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Abstract


This report presents a way of recording information about the types of programs as
a graph. The focus is on programs typed with Hindley-Milner type systems. The
graphs can record information about untypeable programs (which are traditionally
rejected with a type error message by type inference algorithms) and thus can be
used to produce information to help programmers debug programs.







1 Introduction


This report is about a way of recording information about the types of programs. Programmers
frequently want to know about the types in their programs so that they can repair mistakes and
understand their code better. A number of authors have looked at particular ways of presenting
type information to programmers. This work is summarised in Section 2. The method presented
in this paper records information about typeable or untypeable programs as graphs. Significantly,
we treat typeable and untypeable programs in the same way. All other work has dealt either with
typeable or untypeable programs. Examples of graphs are given in Section 3. The algorithms for
generating graphs and extracting information from them are given in Section 4. An accompany-
ing paper [McA99] shows how the information presented by other authors can be extracted from
graphs. All the work described has been implemented in Standard ML for aλ-with-let calculus.
Appendix A contains source code for the implementation. The conclusions of this report are
summarised in Section 5.


2 Related Work


One of the earliest papers related to the topic of acquiring information about types is by Johnson
and Walz [JW86]. They consider the general issue of unification failure. This is relevant to
type errors as most type inference algorithms detect the presence of a type error by failure to
unify two types. Johnson and Walz treat types as graphs and use flow analysis to find the best
fit for unification. Implemented in a development environment, this suggests what the type of an
untypeable part of the program is likely to be, for example if an identifier was used several times
with type int, and once with typestring it is likely that the correct type isint. The programmer
can then use this information to make changes to the program. The use of graphs in Johnson and
Walz’s work is extremely suggestive of the approach in this paper, but no attempt has yet been
made to consolidate them.


Wand [Wan86] presented a scheme for locating the probable mistake in a program. This is
in contrast to the location given by compiler error messages which is the point the compiler was
examining when it found that there was a type error. This is not necessarily close to where the
programmer has made a mistake. The connection Wand’s technique and this report is examined
in more detail in [McA99].


Smaller pieces of work in this area include Turner’s [Tur90] compiler with improved er-
ror messages. This printed out more types, and with better accompanying messages when the
conventional inference algorithm failed because of a unification failure. Soosaipillai [Soo90]
produced a type checker which could be interrogated about the origins of derived types. A pro-
grammer using the system could ask which parts of the program were used to derive the type of
another part. This is an example of a type explanation system.


Beaven and Stansifer [BS93] provide a simple form of error explanation. When two types
fail to unify during type inference, the system gives an explanation of how each of the two types
was derived.


Duggan and Bent [DB96] explain type inference by recording changes made to types during
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unification. Duggan [Dug98] has further extended this work by defining the notion of a correct
type explanation. In [McA99] I discuss how correct type explanations may be produced from the
scheme presented in this paper.


Bernstein and Stark [BS95] take a distinctive approach, inspired by Shao and Appel [SA93].
They propose not only a new inference algorithm, but new static semantics. Their method centres
on assumption environments: mappings of identifiers to sets of types. An assumption environ-
ment characterises the uses of free variables in a program fragment. The inference algorithm
takes open expressions and returns the type of every instance of the free identifiers. This system
is further examined in [McA99], and I show that this paper’s technique can simulate Bernstein
and Stark’s.


Lee and Yi [LY98] examine a top down type inference algorithm (the conventional algorithm
is bottom up) and show that it detects errors after examining less of the program than bottom
up algorithms. It has been stated by Yi [Yi99] and Leroy [Ler99] and Duggan [Dug98] that top
down and bottom up inference algorithms each give better error messages in different situations.
In [McA98] I presented a way of removing the left-to-right bias from both top-down and bottom-
up type inference algorithms, the graph generation algorithm in this report follows that technique.


3 Graphs


The structure of graphs follows the structure of types (they are not annotated syntax trees). There
are vertices representing the types of expressions and type constructors. The varieties of vertex
are given in Definition 1 and illustrated in Figure 1.


Figure 1 Sample vertices. A vertex for the program fragmentλi.i; the fragmentλi.i tagged with
an instance ofI ; a nullary type-constructor,int; a unary type-constructor,list; the binary function
type-constructor; and a type variable vertex,α.


→◦ ◦◦ λi.i ◦ [λi.i]I ◦ listint


Definition 1 (Varieties of vertex)


v ::= f A program fragment
| [f0]f1,f2...fn A program fragment tagged by other program fragments
| (◦1 . . .◦n)ci A type constructorc with arityn and unique identifieri
| ci.j Thejth connection point of the vertex(◦1 . . .◦n)ci
| α A type variable


Program fragment vertices. These are identified by a program fragment,f . A fragment is a
subexpression of the program and its location within the program,i.e.a node of the syntax
tree. These may also be tagged by a sequence of other fragments to give[f0]f1,f2...fn. The
tagging is used to implement Hindley-Milner polymorphism. These vertices represent the
types of fragments.
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Type constructor vertices. These are identified by a type constructor and some unique identi-
fier. For example, there may be several function type constructor vertices in a graph each
with its own identifier. This variety of vertex contains a number of sub-vertices calledcon-
nection points. Function type constructor vertices are denoted◦ →i ◦ with two connection
points, and an identifieri. The connection points may be referred to as→i .0 and→i .1.
In general a type constructor vertexc with identifieri and arityn is (◦1 . . . ◦n)ci. There is
a special nullary type constructorunbound.


Type variable vertices. These are identified by some unique identifier and writtenα (much like
type variables in traditional type inference).


Types are built up by edges coming from connection points, as in Figure 2.


Figure 2 The typeint→ int


int int


→◦ ◦


Edges are added between vertices which must represent the same type. Written
f7→, they are


labelled by program fragments and cannot go from type constructor or type variable vertices.
They can, however, go from the connection points of type constructor vertices. Figure 3 shows
how the graph for the identity function is generated. First the graph for the subexpressioni is
generated (this is a single vertex). Then theλi.i and◦ → ◦ vertices are added. The type ofλi.i
must be a function type, so an edge is added fromλi.i to ◦ → ◦ (labelled with the expression
of current interest —λi.i). The first connection point is connected to the vertex representing the
type of the argument —i.e. the i vertex, and the second connection point is connected to the
vertex for the result expression — alsoi.


Figure 3 Generating a graph for the identity function. Read asαi → αi.
Graph fori


◦i


Graph forλi.i


◦λi.i


→


◦i


λi.i


◦ ◦


λi.i λi.i


A more complex example is given in Figure 4. This is a let expression which contains an
application. There are several features to observe.


• The graph forλi.i (see Figure 2) appears twice, labelled with each occurrence ofI .


3







• The application expressions tell us that each occurrence ofI must be a function.


• The application expressions tell us how the types ofI should be instantiated.


• Tuples are represented in the obvious way.


Figure 4 A let expression. The type is read asint× bool.


◦


◦ (I 3, I true)


(I 3,I true)


◦ let I = λi.i in (I 3, I true)


let I=λi.i in (I 3,I true)


× ◦


◦ I 3


→


I 3


◦ ◦


◦ I left


I 3◦ [λi.i]I left


λi.i


◦ 3


int


I 3


3


λi.i


λi.i


◦ [i]I left


(I 3,I true) (I 3,I true)


λi.i


I true


let I = λi.i in (I 3, I true) true


let I=λi.i
in (I 3,I true)


◦ I true


→


I true


◦ ◦


◦ I right


I 3◦ [λi.i]I right


let I=λi.i in (I 3,I true)


bool


◦ [i]I right


λi.i


λi.i


let I = λi.i


◦ true


in (I 3, I true)


Graphs can be generated for untypeable programs. The program in Figure 5 is similar to that
of the previous figure, except thatI is λ bound instead of let-bound — this makes the program
untypeable. From the graph, we can see roughly what the type should be (a function returning a
tuple).


The difference between the patterns of edges in Figures 4 and 5 are shown in Figure 6.
Sometimes when a vertex has several edges from it, they all ultimately meet up, other times
they diverge. When edges diverge, we call it a branch. Branches indicate that programs are
untypeable. There is a conflict between two types, corresponding to a unification failure in
conventional type inference.


A program may also be untypeable if it has unbound identifiers. Figure 7 shows the graph
for a program with unbound identifiers. The unbound identifiers are marked withunbound.
In [McA99] I explain how to read the required types of unbound identifiers following the example
of [BS95].


The final way in which a graph can indicate that its program is untypeable is if it contains a
cycle, as in Figure 8. This corresponds to an occurs error in traditional type inference. Cycles are
indirect, as they can span across the gaps between type constructor vertices and their connection
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Figure 5 An untypeable program.


→◦ ◦


×◦ ◦


→ ◦◦


(I 3,I true)


◦ λI.(I 3, I true)


λI.(I 3,I true)


λI.(I 3,I true)


◦ (I 3, I true)


◦ I left ◦ I right


λI.(I 3,I true)


λI.(I 3,I true)


(I 3,I true)
I true ◦ I 3 ◦ I trueI 3


I 3 I true


◦ 3 ◦ true


true3


int bool


I trueI 3


Figure 6 Patterns of edges


◦


◦


◦


◦ ◦


◦


◦


◦


Normal edge Branching represents a conflict


◦


◦


◦


◦


◦


Even though vertices have multiple edges, there are no branches


points,e.g. in the figure, it is not possible to reach any vertex from itself, but it is possible to
reach the lower arrow from its own connection point.
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Figure 7 An open expression
◦ (I 3, I true)


◦
(I 3,I true)(I 3,I true)


× ◦


◦ I 3


I 3


◦ I left


I 3


◦ I true
◦ I right


→◦ ◦ →◦ ◦unbound


3


◦ 3 ◦ true


true


bool


(I 3,I true)


I left I right I 3 I true


I 3 I true


unbound


int


Figure 8 A graph with a cycle


◦ → ◦


◦λI.II


→


λI.II


◦ ◦


◦II◦I left


λI.II
λI.II λI.II


◦I right


II


λI.II


II II


4 Algorithms


Analysis of programs using graphs is a two stage process. First generate a graph, then read
useful information from the graph. First we will look at the algorithm for generating graphs. In
Section 4.2 we will see how to read typings from graphs, the paper [McA99] shows how to read
other information from graphs.


4.1 Generating Graphs


There are several important algorithms for generating graphs: fine scale traversal, closing the
graph, and the actual generation algorithm. Once a graph has been generated, the algorithms in
Section 4.2 tell us how to interpret it.
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4.1.1 Fine Scale Traversal


Generating and reading graphs requires an operation which searches for all the type constructor
vertices, type variable vertices and other vertices without children, reachable from some root
vertex. The algorithm for this can be found in Figure 9.


Figure 9 Algorithm for finding important vertices starting from a root. Takes a graph and vertex,
returns three sets of vertices.


search(G, (◦1, · · · , ◦n)c) = ({(◦1, · · · , ◦n)c}, {}, {})
search(G, α) = ({}, {α}, {})
search(G, v) = if children(G, v) = {} then


({}, {v})
else


let


r =
⋃
{search(G, v′) : v′ ∈ children(G, v)}


in


(
⋃
{cs : (cs, tvs, vs) ∈ r},⋃
{tvs : (cs, tvs, vs) ∈ r},⋃
{vs : (cs, tvs, vs) ∈ r})


The three sets returned bysearch are:


Type constructor vertices. If this contains several instances of any type constructor then these
instances should be merged to close the graph.


Type variable vertices. If there are several type variables found then they can be merged. If any
type constructors were found then the type variables can be removed.


Other vertices with no edges coming from them.These should have edges attached to the type
constructor or type variable vertices.


If search returns more than one vertex, then the graph currently contains a branch at the given
root vertex.


The search function is used whenever the graph must be traversed. We use it to ignore vertices
which have edges from them and therefore have been instantiated as another type. In most type
inference algorithms based on references, chains of references are eliminated (aliasing), but in the
form of inference in this paper we keep the vertices corresponding to these chains of references
as they represent valuable information.


The search function stops at type constructors. The remaining functions will traverse the
graph through type constructors to their connection points.
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4.1.2 Closing a graph


The closure operation is illustrated on an example in Figure 10. It is used to ensure that:


• There is at most one instance of any type constructor reachable from a vertex


• If a type constructor and some other vertex are reachable from any vertex then there is a
path from the other vertex to the type constructor.


In order to do this, closure merges distinct instances of type constructors, and adds edges from
other vertices to type constructors.


Figure 10Adding an edge to a graphs


◦ I 3◦ I


→


◦ λi.i


◦ i


λi.i


→


I 3I 3


◦ I 3


I 3I 3


NEW ◦ I


◦ λi.i


◦ i


λi.i


Graphs for the subexpressions Add edge fromI to its defining expression


Merge the→ constructors Add edge to close the bottom


◦ I 3


I 3 I 3


NEW ◦ I


◦ λi.i


→ ◦◦


◦ i


λi.i


λi.i


◦ 3


int


I 3 λi.i


3 NEW


◦ I 3


I 3 I 3


NEW ◦ I


◦ λi.i


→ ◦◦


◦ i


λi.i


λi.i


◦ 3


int


3


I 3 λi.i


◦ ◦


λi.i


◦ ◦


I 3λi.i


◦ 3


3


int


→ →◦ ◦ ◦ ◦


λi.i λi.i I 3


◦ 3


3


int


Figure 11 shows the closure algorithm, and Figure 12 the accompanying merging algorithm
(the two are mutually recursive).


There are four possible results tosearch in the main case ofclose. If there are no other vertices
reachable, then do not do anything to the graph (just return an updated list of vertices seen). If
there are several undistinguished vertices reachable, then create a new type variable vertex and
link to it (e.g. if x 7→ y andx 7→ z then we must havey 7→ α andz 7→ α to eliminate the
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Figure 11 The closure algorithm. Takes a graph, vertex, label for new edges and set of vertices
seen so far (initially this should be empty). Returns updated graph, and updated list of vertices
seen.


close((V, E), (◦1 · · · ◦n)c, l, s) = if (◦1 · · · ◦n)c ∈ s then ((V, E), s)
elsecloseSet((V, E), {◦1 · · · ◦n}, l)


close((V, E), v, l, s) = if v ∈ s then ((V, E), s) else


casesearch(v, (V,E)
({}, {}, {v′})⇒ (G, s∪ {v′})
({}, {}, vs)⇒ let


α = newTyvarVertex()
in


((V ∪ {α}, E ∪ {(v, l, α) : v ∈ vs}), s∪ {v})
({}, {α} ∪ tvs, vs)⇒ let


E0 = {(v0, l, v1) : (v0, l, v1) ∈ E ∧ v1 6∈ tvs}
E1 = {(v0, l, α) : (v0, l, β) ∈ E ∧ β ∈ tvs}
E2 = {(v0, l, α) : v0 ∈ vs}


in


((V − tvs, E0 ∪E1 ∪ E2), s∪ {v})
(cs, tvs, vs)⇒ let


(cs′, ((V ′, E ′), s′)) = merger(((V, E), s), cs, l)
E ′′ = {(v0, l, c) : (v0, l


′, α) ∈ E ′ ∧ α ∈ tvs ∧ c ∈ cs′}
E ′′′ = {(v0, l, c) : v0 ∈ vs ∧ c ∈ cs′}


in


((V ′ − tvs, E ′′ ∪ E ′′′), s′)


closeSet((G, s), {}, l) = (G, s)
closeSet((G, s), {v}∪ V, l) = closeSet(close((G, s), v, l), V, l)


branch). If there are several type variables (and other vertices), then remove all but one type
variable and put all edges to all the type variables to the nominated type variable (and connect
all other vertices to the remaining type variable). If there are type constructors reachable, then
merge all similar type constructors (i.e. merge all◦ → ◦ vertices and allint vertices), remove
the type variables connecting their edges to all the type constructors (type variables are removed
if the actual type is known), and connect any other vertices to all the type constructors.
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Figure 12 Merger. Takes a graph and a set of type constructor vertices, merges all similar type
constructors in the graph.


merger((G, s), {}, l) = ((G, s), {})
merger(G, {(◦1 · · · ◦n)c} ∪ cs, l) = let


like = {c′ : c′ ∈ cs′ ∧ tycon(c′) = tycon(c)
unlike = {c′ : c′ ∈ cs′ ∧ tycon(c′) 6= tycon(c)
E0 = {(v0, l, c) : (v0, l, c


′) ∈ E ∧ c′ ∈ like}
E1 = {(v0, l, c.ι) : (v0, l, c


′.ι) ∈ E ∧ c′ ∈ like}
E2 = {(v0, l, v1) : (v0, l, v1) ∈ E ∧ v1 6∈ like ∧ @c ∈ like.c : ι = v1}
E ′ = E0 ∪E1 ∪E2


E ′0 = {(c.ι, l, v1) : (c′.ι, l, v1) ∈ E ′ ∧ c′ ∈ like}
E ′1 = {(v0, l, v1) : (v0, l, v1) ∈ E ′ ∧ @c ∈ like : c.ι = v0}
E ′′ = E ′0 ∪ E ′1
(G′, s′) = close(((V − like, E ′′), s), c)
(cs′′, (G′′, s′′)) = merger((G′, s′), unlike)


in


(cs′′ ∪ {c}, (G′′, s′′))


merger takes a set of vertices. It picks a vertex and finds all the vertexes like it in the set, then
removes all the similar vertices from the graph and set and connects their edges to the remaining
one then closes below the remaining one. It repeats this until no vertices are left in its set.


4.1.3 Generating a graph


The graph generation algorithm in Figure 13 is quite simple. By closing whenever an edge is
added, there is no need for an explicit call to a unification function and because substitutions and
types are combined in one data structure there is no need for explicit operations on substitutions.


The algorithm makes use of a function,free(e, x), which returns every syntactic instance of
x in e. These subexpressions will be vertices in the graph fore.


generate must also make use of a type environment which keeps track of which identifiers
are in scope and which refer to the basis environment.Γ is a pair,(I, B), of a set of bound
identifiers,I , and a basis,B, mapping identifiers to a graph and vertex pair,(G, v). If generate
encounters an identifier inI then it will produce a one-node graph, if the identifier is inB then
the corresponding graph inB is used. If an identifier is in neitherI norB a graph representing
the unbound type is returned. Ingenerate, identifiers are added toI butB is never modified.


The last case ofgenerate (for let expressions) is the most complex as it must deal with poly-
morphism. The graphs for the definition and use subexpressions are generated. A vertex for the
let expression is added to the graph, and an edge connects it to the use expression vertex. The
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Figure 13Generating a graph


generate((I, B), x) = if x ∈ I then (({x}, {}), x)
else, if(x, ((V, E), v)) ∈ B then ((V ∪ {x}, E ∪ {x, x, v}), x)
else (x is unbound) letv = vertex(unbound) in ({x, v}, {(x, x, v)})


generate((I, B), λx.e0) = let


(V0, E0) = generate((I ∪ {x}, B), e0)
v = vertex(→)
V = V0 ∪ {λx.e0, v}
E = E0 ∪ {(λx.e0, λx.e0, v), (v.2, λx.e0, e0)} ∪
{(v.1, λx.e0, e) : e ∈ free(e0, x)}


in


close((V, E), λx.e0, λx.e0)
generate(Γ, e0e1) = let


(V0, E0) = generate(Γ, e0) (V1, E1) = generate(Γ, e1)
v = vertex(→)
V ′ = V0 ∪ V1 ∪ {v, e0e1}
E ′ = E0 ∪ E1 ∪ {(e0e1, e0e1, v.2), (v.1, e0e1, e1), (e0, e0e1, v)}


in


close((V ′, E ′), e0, e0e1)
generate((I, B), letx = e0ine1) = let


(V0, E0) = generate((I, B), e0) (V1, E1) = generate((I ∪ {x}, B), e1)
V = V1 ∪ {letx = e0ine1)}
E = E1 ∪ {(letx = e0ine1, letx = e0ine1, e1)}
G′ = if free(e1, x) = {} then {G0} else


{[G0]e : e ∈ free(e1, x)}
V ′ = V ∪


⋃
{V : (V, E) ∈ G′}


E ′ = E ∪
⋃
{E : (V, E) ∈ G′} ∪


{(e, letx = e0ine1, [e0]e) : e ∈ free(e1, x)}
in


closeSet((V ′, E ′), free(e1, x), letx = e0ine1)


graph for the definition expression is copied and tagged with every instance of the bound identi-
fier — unless there are no instances of the bound variable, in which case the graph is not altered.
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Edges connect instances ofx to the tagged expression vertices. The graph is closed below every
instance of the bound identifier.


The pattern of recursion in the generation function is symmetric. The graphs for the two sides
of an application expression are generated independently as in [McA98].


4.2 Reading Graphs


There are two distinct questions to be answered by reading a graph


1. Does the entire graph show that the expression is typeable?


2. What is the type represented by some vertex within the graph?


To find the typing,Γ ` e : τ , for an expression,e, we must generate a graph,G, for the
expression. Then find out whether the entire graph shows the expression is typeable (i.e.answer
question 1), then if it is find the typeτ represented by the vertexe (answer question 2).


We can consider question 1 to be analogous to type checking (it has a boolean response), and
question 2 to be analogous to type inference (it results in an inferred type).


4.2.1 Type Checking


To check whether the entire graph represents a valid typing, we must visit every vertex and check
that


• There are no branches,i.e. the vertex has at most one type constructor or one type variable
vertex reachable from it (by search).


• The vertex is not part of a cycle (it is not reachable from itself). The cycle could involve
type constructors and their connection points.


• The vertex is not theunbound type constructor.


These conditions are given by Definition 2.


Definition 2 (Valid Typing) (V,E) is the graph for a correctly typed program iff it has


• No branches:
@v ∈ V : ∃v1, v2 ∈ V :


v 7→∗ v1 ∧ (@v′1 : v1 7→ v′1) ∧
v 7→∗ v2 ∧ (@v′2 : v2 7→ v′2) ∧
v1 6= v2


Where7→∗ is the reflexive transitive closure of7→. i.e. there is at most one leaf reachable
from any vertex (all type constructor and type variable vertices are leaves).


• No cycles:@v ∈ V : v ⇒+ v.
Wherev ⇒ v′ iff v 7→ v′ or v′ is a connection point ofv, and⇒+ is the non-reflexive
transitive closure of⇒.
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• No unbound identifiers:@i : unboundi ∈ V .


An algorithm for checking this is a depth first search of the graph (branching at type construc-
tors, to check the connection points). It stores the path used to reach the current vertex to detect
cycles and also rejects the graph if any vertex has more than one type variable or constructor
vertex as a descendant. For efficiency it is also convenient to build up a list of vertices already
visited and know to be acceptable, this prevents areas of the graph being traversed more than
once.


4.2.2 Type Inference


Thesearch function seen earlier is also used to read graphs. Recall that the result of searching is
a set of vertices without edges from them, and a set of type constructor vertices. There are three
possibilities for the type of a vertex:


• If there is exactly one type constructor vertex and no other vertices, then the type is formed
from that type constructor (the rest of the type can be built recursively),


• If there is a single other vertex (type variable, expression or connection point) then the type
is a type variable identified by that vertex.


• otherwise there is no type (the graph represents some failure of type inference).


An algorithm for reading a type is in Figure 14, this takes a graph and vertex and produces a
type. It will always terminate but will not give a type if there is any sort of conflict. See [McA99]
for another type reading algorithm which will ignoreunbound type constructors.


Figure 14Algorithm for reading a type, takes a graph, a vertex, and a set of vertices already seen
(initially empty); returns the type associated with the vertex (if one exists).


type((V, E), v, U) = let


if v ∈ U then terminate (cyclic type)


casesearch((V, E), v)
({}, {}, {v})⇒ mkTyvar(v)
({}, {α}, {})⇒ α


({(◦1 · · · ◦n)c}, {}, {})⇒ (type((V, E), ◦1) · · · type((V, E), ◦n))c
(cs, tvs, vs)⇒ terminate (conflict between constructors)


Firstsearch is used to find the significant vertices from the current vertex. Ifsearch finds only
vertices with no children (and does not find any type constructors) then the type is a new type
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variable, and a relation is created relating this type variable to the set of vertices. Ifsearch finds
only a single type constructor, then the type is formed by this constructor.


Functiontype checks for cycles and branching in the graph. This allows it to be used on
graphs which do not represent valid typings (i.e. graphs which would be rejected bycheckGraph).
type alone is not sufficient, however, to see whether a graph represents a typing as it will not visit
every vertex in the graph.


type does not tread theunbound type constructor specially. This allows it to produce types
such asα→ unbound. As it stands,type is not suitable for reading the required types of unbound
identifiers (such asI in Figure 7) as it will detect a conflict betweenunbound and the required
type. It is clear that only a minor modification is required to ignoreunbound, this modified
algorithm is explored in [McA99]


5 Conclusions


We have seen a way of representing the results of type inference as a graph. Both typeable and
untypeable programs can be represented in this way — this is the first work to treat typeable and
untypeable programs equally. Algorithms for generating and reading graphs have been given.
Another paper — [McA99] — shows that useful information can be extracted from graphs.


A Implementation


This appendix contains the key parts of SML source code for an implementation of the data
structures and algorithms in this paper.


Source code files are available upon request (e-mailbjm@dcs.ed.ac.uk).


A.1 Abstract Syntax


A.1.1 Signature EXP


signature EXP =
sig


eqtype id


val idToString : id -> string
val idFromString : string -> id


(* Every node of the abstract syntax tree has a number.
These numbers are used to identify the program fragment which
the node represents. *)


eqtype number


(* These imperative functions allow us to generate unique numbers *)
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val newNumber : unit -> number
val reset : unit -> unit


(* This value is a number which is never produced by newNumber.
It is used for the expression vertices in graphs in the
environment. *)


val dummyNumber : number


datatype exp = ID of id * number
| ABS of (id * exp) * number
| APP of (exp * exp) * number
| LET of (id * exp * exp) * number


(* instances i e
returns the numbers of all the fragments of e which are an instance
of free identifier i. *)


val instances : id -> exp -> number list


(* Get the number of the top node in syntax tree. *)
val number : exp -> number


(* Extract a numbered fragment from an expression. *)
exception NumNotFound
val findFrag : (exp * number) -> exp


(* Pretty printing *)
val toString : exp -> string
val numToString : number -> string


end


A.2 Structure Exp : EXP


Implementation of this is trivial.


A.3 Representing Graphs


A.3.1 Signature GRAPH


signature GRAPH =
sig


(***** Data types for expressions and types *****)


(* an identifier for program fragments *)
eqtype fragment
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eqtype expression


(* Identifiers for type constructors names *)
eqtype tycon
val funTycon : tycon
val unboundTycon : tycon


(* Will update this to hold relevant fragment later *)
val newTycon : string * int -> tycon (* make new tycons *)


(***** Data types for vertices and edges *****)


(* There are two basic types of vertex *)
eqtype fragVertex


val getFrag : fragVertex -> fragment


(* Create an untagged fragment vertex from a fragment. *)
val quikTag : fragment -> fragVertex


eqtype tyconVertex


val getTycon : tyconVertex -> tycon
(* Is the vertex the UNBOUND tycon? *)
val isUnbound : tyconVertex -> bool


eqtype tyvarVertex


(* Edges are connected to fragments, constructors,
or connectors of constructors *)


datatype vertex = FRAG of fragVertex
| TYCON of tyconVertex
| CONNECTOR of tyconVertex * int
| TYVAR of tyvarVertex


(* edges go between two vertices and are labeled with a fragment *)
eqtype edge
type edge_data = {v0: vertex, l: fragment, v1: vertex}
val edgeData : edge -> edge_data


(* Return the connection points of a tycon vertex *)
val conPts : tyconVertex -> vertex list


(***** Data types for graphs, and manipulation functions *****)


type graph
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val empty : graph


(* Return list of all program fragment vertices *)
val vertices : graph -> vertex list


(* Get the kids (and corresponding edges) of a vertex *)
val kids : (graph * vertex) -> {v: vertex, e: edge} list


(* And the parents *)
val parents : (graph * vertex) -> {v: vertex, e: reverse_edge} list


(* Relable all edges in a graph with a given fragment
Used when getting a graph from the environment. *)


val relEdges : fragment -> graph -> graph


(* Combine two graphs.
If the fragment vertex sets are not disjoint then
confusion will ensue. *)


val combine : graph * graph -> graph


(* Adding an fragVertex to a graph *)
val addExpVertex : graph -> fragment -> (graph * fragVertex)


(* Find the vertices for a particular fragment in a graph
there may be more than one as they could be tagged. *)


val getExpVertices : graph -> fragment -> fragVertex list


(* Add an instance of a type constructor to a graph *)
val addTyconVertex : graph -> tycon -> (graph * tyconVertex)


(* Add a tyvar vertex (should not be used except to generate basis) *)
val addTyvarVertex : graph -> (graph * tyvarVertex)


(* Find important vertices from a root (used to generate types) *)
val search : ( vertex * graph ) ->


( tyconVertex list * tyvarVertex list * vertex list)


(* Adding an edge also closes the graph, this can add and
remove tyvarVertices *)


val addEdge : ( edge_data * graph ) -> graph
val addEdgePrint : ( edge_data * graph ) -> graph (* For tracing *)


(* When we tag a graph, also provide a vertex, the tagged version
of the vertex is returned. Once a graph has been tagged, it
should only be accessed through the single known vertex *)
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val tagGraph :
(graph * fragVertex) -> fragVertex -> (graph * fragVertex)


(* tag me and me with me! we’re tagged now *)


(***** toString *****)


val tyconToString : tycon -> string


val fVToString : fragVertex -> string


val vToString : vertex -> string


val eToString : edge -> string
val revEToString : reverse_edge -> string
val nondirEToString : nondir_edge -> string


val toString : graph -> string


val sizeToString : graph -> string


end


A.3.2 Functor GraphFun


The implementation of functionclose uses the fixed point combinator, as described in [McA97].


(* Functor for graphs *)


functor GraphFun(structure Exp : EXP)
:> GRAPH where type fragment = Exp.number


where type expression = Exp.exp =
struct


(***** Data types for expressions and types *****)


(* an identifier for program fragments *)
type fragment = Exp.number
type expression = Exp.exp


datatype tycon = UNBOUND (* of exp *) (* update later *)
| FUN
| CON of (string * int)


(* the int is the arity *)
val funTycon = FUN
val unboundTycon = UNBOUND
val newTycon = CON
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fun arity UNBOUND = 0
| arity FUN = 2
| arity (CON (_, i)) = i


(***** Data types for vertices and edges *****)


(* Fragments can be tagged *)
datatype fragVertex = TAGGED of fragVertex list * fragment


fun quikTag e = TAGGED([], e)


fun getFrag (TAGGED (_, f)) = f
fun getTag (TAGGED (t, f)) = t


type tyconVertex = (int * tycon)


fun getTycon (_, c) = c


(* Just a unique identifier for tyvars *)
type tyvarVertex = int


datatype vertex =
FRAG of fragVertex


| TYCON of tyconVertex
| CONNECTOR of tyconVertex * int
| TYVAR of tyvarVertex


(* To get a list of connection points for a tyconVertex *)
fun conPts (i, c) =


List.tabulate (arity c, fn n => CONNECTOR((i, c), n))


fun isUnbound (_, s) = s=unboundTycon


type edge = {v0: vertex, l: fragment, v1: vertex, exp: bool}
type edge_data = {v0: vertex, l: fragment, v1: vertex}
fun edgeData (e : edge) = {v0= #v0 e, l= #l e, v1= #v1 e}


(***** Data types for graphs, and manipulation functions *****)


(* graphs include a number (max) used to give instances of type
constructors and type variables unique identifiers *)


type graph = {V : vertex list, E : edge list,
max : int}


val empty = {V = [], E = [], max = 0}
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fun vertices ({V, ...}:graph) = V


fun relEdges e {V,E,max} =
{V=V,


E=map (fn {v0,l,v1,exp}=>{v0=v0,l=e,v1=v1, exp=exp}) E,
max=max}


(* None of the graph manipulation functions check for vertex or edge
existance. *)


fun combine ({V = V0, E = E0, max = m0},
{V = V1, E = E1, max = m1}) =


let
(* renumber identifiers on tycons and tyvars, so there are no


clashes. *)
fun reV (TYCON(i, c)) = TYCON(i + m0, c)


| reV (CONNECTOR((i, c), ind)) = CONNECTOR((i+m0, c), ind)
| reV (TYVAR i) = TYVAR(i + m0)
| reV v = v


fun reE {v0, l, v1, exp} =
{v0 = reV v0, l=l, v1=reV v1, exp = exp}


in
{V = V0 @ (map reV V1),


E = E0 @ (map reE E1),
max = m0 + m1}


end


(* It would be possible to add a tyvar for every new fragment,
but I just let the fragment vertex serve as a tyvar *)


fun addExpVertex {V, E, max} e =
({V = (FRAG (quikTag e))::V,


E = E,
max = max},


quikTag e)


(* Function for getting all vertices which are tagged versions
of some fragment *)


fun getExpVertices ({V,...}:graph) e =
List.mapPartial
(fn FRAG(TAGGED(t, e’)) => if e=e’ then


SOME(TAGGED(t, e’))
else NONE


| _ => NONE)
V
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(* We could add a tyvar vertex for every connection point, but
we just let the connection points serve as tyvars *)


fun addTyconVertex {V, E, max} c =
({V = (TYCON(max+1, c))::V,


E = E,
max = max + 1},


(max+1, c))


(* Add a tyvar vertex *)
fun addTyvarVertex {V, E, max} =


({V = (TYVAR(max+1))::V, E = E, max = max + 1}, max + 1)


(* Find all the immediate descendants of a vertex
(Used internally to close graphs) *)


fun kids ({E, ...}:graph, v) =
map (fn e as {v1, ...} => {v=v1, e=e})
(List.filter (fn {v0, ...} => v0=v) E)


val kids’ = (map #v) o kids


fun parents ({E, ...}:graph, v) =
map (fn e as {v0, ...} => {v=v0, e=e})
(List.filter (fn {v1, ...} => v1=v) E)


(* Used to prevent duplicate entries when building up lists of
reachable vertices *)


fun union l1 l2 =
l1 @ (List.filter (fn i => not (List.exists (fn i’ =>i’=i) l1)) l2)


fun removeTyvars tvs =
List.filter (fn v => not (List.exists (fn i => TYVAR i=v) tvs))


fun removeCons cs =
List.filter (fn v => not (List.exists (fn v’ => TYCON v’=v) cs))


(***** toString *****)


fun tyvarToString i = "’" ˆ (Int.toString i)


fun tyconToString UNBOUND = "UNBOUND"
| tyconToString FUN = "->"
| tyconToString (CON(s, i)) = s


fun doC (id, UNBOUND) = "(UNBOUND #"ˆ(Int.toString id)ˆ")"
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| doC (id, FUN) = "(-> #"ˆ(Int.toString id)ˆ")"
| doC (id, CON (c, i)) = "("ˆcˆ" #"ˆ(Int.toString id)ˆ")"


fun doT([], e) = Exp.numToString e
| doT((TAGGED(t, e))::T, E) =


"["ˆ(doT (T, E))ˆ"]"ˆ(doT (t, e))
and fVToString (TAGGED f) = doT f
and vToString (FRAG f) = fVToString f


| vToString (CONNECTOR (id, i)) =
(doC id)ˆ"."ˆ(Int.toString i)


| vToString (TYCON id) =
doC id


| vToString (TYVAR i) = tyvarToString i


fun eToString ({v0, l, v1, ...} : edge) =
(vToString v0) ˆ " |- " ˆ
(Exp.numToString l) ˆ " -> "ˆ
(vToString v1)


fun revEToString ({v0, l, v1, ...} : reverse_edge)=
(vToString v1) ˆ " <- " ˆ
(Exp.numToString l) ˆ " -| "ˆ
(vToString v0)


fun nondirEToString (FORWARD e) = eToString e
| nondirEToString (REVERSE e) = revEToString e


fun toString ({E, V, max}) =
let


fun doVar v = "’"ˆ(Int.toString v)


val Vstring =
List.foldl (fn (v, s) => sˆ"\n "ˆ(vToString v) )
"Vertices:" V


val Estring =
List.foldl (fn (e, s) => sˆ"\n "ˆ(eToString e) )
"Edges:" E


in
(* Vstring ˆ "\n" ˆ *)
Estring ˆ "\n"
(* ˆ "max = "ˆ(Int.toString max)ˆ"\n" *)


end
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fun sizeToString ({E, V, ...} : graph) =
"|V| = " ˆ (Int.toString (length V)) ˆ
" |E| = " ˆ(Int.toString (length E))


(**** IMPORTANT FUNCTION: search ****)


(* Collect all leaves reachable from a vertex
split into tycons, tyvars and others (fragments and connections) *)


fun search ((TYCON c) , G : graph) = ([c], [], [])
| search ((TYVAR v), G) = ([], [v], [])
| search (v, G) =


(case kids’ (G, v) of
[] => ([], [], [v])


| ks =>
List.foldl
(fn (k, (cs, tvs, vs)) =>


let
val (cs’, tvs’, vs’) = search (k, G)


in
(union cs’ cs,


union tvs’ tvs,
union vs’ vs)


end)
([], [], []) ks )


(**** IMPORTANT FUNCTION: close ****)


(* Close has to take a list of previously closed vertices to
prevent looping *)


(* This function has been written for use with the
fixed point combinator. See [McA97] for information on
this programming style. *)


fun close_ close (G : graph, TYCON c, lab, seen) =
if List.exists (fn v’ => v’=TYCON c) seen then


(G, seen)
else


let
val cPs = conPts c


in
List.foldl
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(fn (v, (G’, seen’)) => close (G’, v, lab, seen’))
(G, seen) cPs


end
| close_ close (G : graph as {V, E, max}, v, lab, seen) =


if List.exists (fn v’ => v’=v) seen then
(G, seen)


else
(case search (v, G) of


([], [], [v’]) => (G, seen)
| ([], [v’], []) => (G, seen)
| ([v’], [], []) => (G, seen)
(* There is only one vertex, no closing necessary. *)
| ([], [], vs) =>


(* There are a bunch of miscellaneous vertices.
Create a tyvar and link all the vertices to it. *)


let
val alpha = TYVAR (max + 1)


in
({V=alpha::V,


max = max + 1,
E =
(map


(fn v’ => {v0=v’, l=lab, v1=alpha, exp=false})
vs) @ E},


seen)
end


| ([], alpha::tvs, vs) =>
(* There are is at least one tyvar, and


possibly some assorted other vertices.
Merge all the tyvars into one, and connect
all other vertices to the remaining tyvar.*)


let
(* Change edges of members of tvs


to go to alpha *)
val E’ = map


(fn e as {v0, l, v1, exp} =>
if List.exists (fn i => TYVAR i=v1) tvs then


{v0=v0, l=l, v1=TYVAR alpha, exp=exp}
else


e )
E


(* Add edges from vertices in vs to alpha *)
val E’’ =


map (fn v =>
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{v0=v, l=lab, v1=TYVAR alpha, exp=false})
vs


in
({V = removeTyvars tvs V,


E = E’ @ E’’,
max = max},


seen)
end


| (cs, tvs, vs) =>
(* There are some constructors, possibly some tyvars,


and possibly some other vertices.
Merge like constructors,
Merge each tyvar with every remaining constructor,
Connect other vertices to every remaining
constructor.*)


let
(* Go through cs merging like constructors,


return remaining constructors and new graph *)
fun merger ((G, seen), []) = ([], (G, seen))


| merger (({V, E, max}:graph, seen),
((id, c)::cs’)) =


let


(* Find remaining constructors like
the current one and unlike it *)


val (likeConstructors, unlikeConstructors)
=
List.partition
(fn (id’, c’) => c’=c)
cs’


(* remove like constructors from V *)
val V’ = removeCons likeConstructors V


(* a function to change vertices in
likeConstructors into the current vertex
and leave other vertices unchanged *)


fun changeV (TYCON v) =
if List.exists


(fn v’=> v=v’)
likeConstructors then
TYCON (id, c) else TYCON v


| changeV (CONNECTOR(v, i)) =
if List.exists
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(fn v’=> v=v’)
likeConstructors then
CONNECTOR((id, c), i) else
CONNECTOR(v, i)


| changeV v = v
(* Move edges from like constructors to


current one *)
val E’ = map


(fn {v0, l, v1, exp} =>
{v0=changeV v0, l=l,


v1=changeV v1, exp=exp})
E


val (G’, seen’) =
close({V=V’, E=E’, max=max},


TYCON(id, c), lab,
v::seen)


val (cs’, (G’’, seen’’)) =
merger((G’, seen’),


unlikeConstructors)
in


((id, c)::cs’,
(G’’, (TYCON (id, c))::seen’’))


end (* of merger *)


val (cs’, ({V, E, max}, seen’)) =
merger ((G, seen), cs)


(* Next, merge each tyvar with _every_
remaining con.
This means removing the tyvars from vertex set,
and replacing edges to the tyvars with sets of


edges to the constructors. *)
val noTyvarsV = removeTyvars tvs V


fun doE [] = []
| doE ((e as {v0, l, v1, exp})::E) =


(if List.exists (fn v => TYVA R v = v1) tvs
then


map
(fn c =>


{v0=v0, l=lab, v1=TYCON c, exp=false})
cs’


else
[e]) @
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(doE E)


val sortedTyvarsE : edge list= doE E


(* Now, if there is an UNBOUND tycon vertex,
find its ‘owners’ and connect these to every
other tycon *)


val sortedUnbounds : edge list =
let


val (unbounds, others) =
List.partition
(fn v => isUnbound v)
cs’


fun getOwners u =
map #v0
(List.filter


(fn {v0=FRAG v0, l, v1, ...} =>
getFrag v0 = l
andalso
v1 = TYCON u


| _ => false)
sortedTyvarsE)


fun doU u (FRAG v) =
map
(fn c =>


{v0=FRAG v, l=getFrag v, v1=TYCON c,
exp = false})


others
| doU _ _ = raise Fail "wagga wagga"


in
case unbounds of


[u] =>
List.concat
(map (doU u) (getOwners u))


| _ => []
end


(* Finally, connect up elements of vs to cs’ *)
val sortedOthersE : edge list =


List.concat
(List.map


(fn c =>
List.map
(fn v =>
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{v0=v, l=lab, v1=TYCON c, exp = false}) vs)
cs’)


in
({V = noTyvarsV,


E = sortedTyvarsE @
sortedUnbounds @
sortedOthersE,


max = max}, seen’)
end


) (* End case search (G, v) *)
(* End fun close_ *)


fun FIX f_ x = f_ (FIX f_) x


fun close (G, v, lab) =
let


val result = FIX close_ (G, v, lab, [])
in


#1 result
end


(* When adding an edge, close below the start vertex *)
fun addEdge ({v0, l, v1}, {V, E, max}) =


close({V=V,
E = {v0=v0, l=l, v1=v1, exp = true}::E,
max = max},


v0, l)


fun tagGraph ({V, E, max}, TAGGED(l, e)) t =
let


fun tagV (FRAG(TAGGED(l, e))) = FRAG(TAGGED(t::l, e))
| tagV v = v


fun tagE {v0, l, v1, exp} =
{v0=tagV v0, l=l, v1=tagV v1, exp = exp}


in
({V = map tagV V,


E = map tagE E,
max = max}:graph,


TAGGED(t::l, e):fragVertex)
end


end (* of functor GraphFun *)
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A.3.3 Structure Graph : GRAPH


structure Graph = GraphFun(structure Exp = Exp)


A.4 Environment


A.4.1 Signature ENV


signature ENV =
sig


type id (* Syntactic identifier *)
type graph (* Graphs *)
eqtype vertex (* vertices *)
type env (* Environments *)


exception OutOfScope


(* lookup returns either nothing (in scope, no type) a graph
and vertex (in scope, with type) or raises exception
OutOfScope *)
val lookup : env -> id -> (graph * vertex) option


(* update removes any existing entry and adds empty entry *)
val update : env -> id -> env


(* Basis environment *)
val basis : env


end


A.4.2 Structure Env : ENV


This is trivial to implement.


A.5 Graph Generation


A.5.1 Signature GENERATE


signature GENERATE =
sig


eqtype exp


type env


type graph
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eqtype vertex


val generate : env -> exp -> (graph * vertex)


end


A.5.2 Functor GenerateFun


functor GenerateFun (structure Exp : EXP
structure Graph : GRAPH
structure Env : ENV
sharing type Exp.number = Graph.fragment
sharing type Env.id = Exp.id
sharing type Env.graph = Graph.graph
sharing type Env.vertex = Graph.vertex)


:> GENERATE
where type exp = Exp.exp
where type graph = Graph.graph
where type vertex = Graph.fragVertex
where type env = Env.env =


struct


type exp = Exp.exp


type env = Env.env


type graph = Graph.graph
type vertex = Graph.fragVertex


fun generate gamma (Exp.ID(i, n)) =
((case Env.lookup gamma i of


SOME (G, v) =>
(* From the basis *)
let


val (G’, vId) = Graph.addExpVertex G n
val G’’ = Graph.relEdges n G’


in
(Graph.addEdge ({v0=Graph.FRAG vId, l=n, v1=v}, G’’),


vId)
end


| NONE => (* Just create a unary graph *)
Graph.addExpVertex Graph.empty n)


handle Env.OutOfScope =>
(* The exception means i is unbound *)
let


val (G, vUnb) =
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Graph.addTyconVertex Graph.empty Graph.unboundTycon
val (G’, vId) = Graph.addExpVertex G n


in
(Graph.addEdge


({v0=Graph.FRAG vId, l=n, v1=Graph.TYCON vUnb}, G’),
vId)


end)
| generate gamma (Exp.ABS((i, e0), n)) =


let


val gamma’ = Env.update gamma i


(* Graph for subexpression *)
val (G0, v0) = generate gamma’ e0


(* Find vertex for each instance of formal parameter *)
val instances =


List.concat
(map (Graph.getExpVertices G0) (Exp.instances i e0))


(* Add vertex for abstraction expression *)
val (G’, v) = Graph.addExpVertex G0 n


(* Add vertex for function type constructor *)
val (G’’, vTycon) = Graph.addTyconVertex G’ Graph.funTycon


(* Edges:
abstraction expression |-> function type constructor
Right of tycon |-> body expression
Left of tycon |-> every instance of param


*)
val newE =


{v0=Graph.FRAG v, l=n, v1=Graph.TYCON vTycon}::
{v0=Graph.CONNECTOR (vTycon, 1), l=n, v1=Graph.FRAG v0}::
(map


(fn n’ =>
{v0=Graph.CONNECTOR (vTycon, 0), l=n, v1=Graph.FRAG n’})


instances)


in
(* Finally, add all the edges *)
(List.foldl Graph.addEdge G’’ newE, v)


end
| generate gamma (Exp.APP((e0, e1), n)) =


let
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(* Graphs for subexpressions *)
val (G0, v0) = generate gamma e0
val (G1, v1) = generate gamma e1


(* Combine, and add vertex for application *)
val (G, v) = Graph.addExpVertex (Graph.combine (G0, G1)) n


(* Add vertex for fun type constructor *)
val (G’, vTycon) = Graph.addTyconVertex G Graph.funTycon


(* Edges:
app exp |-> right of tycon
left of tycon |-> e1 (it must be a parameter)
e0 |-> tycon (it must be a function


*)
val newE =


[{v0=Graph.FRAG v, l=n, v1=Graph.CONNECTOR (vTycon, 1)},
{v0=Graph.CONNECTOR(vTycon, 0), l=n, v1=Graph.FRAG v1},
{v0=Graph.FRAG v0, l=n, v1=Graph.TYCON vTycon}]


val result =
(* Finally, add edges *)
(List.foldl Graph.addEdge G’ newE,


v)
in


result
end


| generate gamma (Exp.LET((i, e0, e1), n)) =
let


val gamma’ = Env.update gamma i


(* Graphs for subexpression *)
val (G0, v0) = generate gamma e0
val (G1, v1) = generate gamma’ e1


(* Add vertex for declaration expression *)
val (G, v) = Graph.addExpVertex G1 n


(* Add edge from declaration to the use expression (e1) *)
val G’ =


Graph.addEdge ({v0=Graph.FRAG v, l=n, v1=Graph.FRAG v1}, G)


val ins = Exp.instances i e1


(* Find every instance of bound identifier *)
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val instances =
List.concat
(List.map (Graph.getExpVertices G’) (Exp.instances i e1))


(* Function to connect every instance of bound identifier
to a copy of the definition expression *)


fun addInst (vId, G) =
let


(* Create copy of definition *)
val (Gi, vDef) = Graph.tagGraph (G0, v0) vId


(* Find vertex for instance of bound id *)
(* val vId = Graph.getExpVertex G i *)


(* Put the two graphs together *)
val G’ = Graph.combine (G, Gi)


in
(* Add edge from id to def *)
Graph.addEdge
({v0=Graph.FRAG vId, l=n, v1=Graph.FRAG vDef}, G’)


end
in


(* Do every instance of bound id *)
(List.foldl addInst G’ instances, v)


end


end (* of function GenerateFun *)


A.5.3 Structure Generate : GENERATE


structure Generate = GenerateFun(structure Exp = Exp
structure Graph = Graph
structure Env = Env)


A.6 Reading Graphs


A.6.1 Signature READ GRAPHS


signature READ_GRAPHS =
sig


type graph
and vertex
and fragVertex
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and nondir_edge


eqtype tyvar
val mkTyvar : string -> tyvar (* only use to make basis! *)
eqtype tycon
datatype ty = VAR of tyvar


| FUN of ty * ty
| UNBOUND
| CON of ty list * tycon


val stringTy : ty -> string
val size : ty -> int


type fragment


(* BASIC ROUTINES *)


val checkGraph : graph -> bool


val readType : graph * vertex -> ty


end


A.6.2 Functor ReadGraphsFun


The implementation of functionreadType uses the fixed point combinator, as described in [McA97].


functor ReadGraphsFun(structure Graph : GRAPH) :>
READ_GRAPHS
where type graph = Graph.graph
where type vertex = Graph.vertex
where type fragVertex = Graph.fragVertex
where type tycon = Graph.tycon
where type fragment = Graph.fragment
where type expression = Graph.expression
where type nondir_edge = Graph.nondir_edge =
struct


type graph = Graph.graph
and vertex = Graph.vertex
and fragVertex = Graph.fragVertex
and nondir_edge = Graph.nondir_edge


datatype tyvar = VERT_TV of Graph.vertex
| NAMED_TV of string
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(* Tyvars are usually a tyvarVertex, expVertex or connection point.
we also use named tyvars while generating basis, but they disappear
quickly (they are a HACK and will be changed to special tyvars
at a later date). *)


val mkTyvar = NAMED_TV


type tycon = Graph.tycon


datatype ty = VAR of tyvar
| FUN of ty * ty
| UNBOUND (* Special pseudo type constructor *)
| CON of ty list * tycon


fun size (VAR _) = 1
| size (FUN (t1, t2)) = 1 + (size t1) + (size t2)
| size UNBOUND = 1
| size (CON (l, _)) = List.foldl (fn (ty, t) => t + (size ty)) 1 l


type fragment = Graph.fragment
type expression = Graph.expression


(******************************************************)


fun stringTy (VAR (VERT_TV tyvar)) =
" ’" ˆ (Graph.vToString tyvar) ˆ " "


| stringTy (VAR (NAMED_TV tyvar)) = "’"ˆtyvar
| stringTy (FUN(ty1, ty2)) =


"( "ˆ(stringTy ty1)ˆ" ) -> ( "ˆ(stringTy ty2)ˆ" )"
| stringTy UNBOUND = "UNBOUND"
| stringTy (CON(l, tycon)) =


case l of
[] => Graph.tyconToString tycon


| [ty] => (stringTy ty)ˆ" "ˆ(Graph.tyconToString tycon)
| l => "(" ˆ (Pretty.commaSep (map stringTy l)) ˆ ") " ˆ


(Graph.tyconToString tycon)


fun stringRel r =
Pretty.commaSep
(map


(fn (a, V)=>
"(" ˆ a ˆ ", (" ˆ
(Pretty.commaSep (map Graph.vToString V) ˆ "))" ) )


r)
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(*******************************************************)


val member = fn x => List.exists (fn x’ => x=x’)


exception Cycle of Graph.vertex
exception Conflict of Graph.vertex
exception Unbound of Graph.vertex


(* Basic operation of checkTree:
Given vertex, v, path used to reach v and list of ok vertices.
If v is ok then return list of ok vertices (pass)
If v is alreadly on the path then fail
Find v’s kids, if there is only one and it has no kids


then return v::ok vertices (pass)
If there is only one and it is a constructor, call


checkForest on the connection points to get a new set of ok
vertices. Return v::new ok vertices.


If there is more than one kid, fail.
checkForest:


fold across a list of vertices, building up ok vertices *)


fun checkGraph G =
let


fun checkTree path (v, okVs) =
if member v okVs then


okVs
else


if member v path then
raise Cycle v


else
let


val kids =
case Graph.search (v, G) of


([], [], []) => []
(* no kids *)
| ([], [], [v]) => []
(* one kid *)
| ([], [alpha], []) => []
(* one tyvar kid *)
| ([con], [], []) =>


if Graph.isUnbound con then
raise Unbound v


(* The vertex attatched to this
exception is not necessarily the
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actual unbound identifier (arse!). *)
else


Graph.conPts con
(* Constructor kid:


Check connection points *)
| _ => raise Conflict v


(* multiple kids *)
in


v::(checkForest (v::path) okVs kids)
end


and checkForest path =
List.foldl (checkTree path)


val print’ = fn _ => () (* Or replace by ‘print.’ *)


in
(checkForest [] []


(List.filter (fn Graph.FRAG _ => true | _ => false)
(Graph.vertices G));


true)
(* Compiler warning from the discarded result! *)


handle Cycle v =>
(print’ ("Cycle at "ˆ(Graph.vToString v)ˆ"\n");


false)
| Conflict v =>


(print’ ("Conflict at "ˆ(Graph.vToString v)ˆ"\n");
false)


| Unbound v =>
(print’ ("Unbound id at "ˆ(Graph.vToString v)ˆ"\n");


false)
end (* of fun checkGraph *)


(*******************************************************)


(* Type will ignore ‘unbound’ unless there are no alternatives,
this allows it to be used to read the required types of
unbound identifiers. *)


fun readType (G, v) =
let


(* This function has been written for use with the
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fixed point combinator. See [McA97] for information on
this programming style. *)


fun rT_ (rT : graph * vertex * vertex list -> ty )
(G, v, seen) =


if (List.exists (fn v’ => v’=v) seen) then
raise Cycle v


else
let


val (cs, vs, tvs) = Graph.search(v, G)
(* Remove all instances of the unbound


type constructor, unless this was
the only thing returned *)


val cs’ =
(case cs of


[c] => if Graph.isUnbound c
andalso (vs, tvs) <> ([], [])


then [] else [c]
| cs =>


List.filter
(not o Graph.isUnbound) cs)


in
case (cs’, vs, tvs) of


([], [], [v]) =>
(* Return a tyvar *)
VAR (VERT_TV v)


| ([], [v], []) =>
VAR (VERT_TV (Graph.TYVAR v))


| ([v], [], []) =>
(* Unique type constructor,


return a type. *)
let


val c = Graph.getTycon v
val seen’ = (Graph.TYCON v)::seen


(* Assume c has arity 2 (Bad Hack!) *)
in


if c = Graph.funTycon then
FUN(rT(G,


Graph.CONNECTOR(v, 0),
seen’),


rT(G,
Graph.CONNECTOR(v, 1),
seen’))


else
if c = Graph.unboundTycon then
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UNBOUND
else


let
val tys =


map
(fn v =>


rT(G, v, seen’))
(Graph.conPts v)


in
CON (tys, c)


end
end


| _ =>
(* There must be more than one vertex *)
raise Conflict v


end


fun FIX f x = f (FIX f) x


fun wrap rT_ rT (G, v, seen) =
let


val (ty) = rT_ rT (G, v, seen)
val _ =


print
("\nvertex " ˆ (Graph.vToString v) ˆ


"\nhas type " ˆ (stringTy ty))
in


ty
end


val rT_’ = wrap rT_


val rT = FIX rT_


in
rT (G, v, [])


end (* of fun readType *)


end


A.6.3 Structure ReadGraphs : READ GRAPHS


structure ReadGraphs = ReadGraphsFun(structure Graph = Graph);
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A.7 Testing


val e = (* Example expression *) ;
val (G, v) = Generate.generate Env.basis e ;
val ok = ReadGraphs.checkGraph G ; (* true if e is typeable in Env.basis *)
val t = ReadGraphs.readType (G, Graph.FRAG v)
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