takes the code of a
recursive function and, a value n, and returns the code for a function with n as
the new value of f(0), and f(k) as the value at succ k. i.e.  (hotel(i; n)) 0 = n

and  (hotel(i; n)) k + 1 =  (i; k).
Then let:

• strati(0) = �(⊥A) = 0,

• strati(n+ 1) = strati(init(n+ 1)), if comp(last(n+ 1)) 6= i,

• strati(n+ 1) = hotel(〈strati(init(n+ 1)); last(n+ 1)〉),
if comp(last(n+ 1)) = i.

�

5.3.2 Definability

The critical part of the definition of a universal term is a proof of finite definability
by an inductive decomposition of strategies. The proof here is similar in essence to
that given for SPCF in [16], but it is (a little) more abstract being based on some
general properties of the category, more general, (in that it applies, via invertible
cps translation, to �PCFv), and simpler, as there is no use of error elements. The
basic idea is to add an extra premise of type � to the interpretations of types-in-
context. Instead of simply giving up, partial strategies can use their last move to
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jump into this part of the context. This allows the flow of control to be used in
definability; each algorithm can be decomposed into strictly smaller ones which
are ‘glued together’ by passing the flow of control from one to the next.

Definition 5.3.8 A sequential algorithm f : A is total if every maximal length
path in f is also maximal in A, — i.e. f always has a response to Opponent’s
last move.

Proposition 5.3.9 The finite and total sequential algorithms form a cartesian
closed category ST .

Proof: is by a routine check that composition etc. preserves totality (which
requires the hypothesis of finiteness). �

Recall from Chapter 2, Section 2.1 that any CCC gives rise to a pointed CCC, C⊥
as the co-Kleisli category of a co-monad which freely adjoins a ground type-object.
So consider the pointed CCC (ST )⊥ of total sequential algorithms over the one
move game. This is isomorphic to Sf , the CCC of finite sequential algorithms.
If C already has ⊥-maps, then there is an obvious functor ⊥ : C⊥ → C:
⊥(f : o× A→ B) −→ 〈⊥A,o; idA〉; f : A→ B.

Proposition 5.3.10 ⊥ : (ST )⊥ ∼= Sf i.e. ⊥o has an inverse
(̃ ) : (f : A→ B) −→ f̃ : o× A→ B.

Proof: (̃ ) can be defined by a ‘factorization of partiality’ which turns bottom
into top (Figure 5.4), — whenever a partial algorithm f has no response, and
would just give up, f̃ jumps out to the adjoined copy of o, after which play stops
as neither side can make a move. Composition with ⊥o clearly returns the original
strategy. Formally, given a sequential algorithm f as a function from odd-length,
f-reachable paths to moves, define
f̃(s) = o, if f(s) ↑,
f̃(s) = f(s), otherwise. �

Lemma 5.3.11 For any sequential algorithms f; g : A → o such that f; g are
bounded above, f t g = 〈g; id〉; f̃ .

Proof: 〈g; id〉; f̃ plays as f until it reaches a position to which f has no re-
sponse. It then plays as g, except that by the non-repetition condition, it can
only play path-moves in A which extend the path-moves already played by f .
Hence 〈g; id〉; f̃ = f t g as required. �
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Factorizing partiality allows definability of a finite basis to be extended to recur-
sive definability. A series of sequential alogrithms f0; f1; : : : can be ‘linked’ by
playing f̃0 until Opponent gives up, or f0 gives up, in which case f̃0 passes out
control to f̃1. Infinite chains of factorized algorithms can be joined in this way
using least fixpoints represented by the Y-combinator.

Proposition 5.3.12 (Universality Lemma) Suppose Uf is a universal term
for factorized partial maps from a finite basis (i.e. [[UfT (n)]] = f̃n : o ⇒ [[T ]] for
some enumeration of a finite basis f0; f1; : : : of [[T ]]). Then there is a universal
term for S with respect to that basis, given by US⇒0 =

�w : nat:�y : S:(Y�F : nat⇒ 0:�x : nat:(Uf(x) F ( (w) (succ x))) y) 0:

Similarly US⇒nat =

�w : nat:�y : S:�� : nat:(Y�F:�x:[�](Uf(x) F ( (w) (succ x))) y) 0:

Proof: Suppose �(n) = h, i.e. h =
⊔
i∈ω fψ(n)(i).

Then by Lemma 5.3.11, for each k ∈ !,⊔
i≤k fψ(n)(i) = 〈fψ(n)(k); id〉;

˜
(: : : 〈fψ(n)(1); idA〉; f̃ψ(n)(0) : : :)

= [[Uf(0) (Uf( (n)(1)) (: : : (Uf ( (n)(k))) : : :))]]
= [[�F : nat⇒ 0:�x : nat:(Uf (x) y) F ( (n)(succ x))) 0]]k.
Hence by definition of Y as a least fixed point, h = [[U(n)]] as required. �

The above example allows partiality together with a top element introduced by
adjoining an answer-object to the context. This allows non-terminating behaviour
to co-exist with ‘error-detection’ (which is how explicit error values are modelled

Figure 5.4: ‘Partiality factorization’
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in the CCF model). ‘Escaping strategies’ of this sort can be represented by
strategies with (maximal) odd-length paths; a (maximal) even length play corre-
sponds to non-termination (Player ‘giving up’) and a (maximal) odd-length play
corresponds to an escape, or playing the top element.

Definition 5.3.13 An escaping (deterministic) strategy on a game A is a non-
empty, even-prefix-closed, evenly-branching subset of A such that if s ∈ � and
∃t ∈ � s:t: s @ t, then s is even-length.
Then ̂� : o⇒ A = ��A defines a bijection from (innocent) escaping strategies on
A to (innocent) strategies on o⇒ A with inverse
� −→ {s(even) ∈ �} ∪ {so | s(odd) ∈ � ∧ ¬∃(t ∈ �) A s},
where o is the only move in o.
This extends to innocent strategies via the standard definition of innocence:
an escaping strategy � is innocent if sa; t ∈ � ∧ psq ∈ � =⇒ ta ∈ �.

Composition of escaping strategies is defined as parallel composition with hiding
as in Chapter 3, with the result that (̂ ) is an isomorphism between the escaping
strategies, and the category of games and strategies with a one-move game freely
adjoined to the context (assuming a little currying).

Proposition 5.3.14 Given f : (o× A)→ B; g : (o×B)→ C

f̂ ; ĝ = ̂〈f; �l〉; g:

Proof: is straightforward; note that if the last move of s ∈ f̂‖ĝ is in B and hence
hidden, then s�A;C is odd-length. Thus if an ‘escape’ occurs in a hidden part of
the composition, then it corresponds to an escape from the unhidden part. �

Escaping strategies on A→ B inherit the order-enrichment on o× A→ B,
— f ≤ g if and only if f̂ ≤ ĝ.
Note that this is not longer simply inclusion, although observational equivalence
of escaping sequential algorithms is still set-equality.

5.3.3 Decomposition of escaping strategies

A unique decomposition of escaping strategies can be found by considering strate-
gies in which a unique Opponent strategy prompts an escape.

Definition 5.3.15 A sequential algorithm f : o × A ⇒ o is uniquely escaping
if there is a unique (minimal) Opponent strategy recognised by �; i.e. unique
sequential algorithms g1 : A1; g2 : A2; : : : gn such that

ido × 〈g1 : : : gn〉; f 6= ⊥o,o:
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Uniquely escaping strategies over A can therefore be identified with an even-prefix
closed set of paths of which precisely one is odd-length, — corresponding to the
Opponent-strategy which is recognised.

By the Universality Lemma, definability need only be proved for a particular class
of (partially factorized) strategies — the basis corresponding to the finitary paths
of the sequential data structure (and such strategies have the useful property of
decomposing uniquely).

Definition 5.3.16 For each a sequential data structure A, define the path-strategies
over A to be uniquely escaping finitary sequential algorithms g : o→ A such that
if f; f ′ .A ⊥o; g then f .A f ′ or f ′ .A f .
So path-strategies are sequential algorithms which have a response to precisely one
of the possible Opponent moves at any given point; at some stage, this is a move
in o, and the interaction stops. Path strategies on A can therefore be uniquely
represented by (and by abuse, identified with) an odd-length path over A.

Proposition 5.3.17 If all of the (partial factorized) path-strategies over A are
definable, then all of the finite sequential algorithms over A are definable.

Proof: is via Lemma 5.3.11, as for the Universality Lemma. �

Definability of path strategies is proved by observing that each one has a unique
decomposition into an initial segment followed by a Player move and a unique
escape (the recognition of a unique Opponent move and a jump into the one-move
game adjoined to the context). Note the contrast of this ‘top down’ induction
with the decomposition of innocent strategies, which is ‘from the bottom up’;
using the response to the initial move to split the strategy into smaller strategies.

Proposition 5.3.18 (Decomposition Lemma) Let f : A × o → o be a non-
empty path-strategy. Then for some i ≤ n there is a path-strategy f ′ @ f and
unique minimal (uniquely escaping) sequential algorithms
gi1 : Bi1 : o→ Bi1; : : : gibi : o→ Bibi such that

f = 〈�l; �i × 〈gi1; : : : ; gibi〉; App〉; f ′:

Proof: Suppose f = s(pa)(pab), where pa is a path in Ai, and so b is an (odd-
length) path in some Bij Then let f ′ = s, and gi1 : o ⇒ Bi1; : : : gij; : : : gibi : o ⇒
Bibi be the strategies manifested in pa;
i.e. gik = {c(even) ∈ Occ(pa) | c ∈ PBik}, for k 6= j.
Similarly gij is the uniquely factorized strategy on o ⇒ Bij which is manifested
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in pab, with the unique escape given by the odd-length path b.
Then 〈�l; �i × 〈gi1; : : : ; gibi〉; App〉; f ′ plays as f ′ until the position s is reached,
whereupon it plays in Bi as �i×〈gi1; : : : gibi〉; App : A×o→ Bi. But the only path-
move in this strategy which can extend one already played, without repetition, is
pa; if this is followed by the Opponent move pab, then Player escapes, otherwise
he gives up. �

Using this proposition, defining a universal term for path-strategies is simply a
matter of re-constructing a path from the encoding of its decomposition.

Proposition 5.3.19 (Finite Definability) There is a universal term of �PCFn
for the finite basis of path-strategies.

Proof: is by induction on type structure, defining a universal term UfT at each
type for path-strategies, and using the recursive chain lemma above to give a
term for general strategies.
Suppose [[T ]] = A1 ⇒ (A2 ⇒ : : : (Am ⇒ o) : : :), where Ai = Bi1 ⇒ (: : : (Bini ⇒
o) : : :), and that there are universal terms Uij for the (partiality factorized)
uniquely escaping partial sequential algorithms on each Bij.
The following definition of Uf (n) is by course-of-values recursion on n which can
then be implemented in �PCF. Supposing T = S1 ⇒ : : : Sm ⇒ 0, then for i ≤ m,
and yi : Si = Ri1 ⇒ : : :Rik, define

Mi(x) = yi (Ui1(strat1(last n)) x) : : : (Uiki(stratk(last n)) x) : 0

and define UfT (n) =

�x : 0:�y : S:(UfT (init2n) (casem comp(n)|i≤m Mi)) y:

Supposing pathT (s(pa)(pab)) = n, then [[UfT(init2n)]] is the path-strategy corre-
sponding to s, and Uik(stratk(last n)) is the Player strategy on Bik manifested in
pab. So [[Mi]] is the strategy on Bi → o manifested in pab (which is chosen by the
conditional) and
[[UfT(n)]] = 〈�l; (�i × 〈[[Ui1(stratk(last n))]]; : : : [[Uini]]〉); App〉; [[UT (init2n))]]:
So by the Decomposition Lemma (Proposition 5.3.18), UfT (n) is equal to the path
strategy corresponding to pab, as required.
If T = S ⇒ nat, so [[T ]] = [[Si]]⇒ (oω ⇒ o) then define Uf (n) =

�x:�y:��:(UfT (init2n) (case comp(n)|i≤m Mi |m+1 [�]last n)) y

which is shown to be a universal term as above. �
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Thus the Universality Theorem has been proved. Finite definability for the (ef-
fectively presented) sequential algorithms also has the following consequence.

Corollary 5.3.20 Observational equivalence for Λ(Ω), and for finitary �PCF is
decidable.

5.4 Relating models of control

Although full abstraction has been established, based on a decomposition of se-
quential algorithms, the characterization of observational equivalence of �PCF
has been left wholly implicit in this direct presentation. By considering the rela-
tionship with the initial innocent strategies model, via the functor which collapses
strategies under their intrinsic preorder, a much more informative analysis can
be gained. Showing that this functor is surjective amounts to a second proof of
full abstraction.

‘Factoring’ the proof of full abstraction through the proof of initiality of the
games model in this way separates the properties of definability, and the denota-
tional equality of observably equivalent objects. This has the potential to allow
more syntactic information to be extracted, compared with the direct version
given in Section 5.3 (or Cartwright, Curien and Felleisen’s proof [16]). At the
same time, this proof formalises and justifies the claim that innocent strategies
are equivalent modulo duplication of queries, as the effect of the translation is to
remove copies.

The Context Lemma for Λ(Ω) can be exploited to define inductively a kind
of ‘intensional logical relation’ between pointed cartesian closed categories (and
hence models of control).

Definition 5.4.1 Let (C; a) and (C′; a′) be pointed CCCs interpreting Λ(Ω), and
define the following relation between ‘escaping’ morphisms over their type-objects,
RT : C(a; [[T ]])× C′(a′; [[T ]]), by induction on type structure as follows:

• f Rιf ′ if and only if f := ida and f ′ = ida′, or f = ⊥a,a and f ′ = ⊥a′,a′

• f RS⇒T f ′ if and only if ∀x ∈ C(a; [[S]]); x′ ∈ C′(a′; [[S]]) such that x RSx′,
〈f; x〉; App RT = 〈f ′; x′〉; App and 〈⊥a,a; f; x〉App RT = 〈⊥a′,a′; f ′; x′〉; App.

Now define RT on C(1; [[T ]])×C′(1; [[T ]]C′) by e RTe
′ if and only if 1a; e RT1a′; e′

Lemma 5.4.2 For every term t : T of Λ(Ω), [[t]]C RT [[t]]C′, and for every two
pairs of related elements, e RT f , e′ Rf ′

e ≡[[T ]] e
′ and f ≡[[T ]] f

′ if and only if e Rf ′.
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Proof: is by induction on type-structure, from which the first part is direct by
soundness.
For the second part, applying the Λ(Ω) Context Lemma, e; e′ : [[S ⇒ T ]]C and
f; f ′ : [[S ⇒ T ]]C′ are observationally equivalent if and only if for any x : a→ [[S]]C,
y : a→ [[S]]C′ such that x RSy,
(〈e; x〉; App ≡ (〈e′; x〉; App and (〈f; y〉; App ≡ (〈f ′; y〉; App.
Hence by induction hypothesis, f; f ′ and e; e′ are observationally equivalent if and
only if for all x RTy,
〈e; x〉; App RT (〈f ′; y〉; App, and similarly
〈⊥; e; x〉; App RT 〈⊥; f ′; y〉; App if and only if e RS⇒T f

′ as required. �

So the R-relation between the games model and itself is observational equiva-
lence. To show full abstraction, it is sufficient to show that this relation between
the games and sequential algorithms models is a surjective function (which must
be a functor, as it preserves meaning), by defining it as a relation on strategies.
This also neatly clarifies the relationship between dialogue games and sequential
algorithms.

5.4.1 The collapse of innocent strategies

Preparatory to describing the relationship between innocent strategies and se-
quential algorithms, it is useful to re-examine the notion of observational equiv-
alence. Recall the notion of an ‘escaping strategy’ which contains odd-length
(maximal) sequences, corresponding to a jump into a one-move game adjoined to
the context. Two such strategies on the one-move game can be distinguished; the
empty strategy {"}, and one that ‘recognises’ Opponent’s move, {"; o}. This al-
lows the following refinement of the characterization of observational equivalence
via the following version of the Context Lemma.

Lemma 5.4.3 Given innocent (non-escaping) strategies �; � : A,
� .A � if and only if ∀� : Bi, (escaping)
�; � = {"; o} implies �; � = {"; o}.

Proof: is direct by application of Proposition 5.1.1. �

It is also important to restrict attention to observers which are definable; innocent
Opponent strategies:

Definition 5.4.4 An innocent play according to an (innocent) strategy � : A is
a finite play s ∈ � such that Opponent also plays innocently: i.e.
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∀s′; t′ veven s; xs′y = xt′y ∧ s′a v s =⇒ t′a v s.
The innocent plays in � are denoted I(�).

Innocent Opponent strategies are represented as Player strategies using the fol-
lowing observation.

Proposition 5.4.5 Let osb be an even-length justified sequence over A ⇒ o.
Then sb is a justified sequence in A and the Opponent view of osb is the ‘lifting’
of the Player view of sb in the sense that
if b ∈MAi, then xosby = opsb�Aiq.

Proof: is by a simple induction on the definition of view. �

Definition 5.4.6 For any non-empty innocent play s ∈ B ⇒ o, the Opponent
strategy manifested in s is represented as a player strategy � : B, by erasing the
initial moves from all of the O-views of s.
For any player strategy � : A, the interaction of � with the Opponent strategy � ,
written as an uncovering �‖〈�1; �2; : : : �n〉 (see Definition 3.2.7) is the maximal
sequence s ∈ � such that s�Bi ∈ �i.

Opponent strategies are ordered (by inclusion, and the intrinsic preorder) by
considering them as Player strategies.

Lemma 5.4.7 Given (non-escaping) �; � : A
� .A � if and only if ∀s ∈ I(�):∃t ∈ I(� ) : O− strategy(s) = O− strategy(t).

Proof: Suppose � 6.A � , then by the new presentation of the Context Lemma
(Lemma 5.4.3), there is an (escaping) Opponent strategy � : B such that �; � =
{"; o} and �; � = {"}.
Let s = �‖�, then O− strategy(s); � = {"; o}, and O− strategy(s); � = {"}. If
t is an even-length innocent play such that O− strategy(s) = O− strategy(t),
then O− strategy(t); � = {"}, and so O− strategy(t)‖� 6= t, so t 6∈ � .
Hence O− strategy(s) 6= O− strategy(t) for all t ∈ I(� ).
Conversely, suppose � .A � , then for all s ∈ I(�), O− strategy(s); � = {"; o},
and hence O− strategy(s); � = {"; o}. Hence O− strategy(s)‖� is an even length
sequence in � .
Moreover, it can be proved by induction on the number of O-views in s, that
s ∈ I(�) implies O− strategy(O− strategy(s)‖� ) = O− strategy(s) because:
xO− strategy(s)‖�y = xsy, as this is (the lifting of) the unique odd-length view
(escape) in O− strategy(s). Let s′ be the greatest even innocent prefix of s, then
by inductive hypothesis, O− strategy(s′) = O− strategy(O− strategy(s′)‖� ),
and hence O− strategy(s) = O− strategy(O− strategy(s)‖� ) as required. �
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Corollary 5.4.8 Given (non-escaping) innocent strategies or sequential algo-
rithms, �; � : A = B ⇒ o,
� .A � if and only if ∀s ∈ I(�):∃t ∈ I(� ) : O− strategy(s) ≡B O− strategy(t)

The symmetry between Player and Opponent in sequential algorithm paths (both
subject to the same non-repetitivity condition) means that the translation is well-
defined only for innocent plays. The following lemma establishes that definition
by induction on subsequences of innocent sequences is possible.

Lemma 5.4.9 (Projection condition for innocent plays) If s is a (finite)
innocent play and a an occurrence of a move in s, then s�a is an innocent play.

Proof: shows that in plays over arenas of the form A⇒ o, every thread of !A is
an innocent play. (Recall from Chapter 3 (Proposition 3.3.8) that every game is
in fact specified by an arena of this form.) Proof is by induction on the number
of threads of !A occurring in s.
Suppose s ∈ � (an innocent player strategy). By the ‘bang lemma’, (Proposition
3.6.13), O− strategy(s) =!� for some innocent � ′ : A.
By definability axiom ‘linearization of head occurrence’ there is a strict, innocent
strategy �′ : A( (!A( o), obtained by relabelling the first thread of !A opened
by � as a play in the new linear premise, and similarly an innocent strategy
�′′ :!A( (A( o) obtained by switching premises.
Consider the uncovering of !� ; �′ : A( o (which is innocent) played off against
� , — this is equal to the first thread opened in !A,
i.e. (!� ; �′)‖� = (�‖� )�a, which is therefore innocent.
The remainder of the play, s=(s�a) is innocent, as it is the uncovering of the
composition of !� with � ; �′ :!A ( o, which is an innocent strategy. It also
contains fewer threads of !A, hence by inductive hypothesis, each thread is an
innocent play. �

Definition 5.4.10 (Copy-removing translation) The translation is defined
by a double induction, first on type-structure, and secondly on sequence length
of (prefixes of) innocent plays. For any type T = S1 ⇒ (S2 ⇒ : : : (Sn ⇒ �) : : :),
assuming the translation is defined for each Si, define the translation of the jus-
tified sequences of [[T ]] as follows:

• "T = "

• oT = o (where o is the initial move)
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• For occurrences a of non-initial moves, there is some unique move occur-
rence b in s which is initial in some [[Si]] hereditarily justifying (or equal to)
a, so let
(sa)T = sT (sa�b)Si if (sa�b)Si does not occur in sT , and
(sa)T = sT otherwise.

Definition 5.4.11 This induces a map on sets of innocent plays, and hence on
innocent (partial) strategies (restricted to their innocent plays):
for � : [[T ]], define �T = {sT | s ∈ I(�)}.

It is clear from the definition that the translation of each justified sequence is
a non-repetitive sequence starting with a move in o, followed by paths from the
Si. The difficult property to prove is that play alternates between Player and
Opponent, — and this is clearly not the case if either fails to play innocently.
Intuitively, one can argue roughly as follows:
if a move has occurred previously in the translated path, then the view of the
original play has occurred previously; and consequently the subsequent move is a
repetition (because of innocence) so its translation is removed from the sequential
algorithms path. This is, however, patently an oversimplification of the proof, as
there may be whole sequences of moves repeated due to innocence.

Definition 5.4.12 For a sequential data structures path s over A ⇒ o, define
the ‘Opponent strategy’ manifested in sT to be the set of even-length path moves
in A, together with the most recent path-move (which may be odd, representing
an escape).
i.e. O− strategy(s) = {p ∈ Occ(s)�B) | Even(p)} ∪ {s�bSi

i }.

Proposition 5.4.13 (The translation is well-defined) The following hold for
translated sequences and strategies.

i The Opponent strategy manifested in sT is a well-defined sequential algorithm
such that O− strategy(sT ) = O− strategy(s)B.

ii If saT (odd-length) extends sT , then s is innocent.

iii If s is (even/odd)-length then sT is an (even/odd)-length sequential-algorithms
path.

iv For any innocent strategies �; � : A,
� .T � if and only if �T ⊆ �T .

v For any innocent strategy � : A, �T is a sequential algorithm.
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Proof: is by joint induction over type-depth (first) and sequence length (sec-
ond).

i Suppose p ∈ O− strategy(sT ), then (p = t�bi)Si , for some t v s,
and t�bi ∈ O− strategy(s) by definition (note that O− strategy is a well-
defined sequential algorithm by (v)).

ii If saT extends sT , then (sa�bi)Si is an even-length path in Si distinct from all
previous paths, and the Opponent sequential algorithm manifested in saT

is not equal to the Opponent sequential algorithm manifested in sT , and by
(iv), the Opponent strategy manifested in sa is distinct from the Opponent
strategy manifested in s. Hence ps�biq must be distinct from every previous
Opponent view, and so s is innocent (xsy is new) as required.

iii If s is an (odd/even-length) innocent play then sT is an (odd/even-length play)
As noted above, sT is non-repetitive, and consists of well-defined path-moves
by induction hypothesis.
Suppose s is odd-length and innocent, then every thread of !B in s is in-
nocent and even-length by the innocence Lemma 5.4.9 above. Hence there
are equal numbers of (non-initial) Player and Opponent moves in sT , as
each thread translates to an even-length path move. Since every Opponent
path-move extends a Player path-move, the most recent path-move has been
made by Opponent. By (ii), the play preceding this most recent extension
is innocent and even-length, hence by induction hypothesis, its translation
is an even-length path.

Suppose s is even-length and innocent. The threads of !B in s are all
innocent, and even-length, except the current one, which innocent and odd-
length, by Lemma 5.4.9. So the translations of the other threads are all
even-length path-moves, the translation of the current thread is an odd-
length path-move.
The most recent path-move in sT is Player’s. (Suppose the most recent
move is Opponent’s; then the play preceding this extension is innocent
and even length, giving a contradiction). Hence there are equal numbers
of (non-initial) Player and Opponent moves in the initial segment of sT .
The penultimate move must be an Opponent path-move (extending the
translation of an innocent even-length play by ii) which translates to an
even-length path by induction hypothesis.

iv � .[[T ]] � if and only if �T ⊆ �T .
This is shown using Lemma 5.4.7 and Corollary 5.4.8, and (iv) as induction
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hypothesis.
Suppose �T ⊆ �B, then for all s ∈ �, there exists t ∈ � such that sT = tT ,
and hence by (iv), O− strategy(s) ≡ O− strategy(t), so by Lemma 5.4.7,
� vOBSΛ(Ω) � .

Suppose � .[[T ]] � ; then by the observational equivalence Lemma 5.4.7, for
every s ∈ �, there exists t ∈ � such that O− strategy(s) ≡ O− strategy(t),
and hence O− strategy(sT ) = O− strategy(tT ). So �T ⊆ �T as required.

v To prove that the translation of an innocent strategy is a sequential algorithm,
it remains to show that the translations of sa; tb ∈ � are evenly branching.
The induction step is to show that if sT = tT , then saT = tbT .
sT = tT implies O− strategy(s) ≡ O− strategy(t) by (iv), and this implies
P− strategy(sa) = P− strategy(tb).
(Suppose P− strategy(s) 6= P− strategy(t), then w.l.og. there is some
Player-view in s not occurring in t, and this can be used to escape from s

and distinguish O− strategy(s) from O− strategy(t).)

�

Example 5.4.14 Recall Example 5.2.8, comparing a play in the innocent strat-
egy denoted by �f:f (f 0) to paths in the sequential algorithms denotation. As
expected, the former translates to one of the latter, depending on the Opponent
strategy manifested in the innocent play. This can be seen by observing that the
effect of the translation can be ‘simplified in this case to the following map on
innocent plays in [[(nat⇒ nat)⇒ nat]]:
(sa)F = sF, if there are some pevious moves b; c such that b hereditarily justifies
a, and sa�b = sa�c,
(sa)F = sFa, otherwise.

Hence any repetition of the initial question ‘What is the value of f?’, and/or
the succeeding Opponent move (which it justifies); ‘What is the value of the ar-
gument to f?’, will be removed. In the case that f 0 = 0, the repeated supplying
of zero as the argument to f is removed, as is Opponent’s next move, which, by
innnocence, must be a repetition of the ‘answer’ zero as well.

5.4.2 Mapping sequential algorithms to innocent strate-
gies

The relation R can now be shown to be a surjective function, by defining an
innocent strategy from a sequential algorithm, which is in its pre-image with
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respect to R. Hence this produces a unique representative for each equivalence
class of the intrinsic preorder on G.

It is presented in the form of a translation from sequential data structure
paths to justified sequences which maps each sequential algorithm to a strategy
which ‘collapses’ to that algorithm by the translation described above. The result
of this operation is not unique, nor is it functorial, but it does provide a unique
representative, a ‘normal form’, for each equivalence classes of strategies, which
can be obtained by ‘collapsing’ to a sequential algorithm, and then ‘fluffing up’
to an innocent strategy.

Definition 5.4.15 (Copy saturating translation) This is defined as a trans-
lation from sequential algorithm paths to justified, well-opened sequences (which
are innocent plays), by a double induction over type structure, and over sequence
length, following a similar pattern to the copy-removing translation.
The translation of a path t over A is written tT . Assuming [[T ]]∼= (Πi≤n[[Si]])⇒ o

for some S1; S2; : : : ; Sn.

• "T = "

• oT = o (where o is the unique initial move).

• If s is non-empty, and of even length, and hence of the form t(pa), for some
(odd-length) path pa in some Si, then (t(pa))T = tT · (pa)Si.
The justifier of the first move in (pa)Si is the first move in t, an as paSi
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Figure 5.5: Copy-removing translation applied to �f:f f 0 (Opponent represents
a function s.t f 0 6= 0).
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is well-opened, all of its other moves are justified by occurrences of moves
already in paSi.

• if s is of odd length (and longer than a single move), it is of the form
t(pa)(pab), where pa is a path in some Si, and pab extends it. Then
(t(pa)(pab))T = tT · (pab)Si, with the justification pointers given as above.

Figure 5.6: Translation from sequential algorithm to innocent strategy

Proposition 5.4.16 The following two facts can be proved directly from the def-
inition of the translation:

• sT ∈ [[T ]]: the translation of an (even/odd -length) path in [[T ]]S is an alter-
nating (even/odd - length) sequence in [[T ]]G satisfying visibility.

• (sT )T = s: removing the copies from a translated path returns the original
path.

Proof: is by induction following the pattern set by the definition of the trans-
lation:

• Suppose s = t(pa)(pab), then by hypothesis, tT is an odd-length, alternat-
ing sequence satisfying visibility, and pabSi is an even-length alternating
sequence satisfying visibility starting with an initial player move in Si (jus-
tified by the initial, visible move). Hence tT ·pabSi is odd-length, alternating,
and satisfies visibility. (And similarly for tT · paSi).
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• proof is by induction that for an innocent play r and sequential algorithms
path s, if r v sT , then rT v s, and if sT v r, then s v rT . Hence s = (sT )T .
Suppose r v ((t(pa)(pab))T ), then either r v tT , so rT v t, or r = tT · u,
where u v pabSi. Then by hypothesis, t v rT , and for every prefix of
u′ v u, u′T v pabSi hence rT is the extension of t by pa or pab (or the
empty sequence).
Suppose ((t(pa)(pab))T ) v rc, then either t(pa)(pab))T ) v r or rc�d = pabSi,
where d is the initial move of Si hereditarily justififying c, and hence (rc�
d)Si = pab by induction hypothesis, and t(pa) = rT , hence rcT = t(pa)(pab)
as required.

�

Definition 5.4.17 For a sequential algorithm � : [[T ]], define

�T = {ptq | tT ∈ �}:

Example 5.4.18 Continuing the theme of Examples 5.2.8 and 5.4.14, consider
the translation of the sequential algorithm denoted by �f:f (f 0). The translation
on paths over [[(nat⇒ nat)⇒ nat]]S can be simplified to the following:
(s(pa)(pab))(F = sFpab, where pa; pab are path-moves in [[nat⇒ nat]], and
saF = sFa, otherwise.

Applying this to the sequential algorithm denoted by of �f:f f 0 yields an
innocent strategy which is not the denotation of �f:f f 0. (See Figure 5.4.18.)
This strategy first tests f for strictness, returning its constant value if it is not
strict. Otherwise it tests f0, and returns 0 if this is a fixedpoint of f . Otherwise it
applies f to the value obtained from f0 and returns that. This strategy corresponds
to the following term of PCF with catch and infinitary case statements:

case (catchf) |0 (case (f 0) |0 0 |i6=0(f i)) |j 6=0 j − 1:

It is also possible to verify that applying the copy-removing translation to this
strategy yields the sequential algorithm corresponding to both �f:f f 0 and the
above term.

Proposition 5.4.19 For any sequential algorithm �, �T is an innocent function
over A.

Proof: Arguing informally, suppose t(pa)pab is a sequential algorithms path, so
(t(pa)(pab))T = tT · pabSi . Under an inductive assumption, tT and pabSi are both
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innocent paths, so it is easy to see that Player plays innocently, as he can always
‘see’ the last move in tT . Opponent plays innocently, because he plays the same
in pSi as when it appeared before, whilst a must be new, by the ‘no repetition’
condition, so Opponent has a new view at this point, and safely play a new move
of his own.
Formally, the proof proceeds by verifying inductively the following hypotheses.

(i) If s v u then sT v uT .

(ii) If uT (odd) v r v sT (odd), then puTq v prq v psTq.

(iii) If u 6v s then puTq 6v psTq (and xuTy 6= xsTy. The content of (ii,iii) is that
Player has access via the view to the entire history of the (translation of)
the sequential algorithms play.

(iv) Player plays innocently in sT , i.e. if ra; r′ v sT such that prq = pr′q then
r′b v sT .

(v) If s and u branch at an odd (Opponent) move, then sT ; uT are coherent with
respect to innocence; i.e. if sT u uT is odd and ra v sT and r′b v uT such
that prq = pr′q then a = b.

(vi) Opponent plays innocently in sT , i.e. if ra; r′ v sT such that xry = xr′y
then r′b v sT .

(N +3 N) +3 N (N +3 N) +3 N
Oq Oq

Pq Pq

Oq Oq

Pq

Oq

P0 P0

On+1 On+1

Pq

Oq

Pn+1 Pn+1

Om Om

Pm Pm

Figure 5.7: Copy saturating translation of �f:f f 0
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The base cases are are straightforward. On the assumption that (i) − (vi)
hold for tT and for (pab)Si , it is shown below that they hold for (t(pa)(pab))T =
tT · (pa)Si. The proofs that they hold for (t(pa))T are in all cases similar.

(i)s v u =⇒ sT v uT If r v t(pa)(pab), then either r v t (in which case
rT v tT v tT · (pa)Si by induction hypothesis), or r = t(pa)(pab), so
rT = (t(pa)(pab))T , or r = t(pa), so rT = tT · (pa)Si , paSi v pabSi by
induction hypothesis, therefore rT v (t(pa)(pab))T as required.

(ii)uT(odd) v r(odd) v sT =⇒ puTq v prq v psTq Suppose r vodd tT ·(pab)Si =
sT . If r v t then the induction hypothesis applies to give the result directly.
So suppose r = tT · v, for some v v pabSi . Then the initial (Player) move
in Si justifying all of the moves in v must occur in prq, so prq = ptTq · xvy,
and the induction hypothesis applies giving puTq v ptTq v prq, and
xvy v xpabSiy, so prq v psTq as required.
Note in particular that p(t(pab))Tq = ptq · xpabSiy.

(iii) If s(odd) 6v s′(odd) then psTq 6v ps′Tq
(and similarly s′(even) 6v s′(even) =⇒ xsTy 6v xs′Ty)
Suppose t(pa)(pab) 6v s′, then either t 6v s′ and by hypothesis ptTq 6v pqs′T ,
and by (ii), ptTq ⊆ psTq 6v s′T as required.
or s′ = tqc(qcd) for some qcd such that pab 6v qcd

As remarked above, p(t(pa)(pab))Tq = ptTqxpabSiy, and
p(t(qc)(qcd))Tq = ptTqxqcdBjy.
By inductive hypothesis, xpabSiy 6= xqcdBjy, and so
p(t(pa)(pab))Tq 6v p(t(qc)(qcd))Tq, as required.

(iv) By the inductive hypothesis (vi), that tT and (pab)Si are innocent, Player
plays innocently in sT :
Suppose rc veven r′ vodd tT · (pab)Si , and prq = pr′q,
If r′ vodd tT , then r′c veven tT v tT · (pab)Si by innocence of tT .
If rc veven tT , but r′ 6vodd tT , then r′ = tT q, for some q veven (pab)Si and so
pr′q = ptTqxqy.
But since tT is innocent ptTq is not the view of any prefix of tT , and so
neither is ptTqxqy, so prq 6= pr′q, a contradiction.
If rc 6veven tT , then r = tT · u, for some u ⊆even (pab)Si and r′ = tT · u′,
for some u′ ⊆even (pab)Si. prq = ptTqxuy, and pr′q = ptTqxu′y. So if
prq = pr′q, then xuy = xu′y, and as (pab)Si is innocent by hypothesis, and
um vodd (pab)Si, r′c veven tT · (pab)Si , as required.
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(v)Evenly branching paths map to coherent plays If r vodd sT , r′ vodd
s′T , and r′ 6v sT , where s′ u s is even, then prq 6= pr′q, — so there is no
possibility of a violation of innocence.
Let u = s′ u s so there is an Opponent move c such that ucT v r but
ucT 6v r′ Then by (ii,iii) pucTq v psTq, but pucTq 6v r′ so pr′q 6v psTq, and
prq v sT , hence prq 6= pr′q as required.

(vi) Opponent plays innocently in sT = tT (pab)Si By inductive hypotheses
(iv) and (vi), tT and pabSi are innocent plays, so the case to consider is
r; r′ veven sT such that r v tT , and r′ 6v tT , but xry = xr′y.
So r′ = tT · u′, for some u′ veven pabSi
xtT · u′y = mpu′q, thus r = vT · u, for some paths v in A, and u v (qcd)Si,
where qcd in Si is such that v(qc)(qcd) v t, and puq = pu′q.
If qcd v pab then u v (pab)Si, and by the inductive hypothesis (v) Player
(i.e. whoever makes even moves) plays innocently in Si, thus if um v pabSi
then u′m v pabSi , and rm v (t(pa)(pab))T implies r′m v (t(pa)(pab))T as
required.
If qcd 6v pab, then they branch at an even move, as plays in !SSi are non-
repetitive (and this is the only point at this fact is used). Thus by hypothesis
(v), they are coherent with respect to innocence, thus puq = pu′q and
um v qcd implies u′m v pab, and so rm v (t(pa)(pab))T implies r′m v
(t(pa)(pab))T as required.

Finally, note that item (v) above entails that �T is an innocent function as re-
quired. �

Proposition 5.4.20 For every sequential algorithm � : [[T ]]S, �T RT� , and
for each innocent strategy � : [[T ]]G, � RT�T .

Proof: is by induction on type-structure: suppose T = S ⇒ �.
Given an Opponent sequential algorithm  : [[S]]S,
(�‖ )S⇒ι = �S⇒ι‖ S, hence  ;� ↓ if and only if  T ;�T ↓
Since every innocent strategy is observationally equivalent to some  T , by hy-
pothesis, it follows that �T R�.
Secondly, ((�T )T )T = �T , hence � ≡ �TT , and (�T )T RT�T , hence � RT�T as
required. �

Corollary 5.4.21 The initial functor from the games to the sequential algorithms
model is surjective.

175



Corollary 5.4.22 The semantics of Λ(Ω) in the CCC of Sequential Algorithms
generated from freely generated from o is fully abstract, hence the models of control
for �PCF given by (S; o) are fully abstract.

Corollary 5.4.23 The extensional collapse of the standard call-by-name PCF
model in the category of unbracketed games is isomorphic to the strongly stable
model.

Proof: is as a corollary of Ehrhard’s proof [24] that the extensional collapse
of the sequential algorithms model of PCF is isomorphic to the strongly stable
model. The extensional collapse can be found by identifying the extensional
elements of the semantics, and an extensional equivalence ≡ on them as follows.
All objects at ground type are extensional, and equivalence is the identity relation.
f : A ⇒ B is extensional if for all extensional a; a′ : A, such that a ≡A a′,
fa ≡B fa′.
f ≡A⇒B f ′ if for all extensional a : A, fa ≡B f ′a.
Considering the extensional collapse of the PCF type-structure of games it is clear
that � ≡T � implies � ∼= � . Thus, by a trivial induction, � is extensional if and
only if �T is, and � is extensionally equivalent to � if and only if �T is extensionally
equivalent to �T . Hence composing the functor collapsing innocent strategies into
sequential algorithms (restricted to extensional objects) with Ehrhard’s functor
projecting (extensional) sequential algorithms to strongly stable functions, yields
a projection from the extensional innocent strategies onto sequential algorithms,
and this is injective on extensional equivalence classes (see Figure 5.1). �

This gives a partial answer to the question: — what are the extensional functions
which are computed in models of control? but leaves another: — which are
the extensional morphisms which compute them? Longley [55] has shown that
there is an extensional functional H, programmable with either control (call-with-
current-continuation) or state (ML-style references), such that the strongly stable
model of PCF+H is fully abstract. Although unbracketed games are by no means
a unique way to ‘realize’ these realizably sequential functions, the richness of their
structure, as expressed by the intensional hierarchy, together with the fact that
they allow a connection to be made with the fully abstract model of PCF on the
one hand, and the reduction to the simply-typed �-calculus via cps translation
on the other, indicates that they may be an informative place to study it.

The translation to sequential algorithms has confirmed the claim that each in-
nocent strategy is intensionally equivalent to one which does not duplicate queries.
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But in fact it gives a stronger characterization of the intrinsic equivalence: com-
posing with the translation back to innocent strategies yields a unique strategy
for each equivalence class (as described for the denotation of �f:f (f 0) in Exam-
ple 5.4.18). Moreover, this uniqueness is easy to capture as a notion of ‘normal
form’.

Proposition 5.4.24 Let s ∈ [[T ]] be an innocent play. Then s is the translation
of a sequential algorithms path if and only if for any move b in s, the hereditary
subsequence s�b satisfies the following criteria

No interleaving of threads s�b is a contiguous subsequence of s,

No repetition of threads There is no previous occurrence b′ of the same move
in s, justified by the same move, such that s�b = s�b′,

No overextension of threads Suppose s�b = tcd. Then there is some previous
occurence b′ of b in s, justififed by the same move, such that s�b′ = t.

Proof: is straightforward by induction, using the definition of the translations
to show that:

• all translated paths have the above properties,

• if s has the above properties, then (sT )T = s so s is a translated path.

�

Open questions raised by this observation are:

• What are the evaluation trees corresponding to the normal forms for strate-
gies?

• What is the syntactic translation from terms to their normal forms corre-
sponding to the semantic translation?

• Is there simple axiomatization (or schematization) of the complete theory
of (finitary) observational equivalence extending ��-equivalence?
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Chapter 6

Conclusions

This thesis has presented and studied a semantics of sequential control which
is simple, tractable, and above all, accurate. Rather than identifying a defini-
tive notion of control flow, the analysis has been implicit, drawing together some
more-or-less diverse elements which have a control thread running through them;
continuation-passing, the bracketing condition of games semantics, ��, and se-
quential algorithms. That control can be identified within this variety of for-
malisms confirms its ubiquity in sequential computation. That its fully abstract
models are effectively presentable and universal supports a claim which is one
of the main themes of ‘intensional semantics’, that behaviour, modelled through
a combination of process and domain-theoretic ideas, can be as mathematically
well-behaved as static sets and extensional functions. That control flow can be
subject to different constraints itself, and can be combined with other compu-
tational features, means that no single fully abstract model can amount to a
general account of control; identifying it with the bracketing condition within the
intensional hierarchy, however, does have the making of such an account.

What then are the main limitations of this analysis, and how might they be
rectified? Most significantly, the description of control (in particular, the categor-
ical treatment) has been quite indirect. It has been shown that it is possible to
reason about control accurately using continuation passing translation into the �-
calculus, but the usefulness of this observation has not been demonstrated, and is
questionable, given the complexity of the translation. However, the consolidation
of ideas represented by the fully abstract model is a step forward, and should be a
useful setting to test and apply new work on control. A categorical understanding
of control which is not more general than continuation passing translation, but
is conceptually clearer is emerging, based on the work of [82]. Work by Levy
[52] on a game semantics for continuation passing has the potential to make the
connection between these ideas and intensional semantics clearer.
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The study of games has been limited by the rather ad hoc nature of the
framework on which it is based; hopefully it will in future be possible to prove
results about dynamic behaviour (for instance, factorization) in a truly natural,
clear and concise way. This thesis has attempted small steps towards this goal, —
ground-breaking work by Abramsky on a more general notion of ‘concurrent game’
promises further progress. It should be remembered that one of the advantages of
the axiomatic treatment of definability is that it should aid the transfer of both
results and intuitions about control to such new settings.

The games semantics of control described here misses the point in another
way; it fails to fully exploit their dynamicity. By contrast to the case of state, the
games models of control are instances of a general categorical construction (cps),
and it is not clear how much has been gained directly by giving game semantic
instances. To some extent, this is due to the existence of a simple, general, notion
of model of control (which is a good thing) by contrast to, say, Idealized Algol,
and in any case the potential of a game semantics of control is still great. But to
fully justify the use of games it will be necessary to go beyond merely constructing
fully abstract models of control, and redeeem some of the promises made below.

6.1 Further Directions

The scope of the thesis has also been naturally limited by constraints of time and
space to a single notion of control based on static bindings, in a simple functional
setting. This leaves many avenues for further research.

Local versus non-local control flow The way in which data flows through
programs is clearly crucial to understanding their behaviour, and the results
which they generate. ‘Control flow analysis’ is about more than the locality
or otherwise of control, although this is an important aspect of it — not
least because programs which can access the flow of control can use this to
distinguish between different inputs. The way in which control flow is made
explicit in game semantics has been exploited by Malacaria and Hankin’s
‘flowchart’ analysis of dataflow in a simple imperative language [58] — this
could be extended with control operators, but there are further possibilities.

Another significant area of research is the analysis of locality of variables in
imperative languages like Idealized Algol; — identifying expressions which
can have side-effects on the store by using a distinction between active and
passive types. The use of a rule (well-bracketing) to model locality of control
in game semantics suggests that side-effects on the flow of control could also
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be governed by a typing distinction between activity and passivity. The
connection between the bracketing condition and linearity suggests how this
might be done with linear logic. Integrating the two kinds of behaviour, in
order to reason about state and control will then be a real challenge!

Dynamically Bound Control features The most obvious gap in the descrip-
tion of control operators in this thesis, is that little has been said about
those which create dynamic bindings, such as the exception-handling mech-
anism of Standard ML. An elegant general treatment of these operators
can be found in the work by Gunter, Remy and Riecke on prompts [33],
which have the expressive power of exceptions and call=cc. Unlike the case
of call=cc, there are at present no general or denotational models of these
features; this leaves real scope for the application of game theoretic ideas.
Work by this author on a semantics of exceptions has been based on the in-
tensional hierarchy, modelling the dynamic bindings by dropping innocence
and visibility (and regaining them via factorization).

Recursive and Polymorphic Types If control flow in realistic functional lan-
guages is to be studied, it will be necessary to take account of their more
elaborate typing systems. Games semantics for both recursive [59] and poly-
morphic [42] types have been considered, but the addition of control raises
new problems. A semantics based simply on cartesian closure, a single an-
swer object, and recursive types should be sufficient to define models of
untyped control operators, such as Scheme’s original call=cc, via continua-
tion passing translation, though it is not clear whether it would be useful to
factor this via a translation into a language (‘�FPC’) with control operators
and recursive types.

An interesting case is Felleisen’s original C-operator, which is not fettered
by typing restrictions, and hence is very expressive. This seems to be an
instance where control in games cannot be understood via the bracketing
condition, but by a very large choice of ‘answer object’; it seems that the
language (untyped) �C can be given a fully abstract semantics by solving
the domain equation D = ((D⇒ D)⇒ D).

Towards a semantics of standard ML After combining the above ideas with
work on the game semantics of state and higher-type references, active and
passive types and so on, the goal of a fully abstract semantics for a realistic
language such as standard ML (or Java) begins to look distinctly achievable.
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Of course, many issues remain to be resolved, — not least the interaction
of control with the other features.

Classical Logic The (extended) Curry-Howard correspondence seems to be an
incomplete way of understanding control and classical logic; there are impor-
tant issues in control which do not arise in logic, and vice-versa. Nonethe-
less, the interpretation of �� described here could form the basis of a se-
mantics of classical natural deduction suited to a useful analysis of construc-
tive classical logic. In particular, the bracketing condition allows strategies
(proofs) with intuitionistic behaviour to be distinguished from classical ones
within the same system, and the notion of cut-elimination as interaction be-
tween strategies means that there is a notion of ‘information flow’ through
proofs which can be tapped, to extract constructive content.

Such a semantics could exploit a full completeness principle; a bijective
correspondence between cut-free classical proofs and strategies. However,
a large part of the interest (and complexity) of classical logic lies in its
behaviour under cut-elimination. To capture this requires an even closer
correspondence between syntax and semantics; non-confluence of classical
cut-elimination is a well-known obstacle to such an understanding. Various
possibilities for making classical proofs more semantically tractable have
been discussed, including the ‘disambiguation’ of cuts by labelling them in
some way, which can be described as various forms of ‘decorating’ of proofs
with exponentials in linear logic [22]. Here, perhaps, the link with control
can be reforged; it should also be possible to exploit the call-by-name/call-
by-value duality of control models (and their linear analysis), to model the
duality of classical cuts.
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