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Abstract

We define a language with a functional core and constructs for
transmitting and receiving values across remote sites in which mobile
agents have a natural representation as function closures. We present
the dynamic semantics of this language in relational style. We develop
a static type and effect system where the types are annotated so that
the effects expose potentially mobile functions and channels. Finally,
we prove the consistency of this system with respect to the dynamic
semantics.
Key words Functional languages, mobile computation, program anal-
ysis, type and effect systems, Facile

1 Introduction

Functional computation has some characteristics which make it promising to
adopt a functional language as the core of a mobile computation language.
One such characteristic is that functions are first-class values. They can
flow as arguments to other functions or they can be returned as results. In a
setting where their communication between different sites is facilitated, func-
tions become a natural candidate for representing mobile agents since they
are code containing objects capable of enhancing the dynamic behaviour of
a system. It is also the case that expressive and well understood type sys-
tems have been defined for functional languages. In a setting where functions
can be viewed as mobile agents, this fact implies that one can express a wide
∗e-mail: zdk@dcs.ed.ac.uk. tel:+44 131 650 48 89
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range of agents and yet be able to reason about their behaviour by exploiting
the type system of the language in which they are written.

Facile [28, 6] is a language which encompasses the above mentioned char-
acteristics. It is based on a well defined computational model which combines
Standard ML [16] with a model of concurrency based on CCS [14] and its
higher-order mobile extensions such as CHOCS [26] and the π-calculus [15].
It facilitates the transmission of first-class values including channels and
functions over typed channels. Therefore, it is an apt choice to consider
a Facile-like language when focusing on a particular problem relevant to mo-
bile computation with mobile functions. In this paper, we focus on the static
estimation of potentially mobile functions and channels. We investigate this
problem within the framework of a Facile-like language.

Estimation of mobile entities can be useful for compiler-optimisations.
We can provide supporting evidence for this argument by considering the
implementation of the Facile language by Knabe [11] which facilitates the
transmission of mobile agents across a network of heterogeneous nodes. In
this language, users are required to provide annotations to identify poten-
tially mobile functions so that the compiler generates a standard transmissi-
ble representation for these functions. The code for the functions which are
immobile can be optimised for the local machine and the compiler need not
generate and store a standard transmissible representation for them. A static
analysis which estimates potentially mobile functions would make it possible
to generate annotations automatically relieving the programmer from hav-
ing to provide annotations and reducing the risks of errors due to omitted
annotations.

Another area where information with respect to mobile entities can be put
to use is providing a profile of a program so that programmers can statically
reason about the transmission overhead their programs are likely to incur. In
Facile and most higher-order languages, a function is compiled into a function
closure which contains the code of the function together with the bindings
from the definition environment of the function. According to the data space
management policy employed by the implementation of Facile, transmission
of a function occurs by copying of its closure to the destination site. Channels
in Facile reside on the node where they were created. Their transmission
requires that a network reference to them be established and maintained.
Therefore, a profiler which estimates mobile functions and channels can be
considered to estimate the cost of copying closures and network references.
The latter can be particularly useful in that minimising network references
is a key motivation for adopting mobile computation.

The problem of detecting mobile functions and channels is closely related
to detecting the flow of control from one program point to another. So
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far we have considered the higher-order features in a positive light due to
their expressive power. However, their presence poses challenges in detecting
the flow of control. The literature contains a wide range of analyses which
have been devised to approximate the functions which can be called from a
particular point in a program [23, 5, 17, 8]. Some authors have pointed out
the intuitive connection between reasoning about types and control flow in
higher-order languages in the sense that they both derive invariants about
the potential bindings of variables in a program. Research has been carried
out in extending control flow systems to perform type analyses [21] and
in extending type systems to perform control flow analyses [32]. Another
direction of research has focused on systematic comparisons of type systems
and control flow systems by establishing correspondences between certain
type systems and control flow analyses [7, 20]. Drawing inspiration from
these, we develop a type and effect system which conservatively estimates
the set of functions and channels which may be transmitted by an expression
in our Facile-like language.

Section 2 motivates the problem by an informal discussion and examples.
Section 3 introduces the language on which our discussion is based. The type
and effect system is defined in Section 4. Section 5 shows our approach to
proving the soundness of our type and effect system. The following sections
discuss the contributions of our work by referring to related work in the
literature along with possible future directions.

2 Potential Mobility

In this section we define informally what is meant by potential mobility of
functions and channels throughout the paper. We follow closely the criteria
determined by Knabe to guide programmers in annotating potentially mobile
functions in his implementation of Facile. The examples are also inspired by
the discussion in his dissertation [11]. In the following section we will define
a formal language which is suggestive of an intermediate language for Facile-
like languages. For the purposes of this section, it is sufficient to note that
the language has operators ! and ? corresponding to sending and receiving
a value.

2.1 Mobile Functions

It should be relatively clear that any function which is passed directly to a
send operator is potentially mobile. Whenever a function f moves, it takes
with it the functions contained in its closure. Therefore, we can argue that
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a function which is referred to by a mobile function and which is not defined
within it is also mobile. The functions which are defined within function f
are mobile only by virtue of being a part of its code. Detecting the mobility
of f implies the mobility of functions nested within its body. Therefore, we
need not consider these as mobile functions individually.

If the above criteria were sufficient, all the information needed for au-
tomatic detection of mobile functions would be available in the definition
environment component of the function closure which contains the bindings
of free identifiers referred to by the code. However, in the presence of higher-
order functions, one needs to go beyond the information provided by the
function closure. The following examples illustrate this point.

Example 1

Let us consider a function f defined as follows.

fun f h = let fun g x = ... h x ...
in

chan ! g
end

Obviously, g is potentially mobile. We can also deduce that h stands for
a function referred to by g. The difficulty arises from the fact that h is a
bound variable. In such a situation, all the functions which h can be bound
to, in other words all the functions which f can be applied to, are potentially
mobile. Detecting these functions is not straightforward since one needs to
consider cases such as the following.

fun k x = ... f a ... (∗ a will be mobile ∗)
fun k x = ... f x ... (∗ any possible binding of x will be mobile ∗)
fun k x = ... x a ...
... k f ... (∗ a will be mobile ∗)
fun k h y = ... h y ...
... k f ... (∗ any possible binding of y will be mobile ∗)

Example 2

A similar difficulty arises when a higher-order function is transmitted. Let
us consider an expression which transmits a function f defined as follows.
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let
fun f x = let fun g y = ... x ... y ...

in g
end

in
chan ! f

end

The function f is potentially mobile and the function g is defined within
f. According to our discussion at the beginning of this section, there is no
immediate reason for g to be taken as potentially mobile. However, it should
be noted that the function g escapes the definition of f because it is returned
as a result. It may be the case that the computation arrives at a point where
it is transmitted by some other code. Therefore, it appears to be a safer
option to consider functions such as g as potentially mobile.

2.2 Mobile Channels

As we have noted in Section 1 data structures implementing channels in
Facile reside on the node where they were created and do not move. By
channel mobility we mean the extrusion of the scope of a channel by sending
its name. When a channel c is sent along a channel c’, the scope of c expands
to include the expression receiving it.

The arguments for mobile functions above apply to mobile channels as
well and our criteria for identifying mobile channels is the same as those for
functions. This is easily justified as channels are also first-class values and
all first-class values are treated uniformly in Facile-like languages.

3 A Language for Communicating Expressions

Our view of a system is a coupling of two sites each of which evaluates a single
expression. Each expression possibly communicates with the expression on
the remote site through synchronous channels. We believe that this simple
setting embodies the core ingredients of a distributed system where the basic
computational units are functions. It provides a sufficient level of generality
to model the remote transmission of functions which is our main interest.

We introduce a language which includes all the constructs of a typical
sequential functional language extended with constructs for creating channels
and sending and receiving values over these channels.
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3.1 Syntax

The unusual point about the syntax is that function abstractions, recursive
expressions and channel allocation expressions are labelled. We assume two
disjoint sets of labels L and R which include labels for functions and chan-
nels respectively. The purpose of function labels (l) drawn from (L) and
the channel labels (r) drawn from (R) is to uniquely identify functions and
channels. Therefore, all labels in a program are required to be distinct.

e ::= () | true | false | n | chanr()
| x | fnl x⇒ e | e1 e2 | primop c e
| e1; e2 | letx = e1 in e2
| recl f(x)⇒ e | if e1 then e2 else e3
| e1? | e1!e2

3.2 Dynamic Semantics

3.2.1 Semantic Objects

Values of the language are the unit value, the values of base types such as
integers and booleans, channel identifiers (ci) and function closures. The
dynamic semantics distinguishes a set of values (b) as basic values.

Since the system consists of two expressions each of which return a value,
we define a top-level value as a tupling of the individual values of expressions.

We also use semantic objects which describe the communication be-
haviour of an expression; com stands for a communication event drawn from
the set {ch ci, ci?val , ci!val} representing the allocation of a channel, receiv-
ing and sending values over a channel respectively. The name w stands for a
sequence of communication events.

Other semantic objects include a channel identifier set CI and an evalu-
ation environment E which is a mapping from identifiers to values.

val ::= valunit | val true | val false | valn
ci | 〈E, fnl x ⇒ e〉

val top ::= (val1, val2)

com ::= ch ci | ci?val | ci!val

w ::= ε | com1 . . .comn
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3.2.2 Top-level Rule and Matching

Our language does not include a construct for parallel composition of expres-
sions. The concurrent activity is revealed in the composition of two sites. The
top-level evaluation decomposes into individual evaluations at each site.

CI, E1 `loc1e1
w1=⇒val1, CI1 CI, E2 `loc2e2

w2=⇒val 2, CI2
w1 || w2 ↪→ wtop wtop = ch ci1. . . .ch cin (CI1 ∪ CI2) \ CI = {ci1, . . . cin}
CI, (E1, E2), (loc1[e1] || loc2[e2])

wtop=⇒(val1, val2), CI1 ∪CI2

The synchronisation is specified by the following matching rules between
communication event sequences.

ε || ε ↪→ ε

w1 || w2 ↪→ w

w1.com || w2 ↪→ w.com
w1 || w2 ↪→ w

w1 || w2.com ↪→ w.com

w1 || w2 ↪→ w

w1.ci!val || w2.ci?val ↪→ w

w1 || w2 ↪→ w

w1.ci?val || w2.ci!val ↪→ w

3.2.3 Sequential Evaluation Rules

A judgement of the form CI,E ` e w=⇒val , CI ′ states that expression e
evaluates to value val against an environment E and a global channel identi-
fier set CI updating it to CI ′. The evaluation relation =⇒, which is defined
in Figure 1, is annotated with the possible communication events which may
occur during evaluation. Initially,E contains the ubiquitous values and other
values that are provided as predefined at the site of evaluation. The eval-
uation rules are quite intuitive. Note that the only rule which updates the
channel identifier set CI is the rule for channel creation. This rule gener-
ates a new channel identifier which is globally unique. We can assume that
each evaluation site generates fresh channel identifiers prefixed with its name.
APPLY serves as a semantic tool to define the application of a predefined
operation to an argument.

4 Type System

The type system specified in this section is designed with the intention of
exposing which functions and channels an expression can possibly transmit.
It extends the earlier type and effect systems which we mention in Section
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(unit) CI, E ` () ε=⇒valunit, CI
(true) CI, E ` true ε=⇒val true, CI
(false) CI, E ` false ε=⇒val false, CI
(int) CI, E ` n ε=⇒valn, CI

(chan) CI, E ` chanr()ch ci=⇒ci, CI ∪ {ci} ci globally new

(var) CI, E ` x ε=⇒E(x), CI

(fn) CI, E ` fnl x ⇒ e
ε=⇒〈E, fnl x⇒ e〉, CI

(rec)
val = 〈E[f 7→ val ], fnl x ⇒ e〉
CI, E ` recl f(x)⇒ e

ε=⇒val , CI

(app)
CI, E ` e1

w1=⇒〈E ′, fnl x⇒ e〉, CI ′ CI ′, E ` e2
w2=⇒val , CI ′′

CI ′′, E ′[x 7→ val ] ` e w3=⇒val ′, CI ′′′

CI, E ` e1 e2
w1.w2.w3=⇒ val ′, CI ′′′

(primop)
CI, E ` primop c w1=⇒b, CI ′ CI ′, E ` e w2=⇒val , CI ′′ APPLY(b, val) = val1

CI, E ` primop c e w=⇒val 1, CI
′′

(seq)
CI, E ` e1

w1=⇒val1, CI
′ CI ′, E ` e2

w2=⇒val 2, CI
′′

CI, E ` e1 ; e2
w1.w2=⇒ val2, CI

′′

(if-t)
CI, E ` e1

w1=⇒val true, CI ′ CI ′, E ` e2
w2=⇒val , CI ′′

CI, E ` if e1 then e2 else e3
w1.w2=⇒ val , CI ′′

(if-f)
CI, E ` e1

w1=⇒valfalse, CI ′ CI ′, E ` e3
w2=⇒val , CI ′′

CI, E ` if e1 then e2 else e3
w1.w2=⇒ val , CI ′′

(let)
CI, E ` e1

w1=⇒val1, CI
′ CI ′, E[x 7→ val1] ` e2

w2=⇒val2, CI
′′

CI, E ` letx = e1 in e2
w1.w2=⇒ val 2, CI

′′

(receive)
CI, E ` e w=⇒ci, CI ′

CI, E ` e?w.ci?val=⇒ val , CI ′

(send)
CI, E ` e1

w1=⇒ci, CI ′ CI ′, E ` e2
w2=⇒val , CI ′′

CI, E ` e1!e2
w1.w2.ci!val=⇒ valunit, CI ′′

Figure 1: Evaluation Rules
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6 so that the types capture additional information in the form of abstract
closure annotations.

4.1 Semantic Objects

We have abstract closures (v), channel regions (χ), communication effects
(κ), raw types (τ̄ ) and closure annotated types (τ ). A type scheme (σ) can
be obtained from a type (τ ) by universally quantifying zero or more abstract
closure, region, behaviour and type variables.

v ::= ∅ | 〈ε, l〉 | γ | v ∪ v
χ ::= r | ρ | χ ∪ χ
κ ::= ∅ | ch(χ, τ) | send(χ, L) | remref(χ, R) | recv(χ, τ) | β | κ ∪ κ
τ̄ ::= Unit | Int | Bool | chanχ(τ) | τ κ→τ | α
τ ::= (τ̄ , v)
σ ::= ∀~γ~ρ~β~α. τ

The set v conservatively estimates the set of functions an expression can
evaluate to. A function closure 〈E, fnl x ⇒ e〉 is abstracted by 〈ε, l〉 where
ε stands for the environment of the function and l stands for the function.
The abstract environment ε contains static bindings of free variables of the
function expression with function or channel types. The meta-variable γ
ranges over abstract closures. The operator ∪ denotes set union.

The set χ estimates channel regions. A more detailed explanation of
regions can be found in [4, 18]. Channel regions are to channels what abstract
closures are to functions. They abstract channels and thus provide a means
of keeping track of the identity of channels in the static semantics. A channel
region is represented by a label r. The meta-variable ρ ranges over channel
regions.

The set κ estimates the communication effects which may occur dur-
ing the evaluation of an expression. An expression may have no effect, or
its overall effect can be estimated by a set of possible effects; allocating a
channel, sending a function closure approximated by the set L or creating a
remote reference to a channel which is approximated by the set R through a
channel and receiving a value on a channel. The meta-variable β ranges over
communication effects.

Raw types (τ̄ ) consist of base types, channel types, function types and
type variables (α). We pair raw types with abstract closure annotations to
get the types of our language. An expression of type chanχ(τ ) denotes a
channel which communicates values of type τ where χ estimates the channel.
An expression of type (τ̄1, v1) κ→(τ̄2, v2) denotes a function whose argument
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is estimated by v1 and whose result is estimated by v2. By injecting value
annotations into types we keep track of functions flowing as arguments and
results. The annotation κ stands for the latent effect which may occur when
the function is applied.

4.1.1 Operations on Types

The operations defined below are familiar from polymorphic type systems
for languages with a functional core.

Definition 1 (�)

A type scheme σ generalises a type τ , written as σ�τ , if τ can be obtained
from the body of σ by substituting types (τ ), behaviours (κ), regions (χ)
and abstract closures (v) for the bound type, behaviour, region and abstract
closure variables of σ respectively. A substitution θ denotes a mapping from
type, behaviour, region and abstract closure variables to types, behaviours,
regions and abstract closures.

Definition 2 (Generalisation)

Types are generalised to type schemes by the operation Gen.
Gen(κ,Γ)(τ ) = let{~α, ~β, ~ρ,~γ} = fv(τ ) \ (fv(κ)∪ fv(Γ)) in ∀~α~β~ρ~γ. τ

where fv computes the free type, behaviour, region and abstract closure vari-
ables in the expected way.

4.1.2 Analysis for Mobility

The following two definitions are related to forming and analysing abstract
closures and therefore are characteristic operations of our type system.

Definition 3 (Abstract Closure)

AbsCl(Γ, e, S) = ε where ε is the environment Γ restricted to the bindings
of free identifiers of e excluding the ones in set S, which have function or
channel types.

The information with respect to function closures embodied in types
through v annotations are analysed to extract the labels of potentially mo-
bile functions and channels. The rules of this analysis are specified by an
inference system. A judgement of the form `mob τ : R,L means that the
transmission of a value of type τ may cause the transmission of channels
with labels in R and functions with labels in L.
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Definition 4 ( `mob )

(1) `mob (τ̄ , ∅) : ∅, ∅ τ̄ base type or variable

(2) `mob (chanρ(τ ), ∅) : ∅, ∅

(3) `mob (chanr(τ ), ∅) : {r}, ∅

(4)
`mob (chanχ1(τ ), ∅) : R1, L1 `mob (chanχ2(τ ), ∅) : R2, L2

`mob (chanχ1∪χ2(τ ), ∅) : R1 ∪R2, L1 ∪ L2

(5)
`mob τ2 : R2, L2

`mob (τ1
κ→τ2, γ) : R2, L2

(6)

if ε(x) = (τx) `mob τx : Rx, Lx
R1 =

⋃
Rx, L1 =

⋃
Lx

`mob τ2 : R2, L2

`mob (τ1
κ→τ2, 〈ε, l〉) : R1 ∪R2, {l} ∪ L1 ∪ L2

(7)
`mob (τ̄ , v1) : R1, L1 `mob (τ̄ , v2) : R2, L2

`mob (τ̄ , v1 ∪ v2) : R1 ∪R2, L1 ∪ L2

The Rule 1 applies when the raw type is a base type or a variable. Our
type system does not keep track of values of base types.

The Rules 2,3,4 apply when the type is a channel type and the channel is
estimated by a region variable, single region or a set of regions respectively.
A variable includes no specific information, hence the empty R in Rule 2. In
cases where labels are present in the set χ, Rules 3 and 4 collect these one
by one and merge them in R.

The Rules 5,6,7 apply when the type is a function type. If an abstract
closure is represented by a variable we have no information about the envi-
ronment of the function or its label. However, the result type may include
information about the escaping values, therefore it needs to be examined.
Rule 5 handles this case. If the function is abstracted by a single abstract
closure, Rule 6 extracts the label of the function and examines the bindings
of the identifiers of the abstract environment to collect the labels of poten-
tially mobile values. The return type is also examined to handle the escaping
values. If the function is estimated by a non-singleton set Rule 7 ensures that
each element of the set is examined and the results are merged into a single
set.
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(unit) Γ ` () : (Unit, ∅), ∅
(true) Γ ` true : (Bool, ∅), ∅
(false) Γ ` false : (Bool, ∅), ∅
(int) Γ ` n : (Int, ∅), ∅
(chan) Γ ` chanr() : (chanχ(τ), ∅), ch(χ, τ) τ = (α, γ) , α, γnew , r ⊆ χ

(var)
Γ(x) = σ σ � τ
Γ ` x : τ

(fn)
Γ[x 7→ τ1] ` e : τ2, κ ε = AbsCl(Γ, e, {x})
Γ ` fnl x ⇒ e : (τ1

κ→τ2, 〈ε, l〉), ∅

(rec)
Γ[f 7→ (τ1

κ→τ2, 〈ε, l〉)][x 7→ τ1] ` e : τ2, κ ε = AbsCl(Γ, e, {x, f})
Γ ` recl f (x)⇒ e : (τ1

κ→τ2, 〈ε, l〉), ∅

(app) Γ ` e1 : ((τ̄1, v) κ→(τ̄2, v2), v′), κ′ Γ ` e2 : (τ̄1, v1), κ′′ v1 ⊆ v
Γ ` e1 e2 : (τ̄2, v2), κ∪ κ′ ∪ κ′′

(primop)
Γ ` primop c : ((τ̄1, v) κ→(τ̄2, v2), v′), ∅ Γ ` e : (τ̄1, v1), κ′ v1 ⊆ v
Γ ` primop c e : (τ̄2, v2), κ∪ κ′

(seq)
Γ ` e1 : τ1, κ Γ ` e2 : τ2, κ

′

Γ ` e1 ; e2 : τ2, κ ∪ κ′

(if)
Γ ` e1 : (Bool, ∅), κ, Γ ` e2 : (τ̄ , v), κ′ Γ ` e3 : (τ̄ , v′), κ′′

Γ ` if e1 then e2 else e3 : (τ̄ , v ∪ v′), κ∪ κ′ ∪ κ′′

(let)
Γ ` e1 : τ1, κ Γ[x 7→ Gen(κ,Γ)(τ1)] ` e2 : τ2, κ

′

Γ ` let x = e1 in e2 : τ2, κ ∪ κ′

(receive)
Γ ` e : (chanχ(τ), ∅), κ
Γ ` e? : τ, κ∪ recv(χ, τ)

(send)
Γ ` e1 : (chanχ(τ), ∅), κ Γ ` e2 : τ, κ′ `mob τ : R, L
Γ ` e1!e2 : Unit, κ ∪ κ′ ∪ send(χ, L) ∪ remref(χ, R)

(subs)
Γ ` e : (τ̄ , v), κ κ ⊆ κ′ v ⊆ v′
Γ ` e : (τ̄ , v′), κ′

Figure 2: Typing Rules
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4.1.3 Typing Rules

The static semantics for the language assigns a type, an effect (τ, κ) to each
expression. This is represented by a judgement of the form Γ ` e : τ, κ .

The context in which an expression is assigned a type, an effect and an
abstract value is represented by a static environment Γ, which maps value
identifiers to type schemes (σ). The notation Γ[x 7→ σ] is used for adding
element x to the environment Γ, overriding the existing binding if x is already
in the domain of Γ.

Regarding polymorphism, we adopt the standard discipline employed in
languages with a functional core and allow type generalisation to be per-
formed in the (let) rule only.

The rule (send) for the send expression reveals the essence of the type
system. All the information with respect to the sent value captured by its
type is analysed to extract the labels of the channels and the closures which
are potentially mobile.

The side condition in the application rule (app) is used to ensure that
the abstract closure annotation inferred for the argument is consistent with
the abstract closure annotation which appears in the argument position of
the function type. The operator ⊆ denotes the subset relation for sets.

The subsumption rule (subs) allows an expression to admit a larger com-
munication effect and an abstract closure than seems to be necessary. We
adopt the approach which is referred to as early subsumption in [18] and
subeffecting in [32]. This is in contrast to the approach known as late sub-
sumption or subtyping where coercion can happen at any time inside any
type. The advantage of our approach is that the complex interplay between
polymorphism and subtyping can be avoided.

5 Semantic Consistency

We define the following consistency judgements which relate objects of the
dynamic semantics to objects of the static semantics with respect to a given
channel environment CE where CE is defined as a mapping from channel
identifiers to channel region and type pairs: [ci1 7→ (χ1, τ ), . . . , cin 7→ (χn, τ )].
The rest of the objects we refer to are as defined in the previous sections.

CE |= val : τ the value val has the type τ
CE |= E : Γ the values of E respect the types of Γ
CE |= com : κ the event com respects the effect κ
CE |= w : κ the event sequence w respects the effect κ
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The definition of |= makes use of an ordering relation � between abstract
closures which is defined as follows.

Definition 5 (�)

ε � v for any v
〈ε1, l〉 � v if there exists 〈ε2, l〉 ∈ v such that ε1 ⊆ ε2

The consistency relation which establishes the correspondence between ob-
jects of the dynamic semantics and the static semantics satisfies the following
properties:

Definition 6 (|=)

CE |= valunit : (Unit, ε)
CE |= val true : (Bool, ε)
CE |= val false : (Bool, ε)
CE |= valn : (Int, ε)

CE |= ci : (chanχ(τ ), ε)
if ch(χ, τ ) ∈ κ, CE(ci) = (χ, τ )

CE |= 〈E, fnl x ⇒ e〉 : (τ1
κ′→τ2, v)

if there exists Γ such that Γ ` fnl x ⇒ e : (τ1
κ′→τ2, v′), ∅

where v � v′ and CE |= E : Γ

CE |= E : Γ
if Dom(E) = Dom(Γ) and for anyx ∈ Dom(E) CE |= E(x) : v
such that v � Γ(x).

CE |= ε : ∅
CE |= ch ci : ch(χ, τ )

if CE(ci) = (χ, τ )
CE |= ci?val : recv(χ, τ )

if CE(ci) = (χ, τ )
CE |= ci!val : send(χ, L) ∪ remref(χ,R)

if CE(ci) = (χ, τ ) and CE |= val : τ
and `mob τ : R′, L′ such that R′ ⊆ R,L′ ⊆ L

CE |= w : κ
if there exists a κi ∈ κ such that CE |= com : κi for any com ∈ w

We write Γ |= val : ∀~ι.τ if and only if Γ |= val : θτ for any substitution θ
defined on ~ι.
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The typing consistency relation that we seek to define must be viewed
as the maximal fixed point of the property defined above. We consider an
appropriate function F and by verifying that F is monotonic conclude that
the above definition is satisfied by its maximal fixed point. This part of the
proof is omitted from our discussion.

Definition 7 (Extension)

(κ′, CE′) extends (κ, CE), written (κ, CE) v (κ′, CE′) if and only if κ ⊆
κ′, Dom(CE) ⊆ Dom(CE′) and for all ci ∈ Dom(CE), if CE(ci) ∈ Rng(κ)
or CE′(ci) ∈ Rng(κ) then CE′(ci) = CE(ci).

Definition 8 (Equivalence)

(κ, CE) and (κ′, CE′) are equivalent, written (κ, CE) ' (κ′, CE′), if and
only if (κ, CE) v (κ′, CE′) and (κ′, CE′) v (κ, CE).

Definition 9 (Succession)

(CI, w, κ, CE) v (CI ′, w′, κ′, CE′) if and only if CI ⊆ CI ′, w′ = w.w′′

for some w′′, (κ, CE) v (κ′, CE′),CE |= val : τ and CE |= w : κ implies
CE′ |= val : τ and CE′ |= w′ : κ′.

Proposition 1 (Consistency)

Assume CI, (E1, E2)(loc1[e1] || loc2[e2])
wtop=⇒(val 1, val 2), CItop.

For each e ∈ {e1, e2}, if CE |= E : Γ and CE |= w0 : κ0, Γ ` e : (τ̄ , v), κ and
CI,E ` e w=⇒val , CI ′ then there exists aCE′ and v′ such that CE′ |= val : τ̄ , v′

and (CI, w0, κ0, CE v CI ′, w0.w, κ0 ∪ κ, CE′) and v′ � v.

Proof (Consistency) The proof is given by a simultaneous induction on
the depth of inference of CI,Ei `loci ei

wi=⇒val i, CI ′ for i ∈ {0, 1}. 2

Appendix A contains the major lemmas used in the proof of the consis-
tency. Selected cases from the proof of Proposition 1 are given in Appendix
B.

The method used in the proof of consistency depends on the approach
used in the specification of the dynamic and static semantics. Relative mer-
its of different methods in proving the two semantics consistent have been
discussed in the related literature [12, 30, 22, 25]. Our formulation can be
likened to that of [25] in the sense that we use the formalism of relational
semantics in specifying the evaluation rules and the static semantics rules
involve effect inference. It can also be likened to that of [12] in the sense
that the formalism of relational semantics is enriched by labelling evaluation
rules with event sequences to capture the communication behaviour.
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6 Related Work

Initially, effect systems were proposed as a solution to the problem of safely
integrating functional and imperative features [13]. The basic idea was to
enhance the type systems so that the expressions were associated with their
observable side effects as well as types. This approach was pursued by Talpin
and Jouvelot to safely type references in ML-like languages [25] and by Tofte
and Talpin to improve memory management techniques [29]. The same ap-
proach was later carried over to concurrent programming languages where
effect information was used in safe generalisation of channel types. The work
by Thomsen on the language Facile [27] and Bolignano and Debbabi on Con-
current ML [4] are examples of this.

Another line of research in the literature demonstrates that the exploita-
tion of type and effect systems need not be confined to the enforcement of
type safety in the above sense. Annotated with effects and other kinds of in-
formation, types can capture a significant amount of static information about
a program’s potential dynamic behaviour. For a more detailed explanation
the reader is referred to the work by Nielson and Nielson which includes an
analysis of communication topology of programs [18] and an analysis devel-
oped for obtaining information to be used in static and dynamic processor
allocation [19].

Our work bears a strong similarity to the earlier type and effect systems,
in particular to those designed for Facile and Concurrent ML. A common
point of these systems is that they rely on the concept of channel regions
which are the static counterparts of channels created at run-time. Channels
play the key role in the problems they focus on. In our case however, it is
the functions which play the key role. Therefore, we introduce the concept of
abstract closure which can be considered as an analogous concept to channel
regions. We retain channel regions in our type system because of two reasons.
Firstly, we would like our type system to be at least as expressive as the earlier
ones. Secondly, we are interested in the potential mobility of the channels as
well as that of functions.

7 Conclusions and Future Work

We have shown that the methodology of annotated type and effect systems
can be exploited to provide a general profile of programs with respect to
the potential mobility of values where the main computational units are
functions. Such a profile could be put to use internally by a compiler to
direct optimisations or could serve as a tool for programmers.
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It is now becoming a common practice to use types in stipulating safety
and security properties and to provide sound systems for reasoning about
these properties. The type-based approach to security emphasises the sig-
nificance of tracing the flow of information through computation [9]. The
power of our type and effect system comes from its ability to trace the flow
of values. In other words, the machinery to control secure information flow
is already partially built into the type system. We can now look at ways
of exploiting it for expressing, validating and enforcing certain safety and
security properties.

Most of the work in the area of safety and security is in the framework of
lower-level process calculi such as the π-calculus family and static analyses
techniques developed for these [9, 24, 10, 31, 2, 3, 1]. Casting some of these
in the framework of a type and effect system such as ours would make the
underlying ideas more readily applicable using the type systems of languages
such as CML and Facile as a basis.
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A Lemmas

Lemma 1 (General Substitution)

If Γ ` e : τ, κ then θΓ ` e : θτ, θκ.

Proof (General Substitution) The proof is given by induction on the
derivation of Γ ` e : τ, κ.

case x The rule (var) of the the static semantics imposes that the typ-
ing is of the following form Γ ` x : τ, ∅ Γ(x) = σ and σ � τ .

Suppose σ = ∀~ι.τ0. After renaming if necessary we define θ so that ~ι is
out of reach of θ. Let θ′ be a substitution over ~ι such that θ′(τ0) = τ . Now
define a substitution θ′′ with domain ~ιi by θ′′(ιi) = θ(θ′′(ιi)). We then have
θ′′(θ(ιi)) = θ′′(ιi) = θ(θ′(ιi)) for all i
θ′′(θ(β)) = θ(β) = θ(θ′(β)) for all β not in ~ιi
Hence, θ′′(θ(τ0)) = θ(θ′(τ0)) = θ(τ ) which shows that θ(τ ) is an instance of
θ(Γ(x)). So, θ(Γ) ` x : Γ(τ ).

case letx = e1 in e2 The rule (var) of the the static semantics imposes
that the typing is of the following form
Γ ` e1 : τ1, κ Γ[x 7→ Gen(κ,Γ)(τ1)] ` e2 : τ2, κ′
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Let ∀~ι.τ1 be Gen(κ,Γ)(τ1). For any substitution θ, let us consider fresh ~ι′
and define θ′ as the extension of θ~ι with θ{ι 7→ ι′}. By the definition of Gen
we have that θ(Γ) = θ′(Γ) and θ(κ) = θ′(κ′). By the definition of θ′, ι being
out of reach, θ′(∀~ι.τ1) = ∀~ι′.θ′τ1. Thus,
θ(Γ[x 7→ Gen(κ,Γ)(τ1)] = θ(Γ)[x 7→ Gen(θκ, θΓ)(θ′τ1)].

By using the induction hypothesis on e1 with θ′ we get θ′Γ ` e : θ′τ, θ′κ.
By definition of θ′, θ′Γ ` e : θ′τ, θκ. By using the induction hypothesis on
e2 we get θ(Γ[x 7→ Gen(κ,Γ)(τ1)]) ` e2 : θ(τ2), θ(κ′) which is equivalent to
θ(Γ)[x 7→ Gen(θ(κ), θ(Γ))(θ′(τ1))] ` e2 : θ(τ2), θ(κ′). Finally by definition
of (let) we can conclude that θ(Γ) = letx = e1 in e2 : θ(τ ), θ(κ). 2

Lemma 2 (Extension)

If CE |= val : τ and CE |= w : κ and (κ, CE) v (κ′, CE′) then
CE′ |= val : τ and CE′ |= w : κ.

Proof (Extension) We consider the set Z = {(w, κ′, CE′, val, τ ) |CE |=
val : τ and CE |= w : κ and (κ, CE) v (κ′, CE′)}. We show by case analysis
on the structure of val that q = (w, κ′, CE′val, τ ) ∈ F (Z). 2

Lemma 3 (Equivalence)

If (κ, CE) ' (κ′, CE′) and CE |= val : τ and CE |= w : κ if and only if
CE′ |= val : τ and CE′ |= w : κ′.

Proof (Equivalence) Since (κ,CE) ' (κ′, CE′), by Definition 7,
(κ, CE) v (κ′, CE′) and (κ′, CE′) v (κ, CE). If CE |= val : τ and
CE |= w : κ then by Lemma 2, CE′ |= val : τ and CE′ |= w : κ. If
S : CE′ |= val : τ and CE′ |= w : κ then by Lemma 2, CE |= val : τ and
CE |= w : κ. 2

Lemma 4 (Semantic Substitution)

If CE |= val : τ and CE |= w : κ then θCE |= val : θτ and CE |= w : θκ for
any substitution θ.

Proof (Semantic Substitution) We consider Z = {(w, θκ, θCE, val, θτ) |
CE |= val : τ and CE |= w : κ} and show by case analysis on the structure
of val that q = (w, θκ, θCE, val, θτ) is in F (Z). 2

Lemma 5 (Instantiation)
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If CE |= val : τ and CE |= w : κ and θ is defined on fv(τ ) \ fv(κ) then
CE |= val : θτ and CE |= w : κ.

Proof (Instantiation) By Lemma 4, θCE |= val : θτ and CE |= w : θκ.
Since θκ = κ, by Definition 7, (κ, CE) ' (κ, θCE). By Lemma 3 we conclude
that CE |= val : θτ and CE |= w : κ. 2

Lemma 6 (Channel allocation)

Let κ′ = ch(χ, τ ) , w′ = w.ch ci and CE′ = CE[ci 7→ (χ, τ )] where ci /∈
Dom(CE). If CE |= val : τ ′ and CE |= w : κ then CE′ |= val : τ ′ and
CE′ |= w′ : κ ∪ κ′.

Proof (Channel Allocation) We consider the setZ = {(w′, κ∪κ′, CE′, val, τ ′) |
CE |= val : τ, CE |= w : κ}. We show by case analysis on the structure of
val that q = (w′, κ ∪ κ′, CE′, val, τ ′) is in F (Z). 2

Lemma 7 (Send)

Let κ′ = send(χ, L) ∪ remref(χ,R), w′ = w.ci!val, CE |= ci : (chanχ(τ ), ε),
CE |= w : κ, CE |= val : τ and `mob τ : R′, L′ where R′ ⊆ R,L′ ⊆ L . If
CE |= val ′ : τ ′ and CE |= w : κ then CE′ |= val ′ : τ ′ and CE |= w′ : κ ∪ κ′.

Proof (Send) We consider the set Z = {(w′, κ ∪ κ′, CE′, val, τ ′) | CE |=
val : τ andCE |= w : κ}. We show by case analysis on the structure of val
that q = (w′, κ ∪ κ′, CE′, val, τ ′) is in F (Z). 2

B Proof of consistency

case chanr() The rules (chan) of the dynamic and the static semantics
impose that the evaluation and the typing are of the form

CI,E ` chanr()ch ci=⇒ci, CI ∪ {ci} ci /∈ CI

Γ ` chanr() : (chanχ(τ ), ∅), ch(χ, τ ) where τ = (α, γ), α, γ are new, r ⊆ χ .
By hypothesis CE |= w0 : κ0. We are required to show that there exits CE′

and v′ such that CE′ |= val : τ̄ , v′ and (CI, w0, κ0, CE v CI ′, w.ch ci, κ0 ∪
ch(χ, τ ), CE′) and v′ � v.

We provide a witness for CE′ by taking CE′ = CE[ci 7→ (χ, τ )] such that
ci /∈ CI and ci /∈ Dom(CE). By Lemma 6 we know that if CE |= val : τ ′

then CE′ |= val : τ ′ and CE′ |= w.chan ci : κ0∪ ch(χ, τ ). Now, by Definition
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5 we also have (CI, w, κ, CE v CI ′, w.chan ci, κ∪ch(χ, τ ), CE′). We provide
a witness for v′ by taking v′ = ε.

case e1e2 The rules (app) of the dynamic and the static semantics impose
that the evaluation and the typing are of the form

CI,E ` e1
w1=⇒〈E′, fnl x⇒ e〉, CI ′ CI ′, E ` e2

w2=⇒val , CI ′′

CI ′′, E′[x 7→ val ] ` e w3=⇒val ′, CI ′′′

CI,E ` e1 e2
w1.w2.w3=⇒ val ′, CI ′′′

Γ ` e1 : ((τ̄1, v) κ→(τ̄2, v2), v′), κ′ Γ ` e2 : (τ̄1, v1), κ′′ v1 ⊆ v
Γ ` e1 e2 : (τ̄2, v2), κ ∪ κ′ ∪ κ′′

By the induction hypothesis on e1 and the assumption CE |= E′ : Γ and
CE |= w0 : κ0, there exists CE′ and v′′ such that
CE′ |= 〈E′, fnl x ⇒ e〉 : ((τ̄1, v) κ→(τ̄2, v2), v′′), v′′ � v′ and
(CI, w0, κ0, CE) v (CI ′, w.w1, κ0∪κ′, CE′). By Definition 5 we can conclude
that CE′ |= E′ : Γ and CE′ |= w0.w1 : κ0∪κ′. Now, by induction hypothesis
on e2 there exists CE′′ and v′′′ such that CE′′ |= val : (τ̄1, v′′′) , v′′′ �
v1 and (CI ′, w0, κ0 ∪ κ′, CE′) v (CI ′′, κ0 ∪ κ′ ∪ κ′′, CE′′). By Definition
5, since CE′ |= 〈E′, fnl x ⇒ e〉 : ((τ̄1, v) κ→(τ̄2, v2), v′′), we have CE′′ |=
〈E′, fnl x ⇒ e〉 : ((τ̄1, v) κ→(τ̄2, v2), v′′) and CE′′ |= w0.w1 : κ0 ∪ κ′ ∪ κ′′.
CE′′ |= 〈E′, fnl x ⇒ e〉 : ((τ̄1, v) κ→(τ̄2, v2), v′′) requires that there exists a
Γ′ such that Γ′ ` fnl x ⇒ e : ((τ̄1, v) κ→(τ̄2, v2), v′′′′), ∅ where v′′ � v′′′′ and
CE′′ |= E′ : Γ′.

Let us take E′′ = E′[x 7→ val] and Γ′′ = Γ′[x 7→ (τ̄1, v)]. By the side con-
dition v1 ⊆ v and Definition (�) , it follows that v′′′ � v. By Definition (|=)
and Lemma 2 we have CE′′ |= E′′ : Γ′′ and CE′′ |= w0.w1.w2 : κ0 ∪ κ′ ∪ κ′′.
Now, by induction hypothesis on e3, we can conclude that there exists a
CE′′′ and v′2 such that v′2 � v2 and (CI ′′, w0.w1.w2, κ0 ∪ κ′ ∪ κ′′, CE′′) v
(CI ′′′, , w0.w1.w2.w3, κ0 ∪ κ′ ∪ κ′′ ∪ κ, CE′′′).
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case e1!e2 The rules (send) of the dynamic and the static semantics impose
that the evaluation and the typing are of the form

CI,E ` e1
w1=⇒ci, CI ′ CI ′, E ` e2

w2=⇒val , CI ′′

CI,E ` e1!e2
w1.w2.ci!val=⇒ valunit, CI ′′

Γ ` e1 : (chanχ(τ ), ∅), κ Γ ` e2 : τ, κ′ `mob τ : R,L
Γ ` e1!e2 : Unit, κ∪ κ′ ∪ send(χ, L)∪ remref(χ,R)

By the induction hypothesis on e1 and the assumption CE |= E : Γ and
CE |= w0 : κ0 there exists CE′ and v′ such that CE′ |= ci : chanχ(τ̄ , ε),
(CI, w0, κ0, CE) v (CI ′, w0.w1, κ0 ∪ κ, CE′) and ε � ∅.

By Definition 5 we have CE′ |= E : Γ and CE′ |= w0.w1 : κ0 ∪ κ.
We can now apply the induction hypothesis on e2. It follows that there
exists CE′′ and v′′ such that CE′′ |= val : (τ̄ , v′′) where τ = (τ̄ , v) and
(CI ′, w0.w1, κ0∪κ′, CE′) v (CI ′′, w0.w1.w2, κ0∪κ∪κ′, CE′′) and v′′ � v. By
Definition 5 we also have CE′ |= ci : chanχ(τ ), v′.

The side condition imposes that `mob τ : R,L. We know that τ = (τ̄ , v)
and v′′ � v. Suppose `mob (τ̄ , v′′) = R′, L′. By inspecting the definition
of `mob it follows that R′ ⊆ R,L′ ⊆ L. By Lemma 7 we can conclude
that (CI ′′, w0.w1.w2, κ0 ∪ κ ∪ κ′, CE′′ v (CI ′′, w0.w1.w2.ci!val, κ0 ∪ κ ∪ κ′ ∪
send(χ, L)∪ remref(χ,R), CE′′), CE′′).

Finally, by Definition 5 and |= we conclude that CE′′ |= valunit : (Unit, ε)
and (CI, w0, κ0, CE) v (CE′′, κ0∪κ′∪κ′′∪send(χ, L)∪remref(χ,R), CE′′).
2
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