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For Dad,
and for Mum.

I whacked the back of the driver’s seat with my fist. “This is impor-
tant, goddamnit! This is a true story!” The car swerved sickeningly,
then straightened out. . . . The kid in the back looked like he was ready
to jump right out of the car and take his chances.

Our vibrations were getting nasty—but why? I was puzzled, frus-
trated. Was there no communication in this car? Had we deteriorated
to the level of dumb beasts?

Because my story was true. I was certain of that. And it was ex-
tremely important, I felt, for the meaning of our journey to be made
absolutely clear. . . . And when the call came, I was ready.

—Hunter S. Thompson, Fear and Loathing in Las Vegas



Abstract
One reason for studying and programming in functional programming languages
is that they are easy to reason about, yet there is surprisingly little work on
proving the correctness of large functional programs. In this dissertation I show
how to provide a system for proving the correctness of large programs written in
a major functional programming language, ML [MTH90]. ML is split into two
parts: the Core (in which the actual programs are written), and Modules (which
are used to structure Core programs).

The dissertation has three main themes.

• Due to the detail and complexity of proofs of programs, a realistic sys-
tem should use a computer proof assistant, and so I first discuss how such
a system can be coded in a generic proof assistant (I use Paulson’s Is-
abelle [Pau94a]).

• I give a formal proof system for proving properties of programs written in
the functional part of Core ML.

• The Modules language is one of ML’s strengths: it allows the programmer to
write large programs by controlling the interactions between its parts. In the
final part of the dissertation I give a method of proving correctness of ML
Modules programs using the well-known data reification method [Jon86].
Proofs of reification using this method boil down to proofs in the system
for the Core.
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Chapter 1

Introduction

Words are trains
For moving past what really has no name

—Paddy MacAloon, Couldn’t Bear To Be Special

Whereof one cannot speak thereof one must be silent.
—Ludwig Wittgenstein, Tractatus Logico-Philosophicus

1.1 Hypothesis

This dissertation will show the following.

• The encoding of logics for programs in logical frameworks can be made
clearer and more efficient.

• Programs in a subset of Standard ML are amenable to proofs using such a
logic.

• A variation of data reification can be used to prove Standard ML programs
correct.

1.2 Related work

Related work is discussed in the relevant chapter.

1.3 Results

• I give a use and an evaluation of McKinna-Pollack binding.

• I give a new way of coding judgements in logical frameworks that reduces
the amount of time spent checking well-formedness conditions during proof.
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• I give a logic for reasoning about a significant part of (Core) ML.

• I define data reification for (Modules) ML.

• I suggest a proof that reification is transitive. This is a significant advance
over previous systems for languages with higher-order functions (specifically,
Tennent’s work). However, at present the only proof is in a classical logic
and is non-constructive: since it gives no way to construct as ML expressions
the values it claims exists, it can only be regarded as an indication of the
result, rather than a full proof.

1.4 Proofs, social processes, formal methods and
critical systems

It is too often the case that program verification work is unmotivated except for
the briefest of references to “the software crisis”. Whilst beautiful Computer
Science needs no further motivation, it is my aim to place my work in context
and to assess its possible uses.

1.4.1 What is a proof?

There is clearly a difference between informal (but rigorous) and formal proof.
Informal proof—and its cycle of “proofs” and “refutations”—is discussed by
Lakatos [Lak76]. In an (in)famous paper, De Millo, Lipton and Perlis [MLP79]
incorrectly apply these ideas to formal, computer-aided proof. In essence, they
claim that, since computer proofs are too long, too detailed, and too dull to
be read by humans, they can never be subjected to the analysis and the social
processes which give us confidence that proofs are correct.

As Pollack [Pol96] observes, there is (or could be) a social process at work
which can give us confidence in computer-aided proof, but it does not involve
direct scrutiny of the proof by human mathematicians.

To be fair to De Millo, Lipton and Perlis, things have moved on since the
mid-70s—it is no longer considered the cutting edge of proof technology to have
a huge, ad hoc program written for a single proof which thinks deeply for some
period of time before announcing an inscrutable “QED”, and they are quite right
to attack this sort of proof.

What, then, is a formal proof? First, note that there is an informal proof
underlying all but the simplest formal proofs. As anyone who has used a theorem
prover knows, the most useful tool for use with an automatic theorem prover is a
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blackboard. The correctness of the informal proof is obviously tied up with the
correctness of the formal proof—the informal proof gains credibility if the formal
proof is correct, but also the formal proof gains credibility if the informal proof
is understood.

The formality of formal proof lies in the manipulation of the symbols in the
proof. Let us assume that the logic in which the proofs are conducted is widely
accepted (via proofs which are accepted via the social process) to be sound. The
validity of the proof relies, in theory, simply on the absence of syntactic errors
in the application of rules. How can we assure ourselves of the absence of these
errors?

Automated theorem provers (supposedly) eliminate the possibility of error in
formal proof. De Millo, Lipton and Perlis claim that automated proofs (especially
proofs of programs) cannot be subject to the social processes that ordinary proofs
are, and are thus worthless.

In fact, the situation is more complex. Automated theorem provers could
certainly contain programming errors which allow false results to be proved. It
would certainly be foolhardy to believe a result simply because it was proved in
a theorem prover. However, many theorem provers (HOL [GM93] is the shining
example) have large bodies of results which they have proved. These proofs, when
published, can allow the social process to be applied to the prover itself, and we
can thus gain some measure of confidence in the correctness of the prover, by
virtue of the fact that we believe it has never proved anything which we believe
false. Conversely, of course, confidence in the prover increases confidence in the
theorems it proves.

Bundy [Bun91] calls for a “science of reasoning”, which could be applied to
automated theorem proving. The proof scripts which would result would reflect
the informal proof—concentrating on the structure of the proof and important
details, while ignoring unimportant details. We are certainly a long way from a
time when proof scripts for most theorem provers fulfil this criterion. However,
where they do, they too are subject to the social process. They give a summary
of the informal proof, and indicate that the formal proof follows the informal.

It appears that documents such as DEF STAN 00-55, which set standards for
correctness of programs, will soon require that theorem provers are capable of
producing a trace of every atomic proof step. Such a proof could then be checked
by a proof checker, which can be very much simpler than the prover itself. Such
checkers might be sufficiently simple to be proved correct. Although this is not a
guarantee that they would work as one might wish (as discussed later), it certainly
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adds confidence to the checked theorems. It is to be regretted that at the moment
there seem to be few such checkers.

Similarly, theorem provers based on constructive type theory, such as Pollack’s
LEGO [PL92], can exhibit proof terms. In order to show that the proof is correct,
it is only necessary to show that the proof term has the type claimed for it. Such
type checkers can be extremely simple, and one might even imagine not only that
there would be one or two verified proof checkers, but that every user could write
their own.

1.4.2 What does “verified” mean?

Suppose that we prove a program correct. We have taken some mathematical
model of the program and proven that it meets some mathematical specification.
Leaving aside the correctness of the proofs, there are two problems:

• the specification may not capture the behaviour we intended;

• the actual program behaviour may not accord with our specification.

Essentially, there is no way to ensure that a specification correctly captures
the program behaviour we intend: our intentions are in our head, and we must
transcribe them to paper. There is no way that we can be sure that we have
transcribed them correctly. We might test a specification by various thought
experiments, by proving desirable properties of the specification. This can give us
a measure of confidence, but it cannot ensure that we have not omitted some vital
part of the specification which we have omitted to test. This is the “specification
gap”.

Now consider the second problem. Few, if any, compilers are proven to com-
pile correctly. Even if they do, few processors have been proven correct, and
even fewer computers have been proven to be correct. Suppose that we are run-
ning a trusted compiler on a trusted processor design which is part of trusted
computer design: this does not eliminate the possibility of fabrication errors in
the computer or processor, or that the computer or chip may simply wear out
and become unreliable, or that the computer’s memory is struck by a cosmic
ray. Cohn [Coh89] gives a useful introduction to these problems in the context of
hardware verification.

1.4.3 Is ML appropriate for critical systems?

In short, and in general: no. It must be possible to ensure that a critical program
never runs out of memory. This means that languages for critical systems (for
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example SPADE Ada) can have their memory use determined statically at compile
time. This in turn means that they do not allocate fresh memory (as C’s malloc
or Pascal’s new do). Since ML is a memory-managed language where a program
has no way to control or even observe how much memory it uses, either on the
heap or on the call stack, it is all too easy to write programs which run out of
space and so abort.

1.4.4 What critical systems might use ML?

Despite the fact that we cannot guarantee that a non-trivial ML program will not
run out of memory, and despite the fact that ML is far from simple to compile,
there are critical applications where the use of ML is justified.

Let us look at an example. Gordon [Gor94] briefly describes a system in
which a computer screens cervical smears for abnormal cells (which was, in fact,
being programmed in the functional language Haskell). The advantage of using
a functional language here is that the task is conceptually hard, and a high-level
language makes it easier (faster, less prone to error) to capture the designer’s
intentions. It is clearly critical that the computer gives no false negatives. It
is not, however, critical that the computer does run out of memory—if it does,
the sample can either be processed again by a computer with more memory or
processed by hand.

What is it about this example which means that functional languages can
be used? We might characterize it as “high-level, critical data-processing.” We
require some correctness properties—if the computer does not crash it provides
the correct answer (no false negatives in the example). Since the problem is a
hard one, the gains of using a high-level language outweigh the disadvantages
such as the possibility of compiler bugs. The computation is, however, “off-line”
in the sense that in the event of a crash the computation can simply be re-done.

There is one more aspect to programming in ML which makes it useful in
critical applications: the Modules system. Let us consider what Perrow [Per84]
calls “system” (or “normal”) accidents. Such accidents occur in systems which
have two features:

• They are closely coupled, meaning that each part depends on many other
parts.

• Their parts have complex linking, meaning that there is not a single “thread”
of control.
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Together, these features mean that several independent failures can interact to
cause a catastrophic failure. Perrow describes the failures in the Three Mile
Island nuclear accident: there were several apparently unrelated failures. Taken
separately, none of these was particularly serious. Together, they caused the most
serious nuclear accident up to that time. Perrow argues that, since minor failures
occur regularly, there will eventually come a time when several minor failures
interact to cause a system accident. There are two ways to avoid this:

• reduce the complexity of the system (often at a cost to system performance)
or reduce the coupling of the parts of the system (which may entail re-
engineering the system);

• when complexity and close coupling are unavoidable, and the costs of a
system accident are unacceptable, do not build the system.

The ML Modules system gives us a way to document and control the coupling
between separate parts of the system. Using it for large programming tasks means
that we can systematically control coupling, and thus reduce the risk of system
accidents.

1.4.5 What have I missed?

In this section, I have only scratched the surface of a huge subject. Many issues
have not been addressed, for example:

• what is a critical system?

• what is the environment of a critical system?

• what can program verification ensure?

• what is a safety case?

• what parts of critical systems need to be verified?

• can we achieve sufficient dependability in critical systems?

1.5 Structure of the dissertation

The main body of the dissertation falls roughly into three parts, in addition
to which there is this introduction, a chapter of mathematical preliminaries, a
conclusion and an appendix.
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Background: theorem proving and formal methods: we give a brief his-
torical review of the background to this dissertation in automated theorem
proving and formal methods.

Notation, symbols and mathematical preliminaries: aside from some ba-
sic mathematical machinery, this chapter contains several results about par-
tial equivalence relations which are used in the properties of reification chap-
ter.

Part I: Logical Frameworks

Coding binding and substitution explicitly in Isabelle: in this chapter we
describe an example logic coded in Isabelle using McKinna-Pollack bind-
ing [MP93]. Logics in later chapters will use this binding system. The
Isabelle source code for the logic described in this chapter is given in an
appendix.

Coding logics in logical frameworks: this chapter continues the discussion
of how to code logics for programs in a logical framework. It outlines two
techniques; these techniques are illustrated by the logic given in the chapter
reasoning about Core Simplified ML.

Part II: Core ML

Simplified ML: in this chapter we specify the programming language Simplified
ML. The remainder of the dissertation is concerned with reasoning about
this language. We specify the Core language in some detail, and specify
some key properties of the Modules language.

Reasoning about Core Simplified ML: we are now in a position to give a
logic for reasoning about Core Simplified ML programs. This logic can be
used to prove the correctness obligations to which the methods of the next
chapter give rise.

Part III: Data Reification

Data reification: in this chapter we show how to prove ML Modules programs
correct with respect to a specification, using the data reification method.

An investigation of the properties of reification: we investigate a variety
of properties of the reification method described in the previous chapter,
culminating in the conjecture that reification is transitive: that is, we can
use step-wise refinement to write programs.
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Case studies of data reification: we give a concrete illustration of the pro-
cess of program development using the techniques we have described. We
give a specification, reify it to give a first implementation, and reify that
implementation to give a second implementation.

Conclusion: we give an overview of the dissertation, and describe how the work
in it can be taken forward.
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Chapter 2

Background: theorem proving
and formal methods

Ignorance is the first requisite of the historian.
—Lytton Strachey, Eminent Victorians

This chapter is a survey of previous work in mechanized theorem proving
and formal methods. It mixes historical, chronological treatment with analytical.
Furthermore, and most importantly, no survey as brief as this could hope to be
comprehensive: I attempt to cover what I regard as the main trends, but this
selection is of course personal and partial. Although theorem proving and formal
methods are tightly intertwined, we shall treat them separately in this chapter—
despite the fact that this is an artificial distinction.

A different, more accomplished, historical summary is given by Jones [Jon92],
and (separately) an extensive bibliography is given [JM92]. These works focus
primarily on formal methods.

2.1 Formal methods

The study of formal methods would have been impossible before the twentieth
century. It was only in the late nineteenth century and early twentieth century
that logicians such as Peano, Hilbert, Frege and Russell formalized the basis of
mathematics. “Formalized” in the sense that they reduced mathematics to a
small number of axioms and laws which can be applied entirely mechanically by
manipulating symbols (for instance by a computer). We shall skim over this early
philosophical beginning—and indeed the mathematical philosophy which was a
necessary prelude to it—and mention only Russell and Whitehead’s Principia
Mathematica [WR10], which remains influential to this day.
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The study of formal methods then moves forward to the nineteen thirties when
the solution of Hilbert’s Entscheidungs Problem, by Church [Chu65b, Chu65a]
and Turing [Tur36], gave us a mathematical model of computation. This math-
ematical model appeared some years before physical computers had been built
and these pioneering computers could only be constructed once the mathematical
foundations had been put in place. Although Church’s work on the λ-calculus
and Turing’s on Turing machines contained the first proofs about computers and
the properties of their programs this was not yet formal methods as we know it.
Formal methods is an attempt to set forward methodologies to prove the correct-
ness of computer programs using logic. However, Church and Turing both proved
properties of particular computers with particular (universal) programs.

The first work which could reasonably be called formal methods was Tur-
ing’s Checking a Large Routine [Tur49] (this has been published in the Annals
of Computing History, edited by Morris and Jones [MJ84], who have included
some commentary on the paper, its significance and, indeed, point out some mi-
nor errors in his proofs). In this paper Turing uses pre- and post-conditions in
a way which prefigures their use in Floyd-Hoare logics. In retrospect, it is easy
to recognize the importance of this paper; at the time it remained obscure, and
little or no work followed directly from it.

We now turn to the subject of Floyd-Hoare logics, originally proposed by
Floyd [Flo67] as a logic for reasoning about flowcharts, and later refined to the
form which is now familiar by Hoare [Hoa69]. Floyd-Hoare logics remain one
of the most popular ways of reasoning about imperative programs. The basic
judgements in Floyd-Hoare logics are triples of the form {P}C{Q}, where P is
the pre-condition, C is the command or program fragment to be executed and
Q is the post-condition. The meaning of the Floyd-Hoare triple is: supposing
P holds, then, after executing command C, Q will hold. A recent treatment of
Floyd-Hoare logics in a theorem prover is given by Thomas Kleymann [Kle98].
In this form Floyd-Hoare logics only establish partial correctness: if the program
fragment C terminates it satisfies the Hoare triple. It does not necessarily mean
that a program terminates: consider, for example, a typical deduction rule for
while loops.

{P}C{P}
{P}while B do C end{P ∧ ¬B}

This rule does not say that the loop condition B definitely will become false,
only that if the loop terminates it will be because B has become false. In order
to establish that the loop does terminate one typically adds a measure function
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on a well-founded ordering which one then demonstrates is reducing, as shown in
the rule below.

[P ∧ f(S) = x]C[P ∧ f(S ′) < x]
[P ]while B do C end[P ∧ ¬B]

Notice that the triple is now written using square brackets, [ ] [ ], to indicate
that it is a judgement about total correctness (partial correctness plus termina-
tion). The function f takes as an argument the program state, S: often it will
just be a statement about one or two program variables. Notice that we use S′

in the post-condition: primed program variables indicate that we are considering
the program state after the execution of C. The variable x is not a program
variable, it is a variable of the logic, called an auxiliary variable.

Much modern formal methods work can be divided roughly into two camps:
the algebraic in which program constructors are considered as operators in an
algebra; and model theoretic where one first characterizes a single (often set-
theoretic) model corresponding to a specification of the correct program and then
refines this to give a single model which is the finished program.

In model theoretic methods, the original model is characterized by an abstract
mathematical specification, and the process of turning this into a real, workable
program in an executable programming language is reification: the process of
turning an abstract idea into a concrete one. Examples of model theoretic meth-
ods are Z [ASM79], B [Abr96], and VDM [Jon73]. VDM is divided into a set the-
oretic specification language, a method for turning abstract data structures and
operations on them into concrete data structures (data reification) and a method
for turning abstract procedures into concrete procedures (procedure reification).
In this thesis we will mostly neglect the process of procedure reification since data
reification so neatly models the process of program development in a functional
language, as we observe in Chapter 8. Data reification was originally proposed
by Hoare [Hoa72]: we will discuss it in much greater length in Chapter 8.

We now come to algebraic specification, included in this are such work as
OBJ [GW88], CLEAR [BG81] and ASL [SW83]. Of particular significance to
the work in this thesis is Extended ML [KST94, San91]. The motivations for
Extended ML are similar to the motivations for this thesis: to prove correctness
of real ML programs. It differs in several respects however. The prime one of these
is that it concerns itself with the whole of Standard ML, not merely the purely
functional part, and includes exceptions and mutable store. This means that the
definition of Extended ML is extremely complex: it runs to hundreds of pages and
includes the definition of Standard ML as a proper subset. Given that there have
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been corrections and modifications made to the definition of Standard ML since
it was written due to the study of many groups of academics, (some, for example,
found due to work on Extended ML [Kah93]), it seems unlikely that the definition
of Extended ML is yet entirely without error. (This is not of course to say that
it is not a useful piece of work). Furthermore, the definition of Extended ML
includes only its semantics: that is, it specifies only the models of the language
and how the operators modify those models. It does not give any syntactic
deduction rules for reasoning about Extended ML specifications. Given that
extended ML includes the full power of standard ML—polymorphism, higher-
order functions, exceptions, mutable state and modules—the task of producing
such a set of deduction rules is formidable in the extreme.

One further difficulty with Extended ML is that it takes the ML type of
booleans to be the type of propositions. This means that when defining or proving
logical propositions one has the ability to include fragments of ML as one wishes,
but it has the powerful disadvantage that truth and falsity are not the only
values that propositions may hold: they may also fail to terminate. This adds
significantly to the complexity of any deduction system: one must first show that
a proposition denotes at all before reasoning about its truth.

Despite all these reservations however, Extended ML is the pre-eminent piece
of work on algebraic specification of a real functional programming language.
This thesis could not have been written without the pioneering work of Extended
ML’s inventors, definers and other workers.

2.2 Theorem proving

There are many different schools in automated theorem proving, some of which
this short survey will necessarily ignore completely: for example model checking,
perhaps best typified by SMV [McM92]. Many totally automated theorem provers
such as Otter [Wos96] will also be ignored.

For the purposes of this dissertation the seminal work in theorem proving
was done by Milner on his Stanford LCF system [Mil72]. Amongst its many
innovations (including the invention of ML) perhaps the key one is that theorems
are strongly typed: that is to say there is a type of theorems thm and only a very
small number of operations on values of type thm. Since the language in which
proofs are constructed is strongly typed, this means that one cannot produce
values of type thm except using these functions. Assuming that these functions
are indeed correct (that is, sound), we can then guarantee that all values of type
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thm are in fact theorems. Modern theorem provers such as HOL [GM93] are direct
descendants of LCF.

Another descendant of LCF, although slightly less directly than HOL, is Paul-
son’s Isabelle [Pau94a]. The defining characteristic of Isabelle is that it is generic:
that is, one can define the rules of arbitrary logics within Isabelle and use it to
prove theorems within those logics.

Another important strand in theorem proving is based on type theory: the
Curry-Howard isomorphism tells us that types in λ-calculi relate to logical propo-
sitions, and values of those types can be regarded as proofs of those propositions.
One can then use the type inference rules of a lambda calculus as the inference
rules of a logic. A proof begins by hypothesizing that some type (proposition) is
non-empty (has a proof), and continues by attempting to construct a member of
the type. The correctness of the final proof is guaranteed by the fact that one
can independently verify the type of the term which purports to be a proof of the
theorem. Since type-checking is considerably simpler than theorem proving, this
means that, as long as we have confidence in our type checker (which may or may
not be part of the theorem prover), we can have confidence in the correctness
of theorems proved by the theorem prover as a whole. This particular view is
propounded by Pollack [Pol96].

Type theory necessarily gives us constructive logics (we are constructing proof
terms as witnesses of our theorems). Type theory as a logic therefore has it roots
in the work of Martin-Löf [ML75, ML80], Intuitionism [Dum77], and even Bishop’s
constructive analysis [Bis67].

The earliest important theorem prover using a type theory was de Bruijn’s
AUTOMATH project [dB80], followed by NuPrl [C+86]. More recently λ-calculi
have been used as systems within which logics can be defined, meaning that
theorem provers based on certain type theories (the Edinburgh Logical Frame-
work [HHP87] is one such theory) can be used as generic theorem provers, (thus,
by a very different route, arriving in a similar place to the Isabelle system).
Important modern type-theoretic theorem provers include Pollack’s Lego [PL92]
(based on Luo’s ECC [Luo89] and which can be used as a reasoning tool for the
Edinburgh logical framework); Coq [DFH+93] (based on the similar Calculus of
Constructions [CH86]); and ALF [AGNvS94]. These theorem provers now include
such advanced tools as inductive data types and inversion of inductive relations.

Type theory lends itself particularly well to reasoning about programs, in
that it allows a style of reasoning called program synthesis. In this style, one
begins by postulating that there is a program with given properties. The process

17



of proving this proposition results in the program itself being produced from
the proof by Curry-Howard isomorphism. One therefore can imagine that the
amount of work is halved: the program comes “for free” from the proof of its
correctness. However, the most natural proof of a proposition may not result in
the most effective algorithm. Take, for example, sorting: one might well imagine
an inductive proof on a list of values which produced an algorithm such as selection
sort, however it is difficult to imagine what proof would produce Hoare’s Quicksort
as a program. It is furthermore the case that values in a typed λ-calculus (which
are the “programs” produced by this method) cannot capture the richness and
expressiveness of programs in modern programming languages such as ML or
Java.

Other important theorem provers not so far mentioned include the Boyer-
Moore theorem provers Nqthm [BM79] and ACL2 (ACL2 is essentially a re-
implementation of Nqthm). These have been used widely, for example in proving
Gödel’s incompleteness theorems [Sha94]. Much of the interest in the Boyer
Moore theorem provers lies in the fact that it uses a weak logic without quanti-
fiers. However, this enables the use of extremely powerful automatic reasoning
methods, and, using various work-arounds such as Skolemization, it is possible to
represent many of the theorems of more powerful logics in this restricted logic.
Clam [BvHHS90] is a type theoretic prover based on the ideas of NuPrl. It is of
significance to us because of the work that has been done on it in creating AI
methods for automated mathematical proof, in particular rippling [BSvH+93], a
powerful method for inductive proof. Finally we mention SRI’s PVS [OSR95],
which is powerful and easy to use. This has lead to its widespread adoption as
the theorem prover of choice for many formal methods projects, although its lack
of programmability means that it is little used by researchers of theorem proving.
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Chapter 3

Notation, symbols and
mathematical preliminaries

It is undesirable to believe a proposition when there is no ground
whatever for supposing it is true. —Bertrand Russell

3.1 Logic

Most of the results in this dissertation are expressed in Higher Order Logic. This
is a classical logic: in particular, a constructivist would object to the fact that it
includes the law of the excluded middle, and that it contains a non-constructive
description operator. This logic is used since it is the basis of the logic I give for
reasoning about ML programs in Chapter 7.

I largely avoid relying on non-constructive proofs, since then the results can
be translated to a constructive framework. However, on occasion I give a non-
constructive proof either because I do not know of a constructive one, or because
the constructive proof is complex and obscures the proof idea. The text notes
when a proof is non-constructive.

The notation used is mainly standard, but the following points should be
noted.

Truth values: logical truth is written T, and falsity is F. The type of truth
values is written o.

Functions: function types in the logic are written τ � σ. (ML function types
are written τ → σ). Application of a function in the logic is written in the
same way as ML function application: fa.

Sets: as is usual in Higher Order Logic, we identify sets of values of type τ with
their characteristic predicate τ � o.

19



Relations: similarly, n-ary relations between values of types τ1, . . . , τn are pred-
icates τ1 � . . . � τn � o. If R is a binary relation, I shall usually write
x R y instead of Rxy to mean “x is related by R to y”.

Implication: “A implies B” is written as A ⊃ B. As usual, A ⊃ B ⊃ C

associates as A ⊃ (B ⊃ C).

Quantification and abstraction: Higher Order Logic is typed, and the type
of quantified and λ abstracted variables is given explicitly. For example:
∀x: τ. P .

Bounded universal quantification: we will often use bounded quantification,
such as ∀x: τ |P.Q. This is read as “for all x of type τ such that P (x) holds,
it is the case that Q holds”. It is logically equivalent to ∀x: τ. P (x) ⊃ Q.

Bounded existential quantification: ∃x: τ |P.Q is read as “there exists an x
of type τ such that P (x) holds, for which Q holds”. It is equivalent to
∃x: τ. P (x)∧ Q.

Descriptions: Hilbert’s “any” operator is written ε, and its use is typed: εx: τ. P .
This is read as “any x of type τ such that P (x) holds”. If there is no x for
which P (x) holds, the choice is arbitrary.

The logic contains no empty types: this makes the treatment of quantifiers
simpler (∃x: τ.T is always true without empty types), and also the treatment of
descriptions (what does εx: τ. P mean if τ has no elements?). Empty types in
Higher Order Logic are discussed at greater length by Paulson [Pau90]. We also
allow types to contain unknown type variables α, β, . . . , in the manner of the HOL
logic [GM93]. The meaning of a judgement containing such polymorphic types
is “this statement is true, no matter what monomorphic types are substituted
for the type variables”. It is not parametric polymorphism in the sense that
Reynolds [Rey83] uses, since, for example, the judgement ∃x:α� β.T is valid.
This is because, no matter what α and β are, the type is always inhabited. In a
parametric λ calculus, there are no functions of type α� β.

3.2 Set theory

Most of the definitions in this section are standard.

Definition 3.1 Let R : σ � σ � o be a binary relation. The opposite relation
Rop is given by:

x Rop y ⇐⇒ y R x
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Definition 3.2 Let R : σ � σ � o be a binary relation:

• R is reflexive if and only if, for every x, x R x;

• R is symmetric if and only if, for every x and y, x R y ⊃ y R x;

• R is transitive if and only if, for every x, y and z, x R y ⊃ y R z ⊃ x R z.

An equivalence relation is reflexive, symmetric and transitive. A partial equiva-
lence relation, or per, is symmetric and transitive.

We shall discuss pers at greater length in the next section.

Definition 3.3 Let R : σ � τ � o be a binary relation:

• R is total if and only if ∀x: σ. ∃y: τ. x R y;

• R is surjective if and only if ∀y: τ. ∃x: σ. x R y;

• R is partial functional if and only if ∀x: σ. ∀y, y1: τ . x R y ⊃ x R y1 ⊃ y =
y1.

These definitions are standard, except that we do not require R to be a partial
function before we describe it as total or surjective. We say that R is total,
surjective or partial functional from right to left when Rop is total, surjective or
partial functional respectively.

Definition 3.4 Given two relations R : τ1 � τ2 � o and S : τ2 � τ3 � o, with
a per E : τ2 � τ2 � o, and W (x) = x E x, then define R ◦ S as:

x (R ◦ S) z = ∃y: τ2. x R y ∧ y S z

3.3 Partial equivalences

Pers are not necessarily reflexive, but if E is a per, and there is a y such that
x E y or y E x, then x E x. Values for which x E x will be referred to as
well-behaved with respect to E. We will sometimes define W (x) = x E x.

It is useful to define some of the usual set theory terms for well-behaved values.

Definition 3.5 Let R : σ � τ � o be a binary relation, and let Eσ : σ � σ � o

and Eτ : τ � τ � o be pers. Let Wσ : σ � o and Wτ : τ � o be well-behavedness
predicates (in practice we will often define Wσ(x) = x Eσ x, and Wτ(y) = y Eτ y).
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• R is total up to (Wσ,Wτ) (or (Wσ, Wτ ) total) when:

∀x: σ|Wσ. ∃y: τ |Wτ . x R y

• R is surjective up to (Wσ,Wτ) (or (Wσ, Wτ ) surjective) when:

∀y: τ |Wτ . ∃x: σ|Wσ. x R y

Now we come to the key ideas of consistency and exactness. These are used ex-
tensively in chapter 8. Given a relation R : σ � τ � o and a per E : σ � σ � o,
consistency says when R-relatedness can be deduced from E-equivalence, and
exactness says when E-equivalence can be deduced from R-relatedness.

Definition 3.6 Let R : σ � τ � o be a binary relation, let E : σ � σ � o be a
per.

• R is left-consistent with E (or E left-consistent) if and only if:

x E x1 ⊃ x R y ⊃ x1 R y

• R is left-exact for E (or E left-exact) if and only if:

x R y ⊃ x1 R y ⊃ x E x1

Say R is right-consistent with E when Rop is left-consistent with E, and right-
exact when Rop is left-exact.

Lemma 3.1 Let R : σ � τ � o and S : σ � ρ � o be relations. Let
Eτ : τ � τ � o be a per, and let Wτ (y) = y Eτ y and Wσ : σ � o be well-
behavedness predicates.

1. The relation R is Eτ right-consistent if and only if:

y Eτ y1 ⊃ (x R y ≡ x R y1)

2. If R is Eτ right-exact then x R y implies y Eτ y.

3. Suppose R is Eτ right-exact. Then R is (Wσ,Wτ ) total if and only if:

∀x: σ|Wσ. ∃y: τ. x R y

4. If R is Eτ right-exact then x(R ◦ S)z = ∃y: τ |Wτ . x S y ∧ y R z.
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Proof: 1. ⊃ direction: both directions of the equality follow from consis-
tency, since Eτ is symmetric.

⊂ direction: since we know x R y1 is equivalent to x R y, one cer-
tainly follows from the other.

2. This is immediate from exactness.

3. ⊃ direction: this is immediate.

⊂ direction: we know x R y, and so by part 2 of the lemma, Wτ(y)
holds.

4. ⊃ direction: we know that x R y, hence by part 2 of the lemma
Wτ (y) holds.

⊂ direction: this is immediate.

2

Part 4 of this lemma shows why we did not bother to define “composition up
to”: it is exactly the same as normal composition in the cases in which we shall
use it. The corresponding results hold for Rop, of course.

Lemma 3.2 Let R : σ � τ � o be a binary relation. Let Eσ : σ � σ � o be a
per. Let Wσ(x) = x Eσ x and Wτ : τ � o be well-behavedness predicates.

Suppose R is (Wσ,Wτ) total, and (Eσ,Wτ ) left-consistent and -exact. Then
there is the following relationship between R and Eσ:

(x Eσ x1) ⇐⇒ (∃y: τ. x R y ∧ x1 R y)

If R is (Wσ,Wτ) surjective, and (Eτ ,Wσ) right-consistent and -exact then:

(y Eτ y1) ⇐⇒ (∃x: σ. x R y ∧ x R y1)

Proof: We prove the first part of the lemma. The second part follows from the
first part applied to Rop.

The ⊂ direction follows immediately from the exactness of R. Now for the
⊃ direction. By totality-up-to, there certainly is a (well-behaved) y related
to x. But by consistency, this y must also be related to x1. 2

There is another, more concise, formulation of the notion of total-up-to and
left-exact and -consistent.
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Definition 3.7 Let R : σ � τ � o be a binary relation, and let Eτ : τ � τ � o

be a per. Let Wσ : σ � o and Wτ : τ � o be well-behavedness predicates with
Wτ(y) = y Eτ y.

Say R is a total function up to (Wσ, Eτ ) when:

∀x: σ|Wσ. ∃y: τ |Wτ . ∀y1: τ. (x R y1) ⇐⇒ (y Eτ y1)

Say S : τ � σ � o is a total function from right to left up to (Wσ, Eτ ) when
Sop is a total function up to (Wσ, Eτ). Say R is a bijection up to (Eσ, Eτ ) (or an
(Eσ, Eτ ) bijection) whenever:

• Wσ(x) = x Eσ x;

• Wτ(y) = y Eτ y;

• R is a total function up to (Wσ, Eτ);

• R is a total function from right to left up to (Wτ , Eσ).

Lemma 3.3 Let Eτ be a per. Let Wσ and Wτ be well-behavedness predicates with
Wτ(y) = y Eτ y. Let R : σ � τ � o be a relation.

R is a total function up to (Wσ, Eτ) if and only if the following properties
hold:

1. R is (Eτ ,Wσ) right-consistent;

2. R is (Eτ ,Wσ) right-exact;

3. R is (Wσ,Wτ ) total.

Proof: ⊃ direction. 1. Suppose Wσ(x), y Eτ y1 and x R y. By the total-
functionality-up-to of R, there is a y′ such that:

∀y′1: τ |Wτ . (x R y′1) ⇐⇒ (y′ Eτ y′1)

Hence y′ Eτ y. By transitivity, y′ Eτ y1. Applying the above once
more, x R y1.

2. Suppose Wσ(x), x R y and x R y1. By the total-functionality-up-
to of R, there is a y′ such that:

∀y′1: τ |Wτ . (x R y′1) ⇐⇒ (y′ Eτ y′1)

Hence both y′ Eτ y and y′ Eτ y1. By symmetry and transitivity,
y Eτ y1.
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3. Suppose Wσ(x). By the total-functionality-up-to of R, there is a
well-behaved y′ such that:

∀y′1: τ |Wτ . (x R y′1) ⇐⇒ (y′ Eτ y′1)

Since Wτ (y′), y′ Eτ y′. We can take y′1 to be y′, so x R y′.

⊂ direction. Let x : σ be a well-behaved value. We must exhibit a well-
behaved y : τ such that:

∀y1: τ |Wτ . (x R y1) ⇐⇒ (y Eτ y1)

Since R is total up to (Wσ,Wτ), there is a well-behaved y with x R y.
We show that this y has the above property.

Let y1 : σ be a well-behaved value. Suppose that x R y1. Since R
is right-exact, y Eτ y1. Suppose instead that y Eτ y1. Since R is
right-consistent, x R y1.

2

Corollary 3.4 Let Eσ and Eτ be pers. Let Wσ(x) = x Eσ x and Wτ(y) = y Eτ y.
Let R : σ � τ � o be a relation. R is a bijection up to (Eσ, Eτ ) if and only if
the following properties hold.

1. R is left-consistent with Eσ up to Wτ ;

2. R is right-consistent with Eτ up to Wσ;

3. R is left-exact with Eσ up to Wτ ;

4. R is right-exact for Eτ up to Wσ;

5. R is total up to (Wσ,Wτ )

6. R is surjective up to (Wσ,Wτ)

Proof: ⊃ direction. Properties 2, 4 and 6 follow from the fact that R is a total-
function-up-to. The other properties follow from the fact that R is a
total-function-up-to from right to left.

⊂ direction That R is a total-function-up-to follows from properties 2, 4
and 6. That R is a total-function-up-to from right to left follows from
the other properties.

2
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Intuitively, if R is an (Eσ, Eτ ) bijection, it is a bijection between the equiva-
lence classes of Eσ and those of Eτ . That is, for every Eσ equivalence class [x],
there is a (unique) Eτ equivalence class [y] such that if x ∈ [x] and y ∈ [y] then
x R y; and for every Eτ equivalence class [y], there is a unique Eσ equivalence
class with a similar property.

Bijections-up-to are not unique (different bijections-up-to map equivalence
classes differently). However, if we know how they map equivalence classes, then
we know the whole relation. This is captured by the following lemma.

Lemma 3.5 Let R and S be (Eτ , Eσ) bijections with R ⊆ S. Then R = S.

Proof: Given x : σ and y : τ , we must show x R y ⇐⇒ x S y. Let Wσ(x) =
x Eτ x and Wτ (y) = y R y.

⊃ direction: this is immediate from the fact that R ⊆ S.

⊂ direction: assume x S y and show x R y. By the left-exactness of S,
Wσ(x). By the totality-up-to of R, there is a well-behaved y1 with
x R y1.

Since R ⊆ S, x S y1. Now by the right-exactness of S, y Eτ y1.
Finally, by the right-consistency of R and the fact that x R y1, x R y

as required.

2

Lemma 3.6 Suppose R : σ � τ � o is an (Eσ, Eτ ) bijection and S : τ � ρ� o

is an (Eτ , Eρ) bijection. Then R ◦ S is an (Eσ, Eρ) bijection.

Proof: Let Wσ(x) = x Eσ x, Wτ(y) = y Eτ y and Wρ(z) = z Eρ z. We prove
that R◦S is a (Wσ, Eρ) total function, and the result follows by considering
Rop. In turn, this means that we must prove that R◦S is Eρ right-consistent
and Eρ right-exact, and that it is (Wσ,Wρ) total.

Consistency: assume that z Eρ z1 and that x (R ◦ S) z. By the definition
of composition, this means that there is a y : τ such that x R y and
y S z. By the right consistency of S, y R z1. Then, by the definition
of composition, x R z1.

Exactness: assume that x (R ◦ S) z and that x (R ◦ S) z1. From this we
can deduce that there is a y : τ with x R y and y S z, and that there
is a y1 : τ with x R y1 and y1 S z1.

By right exactness of R, y Eτ y1. By left consistency of S, y1 R z.
Finally, by right exactness of S, z Eρ z1, which is the result we require.
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Totality-up-to: by lemma 3.1 (3), we need only prove:

∀x: σ|Wσ. ∃z: ρ. x (R ◦ S) z

Let x : σ be an arbitrary value such that Wσ(x).

By the totality-up-to of R, there is a y such that Wτ(y) and x R y. By
the totality-up-to of S, there is a z such that Wρ(z) and y S z. Thus
x (R ◦ S) z, and z is the required value.

2

There is a third way to characterize bijections-up-to.

Definition 3.8 Let R : σ � τ � o be a relation.
Say R is many-step closed when, for x, x′ : σ and y, y′ : τ , the following holds:

x′ R y ⊃ x′ R y′ ⊃ x R y′ ⊃ x R y

Define the many-step closure of R to be the smallest many-step closed relation
containing R. Define R? by induction on the following rules:

x R y

x R? y

x′ R? y x′ R? y′ x R? y′

x R? y

Given a relation R, define a relation lper(R) : σ � σ � o as follows:

x lper(R) x′ ⇐⇒ ∃y: τ. x R? y ∧ x′ R? y

Similarly, define rper(R) : τ � τ � o as lper(Rop).

Lemma 3.7 1. R? is many-step closed.

2. R? is the many-step closure of R.

3. If R is many-step closed, R? = R.

4. ? is idempotent. That is, R?? = R?.

5. If R is many-step closed, then Rop is many-step closed.

Proof: 1. The relation R? is many-step closed by virtue of the second rule
defining R?.
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2. Let F be some many-step closed relation which includes R. We prove
by induction on the definition of R? that for any x and y with x R? y,
it is the case that x F y.

First rule Suppose x R y. Since F includes R, x F y.

Second rule Suppose x′ F y, x′ F y′ and x F y′. Since F is many-
step closed, it must be the case that x F y.

3. The smallest set (of any sort) which includes R is R. It is also many-
step closed. It must, therefore, be the smallest many-step closed set
to include R.

4. Since R? is many-step closed, the result follows by part (3) of the
lemma.

5. Assume y′ Rop x, y′ Rop x′ and y Rop x′. Since R is many-step closed,
it is the case that x R y, and so y Rop x.

2

Lemma 3.8 Given some relation R, lper(R) and rper(R) are pers.

Proof: We prove that lper(R) is a per. That rper(R) is a per follows from con-
sideration of Rop.

Symmetry. By definition, x lper(R) x′ is:

∃y: τ. x R? y ∧ x′ R? y

By the commutativity of ∧, this is also x′ lper(R) x.

Transitivity. We know that x lper(R) x′ and x′ lper(R) x′′:

∃y: τ. x R? y ∧ x′ R? y

∃y′: τ . x′ R? y′ ∧ x′′ R? y′

We show that this y has the following property:

x R? y ∧ x′′ R? y

We know that x R? y. By the fact thatR? is many-step closed, together
with the facts x′′ R? y′, x′ R? y′ and x′ R? y, we know that x′′ R? y.

2
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Lemma 3.9 Let R : σ � τ � o be a relation. Let Eσ : σ � σ � o and
Eτ : τ � τ � o be pers. Let Wσ(x) = x Eσ x and Wτ (y) = y Eτ y. Let
x R# y = Wσ(x)∧Wτ(y) ∧ x R y.

1. If R is many-step closed and Eσ = lper(R) and Eτ = rper(R), then R is a
bijection up to (Eσ, Eτ).

2. If R is a total function up to (Wσ, Eτ), then R# is many-step closed.

3. If R is a bijection up to (Eσ, Eτ ), then Eσ = lper(R#) and Eτ = rper(R#).

Proof: 1. We show that R is a total function up to (Wσ, Eτ ). That R is a
total-function-up-to from right to left follows from the fact that Rop is
many-step closed.

For every well-behaved x, we must exhibit a well-behaved y such that
the following holds:

∀y1: τ |Wτ . x R y1 ⇐⇒ y Eτ y1

Since Eσ = lper(R), Wσ(x) boils down to ∃y: τ. x R y. We show that
this y satisfies the above property.

First, note that y is well-behaved: since x R y, then ∃x: σ. x R y. Now,
let y1 : τ be some well-behaved value. Since Eτ = rper(R), we must
show:

x R y1 ⇐⇒ ∃x′: σ. x′ R y ∧ x′ R y1

⊃ direction. Assume x R y1. Then x has the property that x R

y ∧ x R y1.

⊂ direction. Assume x′ R y and x′ R y1. Since x R y, by many-step
closedness x R y1.

2. Assume that R is a total function up to (Wσ, Eτ). Given x′ R# y,
x′ R# y′ and x R# y′, we must show x R# y.

It is immediate from the assumptions that x, x′, y and y′ are well-
behaved. It remains to show that x R y. Since x′ R y, x′ R y′ and
R is right-exact, it is the case that y Eτ y′. Since x R y′ and R is
right-consistent, it is the case that x R y.

3. We show x Eσ x′ = x lper(R#) x′. That Eτ = rper(R#) follows by
considering Rop.
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⊃ direction. Assume x Eσ x′. Since Eσ is a per, x and x′ are well-
behaved. Since R is total up to (Wσ,Wτ ), there is a well-behaved
y with x R y. It remains to show that x′ R y. This follows from
the left-consistency of R and the fact that x Eσ x′.

⊂ direction. Assume that ∃y: τ. x R# y ∧ x′ R# y. Since x R# y, y
is well-behaved. The result follows from the left-exactness of R.

2

For relations with type τ � τ � o, bijectivity-up-to coincides with partial
equivalence.

Lemma 3.10 Suppose we have a relation E : τ � τ � o. E is a per if and only
if it is an (E,E) bijection.

Proof: The proof is by simple manipulation of the definitions, and is omitted. 2
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Part I

Logical Frameworks
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Chapter 4

Coding binding and substitution
explicitly in Isabelle

I am bound
Upon a wheel of fire, that mine own tears
Do scald like molten lead. —William Shakespeare, King Lear

Logical frameworks provide powerful methods of encoding object-logical bind-
ing and substitution using meta-logical λ-abstraction and application. However,
there are some cases in which these methods are not general enough: in such
cases object-logical binding and substitution must be explicitly coded. McKinna
and Pollack [MP93] give a novel formalization of binding, where they use it prin-
cipally to prove meta-theorems of Type Theory. We analyze the practical use of
McKinna-Pollack binding in Isabelle object-logics, and illustrate its use with a
simple example logic.

A version of this chapter has been previously published as a paper of the same
name in the 1995 Isabelle Users Workshop [Owe95].

4.1 Introduction

In this chapter we address the problem of coding logics in Isabelle (and other
logical frameworks). In some logics, meta-logical binding is unsuitable for coding
object-logical binding. For example, as we explain later, logics for programming
languages which include features such as pattern matching are difficult to code
using meta-binding. We advocate the use of the binding system due to McKinna
and Pollack [MP93] to code binding explicitly in these cases. The aim of this
chapter is to give enough meta-theoretical background and practical examples to
facilitate the coding of a logic in Isabelle using McKinna-Pollack binding, and to
motivate and evaluate the choice of McKinna-Pollack binding.
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In the remainder of this section, we discuss some motivating examples, and
compare systems which allow us to code binding and substitution explicitly, ex-
plaining why we choose the system due to McKinna and Pollack. In Section 4.2
we describe McKinna-Pollack binding and give an example of its use, together
with several meta-theorems which capture its behaviour. In Section 4.3 we ex-
pand on the example, and discuss features of the implementation of the system
in Isabelle. In Section 4.4, we return to our motivating concern and examine
how McKinna-Pollack binding can encode logics for programming languages. Fi-
nally, in Section 4.5, we summarize our results and evaluate the possible uses of
McKinna-Pollack binding style in Isabelle.

Most Isabelle code is omitted. However, this should not disguise the fact that
this chapter is about an Isabelle implementation. The logic is built on Isabelle
HOL. When we give a grammar, it is implemented in Isabelle as the obvious
datatype declaration. Similarly, inductive definitions are coded in the obvious
way in Isabelle, as are primitive recursive definitions. Where the translation from
the page to Isabelle is not immediate, the implementation is explained. The
Isabelle code is included in Appendix A: this includes the code for all the proofs
in this chapter.

4.1.1 Motivation

Much research has been devoted to coding logics in logical frameworks and generic
theorem provers [PE88, DFH95]. Most of these encodings use meta-level λ-
abstraction to encode object-level binding, meta-application to encode object-
substitution, and meta-variables to represent object variables. However, some
logics can be difficult or cumbersome to encode in this manner. In particular,
difficulties with logics for programming languages arise because of their sophisti-
cated binding and scoping features.

Throughout the rest of this chapter we will use an encoding of a version
of the Simple Theory of Types [Chu40] to provide examples. Judgements are
of the form Γ ` P , where Γ is a list of declarations either of the form v: τ

(variable v has type τ ) or v:σ = M (variable v is term M of (polymorphic) type
σ). Declarations may make reference to earlier declarations, for example in the
context x: τ → τ; y: τ → τ = λb: τ . xb, the declaration of y refers to the earlier
declaration of x.

Consider this judgement:

x: τ = M; y: τ ′ = M ′ ` P
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If we were to use meta-binding to represent the binding of x and y, we might
encode this judgement in the following way:

ValDec(M,λx.ValDec(M ′, λy. Judge(P )))

However, as we shall see, type-checking rules and rules of the logic are only
concerned with the last declaration in the context, which in this coding is the
inner-most declaration: it is not clear how to express such rules with this coding.
We would like to represent the judgement as the obvious abstract syntax tree (the
empty context is written •):

`

��
��
��
��

@
@
@

; P

�
�
� @

@
@

; y: τ ′ = M ′

�
�
� @

@
@

• x: τ = M

In order to use this scheme, we must encode the binding that occurs in declarations
explicitly. Adding further scoping features—let-expressions, local declarations, let
rec declarations—accentuates the problem.

Now we show that we cannot use meta-binding to bind variables within terms.
Consider a logic for a language which includes pattern matching, having a con-
struct such as the Standard ML case expression. Each pattern can bind an
arbitrary number of variables, and so we must “compile” a case-expression into
some internal form, where each variable is bound separately. Let us take as an
example the following expression:

case e of (x, y) => x + y

This might compile into the following form:

CaseExp(e,PatBind(λx.PatBind(λy.PatAndExp((x, y), x + y))))

This translation would be done by print- and parse-translations. The same ML
expression is also represented by another compiled form:

CaseExp(e,PatBind(λy.PatBind(λx.PatAndExp((x, y), x + y))))

There are two objections to representing pattern matching in this manner:
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• Although the two compiled forms above would appear the same after print
translation, they cannot be unified. Furthermore, we must add rules which
equate the different compiled forms of an expression.

• The parse- and print-translations are difficult to program. More impor-
tantly, it is very difficult to establish that they have been programmed
correctly.

These problems arise from the fact that pattern matching should be a single
binding which binds many variables at once. This is not the same as multiple
bindings of single variables. With such a “compiled” coding, it is difficult to
satisfy ourselves that the logic actually represents expressions as we intend.

By coding binding explicitly, we can represent case-expressions just as the
grammar of the language suggests:

CaseExp(e,Match((x, y), x + y))

The translations are trivial, each syntactically distinct expression has a unique
representation, and the correctness of the representation is a non-issue.

4.1.2 Systems of explicit binding and substitution

Rather than using increasingly arcane and counter-intuitive codings, our approach
is to axiomatize binding. We consider three possible systems.

De Bruijn binding [dB72] eliminates α-conversion by using indices rather than
names for bound variables—terms which are α-variants in name-carrying systems
are syntactically identical in de Bruijn systems. De Bruijn binding is widely used,
for example in Type Theory (for example by Altenkirch [Alt93]), and in theorem
provers (including Isabelle [Pau94a]).

Unfortunately, de Bruijn terms are very difficult to read, and they are usually
translated to and from a name-carrying form for display and input. This can
be done by providing a software front-end to perform the translation, but Gor-
don [Gor93] encodes the translation within the framework of the theorem prover.
However, any method of translation adds another layer of processing on top of
the naked de Bruijn terms: this adds complexity and reduces clarity and abstrac-
tion. It is also the case that many formal systems are defined using names (for
example, Standard ML [MTH90]), and we should be wary of the faithfulness of
an encoding of a logic based on such a formal system if the encoding does not use
names.
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The “standard” method of binding is originally due to Curry and Feys [CF58]
and is given a clear exposition by Hindley and Seldin [HS86]. Standard binding
systems define the substitution (λx.M)[N/y] as λz.M [z/x][N/y] for some fresh
z (at least in the case that capture would occur). Stoughton [Sto88] observes
that since M [z/x] is not a sub-term of λx.M , substitution cannot be defined by
recursion on the structure of terms, and must instead be defined by recursion on
the size of terms. This complicates proof considerably. He proposes a system
which performs the substitutions in parallel, M [z/x,N/y], which means that
substitution can then be defined by recursion on the structure of terms, since M
certainly is a sub-term of λx.M .

We regard this difficulty in defining substitution as a clue that the substitution
operation is the wrong place to worry about variable capture, and that capture
should instead be avoided in the construction of the terms, allowing substitution
to be defined simply. The system used in this chapter is due to McKinna and
Pollack [MP93]: it uses names for bound variables. A benefit of taking care over
term construction is that α-conversion is rarely necessary: it comes “for free”.

4.2 McKinna-Pollack binding

McKinna and Pollack give a system of binding and substitution in which vari-
ables are divided into two disjoint classes, intended to represent free and bound
variables. The two classes of variable are referred to as f-variables (f , f ′, in-
tended to represent free variables—McKinna and Pollack call these parameters)
and b-variables (b, b′, representing bound variables—called simply variables by
McKinna and Pollack). It is syntactically impossible for an f-variable to be bound
in a term, and it is an important meta-theorem (to be formalized later as Theo-
rem 4.7) that no b-variable occurs free in a valid deduction.

In McKinna-Pollack binding, both classes of variables are names and not de
Bruijn indices. Specifically, all we know about them is that there are infinitely
many of them (in the sense that one can always pick a fresh one). Typically, f-
and b-variables will be picked from the same set of identifiers, with a constructor
wrapped around them. Isabelle itself splits variables into free and bound vari-
ables [Pau94b, Section 6.5], but in Isabelle, bound variables are represented by
de Bruijn indices.

The grammar for simply-typed lambda terms which we will use in our example
logic is given in Figure 4.1. We assume that the set of constants is disjoint
from the sets of b- and f-variables. We write object equality as “≈” in order to
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ty ::= Ω
ty1 → ty2

constant ::= ⊃
ε
≈

term ::= fvar
bvar
constant
λbvar: ty. term
term1 term2

Figure 4.1: simply-typed lambda terms.

(BSubstF) f [N/b] = f
(BSubstB) b′[N/b] = if (b = b′, N, b′)
(BSubstC) const[N/b] = const
(BSubstLda) (λb′: τ.M)[N/b] = if (b = b′, λb′: τ .M, λb′: τ .M [N/b])
(BSubstApp) (MM ′)[N/b] = M [N/b] M ′[N/b]

Figure 4.2: b-substitution.

differentiate it from Isabelle meta-equality (≡) and Isabelle HOL equality (=).
Hilbert’s description operator (“any”) is written ε. The type Ω is the type of
truth-values. Terms with no free b-variables are called b-closed.

4.2.1 Substitution and closedness

There are two notions of substitution. Substitution of a term for a b-variable
(b-substitution, written M [N/b]) is defined by primitive recursion on terms by
the rules in Figure 4.2. Since f-variables, b-variables and constants are disjoint,
b-substitution at f-variables and constants does nothing. As in standard substi-
tution, a binding of a variable will shadow substitution for it (the rule BSubstLda
with b = b′). However, unlike standard substitution, we do not α-convert to
avoid capture in the substituted term (BSubstLda with b 6= b′). This is because
we know that a b-closed term has no free b-variables—and, in particular, the
variable bound by the λ-abstraction is not free in the substituted term.

Substitution of a term for an f-variable (f-substitution, written M [f = N ]) is
defined by primitive recursion on terms by the rules in Figure 4.3. This is simply
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(FSubstF) f ′[f = N ] = if (f = f ′, N, f ′)
(FSubstB) b[f = N ] = b
(FSubstC) const[f = N ] = const
(FSubstLda) (λb: τ .M)[f = N ] = λb: τ .M [f = N ]
(FSubstApp) (MM ′)[f = N ] = M [f = N ] M ′[f = N ]

Figure 4.3: f-substitution.

(BClosedF) f ∈ BClosed

(BClosedC) const ∈ BClosed

(BClosedLda) M [f/b] ∈ BClosed f 6∈M
λb: τ .M ∈ BClosed

(BClosedApp) M ∈ BClosed M ′ ∈ BClosed
MM ′ ∈ BClosed

Figure 4.4: the set BClosed.

textual substitution: everywhere the f-variable f appears in M , it is replaced
by N . In particular, substitution at λ-abstractions does not need to take into
account shadowing of the substitution by the binding: since λ can only bind b-
variables, it can never shadow a substitution for an f-variable. We can think of
f-variables as “holes” in terms, and f-substitution M [f = N ] as plugging a term
N into all the holes labelled f in M .

The following theorem shows the connection between the two kinds of substi-
tution. We write b ∈M to mean that b-variable b occurs free in M , and f ∈M
to mean that f-variable f occurs in M—effectively meaning “occurs free” because
f-variables can never be bound in terms. The formal definitions are left to the
interested reader: they are very simple.

Theorem 4.1 (Factorisation.) Given f 6∈M :

M [N/b] = M [f/b][f = N ]

Proof: By induction on M . 2

We are now in a position to give a formal definition of b-closed terms. The
set BClosed is given inductively by the rules in Figure 4.4.

In the rule BClosedLda we require f 6∈ M : this is the usual form for rules
in the McKinna-Pollack style. We are careful to maintain b-closedness of terms
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(free occurrences of b have been substituted away in M [f/b]). The side-condition
ensures that b is not identified with any f-variable occurring in M by the substi-
tution M [f/b]—this would be a form of variable capture.

In this case we are only concerned with the b-closedness of the term, and so
do not care if f and b are identified. We can define BClosed′ in exactly the same
way as BClosed, but omitting the side-condition on the λ rule (McKinna and
Pollack use this definition of b-closedness). The sets BClosed and BClosed′ can
then be proved identical by a messy induction on the size of terms. In general,
however, when we define a relation we wish to avoid this kind of capture, and so
the side-condition cannot be omitted.

Theorem 4.2 (Substitution preserves b-closedness.)

1. For any f-variable f , if M and N are b-closed terms, then M [f = N ] is
b-closed.

2. If λb: τ .M and N are b-closed terms, then M [N/b] is b-closed.

The converse of neither part of this theorem holds: if f 6∈ M , then M [f =
N ] = M , which tells us nothing about N , and similarly if b 6∈M , M [N/b] = M .

An attempt to prove this theorem by induction on the definition of BClosed

will fail. This is because in the rule BClosedLda, we only require that there
exists a suitable f . The induction hypothesis for the λ case tells us that there
is an f ′ such that M [f ′/b][f = N ] ∈ BClosed, but we are attempting to prove
M [f = N ][f ′/b] ∈ BClosed for every f ′. This problem is common when proving
properties of McKinna-Pollack-style relations.

Intuitively, since M [f/b] is b-closed for some fresh f , it is in fact b-closed for
every possible f . We define the set BClosed′′ in the same way as BClosed, but
with the following λ rule:

(BClosedBLda) ∀f.M [f/b] ∈ BClosed′′

λb: τ .M ∈ BClosed′′

Surprisingly, it is not necessary to require f to be fresh. The quantifier in
the hypothesis of this rule means that BClosed′′ cannot (currently) be declared
as an Isabelle inductive set: it must be hand-coded as a least fixed point. We
now show that the sets BClosed′′ and BClosed are identical. It is immediate that
BClosed′′ ⊆ BClosed, since if the hypothesis holds for every f , there certainly exists
a fresh f such that it holds. To prove BClosed ⊆ BClosed′′, we must introduce the
notion of renaming. A renaming is a finite map from f-variables to f-variables.
We lift renamings ρ to be operations on terms, ρ∗( ), in the obvious way.
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Theorem 4.3 If M ∈ BClosed, then, for all renamings ρ, ρ∗(M) ∈ BClosed′′.

Proof: By induction on the definition of BClosed. All the cases are simple, except
the λ case. This case boils down to deducing ρ∗0(M)[f0/b] ∈ BClosed′′ for
arbitrary ρ0, f0. The induction hypothesis is ∀ρ. ρ∗(M [f ′/b]) ∈ BClosed′′,
where f ′ 6∈M . We instantiate ρ in the induction hypothesis with ρ0 +{f ′ 7→
f0}, and the result follows by equational reasoning. 2

Corollary 4.4

BClosed = BClosed′′

Proof: We already know BClosed′′ ⊆ BClosed. We can deduce BClosed ⊆ BClosed′′

from the previous theorem with ρ = ∅. 2

Such proofs are generally possible for relations defined in McKinna-Pollack
style. We can now use the induction rule for BClosed′′ to prove properties of
BClosed, as required.

Finally, we are in a position to prove Theorem 4.2.

Proof of Theorem 4.2: Part 1 is an induction on BClosed′′. It requires the
following lemma:

N ′ ∈ BClosed ⊃M [N/b][f = N ′] = M [f = N ′][N [f = N ′]/b]

In turn, this requires the lemma N ∈ BClosed ⊃M [N/b] = M .

Part 2 follows from part 1 by the Factorisation Theorem (Theorem 4.1). 2

We show that BClosed correctly formalizes the set of b-closed terms.

Theorem 4.5 Given a term M , M ∈ BClosed if and only if b 6∈ M for every
b-variable b.

Proof: This is proved by induction on the size of M . 2

We have no further use for the test b ∈ M , and only use BClosed from now
on. Before moving on, note that we could have defined b ∈M to be f ∈M [f/b],
where f 6∈M .
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4.2.2 Type-checking and contexts

Having developed the machinery of McKinna-Pollack substitution, we move on
to a first application: type-checking.

The type system is an adaptation of HOL’s. The grammar for types allows
only monomorphic types: generalized types such as A→ A (the type of functions
from any type to itself) are admitted by using Isabelle free meta-variables to
stand for types, (so A is an Isabelle free meta-variable in A→ A). The constants
are genuinely polymorphic; that is, they may have more than one type.

Declarations of terms are also polymorphic. They are written:

f: ∀α1, . . . , αn. τ = M

This indicates that M may have any type of the form τ ′ where τ ′ is τ with each αi
replaced by a type. The variables αi may also appear in M , as in the declaration
f:∀α. α→ α = λb:α. b. In fact, then, f:∀α1, . . . , αn. τ = M is simply syntac-
tic sugar for Val(f, S) where S is the declaration scheme ∀α1, . . . , αn. 〈〈τ,M〉〉.
Binding of the αi in declaration schemes is coded as Isabelle meta-binding in the
usual Isabelle way. Declaration schemes are formed from two constructors: basic
schemes are just types paired with a term of that type; abstracted schemes are
schemes quantified over a variable:

BasicSch :: "[Ty, Term] => Scheme" ("<<_, _>>")

AbsSch :: "(Ty => Scheme) => Scheme" (binder "SCH " 100)

The relation InstType(∀α1, . . . , αn. 〈〈τ,M〉〉, τ ′) holds when τ ′ can be obtained
from τ by instantiating the variables α1, . . . , αn.

Similarly, InstTerm(∀α1, . . . , αn. 〈〈τ,M〉〉,M ′) holds when M ′ can be obtained
from M by instantiating α1, . . . , αn. Their definitions are omitted, but are simple.

Declarations of types for f-variables are written f: τ : the type τ is not poly-
morphic. Contexts are lists of declarations of either form. Notice that contexts
declare terms and types for f-variables, not b-variables.

The typing judgement is defined inductively by the rules in Figure 4.5.
Now we define what it means for a context Γ to be valid, written ` Γ. We

say a declaration f:∀α1 . . . αn. τ = M is well-typed in Γ if and only if for every
instance τ ′ of τ and corresponding instance M ′ of M , Γ ` M ′: τ ′. Declarations of
the form f: τ are always considered to be well-typed. A context Γ; dec is valid
exactly when Γ is valid and dec is well-typed in Γ (the empty context is valid,
too, of course).
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TypesOf(⊃) = {Ω→ Ω→ Ω}
TypesOf(ε) = {(A→ Ω)→ A,A is a type}
TypesOf(≈) = {A→ A→ Ω, A is a type}

(LookupVbl) τ ∈ LookupTypes(Γ; f: τ, f)

(LookupVal)
InstType(S, τ )

τ ∈ LookupTypes(Γ; Val(f, S), f)

(LookupWeak)
τ ∈ LookupTypes(Γ, f)

τ ∈ LookupTypes(Γ; dec, f)
f not declared by dec

(TypF)
τ ∈ LookupTypes(Γ, f)

Γ ` f: τ

(TypC) τ ∈ TypesOf(const)
Γ ` const: τ

(TypLda) Γ; f: τ `M [f/b]: τ ′ f 6∈M
Γ ` λb: τ .M: τ → τ ′

(TypApp) Γ ` M: τ → τ ′ Γ `M ′: τ
Γ ` MM ′: τ ′

Figure 4.5: the typing judgement.
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The typing rules only deduce a type for b-closed terms. This is formalized as
the following theorem.

Theorem 4.6

1. If Γ `M: τ then M ∈ BClosed.

2. If ` Γ then, for every declaration of the form f:∀α1 . . . αn. τ = M occurring
in Γ, M ∈ BClosed.

Proof:

1. By induction on the definition of the typing judgement.

2. A simple corollary of part 1, since ` Γ means that all terms in Γ are
well-typed.

2

4.3 A version of the Simple Theory of Types

The version of the Simple Theory of Types we implement is similar to that im-
plemented in HOL [GM93] and to an early version of Isabelle HOL [Pau90]. It
contains both λ-binding and also binding of terms in declarations within a con-
text, and so illustrates the use of McKinna-Pollack binding.

Judgements in the logic are of the form Γ ` P , meaning “P holds in the pres-
ence of context Γ.” Recall that contexts give types to f-variables and declarations
of values for f-variables. We ensure type-correctness of judgements by ensuring
that axioms are well typed, and that rules preserve well-typedness, as is usual.

The rules and axioms of the system are given in Figure 4.6. Rules whose only
hypotheses are well-formedness conditions are considered to be axioms.

4.3.1 Declarations

We can look-up declarations via the rule Lookup:

Γ ` M ≈M ′ f 6∈M ′ InstTerm(S,M)
Γ; Val(f, S) ` f ≈M ′

Notice that M is evaluated in the context Γ: any occurrences of f in M refer to
a previous declaration in Γ.
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Axioms

(EqRefl) ` Γ Γ `M: τ
Γ `M ≈M

(BetaConv)
` Γ Γ ` (λb: τ .M)N: τ

Γ ` ((λb: τ .M)N) ≈M [N/b]

(OmegaCases) ` Γ
Γ ` ∀P : Ω. (P ≈ T) ∨ (P ≈ F)

(ImpAntiSym) ` Γ
Γ ` ∀P,Q: Ω. (P ⊃ Q) ⊃ (Q ⊃ P ) ⊃ (P ≈ Q)

(EtaConv) ` Γ
Γ ` ∀H: τ → τ ′. (λb: τ .H b) ≈ H

(Select) ` Γ
Γ ` ∀P :α→ Ω. ∀x:α. P x ⊃ P (εP )

Rules

(Subst)
Γ ` P [f = M ] Γ `M ≈M ′

P [f = M ′]

(Abs) Γ; f: τ `M [f/b] ≈M [f/b′] f 6∈M,M ′

Γ ` λb: τ .M ≈ λb′: τ .M ′

(ImpI)

[Γ ` P ]....
Γ ` Q

Γ ` P ⊃ Q

(MP)
Γ ` P Γ ` P ⊃ Q

Γ ` Q

(Lookup)
Γ `M ≈M ′ f 6∈M ′ InstTerm(S,M)

Γ; Val(f, S) ` f ≈M ′

(Weak) Γ ` P dec well-typed in Γ f 6∈ P
Γ; dec ` P dec declares f

Figure 4.6: The Simple Theory of Types
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We give an atomic weakening rule for contexts. The declaration dec is a single
value or type declaration which declares the f-variable f .

Γ ` P dec well-typed in Γ f 6∈ P
Γ; dec ` P

This rule is provably equivalent to weakening by many declarations at once.
The logical connectives T, F, ∧, ∨, ¬, ∀ and ∃ are declared in a standard

context which gives their usual HOL definitions. From these definitions, it is
possible to derive the usual natural deduction rules for these connectives.

4.3.2 Equality and conversion

We encode β-reduction in the usual HOL way: we say that two terms are equal
if one is obtained from the other by reducing a single outer-most β redex. The
other rules for equality mean that it includes the reflexive transitive closure of
β-reduction within terms.

McKinna-Pollack binding style does not require us to explicitly define α-
conversion. As a side-effect, the rule Abs captures α-conversion. For example,
Γ ` λx: τ . x ≈ λy: τ . y, by EqRefl followed by Abs. (Of course, α-conversion is
admitted anyway in the Simple Theory of Types by extensionality, but even in a
system where this were not so, α-conversion would still be admitted by Abs).

The following is a simple consequence of the axiom EtaConv :

` Γ Γ ` H: τ → τ ′

Γ ` (λb: τ .H b) ≈ H

In a standard binding system this rule would have the additional side-condition
b 6∈ H—but since H is well-typed, it is b-closed, and so we need not check this.

4.3.3 Deductions

Unfortunately, the judgement Γ ` P cannot be defined inductively, because of
its negative occurrence in the discharged hypothesis in ImpI. The only practical
problem this causes us is the inability to prove meta-theorems by induction on
the definition of Γ ` P within Isabelle. Informally, we can still do induction on
derivations—and we could formalize this, as Paulson has done for his proof of
the completeness of propositional logic in the Isabelle examples library, but the
system would not be usable for real proof.

Theorem 4.7 (Well-formedness of deductions) Suppose we deduce the following:

Γ1 ` P1 . . . Γn ` Pn
Γ ` P
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1. If Γi ` Pi:Ω for every i, then Γ ` P:Ω.

2. If ` Γi for every i, then ` Γ.

3. If Pi ∈ BClosed for every i, then P ∈ BClosed.

4. If M ∈ BClosed for every term M in a Γi, then for every M appearing in
Γ, M ∈ BClosed.

Proof: By inspection, each of these properties holds for each of the rules and
axioms in Figure 4.6. Hence, by induction on derivations, they hold for all
derivations. 2

Corollary 4.8 1. Suppose we deduce the following:

Γ1 ` P1 . . . Γn ` Pn
Γ ` P

If Γi ` Pi:Ω for every i, then Γ ` P:Ω, ` Γ, P ∈ BClosed, and M ∈
BClosed for every M occurring in Γ.

2. Property 1 and the properties in Theorem 4.7 each hold for every node Γ ` P
in a derivation tree.

Proof: 1. Since Γi ` Pi:Ω, then ` Γi, Pi ∈ BClosed and M ∈ BClosed for
every M occurring in a Γi, and therefore Γ ` P:Ω, ` Γ, P ∈ BClosed,
and M ∈ BClosed for every M occurring in Γ.

2. To see that these properties hold of interior nodes of a derivation
tree, observe that each interior node is itself the conclusion of a sub-
derivation of the tree.

2

4.3.4 Implementation

The Isabelle implementation raises issues relating to giving proofs using the logic,
rather than simply meta-proofs about the logic.

The implementation of the substitutivity rule illustrates some of these issues.
The usual McKinna-Pollack coding of substitutivity is given in Figure 4.6. The
term P has some “holes” in it (the f-variable f); these holes are filled by M in
the antecedent and M ′ in the conclusion. Since we are using Isabelle, however,
we can use meta-substitution in this case: a term P with some holes filled by
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M is P (M) in Isabelle. Since the logic does not use meta-binding, this is simply
textual substitution, as required. The rule becomes:

Γ `M ≈M ′ Γ ` P (M)
Γ ` P (M ′)

There is also a problem with the applicability of some rules in their current
form. Consider attempting to deduce the following.

Γ ` ((λb: τ . b)f) ≈ f

This is simply a β-reduction. However, we cannot apply the BetaConv axiom,
since f is not in the form b[f/b]. Instead, we must first derive the following rule,
which is applicable.

M [N/b] = M ′ ` Γ Γ ` (λb: τ .M)N: τ

Γ ` ((λb: τ .M)N) ≈M ′

When this rule is applied, we obtain a subgoal b[f/b] = f , which can be solved
by the simplifier.

Now consider performing the substitution b′[N/b]. In the case that b and b′

are identical, this can be solved immediately to yield N . Suppose b and b′ are
not identical (and are intended to be distinct). Since b and b′ are both implicitly
universally quantified meta-variables, b 6= b′ cannot in general be deduced, and
so we cannot proceed any further and must leave the substitution in the form
if (b = b′, N, b′). This is a consequence of the use of meta-variables to represent
object-variables. We must add b 6= b′ as an assumption.

In fact, the neatest way to do this is to define a predicate distinct, which
says that the elements of a list are pair-wise distinct. We now simply add the
assumption distinct(bs) to all proofs, where bs is a list containing all those b-
variables which appear in the proof. We must similarly provide the assumption
distinct(fs).

In the theory files accompanying this chapter (see Appendix A), f-variables are
formed either from identifiers or from one of the connectives T, F, ∧, ∨, ¬, ∀ and
∃. This means that the connectives can be proved to be distinct from each other
and all other f-variables, without needing to assert distinct(T, F,∧,∨,¬, ∀, ∃, . . .).

Not all of Isabelle’s automatic proof procedures may be used with this logic.

4.4 Programming languages

In the introduction to this chapter, we showed that logics for programming lan-
guages are difficult to code using meta-binding. We now give examples of how
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they can be implemented using McKinna-Pollack binding. The features for which
we give an account here (let expressions, local declarations, and pattern match-
ing) can be found in many programming languages. We consider a simple eager
statically-bound language with ML-like syntax.

The logic we outline is based on the logic of Section 4.3. Logical terms may
now include programming language expressions. We also allow the context to
contain programming language declarations. This means that a judgement in the
logic would typically be a statement about programming language expressions in
the presence of programming language declarations.

4.4.1 Let-expressions and local declarations

Let-expressions and local declarations allow us to limit the scope of certain dec-
larations. Let-expressions are of the form:

let decs in e end

Here, decs is a list of declarations. It differs from the list of declarations in the
context in two ways:

• It declares values for b-variables, not f-variables. McKinna-Pollack binding
relies on the fact that no f-variable binding occurs within a b-variable bind-
ing, and a let-expression might occur within another construct that binds
b-variables (a λ-abstraction, for instance).

• We will primarily be concerned with the left-most declaration in decs. So
for convenience, we insist that the list associates to the right: the left-most
declaration is the outer-most.

The rules for let-expressions allow declarations to be moved to and from the
context. They are complicated by the fact that local declarations will mean that
a single declaration can bind more than one variable.

One such complication is that we will need a multiple b-substitution operation,
X[f1 . . . fn/b1 . . . bn]. We only use this operation to substitute f-variables for b-
variables, and so we can perform the substitutions of fi for bi in any order (or in
parallel) since they cannot affect each other.

The operation dec〈f1 . . . fn/b1 . . . bn〉 replaces binding occurrences of bi by fi,
and replaces bound occurrences of bi with fi. For example:

(val bj = e; decs)〈f1 . . . fn/b1 . . . bn〉
=

val fj = e; decs[fj/bj]〈f1 . . . fn/b1 . . . bn〉
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In order to avoid variable capture, we require that fi 6= fj when bi 6= bj. Thus
dec〈fi/bi〉 is a declaration which declares f-variables f1, . . . , fn and which has
exactly the same shape as dec.

For brevity, write X〈f1 . . . fn/b1 . . . bn〉 as X〈fi/bi〉 and X[f1 . . . fn/b1 . . . bn]
as X[fi/bi]. Here is one rule for let-expressions, when dec declares b-variables
b1, . . . , bn:

Γ; dec〈fi/bi〉 ` (let decs in e end)[fi/bi] ≈M fi 6∈ decs,M, e

Γ ` let dec; decs in e end ≈M

The rule accounts for the scope of the declaration dec by requiring that fi 6∈ M :
this means that dec cannot capture variables inM when it is moved to the context.

Local declarations are of the form:

local decs in decs′ end

Again, decs declares b-variables, and associates to the right. Local declarations
can appear in two places:

• They may form part of the context. In this case decs′ would declare f-
variables and would associate to the left (as is usual for declarations in the
context).

• Alternatively, they may form part of a let-expression or appear in the local
part of a local declaration. In this case, decs′ would declare b-variables and
would associate to the right.

The rules for local declarations move the declarations to and from the context,
and are similar to the rules for let-expressions.

We can no longer say that the terms in a declaration are b-closed, as we did
in Theorem 4.7 (4). Now, instead, we must say that the declaration as a whole is
b-closed. For example local decs in decs′ end is b-closed if decs is b-closed and
decs′[f1 . . . fn/b1 . . . bn] is b-closed, where decs declares b1, . . . , bn.

4.4.2 Pattern matching

We consider the case-expression case e of match, where match is:

pat1=>e1| . . .|patn=>en

For simplicity we assume that patterns are exhaustive and non-overlapping.
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Each pattern pati can bind an arbitrary number of b-variables, which may
appear in ei. Suppose pati binds variables bi,1: τi,1 . . . bi,mi: τi,mi . Considering pati
as an expression, we know the following:

∀bi,1: τi,1 . . . bi,mi: τi,mi. case pati of match ≈ ei

Call this term CaseRule(i, case e of match). It is b-closed by virtue of the fact
that the universal quantifier binds every free b-variable which occurs in pati. We
can thus give the following rule within Isabelle:

` Γ P = CaseRule(i, case e of match) Γ ` P:Ω
Γ ` P

The term CaseRule(i, case e of match) is expressed as a primitive recursive
function within Isabelle. It is easy to program: the least trivial step it must make
is to determine the b-variables bound by pattern i.

4.5 Conclusions

Logics with explicit coding of binding and substitution are considerably more
complex than logics which rely on meta-binding. However, they may be necessary
if:

• there is no known way to code the logic using meta-binding;

• the encoding using meta-binding is unacceptable (because its correctness is
difficult to establish, for example); or

• some proofs will need induction over terms.

These observations hold for all systems with explicit binding, not just McKinna-
Pollack binding.

McKinna-Pollack binding has a well-developed and attractive meta-theory.
Although rules in this style may look odd at first sight, they are in fact very
easy to formulate—with experience they are simpler to formulate than rules for
“standard” binding (although terms containing two classes of variables can on
occasion be unwieldy).

In this chapter we have shown that logics for programming languages may
contain features which mean that they cannot reasonably be coded using meta-
binding and substitution. We have further shown that McKinna-Pollack binding
provides an effective way to code these logics, but that in some cases the rules
can become complex.
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Another candidate method for coding logics for programming languages is
the parallel substitution technique given by Stoughton [Sto88], mentioned in the
introduction to this chapter. Parallel substitution would, we believe, give simple
rules for parallel binding operators such as pattern matching. We know of no
work in which parallel substitution is used for this purpose.
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Chapter 5

Coding logics in logical
frameworks

A logical framework is a formal system in which the rules and axioms of a
logic may be given. There have been many formal systems proposed as logical
frameworks (for example Feferman’s FS0 [Fef94], the Edinburgh Logical Frame-
work [AHM87]), and various mechanizations of these logical frameworks (for
example LEGO [PL92]). Here we concentrate on Paulson’s Isabelle [Pau94a],
although our techniques could be used in most mechanizations of most logical
frameworks. Isabelle was chosen simply for “engineering” reasons, rather than
because of a philosophical bias: it is extremely easy to define new Isabelle logics
(indeed, that is its raison d’être), and defining new logics for theorem provers is
the subject of this chapter.

Isabelle is a generic theorem prover with simple and well-developed methods
for coding logics and powerful automatic proof tools. Its logical framework is a
simple form of constructive Higher-Order Logic where implication is used to code
logical consequence and universal quantification is used to code eigenvariable
conditions on rules.

In this chapter we continue the study of how best to represent logics for
programs in logical frameworks. In the previous chapter we showed how complex
patterns of binding could be represented; this chapter has two themes.

• In the first section we note that the usual methods of typechecking back-
wards proofs can be inefficient. To remedy this, we suggest a new method
called backwards typechecking.

• In the second section we note that we can annotate goals with typechecking
information, to further increase efficiency.

Many theorem provers have been designed to embody logical frameworks (Is-
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abelle [Pau94a] and LEGO [PL92] for instance). Many others are used as logical
frameworks (HOL [GM93] for instance). When discussing a logical framework we
will often distinguish between the meta-logic in which logics are encoded (that
is, the framework formal system itself), and the object logic (the logic which is
encoded).

5.1 Backwards typechecking

In this section we develop a method for showing well-formedness conditions of
judgements in backwards proof. A typical well-formedness condition is that a
judgement is type-correct, but the method given here is quite general. To em-
phasize this fact, we begin by considering a general way of thinking about logics:
consequence relations.

Definition 5.1 Let WFF be a set of well-formed formulae. A relation =⇒
between finite sets of well-formed formulae is a consequence relation if it has the
following properties:

Weakening: If H =⇒ C, then (H ∪H ′) ` C.

Cut: If H =⇒ C and (H ′ ∪ C) ` C ′ then (H ∪H ′) =⇒ C ′

Both Avron [Avr87] and Ryan and Sadler [RS92] give good introductions to
consequence relations.

Now let us move on to consider judgements and well-formedness conditions.
Suppose the set of well-formed judgements which we are considering is a subset
WFJ of some larger set J . For example J might be the set of syntactically
correct judgments, and WFJ might be those judgements which are also type-
correct. Let ` be a consequence relation over WFJ . We can, of course, also
consider ` to be a consequence relation over J , since if a judgement is inWFJ ,
it must be in J . It is often much easier to generate J (it might be a free algebra
represented as an ML datatype, say) than to generate WFJ (which requires
evaluating the well-formedness condition in some way).

Automated proof assistants are slow: they can take seconds to prove even
quite trivial theorems, and hours or days to prove large results. Logical frame-
works exacerbate this problem since rules cannot be “hard-coded” for maximum
efficiency. The central question which we shall address in this chapter is: how can
we encode ` in a logical framework such that the computation needed to ensure
that a judgement is in WFJ is minimized?
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Let us consider some ways to encode `. The first is to ensure that every part

of every rule only applies to well-formed judgements. Thus the rule
A B
C would

have the following side-conditions:

1. A ∈ WFJ ;

2. B ∈ WFJ ;

3. C ∈ WFJ .

From the point of view of efficiency of computation, this could well be a
disaster: checking for membership of WFJ occurs for every node and leaf in a
proof tree. It might, for example, be the case that to verify side-conditions 1
and 2 has some computations in common with side-condition 3, but this system
requires us to check all the side-conditions. One could argue that memoization
would solve this problem, but A, B and C may be large, and memoization may
use enormous amounts of memory for poor increases in speed.

Of course, formal systems are rarely designed using this method: clearly,
having shown that A ∈ WFJ and B ∈ WFJ , we do not need to re-perform the
common computations in checking C ∈ WFJ . This leads us on to the second
way of encoding `. We can characterize this method by the slogan “typechecking
forwards”:

• each axiom must be a well-formed judgement;

• whenever the antecedents of a rule are well-formed judgements, the conse-
quent must be well-formed.

By induction on the size of derivation trees, it is clear that every node in a proof
tree is a well-formed judgement.

The second coding method is much better than the first: we must only do
enough checking to check that the consequent is well-formed, given that the hy-
potheses are. There are, however, two situations in which it is inefficient. Both
occur during backwards proof, and since most machine-assisted proof is primarily
backwards, this is a cause for concern.

• The first is when the proof tree has two or more identical (or similar) judge-
ments at its leaves. In this case, checking each leaf for well-formedness will
require some duplication of effort. One could, of course, record the dupli-
cated well-formedness lemma and re-use it, but this means that we should
record every well-formedness proof—this will be an enormous burden in
time and space (not to mention programming).
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• The second situation is when the judgement is not, in fact, well-formed.
We may be able to continue the proof at great length: if the antecedents
are ill-formed, we may be able to prove the necessary side conditions to
show that the consequent is well-formed. Only at an advanced stage is it
apparent that the proof can proceed no longer: we have been asked to show
that some ill-formed judgement at a leaf of the proof tree is well-formed.
There is nothing to do except to correct the initial goal and begin the proof
again.

This is obviously undesirable. One possible fix is to check that the original
goal judgement is well-formed. But then we are duplicating effort if the goal
is well-formed: the side conditions in the proof tree will guarantee that the
original goal is well-formed, why must we prove it again?

We are now in a position to suggest an improved method of coding. Since
proof is being done backwards (from the root of the proof tree out to the leaves),
it is more natural, more convenient and more efficient to check well-formedness
backwards too. The slogan now is “backwards typechecking.”

• Show that the initial goal is well-formed.

• Whenever the consequent of a rule is well-formed, the antecedents must be
well-formed judgements.

At first this seems rather odd: one is naturally used to proof rules which
deduce the consequent from the antecedents. However, it is again simple to see
by induction that for such a system every node in a proof tree must be a well-
formed judgement.

Now let us consider the initial goal in more detail. How can we ensure that
the initial goal is well-formed? We split the formal system into two types of
judgements.

1. A judgement type for initial goals, `1 say, which we require to be well-
formed.

2. A judgement type for the rest of the proof tree, `2 say: we require that if
the consequent of a rule in this system is well-formed, the antecedents must
also be well-formed judgements.

The only rule we need to connect these judgement types is as follows:
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Well-formedness introduction (WFI):

`2 P
`1 P

• P ∈ WFJ .

The proof system proper resides in deduction rules for `2. If we have managed
to prove a `1 goal, we must first have applied WFI (and proved the goal is a well-
formed judgement). The rest of the proof has used the rules for `2, where the rules
preserve well-formedness backwards, and so the entire proof tree is well-formed.

Turning our attention to the `2 proof system, let us look in particular at
axioms. Axioms are rules without antecedents: it is vacuously true that their
antecedents are well-formed. Thus axioms never need well-formedness conditions.
Even ill-formed judgements can be axioms: the point is that starting from a well-
formed goal, one can never reach ill-formed axioms.

When one is deriving rules, the natural place to do it is in the `2 system, since
that is where proofs happen. When deriving theorems, however, they should be
in the `1 system: that is the only way which guarantees their well-formedness.

It would be quite sound to add rules to extract information from the `1

judgement. There are essentially two sorts of information that we can get from a
`1 judgement.

1. The judgement is well-formed.

Well-formedness (WF):
`1 P

P ∈ WFJ

2. Every member of WFJ is a member of J , so every `1 theorem is a `2

theorem.

Well-formedness elimination (WFE):

`1 P
`2 P

There seems to be little utility to such rules in most cases, (the rule WF is probably
the more useful). We omit them.

We have not yet accounted for rules with discharged hypotheses. How should
they be represented in `2? Given a well-formed consequent, not only must the
antecedents be well-formed, but any discharged hypotheses must be too.
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Finally, note that it is not particularly novel to ensure that well-formedness
conditions hold during backwards proof in this way. Many theorem provers check
type-correctness as soon as a goal is entered. The novelty of this section lies in
two facts:

• we make the necessary encoding explicit, rather than hiding it or ignoring
it or even failing to recognize that such an encoding has been made;

• we give a theoretical account of such an encoding, rather than proceeding
informally and relying on some sort of intuition to show that the logic
actually ensures well-formedness in the desired way.

The advantage of this is the advantage of formality versus lack of rigour. The
correctness of the method, and of its particular instances, are now open to math-
ematical enquiry and criticism.

5.2 Encoding context within a logic

In the previous section we showed how to encode a logic in logical framework in
order to make backwards proof more natural and more computationally efficient.
In this section, we simply make the observation that, in a logic with a well-
formedness condition coded in this way, proofs may still repeat some work (for
example, constructing a typechecking context). In some such cases, we may be
able to encode some contextual information in the judgement, and prevent its
repeated calculation.

Let us replace `2 with another judgement form: `C P , where C is some
annotation derived from P in order to make checking of well-formedness easier
(for example, it might include a type environment to make type checking easier).
The judgement `C P then means “if C is the annotation for P , and P is well-
formed, then P holds.”

The rule WFI then changes.

Well-formedness introduction (WFI):

`C P
`1 P

• C is the annotation for P ;

• Using C, we can show P ∈ WFJ .
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This rule does precisely the same work as the previous version, but it splits
the well-formedness check in two. In the first side-condition, we extract the anno-
tation C from P . In the second, we use this annotation to show well-formedness.

Rules in `C have the following properties.

• If the annotation for the consequent is correct, the annotations for the
antecedents must be correct.

• If (using the annotation) the consequent is well-formed, then (using the
annotation) the antecedents are well-formed.

It is in these rules that we are saving some work. Having annotation for the
consequent, we need to get annotation for the antecedents. This might be very
easy: the antecedents’ annotations might be exactly the same as the consequent’s.
In the system `2 we would have to have built the annotations for the antecedents
from scratch.

On the other hand, the annotation for the consequent might not tell us any-
thing about the annotation for the antecedents, and we might need to extract the
annotation for the antecedents from scratch. In this case we do not gain anything
over `2 by using `C , but then again neither have we lost anything, since we would
have to calculate all the annotations as part of the well-formedness checks in `2

anyway.
The precise encoding of the logic in the logical framework could well arrange

for annotations to be hidden from the user during proof. This would mean that,
although the rules of the logic would be annotated, proofs in the logic would, for
the sake of simplicity, appear not to be.

It should be noted that deciding on which annotation will be most useful
is an art rather than a science. More information will presumably make well-
formedness checks easier, but may well obscure the meaning of the rules with
large numbers of side-conditions relating to the form of the annotation.

Finally, notice that again the suggested encoding is not particularly novel.
Many theorem provers maintain context information for a judgement. The novelty
of this section is once more that we make the context information explicit within
the judgements of the formal system, rather than maintaining the context deep
within the code of the theorem prover. And once more the advantage is that the
method of maintaining context information is formalized and is open to enquiry
and criticism.
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Part II

Core ML
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Chapter 6

Simplified ML

At a time when it is increasingly understood that programs must with-
stand rigorous analysis, particular for systems where safety is critical,
a rigorous language presentation is even more important for nego-
tiators and contractors; for a robust program written in an insecure
language is like a house built upon sand.

—Robin Milner, Mads Tofte and Robert Harper,
The Definition of Standard ML

Standard ML is a very rich language—too rich to allow in a single dissertation
the kind of investigation I make here of a part of it. It is necessary, then, to make
simplifications, to reduce ML to a language with much of the essential flavour
of Standard ML, but which is much smaller. I call this language Simplified ML.
In this chapter, I describe Simplified ML, and in later chapters I discuss how to
reason about it.

I discuss the Core part of Simplified ML in some detail. I first describe it
informally and discuss its features, and then define it formally with respect to the
Definition (of Standard ML).

In this dissertation, the detailed definition of the Modules part of Simplified
ML will be of less importance than the definition of the Core language. It is
therefore discussed more briefly.

We refer to the 1990 Definition of Standard ML [MTH90] throughout. How-
ever, the changes in the 1997 Definition would have little impact on the work in
this dissertation.
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6.1 The Core Language

6.1.1 Changes from Standard ML

In this section I informally describe the changes made to turn Standard ML into
Simplified ML, at the Core language level. Here are the omissions and changes
(roughly in order of their significance):

• The primary simplification is that I choose to reason only about purely
functional programs, and to exclude assignment to (mutable) store.

• Simplified ML has no exception mechanism.

• Functions are all total—this totality is enforced by a simple syntactic check
on function declarations (described in Section 6.1.2).

• Datatype value constructors cannot take function arguments in which ele-
ments of the type being declared occur.

• Declarations of datatypes must give the datatype a unique, explicit type
name (in addition to the type constructor).

• Patterns are non-overlapping and exhaustive.

• ML function abstraction is only allowed in the form fn var => exp, and not
in the more general form fn match. Pattern matching is provided by the
case construction.

• Similarly, value bindings must be of the form var = exp, not the form
pat = exp.

• Simultaneous declaration of datatypes is not allowed, nor is simultaneous
declaration of values.

• Declarations of free variables (param declarations) are added.

• There are no “basic values”, except the equality test: all other functions
must be declared using the mechanisms provided within Simplified ML.
This means that the initial basis cannot contain functions with side-effects,
such as input, and there are no overloaded functions.

• There is no type declaration.

• There are no layered patterns.
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• There is no wildcard pattern (_), and no wildcard pattern row (...).

• Sequential composition of declarations forms declaration sequences (new
syntactic classes, FDecSeq and BDecSeq), rather than trees of declarations
(syntactic class Dec).

• Type constraints are not allowed.

• There are no fixity declarations.

• Simplified ML has no abstype declaration.

Core Simplified ML, then, is similar to the subset of ML used in LAMBDA
4.0. It does differ in some important ways, however—for example, LAMBDA
let expressions are not as general as Simplified ML let expressions, and are not
polymorphic, as Simplified ML let expressions are, and LAMBDA has no need
of a local declaration.

Some of these restrictions are made in order to ensure that the logic can
be sound (for example, allowing only total functions); some of the restrictions
are made because the omitted features add little functionality, but complicate
the language considerably (no overlapping patterns); some are made for other
reasons. Many of them require some further comment.

There are two reasons for excluding state and assignment. The first is prag-
matic: reasoning about programs with state is a hard problem,and would have
occupied virtually all my attention. One of the problems is that including state
destroys “referential transparency”—the ability to substitute like for like in a
program. The problem is that two program fragments can return the same value,
and yet modify the state in different ways. The second reason is “theological”:
once assignment is added ML becomes, for our purposes, just another imperative
language—I believe that functional programs are easier to write and verify than
imperative programs, and so I have restricted my study to the purely applicative
part of Standard ML.

Exceptions are also difficult to reason about, and can also destroy referential
transparency:

exception E1 and E2

(fn x => fn y => (x, y)) (raise E1) (raise E2)

This expression raises the exception E1, because of the order in which it is
evaluated. But consider the following expression:
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(fn y => fn x => (x, y)) (raise E2) (raise E1)

In Standard ML, this raises the exception E2. In an exception-free language,
the following expressions are provably equal:

(fn x => fn y => (x, y)) e1 e2

(fn y => fn x => (x, y)) e2 e1

In the absence of exceptions, one can sometimes make use of a passable sub-
stitute by using datatypes to give a disjoint union type, such as Berry’s (’a, ’b)

Result type [Ber91], although this approach quickly becomes unworkable in the
face of anything other than the simplest applications. I choose to omit exceptions
from Simplified ML, although I recognize that to do so is to ignore an important
part of ML.

It can be argued, (for example by Hofmann [Hof92]) that restricting a logic
for a programming language to total functions makes little practical difference:

• almost all carefully-written programs are terminating;

• those programs which do not terminate (for example, the read-eval-print
loop of a LISP interpreter) are constructed from terminating functions in a
simple way (print ◦ eval ◦ read put into an endless loop).

In only reasoning about terminating functions, one does not significantly reduce
understanding of the few non-terminating examples. Whilst I do not find this ar-
gument completely convincing, since it rather glosses over how one is supposed to
prove anything about a non-terminating program from a proof about a terminat-
ing program, it does have some merit, since most programs do terminate. There
are, of course, honourable exceptions: Knuth-Bendix completion is an example of
a method about which one might like to reason, but it is a semi-algorithm, and
so cannot be coded in Simplified ML.

The principal reason for excluding non-terminating functions is to allow Sim-
plified ML to be embedded in a well-understood logic (a version of Higher-Order
Logic [Chu40]). Cheng and Jones [CJ91] give a useful survey of the field of
logics of partial functions—although this does not include some recent devel-
opments: for example, Finn, Fourman and Longley’s work outlined later. One
approach to partial functions is that of LAMBDA 3.2 [FF90], which is an imple-
mentation of Fourman and Scott’s Logic of Partial Elements [Sco79], which has a
great advantage over our logic in that there is no termination check on function
declarations—this check excludes the most natural definitions of some functions
which are total, and is quite artificial. By using this logic one quickly becomes
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bogged down in proving existence conditions—as a rough guide to the severity of
this problem, Goossens [Goo93] estimates that 60% of the list permutations done
whilst using LAMBDA 3.2 involve the list of existence conditions.

If the logic is to be restricted to terminating functions, how are functions to be
proved total? A well-known method of proof is to give a measure of complexity, in
a well-ordered type, of a function expression and then to show that this complexity
strictly decreases in recursive calls of the function. If the user were expected to
prove every function total by hand, she would quickly become swamped by these
proof obligations (in a similar, but less serious, fashion to the proof of existence
conditions in LAMBDA 3.2). Instead, functions in Simplified ML are shown
to be total by a simple syntactic check. This check is a special case of the
“complexity” argument, where the complexity is the lexicographic product of the
“sizes” of the patterns in the recursive call (this is similar to a scheme proposed
by Burstall [Bur87]). All functions which pass this check are total, but many
total functions fail the check. A better system would allow the user to prove
termination of a function by hand in the case that the syntactic check failed but
the user could see that the function was, indeed, terminating. Although this is
quite feasible in theory, it makes implementation more troublesome and has not
been adopted in the current prover.

Another possibility is to regard partial functions as loose specifications of
total functions—the function declaration still specifies a total function, but one
can only reason about the restriction of the function to that part of its domain
over which its value is defined by its declaration. This idea is described by Finn,
Fourman and Longley [FFL97]. It has the advantage that once a function is
proven total, one need no longer reason about its definedness, (making it no more
complex than the system we adopt for total functions), but in addition one may
prove properties of partial functions. However, the current version of the scheme
is a poor match with ML—some total functions cannot be proven total, and,
more seriously, some functions which diverge can be proven to have a value (a
similar problem occurs in our logic unless great care is taken over substitution,
see Section 7.3.3).

Datatype declarations cannot have constructors which take function types
containing the type being declared for two reasons:

• The type cannot appear on the left of a function type (a negative occur-
rence) because one could not then model the type as a set—it is too large.
(Such declarations are valid when types are modelled as domains, but this
is irrelevant for our models).
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• The type cannot appear on the right of a function type because this means
that it is impossible (to my knowledge) to give an induction rule for the
type.

Datatypes in Standard ML are generative (that is, two identical datatype
declarations give rise to different types). During elaboration (Rule 29), each
datatype is given a unique type name, which the programmer never sees, but
which is used to tell datatypes apart. It is necessary to make these names explicit
in Simplified ML. Consider the judgement:

decseq `Clet datatype T = c in c end

≈ let datatype T = c in c end

There are two interpretations of this:

• it is a straightforward instance of the reflexivity rule, and is valid;

• the datatypes must be different because of generativity, hence the judgement
cannot be valid: there must be a hidden difference between the datatypes
(this difference is between the type names).

These interpretations are contradictory, but both may be appropriate at differ-
ent times. The problem lies in the fact that the proposition part of a judgement
is not ordered in the same way as a declaration sequence—one cannot simply
conclude that two datatype declarations refer to different types.

One solution might be to abandon generativity, and identify all datatypes
which have identical declarations. But one could then have judgements such as:

. . . ; datatype T = c; . . . ; val x = c; datatype T = c `C
x ≈ c

This seems to run counter to the ideas of ML—one must look through all previous
declarations in order to ensure that a datatype is new.

It is necessary, then, that datatypes have a type name associated with them.
The type name of a type is used whenever a type constructor or value constructor
of that type is used. It would be possible for a system to annotate declarations
and type and value constructors with type names automatically. Type names
should be unique (although, as we shall see in Chapter 7, the logic does not
enforce this restriction).

Simplicity is the principal reason why patterns in a match must be non-
overlapping—if they were to overlap it would be necessary to add conditions
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to any rule reasoning about the match to the effect that no previous patterns
matched successfully. Such conditions would be enormously complex, and so
allowing overlapping patterns would hinder rather than help the user. Expres-
sions containing non-exhaustive patterns may have no simple interpretation in the
model we adopt—what value does an expression denote when pattern matching
fails?

Declarations of free variables are necessary for reasoning about λ abstractions
and quantifiers. Type constraints are omitted in order to simplify the set U of
scoped type variables in a context.

All other changes are made in order to reduce the language to a manageable
size.

6.1.2 Syntax

The grammar for Core Simplified ML is given in Figures 6.2, 6.1 and 6.3—compare
with Figure 3 on page 8 of the Definition.

The Definition’s syntax for “. . . seq” has been modified in the case of the
syntactic classes BDecSeq and FDecSeq, so a bdecseq is a semi-colon separated
list of declarations (the semi-colon acts like cons), and an fdecseq is a semi-colon
separated list of declarations running in the other direction (the semi-colon acts
like tack), whereas the Definition says a decseq is either a single declaration
or a comma-separated list of declarations enclosed in parentheses. The empty
declaration sequences in both BDecSeq and FDecSeq is written nothing. This
difference between the two types of declaration sequence is simply in order to
make the formulation of certain rules more natural, for example let introduction
(LetI), and splitting let expressions (LetCong2).

Derived forms are treated exactly as in Standard ML. Simplified ML has all
the derived forms of Standard ML, and in addition singleton declaration sequences
may be written as simply dec rather than nothing; dec or dec; nothing. This
means that the constant nothing need never explicitly appear except when a dec-
laration sequence with zero items is required: all other declaration sequences can
be formed by adding items to singleton lists. There is also an append operation
on both forms of declaration sequence, written decseq1 @ decseq2.

In this section, I treat the difference in their method of formation as the
only difference between the two kinds of declaration sequence. This glosses over
an important point: our representation of the logic has two different kinds of
variable—b-variables and f-variables, so a bdecseq binds b-variables to declarations
and an fdecseq binds f-variables to declarations. In the grammar, all declaration
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sequences are simply written decseq. Declarations must be parametrised on the
type of variable bound—but both sorts of declaration have the same syntax, so
here we denote each simply by dec. The distinction between b-variables and f-
variables is explained at some length in Chapter 4, and the use of each is clarified
there: here, they are assumed to be the same.

There are some restrictions on datatype declarations. Given a declaration:

datatype tvs tctn = conbind

the datatype is well-founded (i.e. non-empty) if there is at least one non-recursive
value constructor. Testing this is quite simple (the encoding is omitted). It is
also necessary to test if a datatype is well-formed in the sense that recursive
occurrences in the declaration of the value constructors are identical to (have the
same type-variable parameters as) the binding occurrence:

datatype (’a, ’b) T__t1 = E | N of ’a * ’b * (’a, ’b) T__n

satisfies this criterion, but

datatype (’a, ’b) T__t1 = E | N of ’a * ’b * (’b, ’a) T__n

does not, since (’a, ’b) T__n is different to (’b, ’a) T__n.
All Simplified ML datatype declarations must satisfy this condition and must

be well-founded. In addition, the datatype being declared may not appear as part
of a function type in its own declaration.

Given a case expression of the form case e of p1 => e1 | . . . | pm => em (this
may be a RecCase expression), if pi matches e, then there is no other j, j 6= i,
such that pj matches e—that is, patterns are exclusive—and there will always be
an i such that pi matches e—that is, patterns are exhaustive.

Given a recursive function declaration

recdecffn v1 => . . . => fn vn => case {exprow} of match

then exprow must be 1 = v1, . . . , n = vn, where n is the numeral representing
n. As an aside, when match is:

{1 = p1,1, . . . , n = p1,n} =>e1 |
...
{1 = pm,1, . . . , n = pm,n} =>em

this exactly corresponds to the derived form:

fun f p1,1 . . . p1,n = e1
...

| f pm,1 . . . pm,n = em
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atexp ::= var
contyname

{ 〈exprow〉 }
let decseq in exp end
( exp )

exprow ::= lab = exp 〈, exprow〉

exp ::= atexp
exp atexp
fn var => exp
case exp of match

match ::= mrule 〈| match〉

mrule ::= pat => exp

Figure 6.1: The grammar for Simplified ML expressions and matches

Recursive functions must be in a form which guarantees them to be total.
Given some recursive occurrence of the function being declared, f a1 . . . am,
where f can have at most n arguments, n ≥ m, this occurrence must, because of
the conditions on recursive function declarations, be in a match rule of the form:

(p1, . . . , pn) => e

For each such occurrence of f , there is a k, 1 ≤ k ≤ m, such that for 1 ≤ i < k,
each ai is exactly pi, and ak is strictly smaller than pk.

The relation “smaller” is the smallest relation satisfying:

• an expression is smaller than a pattern which is identical to it;

• if e is smaller than p, then e is smaller than p′, where p′ is a pattern con-
taining p as a sub-pattern.

An expression is strictly smaller than a pattern if it is smaller and is not identical
to the pattern (this definition is equivalent to the one given by Coquand [Coq92]).

In addition to these changes, the Isabelle parser generates abstract syntax
trees in which the syntactic classes Exp and AtExp are joined. It also converts
reccase to the corresponding case expression, and recexp to fn expressions.
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dec ::= val valbind
datatype datbind
local decseq1 in decseq2 end

bdecseq ::= nothing
dec ; bdecseq
dec

fdecseq ::= nothing
fdecseq ; dec
dec

valbind ::= var = exp
rec recbind

recbind ::= var = recexp

recexp ::= fn var => recexp
fn var => reccase
( recexp )

reccase ::= case { exprow } of match

datbind ::= tyvarseq tycontyname = conbind

conbind ::= con 〈of ty〉 〈| conbind〉

Figure 6.2: The grammar for Simplified ML declarations and bindings
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atpat ::= var
contyname

{ 〈patrow〉 }
( pat )

patrow ::= lab = pat 〈, patrow〉

pat ::= atpat
contyname atpat

ty ::= tyvar
{〈tyrow〉}
tyseq tycon
ty1 → ty2

( ty )

tyrow ::= lab : ty 〈, tyrow〉

Figure 6.3: The grammar for Simplified ML patterns and type expressions

6.1.3 Static semantics

Rules which are concerned with features omitted from Simplified ML are omitted
completely—they are given in Table 6.1. If a rule has an alternative form, the
options are given letters, so a rule x〈y〉〈〈z〉〉 has options (a) x, (b) xy, (c) xz, and
(d) xyz.

Rule 6 should be changed to reflect the fact that the correct syntax for let

expressions is now let decseq in exp end and not let dec in exp end. Similarly,
Rule 22 should reflect the new syntax local decseq1 in decseq2 end, which replaces
local dec1 in dec2 end.

Rule 24 now refers to the empty declaration sequence and not the empty dec-
laration, and Rule 25 should reflect the fact that there are two forms of sequential
composition: one acting as cons on b-declaration sequences, the other acting as
tack on f-declaration sequences.

There are also some changes to be made to Rule 27.

C + VE ` ToValBind(recbind)⇒ VE
C ` rec recbind⇒ VE 27

The function ToValBind is the obvious injection from the syntactic class RecBind
to the Standard ML syntactic class ValBind.
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Rule number Description
1 special constants
4 exception constructors
11 type constraints
12 handle expressions
13 raise expressions
18 type declarations
20 abstype declarations
21 exception declarations
23 open declarations

25(a) sequential composition without ;
26(b) simultaneous value bindings

28 type bindings
29(b) simultaneous datatype bindings

31 exception bindings
32 exception bindings
33 wildcard pattern
34 special constant patterns
37 exception constant patterns
40 labelled record wildcard pattern
44 exception application patterns
45 type constrained patterns
46 layered patterns

Table 6.1: Rules omitted from the static semantics of Simplified ML
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6.1.4 Dynamic semantics

Since Simplified ML has neither exceptions nor imperative assignment, both the
exception convention and the state convention are irrelevant, and we take the
rules to be just those printed in the Definition. Rules which are concerned with
features omitted from Simplified ML are omitted completely—they are given in
Table 6.2.

There are a number of minor alterations to the remaining rules similar to the
alterations made in the static semantics.

6.2 The Modules Language

In the previous section, we described in detail the modifications needed to turn
Core Standard ML into Core Simplified ML. We approach the Modules language
in a different way: we describe the properties we require of a modules system, and,
without going into detailed definitions, observe that the ML Modules language
needs only minor changes in order to have these properties.

• Every module must have an explicit signature. This means that we need
not worry about the difference between principal and non-principal signa-
tures. Obviously, one could (automatically) annotate Standard ML Modules
programs with principal signatures, so one can regard this requirement as
largely cosmetic.

• Every visible value must have a visible type. Consider the following exam-
ple.

structure S =

struct

datatype T = C;

val x = C;

datatype T = C;

end;

The type of x is not visible. There appear to be no real uses for this
“feature,” and I contend that no well-written program uses it.

• We do not consider functors in this dissertation.
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Rule number Description
103 special constants
106 exception constructors
114 ref application
115 := application
116 basic value applications
118 pattern matching failure in applications
120 handle expressions
121 handle expressions
122 raise expressions
125 pattern matching failure in matches
126 pattern matching failure in matches
128 pattern matching failure in match rules
130 exception declarations
132 open declarations

134(a) sequential composition without ;
135(b) simultaneous value bindings

138 exception bindings
139 exception bindings
140 wildcard pattern
141 special constant patterns
142 special constant patterns
145 pattern matching failure in constructor constant patterns
146 exception constant patterns
147 exception constant patterns
150 labelled record wildcard pattern
151 pattern matching failure in labelled record patterns
155 pattern matching failure in constructor application patterns
156 pattern matching failure in exception application patterns
157 pattern matching failure in exception application patterns
158 ref application patterns
159 layered patterns

Table 6.2: Rules omitted from the dynamic semantics of Simplified ML
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Chapter 7

Reasoning about Core Simplified
ML

In a word, he would say, error was error,—no matter where it fell,—
whether in a fraction,—or a pound,—’twas alike fatal to truth, and
she was kept down at the bottom of her well as inevitably by a mistake
in the dust of a butterfly’s wing,—as in the disk of the sun, the moon,
and all the stars of heaven put together.

He would often lament that it was for want of considering this prop-
erly, and of applying it skilfully to civil matters, as well as to specula-
tive truths, that so many things in this world were out of joint;—that
the political arch was giving way;—and that the very foundations of
our excellent constitution in church and state, were so sapped as esti-
mators had reported.

—Laurence Sterne, Tristram Shandy

In this chapter I give a logic, called Emily, for reasoning about Core Simplified
ML. This logic is designed with implementation in Isabelle in mind. It contains
a version of Higher-Order Logic similar to the logic given in Chapter 4. The
features of note are:

• it uses McKinna-Pollack binding, as does the logic of Chapter 4;

• it uses backwards type-checking, and annotated deductions;

• in a judgement such as Γ ` P , we now allow Γ to contain Simplified ML
declarations, and P to contain Simplified ML expressions.

Thompson and Hill [HT95] give a method for writing Miranda programs as
Isabelle logics which has much in common with my work. (In comparing them,
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it should be borne in mind that Miranda is a lazy language, and so many of the
rules of the logic are different to the corresponding rules for ML; for example, the
Miranda substitution rule need not be careful to avoid situations which cause non-
termination in an eager language like ML. They also make different choices to me
in other areas: they allow non-termination, for instance). Thompson and Hill give
a separate logic for each Miranda program, and regard the process of producing
the logic as a form of compilation. An example of an advantage of this style is that
they can represent each Miranda type as a separate Isabelle type, and use Isabelle
meta-type polymorphism to do the duty of Miranda type polymorphism (this
is reminiscent of the advantages of shallow embeddings [BGG+92]). The main
disadvantage is that it is difficult to relate the properties of different Miranda
programs, except by merging the theories representing them.

In contrast, I give a single logic for reasoning about all Simplified ML pro-
grams. The costs of this are reminiscent of the disadvantages of deep embeddings:
there is one Isabelle type of ML types, and ML type inference must be encoded
in all its detail. In fact, this encoding in Isabelle has been done by Cant and
Ozols [CO92], (and an implementation of Emily in Isabelle would be free to use
this). ML type inference is a complex process, and the fact that it has been
encoded in this way means that we can use the exact ML type system in all its
detail, rather than a compromise system chosen to fit easily with Isabelle typing.

However, the crucial advantage of the approach I take is that it is very easy
to relate separate pieces of ML code, since each judgement can be relative to
a different set of ML declarations. The central concern in this dissertation is
reasoning about modular programs and the relation between them: this is made
considerably easier by our ability to reason about different programs in the same
derivation.

The Emily logic also has similarities to the logic of LAMBDA 4.0 [FF91],
which allows reasoning about terminating programs in a functional subset of
Core ML. As in Emily, the LAMBDA logic is based on the Simple Theory of
Types. However, each ML program is represented in the LAMBDA prover as a
separate object, and each proof is done relative to one such object. This means
that LAMBDA has just the same drawbacks as the Miranda prover for reasoning
about modular programs: programs cannot be related except by declaring them
at the same time. A bonus of the form of judgements in Emily is that it becomes
simple to deal with properly polymorphic let expressions: one can basically move
declarations back and forth between the let expression and the context at will.
In contrast, LAMBDA regards let as sugar for a λ abstraction and application,
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which means that each occurrence of a let-bound variable must have the same
type.

Another benefit of this system is that let expressions can be treated in a cor-
rect, polymorphic fashion. This is because there are rules for moving declarations
between the context of declarations and a let expression in the proposition. The
expression let val v = e in e′ end is not sugar for (λv.e′)e.

The exact formulation of Higher-Order Logic used in Emily is modelled on that
used in HOL [GM93], with changes to account for the differences in the form of
the logic. As is usual in Higher-Order Logic empty types are scrupulously avoided,
unlike Paulson’s formulation [Pau90] which embraces empty types. Terms of the
logic may contain ML expressions (which may refer to the context of a judgement),
and so the ML type system is a subset of the type system for the logic as a whole
(in keeping with LAMBDA, and in contrast to usual Isabelle practice, purely
logical types are referred to as meta-types).

It appears at the moment that there is little need for HOL’s extensive type
definition facilities—when a new type is needed, one simply declares an appropri-
ate Simplified ML datatype. In turn, this makes the type of individuals largely
redundant, and also the axiom of infinity. However, it may be that, as an exten-
sion to the system we give, one might wish to broaden the class of terminating ML
functions allowed (recall that all Simplified ML functions must terminate). We
might allow functions which were proved to terminate by the standard method of
giving a measure of complexity—a value in a well-founded type—which strictly
decreases with each recursive call. In this case, the possibility of describing well-
founded types without resorting to ML may well be useful.

7.1 Syntax

The grammar for meta-types is given in Figure 7.1: it is important to notice
that ML types form a subset of meta-types. The grammar for terms is given
in Figure 7.2. Constants may not be re-bound by Simplified ML declarations,
and a declaration which attempts to re-bind a constant is not well-formed. The
constants have their usual derived forms; note that equality is typed: M ≈τ M ′.
Unlike the logic in Chapter 4, we treat ∧, ∨, ¬, ∀, ∃, T and F as proper constants,
rather than defining them at the start of the declaration sequence.

There are two judgement classes, each with a single form: their grammar is
given in Figure 7.3. The syntactic class FDecSeq′ is similar to FDecSeq, except
that it may contain declarations of free variables param fvar: mty. These may not
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mty ::= mtyvar
ty
mty � mty

Figure 7.1: The grammar for meta-types

mterm ::= mvar
exp
λmvar: mty.mterm
mterm1 mterm2

const

const ::= ⊃
ε
≈
∧
∨
⊃
¬
∀
∃
T
F

Figure 7.2: The grammar for logical terms

judge ::= fdecseq′ ` mterm

tyjudge ::= fdecseq′ `context mterm

Figure 7.3: The grammar for judgements
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appear in a declaration sequence anywhere else. They will be used to declare free
variables, and this restriction simply means that they cannot appear inside “real”
ML code.

A context is a semantic object, as described in the Definition. It is intended
that in a system they would be transparent to the user: on input either judge
goals are used, or Isabelle scheme variables which the system may instantiate
with the appropriate value later; on output the system simply omits displaying
contexts. Automatic tactics would handle the calculation and use of contexts as
part of the elaboration process.

Type names, described in Section 6.1.1 have only one restriction on their use.
Given types ttn and t′tn′ appearing anywhere in the same judgement, if tn and
tn′ are the same, then the type declarations must be the same. That is, the
declarations must declare types and constructors with the same names and the
same arities and argument types. Thus it is possible to declare identical types
twice in a judgement, which is not possible in ML; however, it means that the
reflexivity example is allowed:

ds `Clet datatype T tn = C in C end

≈T tn

let datatype T tn = C in C end

7.2 Static Semantics of the Core Logic

In this section, I define the typing relation C `LOG P =⇒ mty, where C is an ML
type context, P is a term, and mty is a meta-type. The relation C `STAT e =⇒ ty
is Simplified ML elaboration.

Meta-types are monomorphic. There is no facility for declaring meta-values in
declaration contexts (although one could easily add it in the manner of Chapter 4),
and param declarations are monomorphic. Although the logic as stated contains
meta-type variables and the rule InstType, an Isabelle implementation could
do away with these and instead use free Isabelle meta-variables to get typical
ambiguity. Here is the rule InstType.

Type instantiation (InstType):

decseq `C P
decseq[t/α] `C[t/α] P [t/α]

• No distinct type variables in P become identified after the substitution.
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The HOL logic uses a simultaneous substitution operation to instantiate sev-
eral types at once. A little thought makes it clear that the above rule is equivalent.
The rule captures the behaviour of the relation � between type-schemes in ML.

The basic type checking of terms is really extremely simple, thanks to the
simple grammar for terms. We take advantage of the fact that terms never have
any unbound b-variables (terms are b-closed) to reduce the task of typing variables
to typing f-variables (if an expression is just a variable and is b-closed, then it
must be an f-variable).

Meta-variables (MVarElab):

C(p) = t

C `LOG p =⇒ t

ML expressions (ExpElab):

C `STAT exp =⇒ t
C `LOG exp =⇒ t

Abstractions (AbsElab):

C `STAT param p: t =⇒ E C ⊕ E `LOG M [p/v] =⇒ t′

C `LOG λv: t.M =⇒ t� t′

Here, the param declaration is used simply to introduce a free variable of a
certain type. LAMBDA’s vbl declaration is similar, except that it is global in
scope since LAMBDA has no notion of a declaration being local to a particular
judgement.

Application (AppElab):

C `LOG M =⇒ t′ � t C `LOG N =⇒ t′

C `LOG M N =⇒ t

Constants (ConstElab):
t ∈ CINIT(c)

C `LOG c =⇒ t
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In the initial context, constants have the following sets of types:

CINIT(ε) = {(A� o)� A,A is a meta-type}
CINIT(⊃) = {o� o� o}
CINIT(≈) = {A� A� o, A is a type}
CINIT(⊃) = {o� o� o}
CINIT(∧) = {o� o� o}
CINIT(∨) = {o� o� o}
CINIT(¬) = {o� o� o}
CINIT(∀) = {(A� o)� A,A is a meta-type}
CINIT(∃) = {(A� o)� A,A is a meta-type}
CINIT(T) = {o}
CINIT(F) = {o}

The type of constants is found from the initial context—since constants cannot
be re-bound, one could as well use the current context. The meta-type o is the
type of propositions.

Only one form of equality relation is needed for both logical terms and ML
expressions, since meta-types include ML types as a subset; likewise, only one
form of selection operator is needed.

It is necessary to add a form of declaration which declares free variables intro-
duced by quantifier reasoning—this is the param declaration. These declarations
are monomorphic, and so the following simple rule works.

C `STAT ty =⇒ τ

C `STAT param p: ty =⇒ {p 7→ τ}

7.3 Deduction Rules

Let @@ be the append operation on declaration sequences. It will be useful to
have the following definitions.

ExtCtxt(C, fdecseq, C ′) = ∃E.C `STAT fdecseq =⇒ E ∧ C ′ = C ⊕ E
IsCtxt(fdecseq, C ′) = ExtCtxt(CINIT, fdecseq, C ′)

ExtCorrect(C, fdecseq, C ′, P ) = ExtCtxt(C, fdecseq, C ′) ∧ C ′ `LOG P =⇒ o

IsCorrect(fdecseq, C ′, P ) = ExtCorrect(CINIT, fdecseq, C ′, P )

That is to say ExtCtxt(C, fdecseq, C ′) means that C ′ is the context obtained
by elaborating fdecseq in C. IsCtxt(fdecseq, C ′) means that C ′ is the context
obtained by elaborating fdecseq in the initial context. ExtCorrect(C, fdecseq, C ′, P )
will be used to indicate that, given that fdecseq′ `C . . . is type correct, then
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C ′ `fdecseq′@@fdecseq P is also type correct. IsCorrect(fdecseq, C, P ) means that
C `fdecseq P is type correct.

It will be seen that there are cases in which this annotation fails to reduce the
amount of type checking done. For example:

fdecseq@@fdecseq′ `C Q
fdecseq `C′ P

In rules such as this we must throw away the entire context C and rebuild C ′

from scratch. There are two ways around this.

• Change the form of elaboration contexts such that they are formed from a
stack of “frames”. When a rule such as the above is encountered, we can get
to C ′ from C by popping the frames relating to fdecseq′ from the stack. This
has the disadvantage that ML elaboration contexts are defined in terms of
sets: the notion of discarding frames is not used. Although frames are a
standard notion in compilation, adopting them means diverging from the
Definition. A more serious objection is that in some cases it may not be
obvious how many frames should be discarded, and we may have to rebuild
C ′ from scratch anyway: the more complex system would have gained us
nothing.

• Annotate each declaration with the environment to which it elaborates. We
can then quickly obtain C ′ by sticking together the environments for the
declarations in fdecseq. This, however, increases the verbosity of rules and
may also lead to a great increase in the space needed to store judgements.

Practical experience of the system is needed before we can judge if either
of these two changes is justified. Such changes are about the level of detail of
annotation provided, and are not crucial to the logical core of the system.

7.3.1 Datatype declarations and labelled record types

Each datatype has three rules associated with it:

• An induction rule. (This is the so-called “no junk” rule).

• A rule stating that terms formed from different constructors are distinct.
(“No confusion”).

• A rule stating that constructors are injective, that is to say, if two terms
formed by applying arguments to the same constructor are equal then the
arguments to the constructor are equal.
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These rules are different for each datatype: sufficiently different that they
cannot be expressed simply as instances of a schematic rule in Isabelle. There
are, however, two ways in which these rules can be generated. Isabelle now has
an “oracle” facility. This allows external reasoners to be applied to solve part
of an Isabelle proof. It would be possible to write an ML program to create the
rules for a datatype in the form required by Isabelle, and then to use this ML
program as an oracle. This approach has the following features:

• the ML program would produce the rules quickly;

• the ML code would be easy to program, and comparatively clear;

• however, there is no mathematical definition of the rules, and, short of
verifying the ML code, it is difficult to prove properties of the rules which
would increase our confidence in their correctness.

Alternatively, the rules can be generated directly via a “logic program” (ex-
pressed as a primitive recursive function, or an inductive set) written as part of
the Isabelle theory. For example, here is the induction rule for a datatype in
Isabelle:

Datatype induction (Ind):

decseq; datatype tvs tctn = conbind `C R

• Ind(tvs, tc, tn, conbind, R)

The relation Ind is itself given by Isabelle rules, of which these few will give a
flavour:

Ind1(tvs, tc, tn, conbind, p, R[p/P ])
Ind(tvs, tc, tn, conbind, ∀P : tvs tctn � o. R)

• p 6∈ R

Ind1(tvs, tc, tn, con c, p, (p c) ⊃ ∀e: tvs tctn. p e)

Hyp(tvs, tc, tn, c, t, p,H)
Ind1(tvs, tc, tn, con c of t, p,H ⊃ ∀e: tvs tctn. p e)

Ind1(tvs, tc, tn, conbind, p, R)
Ind1(tvs, tc, tn, con c | conbind, p, (p ctn) ⊃ R)
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Hyp(tvs, tc, tn, c, t, p,H) Ind1(tvs, tc, tn, conbind, p, R)
Ind1(tvs, tc, tn, con c of t | conbind, p,H ⊃ R)

The relation Hyp(tvs, tc, tn, c, t, p,H) indicates that H is the case of the in-
duction for the constructor c which takes an argument of type t—this may be a
“base case” (if t is not recursive) or may include an induction hypothesis (if t is
recursive). The encoding of Hyp is in a similar style to the encoding of Ind1.

This approach has the following features:

• Isabelle deduction is slow (compared to ML execution), and generating
many rules in this way may slow the theorem prover unacceptably;

• as can be seen from the sample above, such Isabelle code is not especially
perspicuous;

• the code which generates the rules is a formal object in Isabelle, and it is
therefore simple to prove properties of it.

We leave open the question of which approach is best.
Labelled records need two rules:

• A rule stating that equality on labelled records is defined component-wise.
This is like the injectivity rule for datatypes.

• A rule stating that a labelled record can always be decomposed into its
components. This is like the induction rule for datatypes—except that,
unlike datatypes, labelled record types cannot be recursive.

There is no need for a “no confusion” rule for labelled record types since they can
only be formed in one way. Again, we can encode these rules via logic programs
within Isabelle, or by calls to an “oracle” ML program.

7.3.2 Simplified ML

Suppose that we have a case expression of the form case exp of match, where
match is pat1 => exp1 | . . . patn => expn. Suppose further that pattern pati
contains the b-variables b1 : τ1, . . . , bp : τp. We assert a rule of the form

decseq `C ∀b1 . . . bp: τ1 . . . τp. case pati of match ≈ expi
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(The pattern pati is regarded as an expression in this rule.) In Isabelle, this family
of rules would be coded as:

decseq `C CaseProp(i,match)

As usual, CaseProp is coded either within Isabelle or as an Isabelle oracle.
This is different to the rules for case in LAMBDA. There, case is “compiled”

to εv: τ. P , where P is true if exp matches pati, and expi evaluates to v. Since the
patterns are exhaustive, there is such a v, and since they are exclusive, there is
just one such v. This approach is reasonable where such compilation is possible,
but the equivalent rule in Isabelle is less elegant and directly applicable than our
rules. The two approaches are logically equivalent.

The next group of rules concern let expressions.

Empty let introduction (LetCong1):

decseq `C let nothing in e end ≈ e

Splitting let expressions (LetCong2):

fdecseq `C let bdec; bdecseq′ in e end ≈ let bdec in let bdecseq′ in e end end

let introduction (LetI):

fdecseq; bdec〈f1 . . . fn/b1 . . . bn〉 `C′ e[f1 . . . fn/b1 . . . bn] ≈ e′

fdecseq `C let bdec in e end ≈ e′

• [vi, . . . , vn] = Bound(dec);

• For all 1 ≤ i < j ≤ n, if pi = pj then vi = vj;

• For each i, pi 6∈ e, e′, dec.

The first side-condition uses the semantic function Bound which gives a list
of the variables bound by a declaration. Lists are written as in ML: [a1, . . . , an].
Sometimes set operations (intersection, union, and so on) are applied directly
to lists: in these cases it is assumed that the list is silently converted to a set
beforehand. This side-condition means that dec binds n variables.

The second side-condition formalizes the fact that the pi are “at least as
distinct” as the vi they replace. When replacing identical b-variable names in
two separate scopes, it does not matter if the replacing f-variables are distinct or
not (since the scopes are separate). One might imagine that this is too weak, and
that one can derive:
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decseq; local nothing in val p1 = e1; val p2 = e2 end `C′ p1 ≈ e1

decseq `C let local nothing in val v = e1; val v = e2 end in v end ≈ e1

Informally, this says that from e1 ≈ e1 one can derive e2 ≈ e1. This is not
possible, however, since v[p1/v, p2/v] is p2 and not p1.

The requirement of the third side-condition that pi 6∈ dec is more restrictive
than necessary: one need only ensure that the replacement of vi by pi does not
capture free occurrences of pi later in the declaration. This is a lot more complex
to formulate, however, and so the simpler side-condition is used.

It might be supposed that side-conditions such as:

• C ′ `LOG e[f1 . . . fn/b1 . . . bn] ≈ e′ =⇒ o where C ′ = C ⊕E;

• C `STAT dec〈f1 . . . fn/b1 . . . bn〉 =⇒ E;

would be needed in order to ensure that the proposition of the premiss is type
correct: they are not necessary since they can be inferred from the fact that the
let expression is type correct, and that no variables bound by dec appear in e′.

let elimination (LetE):

decseq `C′ let dec in e end ≈ e′

decseq; dec〈f1 . . . fn/b1 . . . bn〉 `C e[f1 . . . fn/b1 . . . bn] ≈ e′

• [vi, . . . , vn] = Bound(dec);

• For all 1 ≤ i < j ≤ n, if pi = pj then vi = vj;

• For each i, pi 6∈ e, e′, dec.

With the exception of the typing side-conditions, this is exactly LetI turned
upside down. As with LetI, side-conditions to ensure the type correctness of the
proposition of the premiss, such as:

• C `STAT dec〈f1 . . . fn/b1 . . . bn〉 =⇒ E;

• C ′ `LOG e ≈ e′ =⇒ o where C ′ = C ⊕ E;

are unnecessary.
Now we come to the rules which concern local declarations. First there are

four rules with no logical content which perform the same function for local as
LetCong1 and LetCong2 perform for let.
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Empty local introduction (LocI1):

decseq @ decseq′ `C P
decseq; local nothing in decseq′ end `C P

Empty local elimination (LocE1):

decseq; local nothing in decseq′ end `C P
decseq @ decseq′ `C P

The rule LocE1 is simply LocI1 turned upside down. There are no side-
conditions, since for both rules the left-hand-side of the premiss elaborates to the
same environment as the left-hand-side of the consequent.

Unwinding local (LocI2):

decseq; local dec; decseq′ in decseq′′ end `C P
decseq; local dec in local decseq′ in decseq′′ end end `C P

Winding up local (LocE2):

decseq; local dec in local decseq′ in decseq′′ end end `C P
decseq; local dec; decseq′ in decseq′′ end `C P

Again, these rules are the inverse of each other, and again no side-conditions
are necessary.

Now there are the rules which “do the work”.

local introduction (LocI):

decseq; dec〈f1 . . . fn/b1 . . . bn〉 @ decseq′[f1 . . . fn/b1 . . . bn] `C P
decseq; local dec in decseq′ end `C′ P

• [vi, . . . , vn] = Bound(dec);

• For all 1 ≤ i < j ≤ n, if pi = pj then vi = vj;

• For each i, pi 6∈ P, dec, decseq′.

Side-conditions such as:

• C ′ `LOG e ≈ e′ =⇒ o where C ′ = C ⊕ E;

• CINIT `STAT decseq; dec〈f1 . . . fn/b1 . . . bn〉 @ decseq′[f1 . . . fn/b1 . . . bn] =⇒
E;
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are unnecessary, since none of the variables bound in P have changed. No vari-
ables used in P are hidden by the local, by the third side-condition. The substi-
tution operation on decseq′ is safe by the third side-condition, so no substitution
of pi can be captured.

local elimination (LocE):

decseq; local dec in decseq′ end `C′ P
decseq; dec〈f1 . . . fn/b1 . . . bn〉 @ decseq′[f1 . . . fn/b1 . . . bn] `C P

• [vi, . . . , vn] = Bound(dec);

• For all 1 ≤ i < j ≤ n, if pi = pj then vi = vj;

• For each i, pi 6∈ P, dec, decseq′.

Apart from the typing side-conditions, this rule is, again, the introduction
rule upside down. Again, side-conditions such as:

• C ′ `LOG e ≈ e′ =⇒ o where C ′ = C ⊕ E;

• CINIT `STAT decseq; local dec in decseq′ end =⇒ E;

are unnecessary. This rule is considerably less natural for backwards proof than
the introduction rule, since one must decide which declarations are to move inside
the local in advance.

Next, we have rules which deal with value declarations and recursive value
declarations.

val declarations (ValCong):

fdecseq `C′ e ≈τ e′
fdecseq; val f = e `C f ≈τ e′

• f 6∈ e′;

• CINIT `STAT fdecseq =⇒ E;

• C ⊕ E = C ′.

Suppose the conclusion is type-correct. Then f : τ , and so it must be the case
that e : τ , too. Hence the hypothesis is type-correct.

fdecseq; val f = e `C f ≈ e
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• f 6∈ e

There is another possible form of this rule:

val rec declarations (ValRecCong):

decseq; val rec p = e `C p ≈ e

This rule is just like the alternative form of ValCong, except that it does not
need the side-condition, since any occurrence of p in e refers to this declaration,
not a previous one.

A rule is needed for ML equality tests.

ML equality tests (EqCong):

decseq `C ((e = e′) ≈ true) ≈ (e ≈ e′)

If e and e′ are type correct, this rule states that ML equality on elements of
equality type (=) is the same as the usual non-computable equality (≈).

Finally, there are rules which allow us to reason about function abstractions.
These rules have counterparts in the Higher-Order Logic part of the logic which
allow reasoning about λ abstraction rather than fn abstraction.

ML β-conversion (MLBetaCong):

decseq `C (fn v => e) e′ ≈ e[e′/v]

ML η-conversion (MLEtaCong):

decseq `C ∀f : t→ t′. fn v => (f v) ≈ f

7.3.3 Higher-Order Logic

Our logic is based in part on the logic of HOL [GM93]: the purely logical part of
the logic (as opposed to the part concerned with ML) is described in this section.

Reflexivity (Refl):
decseq `C M ≈M

There are no type side-conditions on this rule, although it is not well-typed
unless M is well-typed. This is because it is only necessary that rules have the
property that their premisses are type correct when their consequents are type
correct. Since Refl has no premisses, this property is vacuously true.
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β-conversion (BetaConv):

decseq `C (λv: t.M) N ≈M [N/v]

This rule illustrates one advantage of using the McKinna and Pollack bind-
ing strategy, rather than the more traditional Curry and Feys substitution: an
“unsafe” (and very simple) substitution operation can be used, and still “free
variables” (f-variables) of N can never be captured, because f-variables and b-
variables are disjoint. Again, there are no type side-conditions.

Abstraction congruence (AbsCong):

decseq; param p: t `C⊕E M [p/u] ≈M ′[p/v]
decseq `C (λu: t.M) ≈ (λv: t.M ′)

• p 6∈M

• p 6∈M ′

• C ` param p: t =⇒ E

Substitution (Subst):

decseq `C M ≈M ′ decseq `C P [M/p]
decseq `C P [M ′/p]

• C `LOG M ≈M ′ =⇒ o;

• P [M/p] is well-formed;

• P [M ′/p] is well-formed.

Naturally, this rule is horrid. In order to use it in backwards proof, it is
necessary to first “unsubstitute” a term for a (new) parameter in the consequent
before the rule can be applied. This cannot be done without providing some
guidance to the prover—namely, which term is being substituted. That this rule
is so unpleasant is the result of two factors:

1. the only substitution operations available can only substitute for an f-
variable or a b-variable;

2. substitution is not a primitive, and so putting a term into the form P [M/p]
cannot be a trivial matter, but actually requires some proof effort.
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The well-formedness side-conditions of this rule require some justification.
They are needed because, in a call-by-value language such as ML, the usual
substitution rule is not safe. Consider the following which can be derived by using
MLBetaConv (assuming n 6∈ e2), and decseq contains the declaration datatype

Nat = Z | S of Nat (type names are omitted for brevity):

decseq `C (fn n => fn e1 => fn e2 =>

case n of

Z => e1

| S m => e2[m/p])
b e1 e2

≈
case b of Z => e1 | S m => e2[m/p]

Now consider the judgement:

decseq `C let

val rec factorial = fn n =>

case n of

Z => S Z

| S m => (S m) * (factorial m)

in

factorial Z

end

≈ S Z

Using the rule Subst without the well-formedness conditions gives:

decseq `C let

val rec factorial = fn n =>

(fn b => fn e1 => fn e2 =>

case b of

Z => e1

| S m => e2)

n (S Z) ((S m) * factorial m)

in

factorial Z

end

≈ S Z
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This does not terminate for any argument (since it always evaluates e2). The
problem is in the use of the rule MLBetaConv, where a non-strict construct, case, is
equated with a strict construct, function application. Usually this simply changes
the order of evaluation, but in the case that the term in which the substitution
takes place contains declarations of recursive functions (via let expressions), it
can lead to non-terminating functions. A check that the terms after substitution
are still well-formed (and thus that any Simplified ML declarations still terminate)
is then necessary. I believe that this is the simplest side-condition which ensures
soundness and still retains some form of referential transparency.

The order of evaluation in Standard ML is given by the Definition. It is
not trivial that changing the order of evaluation via Subst does not change the
value of a term: some version of the Church-Rosser Theorem is needed to ensure
that this is sound. The Church-Rosser Theorem does not hold for Standard ML
because both exceptions and state can cause differences in the value of a term
under different orders of evaluation. Although I do not prove it, there is every
reason to believe that the theorem holds for Simplified ML, since Simplified ML
bears more than a passing resemblance to a λ-calulus such as System F, which is
confluent.

As it stands, this rule is not sound for another reason, however. Suppose
decseq is:

val f = fn v => (); val f’ = fn v => v

The function f has type scheme σ = ∀α.α → unit (in an appropriate context),
and f’ has type scheme σ′ = ∀α.α → α. The type schemes σ and σ′ have a
common instance unit → unit, and for this type they are equal, since there is
only one total function unit → unit. Hence decseq `C f ≈ f’ is type correct
and valid, for the appropriate context C.

Now suppose P is p 1 ≈ p 2, M is f and M ′ is f’. P [M/p] is f 1 ≈ f 2,
which is () ≈ (). Hence decseq `C P [M/p] is type correct and true. On the
other hand, P [M ′/p] is f’ 1 ≈ f’ 2, which is type correct, despite the fact that
its elaboration is different to that of P [M/p], and is false.

There is a simple modification which prevents this—replace the first side-
condition by:

• C `LOG M =⇒ τ ;

• τ principal for M in C;

• C `LOG M ′ =⇒ τ ;
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• τ principal for M ′ in C.

This means that M has exactly the same types that M ′ has. I believe that this
solution may also require the principality side-conditions described in Section 7.2.
That is to say, the context C must be of the form CINIT⊕E, where E is principal
for decseq in CINIT.

Conceivably, there may be less restrictive ways to achieve soundness, but we
adopt this one.

Discharging an assumption (ImpI):

[decseq `C P ]....
decseq `C Q

decseq `C P ⊃ Q

Modus Ponens (ImpE):

decseq `C P decseq `C P ⊃ Q

decseq `C Q

• C `LOG P =⇒ o

In addition to these rules, there are four other axioms, before which, strictly,
we must give definitions for some constants used in the axioms:

decseq `C T ≈ ((λx: o. x) ≈ (λx: o. x))
decseq `C ∀ ≈ λP :α→ o. P ≈ (λx:α.T)
decseq `C ∃ ≈ λP :α→ o. P (εP )
decseq `C F ≈ ∀P : o. P
decseq `C ¬ ≈ λP : o. P ⊃ F
decseq `C ∧ ≈ λP,Q: o. ∀R: o. (P ⊃ Q ⊃ R) ⊃ R
decseq `C ∨ ≈ λP,Q: o. ∀R: o. (P ⊃ R) ⊃ (Q ⊃ R) ⊃ R

Now it is possible to state the four remaining axioms:

The law of the excluded middle (OInd):

decseq `C ∀b: o. (b ≈ T) ∨ (b ≈ F)

We follow the HOL formulation for the η rule, making it an axiom, rather
than a rule with premisses.

η-conversion (EtaConv):

decseq `C ∀f : t� t′. λv: t. (fv) ≈ f
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Another feature of McKinna and Pollack’s style of binding is that v cannot
appear free in f : v is a b-variable, and f must be b-closed.

Implication is antisymmetric (ImpAntiSym):

decseq `C ∀P,Q: o. (P ⊃ Q) ⊃ (Q ⊃ P ) ⊃ (P ≈ Q)

Selection (Select):

decseq `C ∀P :α→ o. ∀x:α. Px ⊃ P (εP )

7.3.4 Structural rules

The reader will have noticed that some of the rules given for reasoning about
Simplified ML are not powerful enough on their own to make interactive proof a
serious possibility. These rules have been chosen to simplify soundness arguments.
It is intended that the rules for Simplified ML should be combined with the
following structural rules in automatic proof tactics to perform useful steps.

Weakening the context (Weak):

decseq; dec `C′ P
decseq `C P

• Bound(dec) 6∈ P

• C `STAT dec =⇒ E

• C ′ = C ⊕ E

There is no need to check that P elaborates correctly in the premiss, since it
does not refer to any variable in Bound(dec) so its elaboration remains unchanged.

Strengthening the context (Stren):

decseq `C′ P
decseq; dec `C P

• Bound(dec) 6∈ P

• CINIT `STAT decseq =⇒ E

• C ′ = CINIT ⊕ E

Again, there is no need to check the elaboration of P , since C is identical to
C ′ for everything referenced in P .
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Permuting the context (Exch):

decseq; dec; dec′ `C P
decseq; dec′; dec `C P

• Bound(dec) 6∈ dec′

• Bound(dec′) 6∈ dec

• Bound(dec) ∩ Bound(dec′) = ∅

No type side-conditions should be necessary, since changing the order of dec
and dec′ affects neither which bindings are in scope (the third side-condition), nor
the meaning of those bindings (the first two side-conditions).

7.4 Models of the Logic

The model used for the logic is a simple set-theoretic one: an extension of the
model for HOL given by Pitts [GM93].

In short, types are represented as follows:

• datatypes are represented by least fixed points of their constructors (this is
possible because of the restrictions we have placed on them to ensure that
they are inductive);

• compound monotypes (records, functions) are non-empty sets of values,
constructed in the obvious way;

• polymorphic types are represented by functions from types to types, as are
parametrized datatypes.

Since we have in ML a strict separation of types and type schemes, we do not
run into the problem that polymorphism is not set-theoretic [Rey83].

It is necessary to define the representations of terms and contexts together. A
context is a mapping from variables to values (representations of terms). Terms
may need to refer to the context in which they are defined. The valuation function
is defined by induction on the structure of terms, and its details are left to the
interested reader. Note that, whenever param declarations appear, the context
becomes a function from values (representing the free param) to ordinary contexts.
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Part III

Data Reification
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Chapter 8

Data reification

Data reification is a well-known formal method used, for example, in VDM [Jon86]
and going back to Hoare’s 1972 paper [Hoa72]. In this chapter, I apply data
reification to Simplified ML.

ML Modules provide an ideal method of structuring programs for reification:
I define what it means for one Simplified ML structure to reify another. ML has
several features which must be accounted for:

• polymorphic types, such as α→ α;

• higher-order functions, such as (int→ bool)→ int;

• parametrised datatypes, such as int list.

These features mean that a reification cannot simply be a set of retrieve func-
tions, as in VDM. We develop logical structure relations, based on logical rela-
tions [Sta85], which enable us to give a family of relations, one for every Simplified
ML type. A reification is then given by a logical structure relation with certain
properties.

One surprising conjecture is that, for a large class of reifications, reification is
transitive. As Tennent [Ten94] notes, transitivity does not in general hold when
ordinary logical relations are used. All though we do not prove this conjecture,
we provide some evidence that it holds.

In order to define logical structure relations, we must examine both which
values of types over a structure are visible outside that structure, and which values
represent the same (abstract) value. This leads us to define the notion of abstract
equivalence for every type over a structure, and, from that, well-behavedness.
Well-behavedness is a generalization of VDM’s data invariants.

96



8.1 A brief introduction to data reification

In this section we outline the method of data reification, as used in VDM. For
a more detailed account, the reader should consult Jones’ VDM book [Jon86].
We describe reification for first order types and operations on those types (as
in VDM). However, since Simplified ML is a total, purely functional language
without exceptions, we will not discuss non-termination or error values.

We begin by discussing which values of a type represent abstract objects,
and show how data invariants separate those values from the meaningless “junk”
values of a type.

We introduce the notions of abstract and concrete implementations. We then
introduce the use of retrieve functions to give the relationship between an abstract
implementation and a concrete implementation which reifies it.

The discussion is not totally informal, and we will use an ML-like syntax (as
opposed to VDM syntax). It is deliberate that this suggests how reification will
work for ML.

8.1.1 Data invariants

Data reification relates elements of a “concrete” type to those of an “abstract”
type. But which elements do we wish to relate? Some values of a type might be
considered meaningless junk.

Suppose we represent finite sets by ordered lists without repetition. An un-
ordered list does not represent any set. Furthermore, operations on such values
can lead to unpredictable results.

For example, suppose the membership function looks down the list until it
either finds the value it is looking for, or finds an element larger than the one it
is looking for. Then we have the following:

member (1, [3, 1, 2]) 6= member (1, remove (3, [3,1,2]))

To separate the “useful” values, every type must have a data invariant. The
data invariant should be true for exactly the useful values.

We then require that the data invariant holds for values of the type which are
made available to the outside world (in ML, this is those values which are visible in
the signature of a structure). We also require that the operations available to the
outside world preserve data invariants. That is, if they are passed an argument
for which the relevant data invariant is true, they must return a result for which
the invariant is true. VDM requires that all operations preserve invariants, but
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we can relax that restriction: if the outside world cannot see a function, it can
do whatever it pleases behind closed doors.

This means that code which uses values of this type can never have access
to junk values: it can only use values for which the invariant is true, and the
operations it can use on these values cannot falsify the invariant.

8.1.2 Reification for first order types

Data reification [Jon86] is a method for showing that a “concrete” datatype (C.t,
say) represents an “abstract” one (A.t). Here “concrete” means roughly “more
like executable code”, so that the most concrete datatypes are programs; “ab-
stract” means “more like a specification”. In order to show that C.t is a reification
of A.t we must give a “retrieve function” from the concrete to the abstract (in
fact, from the part of the concrete datatype for which the data invariant is true
to the part of the abstract datatype for which the data invariant is true).

Furthermore, we must ensure that we are representing everything in the ab-
stract world: that is, for every abstract value there is at least one concrete value
which is mapped to it by the retrieve function. This amounts to showing that
the retrieve function is surjective.

What of operations on these datatypes? In order for a concrete function
C.f : C.t1 → C.t2 to be a reification of an abstract function A.f : A.t1 → A.t2
we must show that, starting from some concrete value x : C.t1 we obtain the same
abstract value by applying the retrieve function and then the abstract function
A.f as we do by applying the concrete function C.f and then mapping back to
the abstract. This is summarized by the commutativity of the following diagram.

C.t1
C.f- C.t2

A.t1

retrt1

? A.f- A.t2
?

retrt2

In fact, where functions are possibly non-terminating, rather than requiring
that retrt2 ◦C.f = A.f ◦ retrt1, VDM requires that retrt2◦C.f is at least as defined
as A.f ◦retrt1: that is, whenever A.f ◦retrt1 terminates, retrt2◦C.f also terminates
and the two functions return the same result . Since we are only concerned with
terminating functions, we omit further discussion of this.

In order to show a reification, then, there are several steps.

1. For each of the types ti in the reification there is a data invariant, WBti.
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2. Each operation in the reification f : t1 → t2 (in both A and C) maps
invariant values to invariant values.

3. For each type t we are reifying, we must give a retrieve function retrt : C.t�
A.t.

4. Each retrt, when its domain is restricted to the part of C.t for which the
data invariant holds, is a surjective function to the part of A.t for which the
data invariant holds.

5. The diagram above commutes, when restricted to the invariant parts of
types.

8.1.3 ML

Essentially, in data reification, we are showing that some group of types and
values can be represented by some corresponding types and values. But in ML a
“group of types and values” is a structure; and a “corresponding group of types
and values” is another structure with the same signature as the first. Thus, we
formalize reification in Simplified ML as a relationship between structures having
the same signature.

This seems the natural approach to formalizing reification in ML. Not only
that, but we also believe that this approach gives us insight into the method of
reification in general: it effectively separates the abstract and the concrete, and
it shows which parts of a program are to be reified (that is, a signature shows the
interface of a structure).

8.2 Types with holes

Suppose we have two structures S1 : SIG and S2 : SIG, where the signature
SIG contains the type α tree and the value emptyTree : α tree (and the types
int, list, and bool are pervasive, as usual). When we try to show that S2 is a
reification of S1, we will certainly need to show that S1.emptyTree is related to
S2.emptyTree. The type of such a relation is α S1.tree� α S2.tree� o. Here
are some other types we might wish to relate (assuming S1 is in the scope of S2).

Type in S1 Type in S2 Description
int S1.tree int S2.tree integer trees

α S1.tree list α S2.tree list lists of trees
α S1.tree S1.tree α S1.tree S2.tree one kind of tree

α→ α S1.tree→ bool α→ α S2.tree→ bool set membership
It will be seen that there are several kinds of type which need considering:
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holety ::= tyvar
{〈holetyrow〉}
holetyseq holetycon
holety1 → holety2

(holety)

holetyrow ::= lab : holety 〈, holetyrow〉
holetycon ::= longtycontyname

[].longtycon

As in the Definition, an Xseq is either a single X, or a series of Xs
separated by commas and terminated by brackets.

Figure 8.1: The grammar of types with holes

• polymorphic types;

• higher-order function types;

• parametrised datatypes;

• type constructors which are the same in the S1 column of the table and the
S2 column, such as S1.tree in the third example and bool in the last;

• type constructors which differ in the S1 and S2 columns, such as S1.tree

and S2.tree in the first example.

In order to capture the difference between the last two cases, we introduce
types with holes, where type constructors may appear with a “hole” in place
of the outermost structure name: [].longtycon. A type constructor with a hole
instead of a structure name stands for “the type constructor with this identifier
in each of the structures to be related”. The syntax of types with holes is given
in Figure 8.1. We are still working in a world with explicit type names: type
constructors with holes must have their type names filled in when the hole is
filled in with a structure name.

Ordinary Simplified ML types form a subset of types with holes: every type is
also a type with holes which has no holes. A type with holes over a signature SIG
is a type with holes in which every type constructor which appears with a hole,
[].t, is specified in SIG. Given a type with holes, τ , over a signature SIG, and a
structure S : SIG, we can “fill in the holes” in τ to give a type τ [S] as follows:
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α[S] = α
{lab1 : τ1, . . . , labn : τn}[S] = {lab1 : τ1[S], . . . , labn : τn[S]}
(τ1 . . . τn ttn)[S] = τ1[S] . . . τn[S] ttn
(τ1 . . . τn [].t)[S] = τ1[S] . . . τn[S] S.ttn

where tn is the name of the type t defined in S
(τ ′ → τ ′′)[S] = τ ′[S]→ τ ′′[S]

We can now return to our table of types, with the types with holes written
down.

Type in S1 Type in S2 Type with holes
int S1.tree int S2.tree int [].tree

α S1.tree list α S2.tree list α [].tree list
α S1.tree S1.tree α S1.tree S2.tree α S1.tree [].tree

α→ α S1.tree→ bool α→ α S2.tree→ bool α→ α [].tree→ bool

In effect, the types appearing in a signature are also types with holes. We
can see this by the following reasoning. Suppose we have a signature SIG. There
could be any number of structures with this signature, each of which will have
a different instantiation of the types specified in SIG. So each type t in SIG
represents an infinite family of types [].t. The types of values specified in SIG
may include references to the types specified in SIG: naturally (because of the
scope of the signature declaration) these references will not have structure names
(or type names). For example, consider the following simple signature:

signature SIG = sig

type t

val x: t

end;

Now suppose we have structures S1 : SIG and S2 : SIG. The structure S1
includes a type S1.t and a value S1.x : S1.t; S2 contains a type S2.t and a
value S2.x : S2.t. If we now consider the signature to specify a type [].t and a
value [].x : [].t, we can read this as: S1 contains a type ([].t)[S1] and a value
([].x)[S1] : ([].t)[S1], and similarly for S2. More generally, if a signature SIG
declares a value x : τ (where x and τ have holes as appropriate), then a structure
S : SIG will contain a value x[S] : τ [S]. Once we are outside the scope of the
signature declaration, we interpret a declaration v : τ as a declaration of [].v where
τ is considered a type with holes. We can only fill in a particular structure name
and type name when we have a particular structure matching this signature, (and
they are left out in the signature declaration).
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The observant reader will have noticed that we have used “expressions with
holes” in the above (the value [].x for example). These are defined in an analogous
way to types with holes: they have the same grammar as ordinary expressions,
but where a longcon can appear, the “holey” form [].longcon can also appear.
Expressions with holes over a signature, and hole-filling for expressions with holes
are likewise defined. Type-checking is informally understood as follows: given an
expression e with holes over a signature SIG, assume that there is an “extra”
structure [] : SIG in scope, and continue type-checking as normal.

8.3 Data reification for all ML types

In this section, I introduce the ideas which I will use to define reification in
Simplified ML in the following sections. I answer the question: “how do we give
a retrieve relation at a type with holes τ?” The answer to this question will allow
us to give a formal definition of reification in section 8.4. In the following, the
relation Rτ is the relation with which we represent reification at a type with holes
τ (our equivalent of a retrieve function for τ ).

8.3.1 Labelled record types

This is the simplest case. When τ is {lab1 : τ1; . . . ; labr : τr}, then reification is
defined point-wise: a : τ [A] is related to c : τ [C] when every component #labi(a)
is related to #labi(c).

8.3.2 Function types and well-behavedness

We wish to define a retrieve relation for a type with holes τ ′ → τ ′′, given the
relation for τ ′ and τ ′′. Recall the way that reification is defined in VDM for
operations on first order types:

C.t1
C.f- C.t2

A.t1

retrt1

? A.f- A.t2
?

retrt2

That is to say, C.f and A.f are related if they map related arguments to
related results. However, we are only concerned with arguments which are “well
behaved”—the exact meaning of well-behaved will be defined later, but well-
behaved values will certainly satisfy our notion of the datatype invariant.
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First, let us examine what happens if we do not weed out junk values, and
quantify over all possible arguments:

a Rτ ′→τ ′′ c

⇐⇒
∀a′: τ ′[A]. ∀c′: τ ′[C].

a′ Rτ ′ c′

⊃ (aa′) Rτ ′′ (cc′)

Families of relations such as Rτ are called logical relations by Statman [Sta85].
They are used by Tennent [Ten94] to define reification for higher-order function
types in Algol. However, as Tennent notes, using logical relations means that
transitivity does not hold. That is: if A is reified by B (via a logical relation R),
and B is reified by C (via a logical relation R′), it is not necessarily the case that
A is reified by C. This failure is disastrous since it means that we cannot proceed
by step-wise refinement.

Transitivity fails because we cannot in general give a logical relation R ◦ R′

such that (R ◦R′)τ includes Rτ ◦R′τ . The following is a simple counter-example
which shows that (R ◦R′)τ is not in general equal to Rτ ◦R′τ .

Counter-example: consider the case at type τ = τ ′ → τ ′′ when (R ◦ R′)τ ′ =
Rτ ′ ◦R′τ ′ and (R ◦R′)τ ′′ = Rτ ′′ ◦R′τ ′′, and both R′τ ′ and R′τ ′′ are the empty
relation.

Then R′τ ′→τ ′′ is the maximal (always true) relation, and Rτ ′→τ ′′ ◦R′τ ′→τ ′′ is
λx. ∃y. x Rτ ′→τ ′′ y. However, (R◦R′)τ ′ is the empty relation, as is (R◦R′)τ ′′.
This means that (R ◦R′)τ ′→τ ′′ is the always true relation.

Hence, (R ◦R′)τ ′→τ ′′ 6= Rτ ′→τ ′′ ◦R′τ ′→τ ′′.

Although this counter-example demonstrates that there are situations in which
transitivity fails, the empty relation certainly is not a reification. The next
counter-example involves relations which could plausibly be thought of as reifica-
tions.

Counter-example: suppose SIG is a signature containing (nullary) type con-
structors t, t′ and t′′. Suppose further that A, B, and C are structures
having signature SIG. We will give logical relations R and R′ such that
there is an x : (A.t → A.t′) → A.t′′ and a z : (C.t → C.t′) → C.t′′ with
x (R(t→t′)→t′′ ◦R′(t→t′)→t′′) z but not x (R ◦R′)(t→t′)→t′′ z.
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(We have not yet defined composition of logical relations. For the present,
we need only know that, for any nullary type constructor s, (R ◦ R′)s =
Rs ◦R′s).

Let A contain the following datatype declarations.

datatype t = a

datatype t′ = a′

datatype t′′ = a′′1
| a′′2

There is only one (total) function p having type A.t→ A.t′, and only two
functions having type (A.t → A.t′) → A.t′′: one mapping p to a′′1 and one
mapping it to a′′2.

Let B contain the following datatype declarations.

datatype t = b

datatype t′ = b′1
| b′2

datatype t′′ = b′′1
| b′′2

Let C contain the following datatype declarations.

datatype t = c1

| c2

datatype t′ = c′1
| c′2

datatype t′′ = c′′1
| c′′2

Let R be given by the following relations (using set-theoretic notation):

Rt = {(a, b)}
Rt′ = {(a′, b′1), (a′, b′2)}
Rt′′ = {(a′′1, b′′1), (a′′2, b′′1)}
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Each of these is a total surjective function from right to left, and so it
represents what we think of as a reification.

Let R′ be given by the following relations:

R′t = {(b, c1), (b, c2)}
R′t′ = {(b′1, c′1), (b′2, c′2)}
R′t′′ = {(b′′1, c′′1), (b′′2, c

′′
2)}

Again, each of these is a total surjective function from right to left.

The relations Rt, Rt′ and R′t are all maximal relations, so Rt ◦R′t and Rt→t′

are also maximal relations. Also, Rt′ ◦R′t′ is maximal, but R′t′ is not.

This means that (R◦R′)t→t′ is maximal, too. However, consider the follow-
ing function r : C.t→ C.t′.

fun r c1 = c′1
| r c2 = c′2

There is no value q : B.t → B.t′ with q R′t→t′ r. Suppose there were.
Since b R′t c1, this would mean that (qb) R′t′ (rc1), which would mean
that qb would have to be b′1. But also, b R′t c2, which would mean that qb
would have to be b′2, which is a contradiction. Thus, by the definition of
composition, it is not the case that p (Rt→t′ ◦R′t→t′) r.

We have demonstrated a p and r such that p (R ◦R′)t→t′ r, but not
p (Rt→t′ ◦R′t→t′) r. We now give x : (A.t → A.t′) → A.t′′ and z : (C.t →
C.t′)→ C.t′′ with x (R(t→t′)→t′′ ◦R′(t→t′)→t′′) z but not x (R ◦R′)(t→t′)→t′′ z.
Let x be the following.

fun x p = a′′1

Let z be the following.

fun z f =

if f c1 = c′1 andalso f c2 = c′2

then c′′2
else c′′1

The function z returns c′′1 unless it is passed r, when it returns c′′2.

It is not the case that x (R ◦R′)(t→t′)→t′′ z, since p (R ◦R′)t→t′ r, but not
(xp) (R ◦R′)t′′ (zr).

We show x (R(t→t′)→t′′ ◦R′(t→t′)→t′′) z by giving a y : (t → t′) → t′′ with
x R(t→t′)→t′′ y, and also y R′(t→t′)→t′′ z. The following is such a y.
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fun y q = b′′1

To see this, consider an arbitrary f : A.t→ A.t′ and g : B.t→ B.t′. (Since
Rt→t′ is maximal, f Rt→t′ g whatever f and g are). By the definition of x,
xf = a′′1, and similarly yg = b′′1, so (xf) Rt′′ (yg).

Now consider a g : B.t → B.t′ and an h : C.t → C.t′ with g R′t→t′ h.
Since g and h are related h 6= r, and so zh = c′′1. Also, yg = b′′1, and so
(yg) R′t′′ (zh).

This counterexample hinges on the functions r and z.
Intuitively, because they are related to the same value in A.t′, we think of B.b′1

and B.b′2 as representing the same abstract value. We also think of C.c′1 and C.c′2
as representing the same abstract value, since they are related to values which
represent the same abstract value. So B.b′1 represents the same abstract value as
something (B.b′2) which is related to C.c′2, but B.b′1 is not related to C.c′2. There
are two reasons why r is not related to anything.

• We have not formalized the relation “represents the same abstract value
as”.

• We might hope that given two related values, every pair of values which
represent the same abstract values as them are also related. This is not the
case, and indeed by requiring R′t′ to be a total surjective function, we rule
out this possibility. (More mathematically, “represents the same abstract
value as” on B.t′ should be lper(R′t′) and on C.t′ should be rper(R′t′), and
R′t′ should be many-step closed).

Now consider the function z. It maps values in C.t→ C.t′ which represent the
same abstract value to values in C.t′′ which do not represent the same abstract
value. For example, suppose that this example was about sets. One might, for
example, have two functions which added a and b to a set: one by adding a

and then b, the other by adding b then a to the set. These functions would
clearly represent the same abstract value, and should be indistinguishable. The
function z, however, might give different results for two such values. This is
obviously undesirable, and we should restrict our attention to functions which
are not badly behaved in this way.

When defining R′τ ′→τ ′′ , we should only quantify over functions which are well-
behaved. We will define the well-behavedness predicate WBτ for every type in
Section 8.4. The definition of Rτ ′→τ ′′ then becomes the following.
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a Rτ ′→τ ′′ c

⇐⇒
∀a′: τ ′[A]|WB. ∀c′: τ ′[C]|WB.

a′ Rτ ′ c′

⊃ (aa′) Rτ ′′ (cc′)

What exactly do we mean by “well behaved” functions? Simply that they map
arguments we consider equivalent to results we consider equivalent. The meaning
of “equivalent” depends on the particular types under consideration, of course.
Suppose Eqτ is the equivalence for type τ , and the well-behavedness predicate at
τ is WBτ . When τ is the function type τ1 → τ2, WBτ (f) is equivalent to:

∀x, y: τ1. x Eqτ1 y ⊃ fx Eqτ2 fy

This is very similar to our original definition of logical relations. We are left
with three linked concepts.

• Well behavedness predicates.

• Datatype invariants.

• An “abstract” notion of equivalence.

We can use the same relation for all of these concepts. We will require that
every datatype has its own abstract equivalence, Eq. These relations will be
partial equivalences (that is, symmetric and transitive but not necessarily reflex-
ive). Given the abstract equivalence for datatypes, the abstract equivalence for all
other types will be defined in a similar (but not identical) way to logical structure
relations. Datatype invariants and well-behavedness predicates will be identified,
and defined as WBτ(x) = x Eqτ x. Values which are not abstractly equivalent to
anything (and in particular themselves) will not be well-behaved. Note that since
Eqτ always relates values of the same type, τ is an ordinary type, rather than a
type with holes.

One consequence of the definition of logical structure relations for function
types is that, under certain circumstances, transitivity does hold. This is proved
in Section 9.3. This result means that we can, after all, develop programs by
step-wise refinement.

8.3.3 Parametrised datatypes

There are two cases:
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• The type with holes τ is (τ1, . . . , τn)[].t; that is to say, the type constructor
t has a hole.

• The type with holes τ is (τ1, . . . , τn)t; that is to say, the type constructor t
does not have a hole. Notice that τ may still have holes within it, since the
parameter types τi may have holes.

8.3.3.1 Type constructors occurring with a hole

We first consider the case that t has a hole: the second case will make use of
similar techniques to those used in the first.

As an example, we consider relating sets represented as characteristic func-
tions (structure A) and sets represented as lists without repetition of elements
(structureB). Supposing τ1 is a type with holes, what should the relation between
(τ1[A])A.set and (τ1[B])B.set be?

The simplest case is when τ1 contains no holes, and so τ1[A] and τ1[B] are the
same type, namely τ1. We want to give the relation Rτ . A value a : τ1A.set is
related to b : τ1B.set just when, for every v : τ1, av is true if and only if a value
abstractly equivalent to v appears in the list c. It is the case that Rτ1 is abstract
equivalence.

Let us turn to the case that τ1 contains holes. The relation Rτ1 will not be
simply abstract equivalence. A value a : τ1[A]A.set is related to b : τ1[B]B.set
just when, for every related a1 : τ1[A] and b1 : τ1[B], aa1 is true if and only if b1

appears in the list b. The definition of Rτ1[].set is exactly the same as before: the
only thing which has changed is Rτ1.

From this example we can see that we define R(τ1,...,τn)[].t by giving a function
which takes a relation for each τi and returns a relation on R(τ1,...,τn)[].t. Call this
function R[].t. Then define:

R(τ1,...,τn)[].t = R[].tRτ1 . . .Rτp

In order to give a particular family of relations Rτ , it will be necessary to give
a function R[].t for every type constructor t appearing in SIG. Of course, when
t takes no parameters, R[].t is simply a relation, rather than a function from
relations to relations.

8.3.3.2 Type constructors occurring without a hole

Now we move on to the problem of giving R(τ1,...,τn)t. As an example, we show
how to relate τ1[A]list to τ1[B]list, for structures A and B, where τ1 is a type
with holes.
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First, suppose that τ1 does not contain any holes. Then τ1[A] = τ1 = τ1[B].
We wish to relate a : τ1t to b : τ1t only when a and b are abstractly equivalent.

Now suppose that τ1 does contain holes. This means that τ1[A]list is not the
same type as τ1[B]list. We want to relate a : τ1[A]list and b : τ1[B]list when
they have equivalent “shape,” and have related values of types τ1[A] and τ1[B] at
corresponding positions.

As before (when we defined R(τ1,...,τn)[].t), R(τ1,...,τn)t is defined by giving a func-
tion which takes a relation for each τi and returns a relation on R(τ1,...,τn)[].t.
However, in defining R(τ1,...,τn)[].t, we define different functions R[].t in order to get
different relations Rτ . In defining R(τ1,...,τn)t, the function depends only on the
abstract equivalence for the datatype t. Since it turns out that the function has
an identical role in defining Eqτ to that held by R[].t in defining Rτ , we call this
function Eqt (Eq takes types, not types with holes, hence t rather than [].t).

In short, when the type constructor has holes, we take a relation for each
parameter type and form whatever relation we like with those relations. When
the type constructor has no holes, we again take a relation for each parameter
type; we then require that related values have the abstractly equivalent “shapes”,
and have related values in corresponding places in those shapes.

8.3.4 Polymorphic types

What exactly do we mean when we relate values with polymorphic type? We
mean that, for every possible type instantiation, the values are related at that
type. This is the idea used, for example, by Wadler [Wad89] in giving logical
relations for System F types. (In fact, now that we are considering polymorphism,
we are giving relations for type schemes rather than types.)

Suppose we wish to give a logical structure relation for a type scheme σ of the
form ∀α. τ . The relation at α is an arbitrary relation between (possibly different)
arbitrary types. Two values of type σ are related only if they are related for any
such choice of relation used at α.

That is to say, let A and A′ by arbitrary types; let T be an arbitrary relation
between A and B. Consider the relation U at τ when the relation at every
occurrence of α within τ is T . Two values having type scheme σ are related if
and only they are related for every such U .

The definition of logical structure relations for polymorphic type schemes is
rather more tentative than the definition for other types. I do not formalize it
here, nor do I investigate results for polymorphic types in later sections. It is
to be expected that formally defining logical structure relations for polymorphic
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types will involve detailed analysis and research which is beyond the scope of the
present dissertation given its time constraints.

8.4 Definitions

We are now in a position to define logical structure relations, and to formalize the
arguments in previous sections. Since the definitions for polymorphic types are
considerably more complex than the definitions for monotypes and the definitions
for polymorphism are tentative, we only give the definitions for monotypes.

We first define the abstract equivalence relation Eqτ for all types τ .

8.4.1 Abstract equivalence

x Eq{lab1:τ1;...;labr:τr} y = (#lab1(x) Eqτ1 #lab1(y)) ∧ . . .
∧(#labr(x) Eqτr #labr(y))

x Eqτ1→τ2 y = ∀x1, y1: τ1. x1 Eqτ1 y1 ⊃ xx1 Eqτ2 yy1

x Eq(τ1,...,τn)t y = x(EqtEqτ1 . . .Eqτp)y

Every type constructor t must have a function Eqt defined at the same time as
the type constructor is declared.

What properties must Eqt have? It must, when passed per arguments, return
a per result. (In fact, we generalize slightly, and require that when passed argu-
ments which are bijective up to Eq, it returns a result which is bijective up to
Eq: as we prove in Chapter 3, the two are equivalent when the relations have
types of the form τ � τ � o). We also require that it does not “look inside”
its arguments: it can only use them (or not). This is formalized by the following
parametricity constraint.

(Eqt T1 . . . Tn) ◦ (Eqt T ′1 . . . T
′
n) = Eqt (T1 ◦ T ′1) . . . (Tn ◦ T ′n)

This says roughly that we can shuffle the relations which apply to elements of
parameter types between applications of Eqt as much as we like.

We define the well-behavedness predicate WBτ(x) = x Eqτ x. We require
that every visible value in every structure in scope is well-behaved.
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8.4.2 Logical structure relations

We define the logical structure relationR between structures S : SIG and S′ : SIG,
written R ∈ LSR(S : SIG, S ′), as follows.

x R{lab1:τ1;...;labr:τr} y = (#lab1(x) Rτ1 #lab1(y))∧ . . .
∧(#labr(x) Rτr #labr(y))

x Rτ1→τ2 y = ∀x1: τ1[S]|WBτ1[S]. ∀y1: τ1[S ′]|WBτ1[S′].
x1 Rτ1 y1 ⊃ xx1 Rτ2 yy1

x R(τ1,...,τn)t y = x(EqtRτ1 . . .Rτp)y

x R(τ1,...,τn)[].t y = x(RtRτ1 . . . Rτp)y

The properties we require of R[].t are similar to those we require of Eqt: when
passed arguments which are bijective up to Eq, it must return a bijection up to
Eq. It also has a parametricity constraint, but a slightly different one.

(EqS.t T1 . . . Tn) ◦ (R[].t T ′1 . . . T
′
n) ◦ (EqS′.t T ′′1 . . . T ′′n )

=
R[].t (T1 ◦ T ′1 ◦ T ′′1 ) . . . (Tn ◦ T ′n ◦ T ′′n )

This says roughly that we can shuffle the relations which apply to elements of
parameter types into and out of R[].t as much as we like.

8.4.3 Abstract equivalence as a logical structure relation

The definitions for Rτ and Eq are obviously very similar. In fact, we can express
Eq as a logical structure relation, which we call Eq′. Let Eq′ ∈ LSR(S : SIG, S)
be given by Eq′τ = Eqτ [S], where τ is a type with holes over SIG. (Obviously
there is an Eq′ for every S, but we assume that the structure will be obvious from
context).

To see that Eq′ is a logical structure relation, we proceed by induction on the
structure of the type with holes τ .

Case τ is a labelled record type: the definitions of abstract equivalence and
logical structure relations are identical, so the result follows immediately
from the induction hypotheses.

Case τ = τ1 → τ2: in the definition of Eqτ we do not require that x1 and y1 are
well-behaved. However, we do require that x1Eqτ1y1, and since Eqτ1 is a
per (see lemma 9.2), we have that x1 and y1 are well-behaved. The result
then follows from the induction hypotheses.
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Case τ = (τ1, . . . , τn)t: the definitions are identical. The result follows immedi-
ately from the induction hypotheses.

Case τ = (τ1, . . . , τn)[].t: when we write Eq′ for R in the definition of logical
structure relations, the definitions become identical. The result follows
immediately from the induction hypotheses.

The parametricity constraint on logical structure relations is easily obtained
by a double application of the parametricity constraint on Eq.

8.4.4 Reification

Definition 8.1 A logical structure relation R ∈ LSR(S : SIG, S′) is a reification
if and only if, for every value v : τ visible in SIG, S.v Rτ S ′.v. (Note that we are
treating the type τ appearing in SIG as a type with holes).
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Chapter 9

An investigation of the properties
of reification

In this chapter we investigate (and often prove) results about the reification re-
lation we have defined. Much of the work is given over to understanding the
transitivity of reification: we give a non-constructive, set-theoretic proof of tran-
sitivity; we believe that this suggests that a constructive proof of transitivity for
Simplified ML may exist. The culmination of this investigation is the Modular
Abstraction Conjecture (Conjecture 9.9): the conjecture that reification guaran-
tees program equivalence, which is intimately linked to transitivity.

Since our definition of logical structure relations for polymorphic types is
tentative, the proofs in this chapter restrict themselves to monomorphic types.
This still means that the results are proved for function types and parametric
datatypes—both key concepts in reification for Simplified ML—as well as labelled
record types.

9.1 Logical structure relations

In this section we prove results which roughly say “if property P holds at datatypes,
then it holds at all types”. We call such a result P extension.

Lemma 9.1 (Extension of bijection-up-to) Suppose we have a logical struc-
ture relation R ∈ LSR(S : SIG, S ′). Further suppose that, for each type construc-
tor t visible in SIG, where t takes n type parameters, R[].tT1 . . . Tn is a bijection
up to Eq whenever T1 : τ1 � τ ′1 � o, . . ., Tn : τn � τ ′n � o are all bijections up
to Eq.

Then Rτ is a bijection up to Eq for every type with holes over SIG, τ .

Proof: The proof is by induction on the structure of τ .
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Case τ is a labelled record type: the result follows simply from the in-
duction hypotheses.

Case τ = τ1 . . . τn[].t: the result follows from the property that R returns
a bijection-up-to when passed bijections-up-to.

Case τ = τ1 . . . τnt: the result follows from the property that Eqt returns a
bijection-up-to when passed bijections-up-to.

Case τ = τ1 → τ2: we prove that Rτ is right-consistent, right-exact and
total-up-to; the other half of the result follows by symmetric argu-
ments.

Consistency: we assume y Eqτ [S′] y
′ and x Rτ y. We show that

x Rτ y
′.

We expand the definition of Rτ1→τ2, and then assume x1 Rτ1 y1 and
also WBτ1[S](x1) and WBτ1[S′](y1). It remains to show xx1 Rτ2 y

′y1.
From the fact that y1 is well-behaved and y Eqτ [S′] y′ we can
deduce yy1 Eqτ2[S′] y

′y1. From the fact that x Rτ y, x1 Rτ1 y1 and
the well-behavedness of x1 and y1, we can deduce xx1 Rτ2 yy1.
Applying these facts together with right consistency, we obtain
that xx1 Rτ2 y

′y1, as required.

Exactness: we assume x Rτ y and x Rτ y′. We must show y Eqτ [S′] y
′.

Assume y1 Eqτ1[S′] y
′
1 (and thus that y1 and y′1 are well-behaved).

By surjectivity, we can deduce that there is a well-behaved x1 with
x1 Rτ1 y1. From right-consistency, it follows that x1 Rτ1 y

′
1.

Applying these facts together with well-behavedness and the facts
that x Rτ y and x Rτ y′, we obtain xx1 Rτ yy1 and xx1 Rτ y′y′1.
By right-exactness, yy1 Eqτ2[S′] y

′y′1, as required.

Totality-up-to: assume x : τ [S] is a well-behaved value. We must
exhibit a well-behaved y such that x Rτ y.
Let f : τ1[S ′]� τ1[S] be given by:

fy1 = εx1: τ1[S].WBτ1[S](x1) ∧ x1 Rτ1 y1

Let g : τ2[S]� τ2[S ′] be given by:

gx2 = εy2: τ2[S ′].WBτ2[S′](y2) ∧ x2 Rτ2 y2

Let y = g ◦x◦f . We now show that y is well-behaved and x Rτ y.
Let y1 : τ1[S ′] be a well-behaved value, and let a = fy1. By
surjectivity-up-to, there is a well-behaved x1 with x1 Rτ1 y1, so
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therefore a is well-behaved and a Rτ1 y1. Let b = xa: since x and
a are well-behaved, b is well-behaved. Let c = gb. By totality-
up-to we can deduce that c is well-behaved and b Rτ2 c. By its
construction, we can see that c = yy1, and so y is well-behaved.
Now suppose that x1 : τ1[S] is a well-behaved value, and x1 Rτ1 y1.
By exactness, we can see that x1 Eqτ1[S] a. Since x is well-behaved
(and b = xa), we have that xx1 Eqτ2[S] b. Since b Rτ2 c (and
c = yy1), by consistency xx1 Rτ2 yy1. This shows that x Rτ y, as
required.

2

This proof is flawed: it uses the non-constructive operator ε. (This also means
that we are using a value with a non-ML type when we expect one with an ML
type). This means that we are using values which have no clear connection with
ML values in a proof about ML.

However, we should not overstate the case against it: it is entirely set-theoretic,
so it is hardly surprising that it does not contain any ML. In these circumstances
we can regard the ε operator as the “program” which, in a constructive proof,
would be spelled out explicitly in ML.

That this proof is flawed will, in turn, mean that our proof of transitivity
is itself flawed. One could attempt to prove this lemma using another method
(probably induction on ML expressions). We shall, in section 9.4, suggest a
constructive way of proving transitivity which does not use this lemma at all.

Lemma 9.2 (per extension) Suppose that, for every visible type constructor t,
where t takes n type parameters, EqtT1 . . . Tn is a per whenever each Ti is a per.
Then Eqτ is a per for every type τ .

Proof: The simplest proof of this lemma is to combine lemma 3.10 and the
previous lemma. There is also a simple constructive proof, which is omitted.

2

9.2 Composition

We now prove some basic results about composition of logical structure relations.

Lemma 9.3 (Identity for composition) Let R ∈ LSR(S : SIG, S′) be a reifi-
cation. Then:

115



1. Eq′ ◦R = R.

2. R ◦ Eq′ = R;

Proof: We prove Rτ = Eq′τ ◦Rτ and Rτ = Rτ ◦ Eq′τ for all τ .

The proofs are by induction on the structure of type-with-holes τ .

Case τ = τ1 . . . τn[].t: by the definition of LSR:

(Eq′ ◦R)τ = (Eq′ ◦R)[].t(Eq′ ◦R)τ1 . . . (Eq′ ◦R)τn

By the induction hypotheses this is equal to:

(Eq′ ◦R)[].tRτ1 . . .Rτn

By the definition of composition:

Eq′[].tEq′τ1 . . .Eq′τn ◦R[].tRτ1 . . .Rτn

Folding this up using the definition of LSR once more, this is:

Eqτ ◦Rτ

Since Rτ is a reification, it is a bijection up to Eq, and it follows that
that this simplifies to Rτ , as required.

Case τ = τ1 . . . τnt: this follows by identical reasoning to the previous case.

Case τ is a labelled record: since by the induction hypotheses the result
holds for each component of the record, it holds for the whole record.

Case τ = τ1 � τ2: again, the result is a simple consequence of the induc-
tion hypotheses.

The proof of the second part of the lemma uses the first part.

Case τ = τ1 . . . τn[].t: by the definition of LSR, the induction hypothe-
ses and the definition of composition (as in the previous part of the
lemma), we arrive at:

Rτ(Eq′τ1) . . . (Eq′τn) ◦ Eq′τRτ . . . Rτn

This follows by the parametricity condition on R[].t and the first part
of the lemma.
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Case τ = τ1 . . . τnt: again, this follows by identical reasoning to the previ-
ous case.

Case τ is a labelled record: since by the induction hypotheses the result
holds for each component of the record, it holds for the whole record.

Case τ = τ1 � τ2: again, the result is a simple consequence of the induc-
tion hypotheses.

2

Now we prove that Eq′ is not only an identity for composition, but it is also
a reification.

Lemma 9.4 (Identity for reification) Eq′ is a reification from S to S for ev-
ery structure S.

Proof: All the conditions for reification are immediate consequences of the con-
ditions on Eq.

2

Lemma 9.5 (Associativity of composition) For R ∈ LSR(S : SIG, S ′), R′ ∈
LSR(S ′ : SIG, S ′′), R′′ ∈ LSR(S ′′ : SIG, S ′′′):

(R ◦R′) ◦R′′ = R ◦ (R′ ◦R′′)

Proof: For every type with holes over SIG, τ , we show:

((R ◦R′) ◦R′′)τ = (R ◦ (R′ ◦R′′))τ

The proof is by induction on the structure of τ .

Case τ = τ1 . . . τn[].t: the result is derived by equational reasoning.

((R ◦R′)) ◦R′′)τ
= ((R ◦R′) ◦R′′)[].t((R ◦R′) ◦R′′)τ1 . . . ((R ◦R′) ◦R′′)τn
= ((R ◦R′)[].tEq′τ1 . . .Eq′τn)

◦ (R′′[].t((R ◦R′) ◦R′′)τ1 . . . ((R ◦R′) ◦R′′)τn)

= ((R[].tEq′τ1 . . .Eq′τn) ◦ (R′[].tEq′τ1 . . .Eq′τn))

◦ (R′′[].t((R ◦R′) ◦R′′)τ1 . . . ((R ◦R′) ◦R′′)τn)
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By the induction hypothesis:

= ((R[].tEq′τ1 . . .Eq′τn) ◦ (R′[].tEq′τ1 . . .Eq′τn))

◦R′′(R ◦ (R′ ◦R′′))τ1 . . . (R ◦ (R′ ◦R′′))τn
= (R[].tEq′τ1 . . .Eq′τn)

◦ ((R′[].tEq′τ1 . . .Eq′τn)

◦ (R′′[].t(R ◦ (R′ ◦R′′))τ1 . . . (R ◦ (R′ ◦R′′))τn))

= (R[].tEq′τ1 . . .Eq′τn)

◦ ((R′ ◦R′′)[].t(R ◦ (R′ ◦R′′))τ1 . . . (R ◦ (R′ ◦R′′))τn)

= (R ◦ (R′ ◦R′′))[].t(R ◦ (R′ ◦R′′))τ1 . . . (R ◦ (R′ ◦R′′))τn
= (R ◦ (R′ ◦R′′))τ

Case τ = τ1 . . . τnt: this case is proved by a similar argument to the previ-
ous case.

Case τ = τ1 � τ2: the result follows simply from the induction hypotheses.

Case τ labelled record: again, the result follows simply from the induc-
tion hypotheses.

2

9.3 Transitivity and related results

Theorem 9.6 (Horizontal composition) Let R1 ∈ LSR(S1 : SIG1, S
′
1) and

R2 ∈ LSR(S2 : SIG2, S ′2) be reifications. Let SIG3, S3 : SIG3, and S ′3 : SIG3 be
given by the following declarations:

signature SIG3 =

sig

structure S1 : SIG1;

structure S2 : SIG2;

end;

structure S3 : SIG3 =

struct

structure S1 = S1;

structure S2 = S2;
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end;

structure S ′3 : SIG3 =

struct

structure S1 = S ′1;

structure S2 = S ′2;

end;

Let EqS3.S1.t = EqS1.t for every t in SIG1 and EqS3.S2.t = EqS2.t for every t in
SIG2. Let EqS′3.S1.t = EqS′1.t for every t in SIG1 and EqS′3.S2.t = EqS′2.t for every t
in SIG2.

Let R3 ∈ LSR(S3 : SIG3, S ′3) be such that (R3)[].S1.t = (R1)[].t for every t in
SIG1, and (R3)[].S2.t = (R2)[].t for every t in SIG2.

Then R3 is a reification.

Proof: We must show:

• S3 and S ′3 are well-behaved;

• for each value v : τ visible in SIG3, S3.v (R3)τ S
′
1.v;

• R3 is a bijection up to Eq;

• each (R3)[].t satisfies the parametricity condition.

Each of these is immediate from the fact that both R1 and R3 are reifica-
tions.

2

The next theorem is key: it says that composition of logical relations accords
with ordinary relational composition. It is central to the proof of transitivity of
reification, and thus central to the thesis. It is also the property which fails for
ordinary logical relations.

Theorem 9.7 (Compositionality) Suppose we have reifications R ∈ LSR(S :
SIG, S ′) and R′ ∈ LSR(S ′ : SIG, S ′′). Then for all types with holes over SIG, τ ,
and well-behaved x and z:

x (R ◦R′)τ z = x (Rτ ◦R′τ) z

Proof: The proof is by induction on the structure of τ .

119



Case τ = τ1 � τ2: we begin by showing:

x (R ◦R′)τ z ⊃ x (Rτ ◦R′τ) z

Assume x (Rτ ◦R′τ ) z. This is equivalent to:

∃y.
(∀x1, y1|WB. x1 Rτ1 y1 ⊃ xx1 Rτ2 yy1)
∧ (∀y1, z1|WB. y1 R′τ1 z1 ⊃ yy1 R′τ2 zz1)

Let x1 : τ1[S] and z1 : τ1[S ′′] be well behaved values. Assuming
x1 (R ◦R′)τ1 z1, we must show xx1 (R ◦R′)τ2 zz1.

By the induction hypothesis, this is equivalent to assuming:

∃y1. x1 Rτ1 y1 ∧ y1 R
′
τ z1

and showing:
∃y2. xx1 Rτ2 y2 ∧ y2 R

′
τ2 zz1

We demonstrate that yy1 is such a y2.

Since we know x1 Rτ1 y1, by the assumption we have that xx1 Rτ2 yy1,
as required. Similarly, since we know y1 R′τ1 z1, by the assumption we
have that yy1 R

′
τ2 zz1, as required.

We have shown that (R ◦R′)τ ⊆ (Rτ ◦R′τ ). By lemma 3.6, Rτ ◦R′τ is
a bijection up to Eq. By lemma 9.1 (R ◦R′)τ is a bijection up to Eq.
By lemma 3.5, (R ◦R′)τ = (Rτ ◦R′τ ).

Case τ is a labelled record: this is proved by a simple appeal to the
induction hypotheses.

Case τ = τ1 . . . τn[].t: we prove this case by equational reasoning.

Rτ ◦R′τ
= (R[].tRτ1 . . .Rτn)

◦ (R′[].tR
′
τ1
. . .R′τn)

= ((Eq′[].tEq′τ1 . . .Eq′τn) ◦ (R[].tEq′τ1 . . .Eq′τn) ◦ (Eq′[].tRτ1 . . .Rτn))

◦ (R′[].tR
′
τ1
. . .R′τn)

= ((R[].tEq′τ1 . . .Eq′τn) ◦ (Eq′[].tRτ1 . . .Rτn))

◦ (R′[].tR
′
τ1
. . .R′τn)

= (R[].tEq′τ1 . . .Eq′τn)

◦ ((Eq′[].tRτ1 . . .Rτn) ◦ (R′[].tR
′
τ1
. . . R′τn))
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= (R[].tEq′τ1 . . .Eq′τn)

◦ ((Eq′[].tRτ1 . . .Rτn) ◦ (R′[].tR
′
τ1
. . . R′τn) ◦ (Eq′[].tEq′τ1 . . .Eq′τn))

= (R[].tEq′τ1 . . .Eq′τn)

◦ (R′[].t(Rτ1 ◦R′τ1) . . . (Rτn ◦R′τn))

= (R ◦R′)τ

Case τ = tτ1 . . . τn: the reasoning is similar to the previous case.

2

Why can we prove this result when it does not hold for ordinary logical rela-
tions? It is essentially because, in the function type case, we do not try to prove
(Rτ ◦ R′τ ) ⊆ (R ◦ R′)τ directly. Rather we rely on lemma 3.5 and lemma 9.1.
(That there are objections to our proof of lemma 9.1 has already been noted).

Corollary 9.8 (Transitivity) Given two reifications, R ∈ LSR(S : SIG, S′)
and R′ ∈ LSR(S ′ : SIG, S ′′), then R ◦R′ ∈ LSR(S : SIG, S ′′) is a reification.

Proof: We must show:

• S and S ′′ are well-behaved;

• for each value v : τ visible in SIG, S.v (R ◦R′)τ S ′′.v;

• R ◦R′ is a bijection up to Eq;

• each (R ◦R′)[].t satisfies the parametricity condition.

SinceR is a reification, S1 must be well-behaved, and since R′ is a reification,
S3 is well-behaved. For any value v : τ visible in SIG, S.v Rτ S

′.v and
S ′.v R′τ S ′′.v, so by the previous theorem S.v (R ◦R′)τ S ′′.v. We have
already noted in the previous proof that R ◦R′ is a bijection-up-to.

The proof that the parametricity condition holds is simple, and is omitted.
2

9.4 Modular abstraction

What is the “meaning” of reification? What is the “meaning” of well-behavedness
and abstract equivalence? In this section we give a brief overview of another
approach to understanding reification.

The ideal equivalence in operational terms is contextual equivalence [Gor94]:
two terms are equivalent if and only if there is no program which can distinguish
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them. Can we compare our equivalences with contextual equivalence? Contextual
equivalence has types of the form τ � τ � o, as does abstract equivalence,
whereas reification relations have types of the form τ [S]� τ [S′]� o. If, however,
we were to define “contexts with holes,” where, as usual in this dissertation, the
holes stand for structure names, it would be possible to generalize contextual
equivalence and compare it with reification.

In essence, then, one would like to show the following.

Conjecture 9.9 (Modular Abstraction)

1. Abstractly equivalent values are contextually equivalent.

2. Values related by a reification are contextually equivalent.

Pitts [Pit98] proves a related theorem for System F, and we believe that his
proof could be adapted to prove Modular Abstraction.

We can read the conjecture in a number of ways. Firstly, it is a statement
about the modules system: it says that modules prevent us from seeing behaviour
which differentiates between data which we would consider the same. That is,
modules abstract correctly (hence the name of the conjecture).

Secondly, it is a statement about contextual equivalence: it says that there is a
simple way to reason about contextual equivalence. This view justifies one of the
primary claims for this work: programmers intuitively know the abstract equiva-
lence relation when they write code—they would be unable to program correctly
if they did not know which items of data “looked the same”. Likewise, when
writing a concrete version of abstract code, they intuitively know the reification
relation. For example, in Chapter 10, we believe that the abstract equivalance and
reification relations should be simple and obvious to most programmers. Writing
these relations formally can be done with little effort and gives all the well-known
advantages of formal methods: ease of validation, an early trap for bugs, and so
on. However, it also gives another major advantage. Proving contextual equiva-
lence is in general is still a (hard) research topic [Gor94]. However, the method
outlined in this dissertation is a simple, uniform way to prove the behavioural
equivalence of modular functional programs.

Thirdly, it is a statement about reification in ML: it tells us that the reification
relation works exactly as we would hope.

Well behavedness relates to “code-ability”: by only allowing access to well-
behaved values, one would like to be able to ensure that all ML programs are
well-behaved. Unfortunately, the converse is not true: not all well-behaved values
correspond to ML programs.
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Counter-example: There is a well-behaved value in the model which cannot be
written as a Simplified ML expression.

The function is that which solves the Halting Problem. Since our model is
in classical set theory, it contains all possible (set-theoretic) functions which
map Turing Machines to booleans: this includes the function which solves
the Halting Problem, H say. Suppose we have a well-behaved representation
of a Turing Machine, M (we do no develop the type of Turing Machines and
its abstract equivalence here, but it is clear that it could be done). Then
HM is either true or false: both are well-behaved boolean values.

Thus H is a well-behaved function. However, it cannot be coded in Simpli-
fied ML, or any effective model of computation, because the Undecidability
of the Halting Problem.

A proof that every Simplified ML expression is well-behaved would be by
induction on the well-typedness of expressions. Wadler’s proof of the Identity
Extension Lemma [Wad89] shows how such a proof would proceed.

If the Modular Abstraction Conjecture holds, there is an elegant and simple
proof of transitivity.

Outline Proof of Theorem 9.8: The key to this proof is that contextual equiv-
alence across structures is transitive. Suppose x : τ [S] and y : τ [S ′] are
contextually equivalent, and that y and z : τ [S′′] are contextually equiva-
lent. Consider an arbitrary context C. The values C(x) and C(y) must be
the same, as must C(y) and C(z). Thus the values C(x) and C(z) are the
same.

Now, since reification and contextual equivalence agree, reification must
also be transitive. 2
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Chapter 10

Case studies of data reification

In this chapter we give a simple worked example of data reification in Simplified
ML: finite sets of integers. We begin with a specification, and then reify that into
an implementation with sets represented as lists without repetition. We generate
the verification obligations for this reification, and give outline proofs that these
obligations hold. We then reify our first implementation into an implementa-
tion with sets represented as lists with repetition, again generating verification
obligations and giving outline proofs.

10.1 A specification

Here is a signature for finite sets of integers in ML:

signature SET =

sig

type Set

val member: int -> Set -> bool

val empty: Set

val insert: int -> Set -> Set

val remove: int -> Set -> Set

val inter: Set -> Set -> Set

val union: Set -> Set -> Set

end

The rest of the section develops a specification for a structure of sets with
signature SET. Data reification is a “model-theoretic” method: meaning that
specifications take the form of abstract implementations. The first part of this
section gives the axioms which one might use for an algebraic specification of sets.
The second part then goes on to give an equivalent model-theoretic specification.
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10.1.1 Axioms for sets

Empty sets have no members.

Axiom Empty:

∀x: int. isfalse (member x empty)

Inserting an element into a set makes it an element of that set, but does not
change membership of the rest of the set.

Axiom Insert:

∀x, y: int. ∀s: Set.
istrue (member x (insert y s))
⇐⇒

(x ≈int y) ∨ istrue (member x s)

This axiom could be split into two.

∀x: int. ∀s: Set.
istrue (member x (insert x s))

∀x, y: int. ∀s: Set. (x 6≈int y) ⊃
istrue (member x (insert y s)) ⇐⇒ istrue (member x s)

The two forms are equivalent.
Removing an element from a set means it is no longer a member of that set,

but does not change membership of the other elements of that set.

Axiom Remove:

∀x, y: int. ∀s: Set.
istrue (member x (remove y s))
⇐⇒

(x 6≈int y) ∧ istrue (member x s)

Again, this axiom could be split into two.

∀x: int. ∀s: Set.
isfalse (member x (remove x s))

∀x, y: int. ∀s: Set. (x 6≈int y) ⊃
istrue (member x (remove y s)) ⇐⇒ istrue (member x s)
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The definition of intersection.

Axiom Inter:

∀x: int. ∀s1, s2: Set.
istrue (member x (inter s1 s2))
⇐⇒

istrue (member x s1) ∧ istrue (member x s2)

The definition of union.

Axiom Union:

∀x: int. ∀s1, s2: Set.
istrue (member x (union s1 s2))
⇐⇒

istrue (member x s1) ∨ istrue (member x s2)

10.1.2 An abstract implementation

Model-theoretic specifications give an abstract model for the thing being specified
(a program, say). It may not be possible to implement the abstract model in a real
programming language, or the implementation may be unacceptably inefficient.
The implementation process gives steadily more concrete versions of the specified
program, until the final program in is reached, written in a real programming
language, and suitably efficient.

Algebraic specifications characterize the class of models which implement the
specified program. The implementation process makes the program more con-
crete, and hence reduces the size of the model class, until the program is finished
(and the finished program is the only remaining model).

In Simplified ML, a structure takes the rôle of “program”. Simplified ML does
not have the mathematical machinery necessary to give a specification which is
at once clear, and yet still has only a single model.

But it is possible to get around this problem. The abstract implementation of
sets, Set1, will contain no ML code. In order to ensure that it is an implemen-
tation of sets, we will simply assert that it must satisfy our specification axioms
for sets.

In an Isabelle implementation, free meta-variables and scheme variables allow
us to leave parts of code unimplemented, so our first “implementation” of sets is
a structure Set1 of signature SET which is completely unimplemented.
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The quantifications in the specification as it stands refer to every element
of the type Set1.Set, even those which are not well-behaved. But one is only
interested in the well-behaved elements of a type. The quantifications should be
restricted to the well-behaved part of the type: we should replace ∀x: Set. P with
∀x: Set|WB. P , (we will assume that all booleans and integers are well-behaved,
so the restriction is not necessary for them).

It is also necessary to assume that every visible component of Set1 is well-
behaved.

The final addition which must be made to the specification is some sort of
induction rule: all well-behaved elements of the type Set must be finitely gener-
ated from the values in the signature. The simplest form of the induction axiom
is the following.

Axiom SetInd:

∀P : Set� o. P (empty) ⊃
(∀s: Set|WB. ∀x: int. P (s) ⊃

P (insert x s)) ⊃
∀s: Set|WB. P (s)

Abstract equality is simply the familiar extensional equality on sets.

∀s1, s2: Set1.Set|WB.
(∀x: int. member x s1 ≈bool member x s2) ⊃

s1 ≈Set s2

10.1.3 Set1 is well-behaved

All the axioms for the operations in Set1 are in terms of their effects on set
membership. This means that all the operations map sets with identical members
to sets with identical members: that is, the operations are all well behaved.

10.2 Sets as lists without repetition

structure Set2: SET =

struct

datatype ’a Set = empty | SCons of ’a * ’a Set

fun member x empty = false

| member x (SCons (y, s)) =

127



if x = y

then true

else member x s

fun insert x s = if member x s then s else SCons (x, s)

fun remove x empty = empty

| remove x (SCons (y, s)) =

if x = y

then s

else SCons (y, remove x s)

fun inter empty s2 = empty

| inter (SCons (x, s1)) s2 =

if member x s2

then SCons (x, inter s1 s2)

else inter s1 s2

fun union empty s2 = s2

| union (SCons (x, s1)) s2 =

if member x s2

then union s1 s2

else SCons (x, union s1 s2)

end

For this structure the abstract equality for Set is simply that two sets are
equivalent when they are both free from repetitions and have the same members.

λs1, s2: Set.
istrue (let

fun repFree empty = true

| repFree (Scons (x, l)) =

if member x l then false else repFree l

in

repFree s1 andalso repFree s2
end)

∧
∀x: int. member x s1 ≈bool member x s2
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Since the abstract equivalence is conceptually inside the structure declaration,
it can use SCons in patterns and expressions.

As an aside, ML is used in this example to code a recursive predicate. This
has an advantage over coding it in the meta-logic, namely that Simplified ML is a
programming language, and is thus an easier notation in which to write functions
than Higher-Order Logic. It also has a disadvantage: since one is limited to
working with Simplified ML types (which are all tree-like), one might not be able
to express a function as abstractly as one could with a more permissive method
of specifying types and their operators.

10.2.1 Set2 is well-behaved

10.2.1.1 empty

The value empty has the same members as itself (that is, none), and is repetition-
free.

10.2.1.2 member

The result boils down to showing the following.

s EqSet t ⊃ (member x s) ≈bool (member x t)

This follows immediately from the definition of EqSet2.Set.

10.2.1.3 insert

The result boils down to the following.

s EqSet t ⊃ (insert x s) EqSet (insert x t)

Let s′ be insert x s, and let t′ be insert x t.
Suppose that x is a member of s. Since s is abstractly equivalent to t, this

means that x is also a member of t. This means that s′ is s, and t′ is t. Since we
know s and t are abstractly equivalent, the result is immediate.

Now suppose that x is not a member of s: by abstract equivalence, neither can
it be a member of t. The value s′ is SCons (x, s) (similarly t′). Since x is not
a member of s and s is repetition free, s′ is repetition free. By similar reasoning,
t′ is also repetition free. We can see that, for y 6≈int x, member y s′ ≈bool

member y t′. Furthermore, both s′ and t′ contain x, so they have the same
members.
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10.2.1.4 remove

The result is:

s EqSet t ⊃ (remove x s) EqSet (remove x t)

Let s′ be remove x s, and let t′ be remove x t. First, prove that the axiom
Remove holds for Set2.Set. This is a simple induction, and is omitted.

Clearly, member x s′ ≈bool false ≈bool member x t′. By the definition of
EqSet2.Set, for all z 6≈int x, member z s′ ≈bool member z t′.

We show that s′ is repetition free by induction on the structure of s.

Case empty: s′ is empty, and is thus repetition free.

Case SCons (y, s0): first suppose x ≈int y. Then s′ is s0, and is repetition free
since SCons (y, s0) is.

Now suppose x 6≈int y. Then s′ is SCons (y, remove x s0). Expanding
the definition of repFree, we must show the following.

if member y (remove x s0)

then false

else repFree (remove x s0)

By the axiom Remove, this is equivalent to the following.

if member y s0

then false

else repFree (remove x s0)

By the fact that s is repetition free, we know that member y s0 is false.
Applying the induction hypothesis, we obtain the result.

A similar proof shows that t is repetition free.

10.2.1.5 inter

The required result is:

s EqSet t ⊃ s′ EqSet t′

⊃ (inter s s′) EqSet (inter t t’)
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Let u be inter s s′ and let v be inter t t’.
The proof begins by establishing the truth of the axiom Inter for Set2. This

is a simple induction and is omitted. Using this axiom, it is simple to establish
that u has the same membership as v.

The proof that u is repetition free is an induction on s.

Case empty: then u is empty, and is thus repetition free.

Case SCons (x, s0): suppose that x is not a member of s′. In that case, u is
inter s0 s′, which is repetition free by the induction hypothesis.

Now suppose that x is a member of s′. Then u is SCons(x, inter s0 s′).
By the induction hypothesis inter s0 s′ is repetition free. Since s is rep-
etition free, x cannot be a member of s0, and so, by Inter, cannot be a
member of inter s0 s′. This means that u must be repetition free.

A similar proof establishes that v is repetition free.

10.2.1.6 union

The required result is:

s EqSet t ⊃ s′ EqSet t′

⊃ (union s s′) EqSet (union t t’)

Let u be union s s′ and let v be union t t’.
The proof begins by establishing the truth of the axiom Union for Set2. This

is a simple induction and is omitted. Using this axiom, it is simple to establish
that u has the same membership as v.

The proof that u is repetition free is an induction on s.

Case empty: then u is s′, and is thus repetition free.

Case SCons (x, s0): suppose that x is a member of s′. Then u is union s0 s′,
which is repetition free by the induction hypothesis.

Now suppose that x is not a member of s′. Then u is SCons(x, union s0 s′).
By the induction hypothesis union s0 s′ is repetition free. Since s is rep-
etition free, x cannot be a member of s0, and so, by Union, cannot be a
member of union s0 s′. This means that u must be repetition free.

A similar proof establishes that v is repetition free.
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10.3 Proof that Set2 reifies Set1

The logical relation, Q ∈ LSR(Set2 : SET, Set1), via which Set2 implements
Set1, is defined inductively by the following rules.

Set2.emptyQ[].Set Set1.empty

WBSet2.Set(s) ⊃WBSet1.Set(t) ⊃ (s2 Q[].Set t) ⊃ isfalse (Set2.member n s)
⊃ Set2.SCons (n, s) Q[].Set Set1.insert n t

Notice that we only specify Q for those elements of Set1.Set and Set2.Set

which satisfy the datatype invariant.

10.3.1 Bijectivity up to Eq

We show this by showing total functionality-up-to in both directions.

Left to right: We must show the following.

∀x: Set2.Set|WB. ∃y: Set1.Set|WB. ∀y1: Set1.Set.
(x Q[].Set y1) ⇐⇒ (y EqSet1.Set y1)

The proof is by induction on the structure of x.

Case Set2.empty: let y be Set1.empty.

⊃ direction: it is simple to show that the only possible value for y1

is Set1.empty. This value is well-behaved, and also, therefore,
y EqSet1.Set y1.

⊂ direction: the only value abstractly equivalent to Set1.empty is
itself, and it is also related to Set2.empty.

Case Set2.SCons (n, x′): let y be Set1.insert n y′, where y′ is the
value that exists by the induction hypothesis.

⊃ direction: by the definition of Q and the induction hypothesis, y1

must be abstractly equivalent to Set1.insert n y′; but this is y.

⊂ direction: by the definition of Eq and the induction hypothesis, y1

must be related to Set2.SCons (n, x′); but this is x.

Right to left: the proof is by SetInd, and is similar to the previous case.

132



10.3.2 Value components of Set2 and Set1 are related

10.3.2.1 empty

The result is immediate from the definition of Q.

10.3.2.2 member

The required result simplifies to:

s Q[].Set t ⊃ (Set2.member y s) ≈bool (Set1.member y t)

The proof is by induction on s.

Case s is Set2.empty. Then the only possible value of t is Set1.empty. The
result simplifies to false ≈bool false.

Case s is Set2.SCons (x, s0). Suppose x ≈int y: then both sides of the equa-
tion simplify to true. Now suppose x 6≈int y. By the definition of Q and
its bijectivity-up-to Eq, there is a t0 with s0 Q[].Set t0, and t EqSet1.Set

Set1.insert x t0. By applying the axioms for Set1 and the definition of
Set2.member, the equation simplifies to:

Set2.member y s0 ≈bool Set1.member y t0

This follows by the induction hypothesis.

10.3.2.3 insert

The required result is:

s Q t ⊃ (Set2.insert y s) Q[].Set (Set1.insert y t)

The proof is a case-split on the form of s.

Case s is Set2.empty. By the definition of Set2.insert, the result becomes:

Set2.SCons (y, s) Q[].Set Set1.insert y t

This follows from the definition of Q.

Case s is Set2.SCons (x, s0). By the definition of Q and bijectivity-up-to, t
is Set1.insert x t0, with s0 Q[].Set t0.
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Case istrue (Set2.member y s). By the definition of Set2.member, we have
that:

istrue (Set2.member y s0)

By the result for member, istrue(Set1.member y t0). By axiom Insert,
istrue (Set1.member y t). By the definition of Set2.insert and Ax-
iom Insert, the result becomes:

s Q t

This is an assumption.

Case isfalse (Set2.member y s). By the definition of Set2.insert:

Set2.SCons (y, s) Q[].Set Set1.insert y t

This follows from s Q[].Set t (an assumption) by the definition of Q.

10.3.2.4 remove

The required result is:

s Q[].Set t ⊃ (Set2.remove y s) Q[].Set (Set1.remove y t)

The proof is by induction on s.

Case s is Set2.empty. The only possible value for t is Set1.empty. By the
definition of Set2.remove and Axiom Remove, the result becomes:

Set2.emptyQ[].Set Set1.empty

This follows from the definition of Q.

Case s is Set2.SCons (x, s0). By the definition of Q and bijectivity-up-to, t
is Set1.insert x t0, with s0 Q[].Set t0.

Case y ≈int x. By the definition of Set2.remove and the axiom Remove,
the result becomes:

Set2.remove y s0 Q[].Set Set1.remove y t0

This is the induction hypothesis.

Case y 6≈int x. By the definition of Set2.remove and the axioms for Set1,
the result becomes:

Set2.SCons(x, Set2.remove y s0) Q[].Set Set1.insert x (Set1.remove y t0)
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By the definition of Q, this follows from:

Set2.remove y s0 Q[].Set Set1.remove y t0

This is the induction hypothesis.

10.4 Sets as lists with repetition

structure Set3: SET =

struct

datatype ’a Set = empty | SCons of ’a * ’a Set

fun insert x s = SCons (x, s)

fun remove x empty = empty

| remove x (SCons (y, s)) =

if x = y

then remove x s

else SCons (y, remove x s)

fun member x empty = false

| member x (SCons (y, s)) =

if x = y

then true

else member x s

fun inter empty s2 = empty

| inter (SCons (x, s1)) s2 =

if member x s2

then SCons (x, inter s1 s2)

else inter s1 s2

fun union empty s2 = s2

| union (SCons (x, s1)) s2 = SCons (x, union s1 s2)

end

The abstract equality for Set is simply extensional equality.

λs1, s2: Set.
∀x: int. member x s1 ≈bool member x s2
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10.4.1 Set3 is well-behaved

That Set3 is well-behaved is a consequence of the fact that it satisfies the set
axioms. The proofs necessary to establish this fact are simple inductions, and are
omitted.

10.5 Proof that Set3 reifies Set2

In a previous section, we defined the reification Q ∈ LSR(Set2 : SET, Set1) with
an inductive relation. In this section, we define the reification R ∈ LSR(Set3 :
SET, Set2) by stating much more directly that elements are related if all possible
observations made of the elements are the same. For sets, it is easy to give such a
relation: the only possible observations test membership, andR will relate values
with identical members.

For other programs it may not be so simple: there may be many possible
observations which interact in complex ways. However, where it is possible to
give a relation which directly captures observations, this section will show that
the proofs become greatly simplified.

We define R[].Set as follows.

WBSet3.Set(s) ⊃WBSet2.Set(t) ⊃
(s R[].Set t

⇐⇒
∀x: int. (Set3.member x s) ≈bool (Set2.member x t))

10.5.1 Bijectivity up to Eq

We show this by showing total functionality-up-to in both directions.

Left to right: we must show the following.

∀x: Set3.Set|WB. ∃y: Set2.Set|WB. ∀y1: Set2.Set.
(x R[].Set y1) ⇐⇒ (y EqSet2.Set y1)

For any given well-behaved x, let y be the Set2.Set obtained by removing
repetitions from x. Clearly, y and x have the same members, and, since
both R[].Set and EqSet2.Set simply compare membership the result holds.

Left to right: the proof is similar; the y that exists is simply x with Set2.SCons

replaced by Set3.SCons.
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10.5.2 Value components of Set3 and Set2 are related

Simple inductions suffice to establish that the set axioms hold of Set3. That the
value components are related follows by consideration of the membership of the
sets in question.

In order to make clear just how simple these proofs are, we will go through
one. The others are left as (tedious) exercises.

10.5.2.1 inter

First, by way of an example of the kinds of proof we have been omitting, we
establish that the axiom Inter does, in fact, hold for Set3.Set.

∀x: int. ∀s1, s2: Set.
istrue (member x (inter s1 s2))
⇐⇒

istrue (member x s1) ∧ istrue (member x s2)

The proof is by induction on s1.

Case empty: both sides of the equivalence are false, by calculation.

Case SCons(y, s0): suppose that y is a member of s2. Then the left hand side of
the equivalence is istrue (member x (SCons (y, inter s0 s2))). Further
suppose that x ≈bool y. Then the left hand side is true. A calculation shows
that the right hand side is also true.

Now suppose that y is a member of s2, but x 6≈bool y. The left hand
side is istrue (member x (inter s0 s2))). The right hand side asserts that
both istrue(member x s0) and istrue(member x s2). Applying the induction
hypothesis, the two sides are equivalent.

Now suppose that y is not a member of s2 and that x ≈bool y. The left
hand side is again istrue(member x (inter s0 s2))). The right hand side is
false. But then, istrue(member x s0)∧ istrue(member x s2) is also false (and
thus equivalent to the right hand side). Applying the induction hypothesis,
the two sides are equivalent.

Finally suppose that y is not a member of s2 and that x 6≈bool y. The left
hand side is again istrue (member x (inter s0 s2))). The right hand side
is again istrue(member x s0)∧ istrue(member x s2). Applying the induction
hypothesis, the two sides are equivalent.
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In order to show that Set3.inter R[].Set→[].Set→[].Set Set2.inter, we must
establish the following.

WBSet3.Set(s) ⊃WBSet3.Set(s’) ⊃WBSet2.Set(t) ⊃WBSet2.Set(t’) ⊃
s R[].Set t ⊃ s′ R[].Set t′ ⊃
(Set3.inter s s′) R[].Set (Set3.inter t t′)

By using Inter for both Set3 and Set2, this follows immediately.

10.6 Conclusion

In this chapter we have seen reification in action on some simple examples. The
work of showing the reifications correct has fallen into two parts in each case.

• First, one must prove some “hygiene” conditions: that all the values in the
structure are well-behaved, and that the reification logical structure relation
is bijective up to Eq. These conditions are an important validation tool, as
well as being necessary for verification: they show that the abstract equiv-
alence for the structures behaves sensibly, as does the reification relation.
They can be seen as tests of the abstract equivalence and the reification
relation, in that if the conditions fail to hold we should probably change the
abstract equivalence or the reification rather than the code.

• Second, we prove the substansive content of the result: that value com-
ponents of the concrete implementation are related by the reification to
those of the abstract implementation. It turns out that, in these exam-
ples at least, this amounts to little more than verifying that our original
“algebraic” axioms hold for our code.

Our contention in the previous chapter that the programmer intuitively knows
the abstract equivalence relation and the reification relation can be carried through
to the verification phase: the verifier must check certain properties of the abstract
equivalence and the reification, but this amounts to little more than checking that
the programmer has written down the relations consistently; once this is done,
the proof of correctness is similar to the proof one would perform in an algebraic
system.

138



Chapter 11

Conclusion

my readers . . . will see in the tell-tale compression of the pages before
them, that we are all hastening together to perfect felicity.

—Jane Austen, Northanger Abbey

11.1 Further work

Part I: Logical Frameworks

Coding binding and substitution explicitly in Isabelle: although we have
assessed the use of McKinna-Pollack binding to code logics for programming
languages, there exists no such assessment of Stoughton’s parallel substitu-
tion style. By implementing similar logics to the one given in this chapter
in the parallel substitution style, one would be able to directly compare the
two methods.

Coding logics in logical frameworks: we claim that the methods we have de-
scribed in this chapter allow logics to be encoded in a clearer fashion. Our
other claim, that these methods increase efficiency, has not been evaluated.
Further quantitive work is needed, preferably using implementations of a
range of logics, before this claim can be properly assessed.

Part II: Core ML

Simplified ML: although Simplified ML is sufficiently simple to allow us to
give a logic for it, it may not be sufficiently powerful to capture real ML
programs. It may be necessary to reassess the language in the light of
experience.

Reasoning about Core Simplified ML: this logic has not been coded in a
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theorem prover. Proof experiments with such an implementation may en-
able us to create an effective tool for program verification.

Part III: Data Reification

Data reification there are many ways of extending the reification system we
give. For example: integrating reification of non-terminating programs with
the current system; reification of ML functors; reification of programs with
local store in the manner of Tennent [Ten94].

An investigation of the properties of reification: the next stage in devel-
opment of this work would be to prove the Modular Abstraction Conjecture,
and thereby give a constructive proof of the transitivity of reification.

Case studies of data reification: although we illustrate the use of our meth-
ods in this chapter, it would be necessary to use them for a much larger
software project in order to assess their practical usefulness.

11.2 Evaluation

This dissertation has reviewed many aspects of formal methods, from details of
machine-assisted proof, to issues in logics for programs, to methods for verification
of large programs. It has, therefore, posed many more questions than it has
answered. It is our belief, however, that we have addressed the central issues
which have arisen.

In particular if we refer to the Hypothesis stated in the Introduction we can
see the following.

• We have given new methods for encoding logics for programs in logical
frameworks. We have assessed these methods and have provisionally con-
cluded that such encodings can be made clearer and more efficient.

• Using these methods, we have given a logic for Simplified ML programs.
Although this logic remains unimplemented, it is comparable with the state
of the art in this field.

• We have shown how a variation of data reification can be used to prove
Simplified ML programs correct. In particular, we believe that the crucial
transitivity property holds.

140



Appendix A

Isabelle code

‘What other books did you bind in it?’

‘Tom Paine’s Age of Reason,’ Snead said, consulting his list.

‘What were the results?’

‘Two-hundred-sixty-seven blank pages. Except right in the middle the
one word bleh.’ —Philip K. Dick, Not by Its Cover

This appendix contains the Isabelle theory and proof files referred to in Ch-
pater 4.

A.1 The theory files

A.1.1 The main theory

(*

File: /home/cao/isabelle/mpc/MPHOL.thy

Theory Name: MPHOL

Logic Image: HOL

*)

MPHOL = closed + distinct +

consts

NoConns :: "FList set"

ValidExts :: "(FList * FList) set"

ValidContexts :: "FList set"

Ctxt :: "FList => bool"

WellTypedDecs :: "(FList * FVar Dec) set"
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IsDec :: "[FList, FVar Dec] => bool"

TypesOfF :: "(FList * FVar * Ty) set"

LookupTypes :: "[FList, FVar] => Ty set"

TypesOfSch :: "(Scheme * Ty) set"

TermsOfSch :: "(Scheme * Term) set"

TyTermsOfSch :: "(Scheme * Ty * Term) set"

InstType :: "[Scheme, Ty] => bool"

InstTerm :: "[Scheme, Term] => bool"

InstTyTerm :: "[Scheme, Ty, Term] => bool"

Judge :: "(FList * Term) set"

"@Judge" :: "[FList, Term] => bool" ("(4_ |- _)"

[100, 100] 10)

TyJudge :: "(FList * Term * Ty) set"

"@TyJudge" :: "[FList, Term, Ty] => bool" ("(3_ |-/ _:/ _)"

[100, 100, 100] 10)

G0 :: "[BVar, BVar, BVar, BVar] => FList"

translations

"tau: LookupTypes (G, f)" == "<G, f, tau>: TypesOfF"

"Ctxt (G)" == "G: ValidContexts"

"IsDec (G, dec)" == "<G, dec>: WellTypedDecs"

"InstType (S, tau)" == "<S, tau>: TypesOfSch"

"InstTerm (S, M)" == "<S, M>: TermsOfSch"

"InstTyTerm (S, tau, M)" == "<S, tau, M>: TyTermsOfSch"

"G |- M : tau" == "<G, M, tau>: TyJudge"

"G |- P" == "<G, P>: Judge"

(*

* How declaration schemes are instantiated.

*)

inductive "TyTermsOfSch"

intrs

InstTyTermSchBasic "InstTyTerm (<<tau, M>>, tau, M)"

InstTyTermSchAbs "InstTyTerm (S(tau’), tau, M) ==> \

\ InstTyTerm (SCH A. S(A), tau, M)"
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inductive "TypesOfSch"

intrs

InstType "InstTyTerm (S, tau, M) ==> \

\ InstType(S, tau)"

inductive "TermsOfSch"

intrs

InstTerm "InstTyTerm (S, tau, M) ==> InstTerm(S, M)"

(*

* Typing judgements.

*)

inductive "TypesOfF"

intrs

LookupVbl "tau : LookupTypes (G ;; vbl f: tau, f)"

LookupVal "InstType(S, tau) ==> \

\ tau : LookupTypes (G ;; Val (f, S), f)"

LookupWeak "[| f ˜= BoundByDec (dec); \

\ tau : LookupTypes (G, f) |] ==> \

\ tau : LookupTypes (G ;; dec, f)"

inductive "TyJudge"

intrs

TyLookup "tau: LookupTypes (G, f) ==> \

\ G |- $f: tau"

TyConst "c HasTy tau ==> \

\ G |- C$c: tau"

TyLda "[| ˜ FOccurs (f, M); \

\ (G ;; vbl f: tau) |- M[$f/v]: tau’ |] ==> \

\ G |- lda v: tau. M: tau ->> tau’"

TyApp "[| G |- M: tau ->> tau’; G |- N: tau|] ==> \

\ G |- M ‘ N: tau’"
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inductive "WellTypedDecs"

intrs

IsDecVal "(! tau M. InstTyTerm (S, tau, M) --> \

\ (G |- M: tau)) ==> \

\ IsDec (G, Val (f, S))"

IsDecVbl "IsDec (G, vbl f: tau)"

(*

* Intuitively, H is a valid extension of the context G if

* G @@ H is a valid context.

*)

inductive "ValidExts"

intrs

ValidExtsNothing "<G, nothing> : ValidExts"

ValidExtsDec "[| <G, H> : ValidExts; \

\ IsDec (G @@ H, dec) |] ==> \

\ <G, H ;; dec> : ValidExts"

(*

* G is a valid context if it is a valid extension of

* the empty context.

*)

inductive "ValidContexts"

intrs

Ctxt "<nothing, G> : ValidExts ==> Ctxt(G)"

(*

* A context has no declarations of connectives.

*)

inductive "NoConns"

intrs

NoConnsNothing "nothing : NoConns"

NoConnsDec "[| G : NoConns; \

\ ! conn. BoundByDec(dec) ˜= D$conn |] ==> \

\ (G ;; dec) : NoConns"

144



rules

(*

* Axioms of the formal system.

*)

EqRefl "[| Ctxt (G); G |- M: tau |] ==> \

\ G |- M === M"

BetaConv "[| Ctxt (G); \

\ G |- (lda b: tau. M) ‘ N : tau’ |] ==> \

\ G |- ((lda b: tau. M) ‘ N) === M [N/b]"

OmegaCases "Ctxt (G) ==> \

\ G |- (forall P: Om. ($$P === T) || ($$P === F))"

ImpAntiSym "Ctxt (G) ==> \

\ G |- forall P: Om. forall Q: Om. \

\ ($$P ---> $$Q) ---> ($$Q ---> $$P) \

\ ---> ($$P === $$Q)"

EtaConv "Ctxt (G) ==> \

\ G |- forall H: tau ->> tau’. \

\ (lda b: tau. $$H ‘ $$b) === $$H"

Select "Ctxt (G) ==> \

\ G |- forall P: A ->> Om. forall x: A. \

\ $$P ‘ $$x ---> $$P ‘ (Any ‘ $$P)"

(*

* Rules of the formal system.

*)

(*

* The McKinna-Pollack formulation of the substitution rule is:

*

* Subst "[| G |- M === M’; G |- P[f=M] |] ==> \
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* \ G |- P[f=M’]"

*

* But due to the nature of FSubst, this can be simplified

* to the rule below.

*)

Subst "[| G |- M === M’; G |- P(M) |] ==> \

\ G |- P(M’)"

AbsCong "[| ˜ FOccurs(f, M); ˜ FOccurs(f, M’); \

\ (G ;; vbl f: tau ) |- M[$f/b] === N[$f/b’] |] ==> \

\ G |- (lda b: tau. M) === (lda b’: tau. N)"

ImpI "(G |- P ==> G |- Q) ==> \

\ G |- P ---> Q"

MP "[| G |- P; G |- P ---> Q |] ==> \

\ G |- Q"

Lookup "[| IsDec (G, Val (f, S)); ˜ FOccurs(f, M’); \

\ InstTerm(S, M); G |- M === M’ |] ==> \

\ (G ;; Val (f, S)) |- $f === M’"

Weak "[| IsDec (G, dec); \

\ ˜FOccurs(BoundByDec(dec), P); \

\ G |- P |] ==> \

\ (G ;; dec) |- P"

(* Definitions of the logical connectives. *)

G0_def "G0(P,Q,R,x) == \

\ nothing \

\ ;; \

\ Val (D$TRUE, \

\ << Om, ((lda x: A. $$x) === (lda x: A. $$x)) >>) \

\ ;; \

\ Val (D$FORALL, \

\ SCH A. << (A ->> Om) ->> Om, \
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\ lda P: A ->> Om. ($$P === (lda x: A. T))>>) \

\ ;; \

\ Val (D$AND, \

\ << Om ->> Om ->> Om, \

\ lda P: Om. lda Q: Om. forall R: Om. \

\ (($$P ---> $$Q ---> $$R) ---> $$R)>>) \

\ ;; \

\ Val (D$OR, \

\ << Om ->> Om ->> Om, \

\ lda P: Om. lda Q: Om. forall R: Om. \

\ (($$P ---> $$R) ---> ($$Q ---> $$R) ---> $$R)>>) \

\ ;; \

\ Val (D$FALSE, \

\ << Om, \

\ forall x: Om. $$x >>) \

\ ;; \

\ Val (D$EXISTS, \

\ SCH A. << (A ->> Om) ->> Om, \

\ lda P: A ->> Om. forall R: Om. \

\ ((forall x: A. $$P ‘ $$x ---> $$R) ---> $$R)>>) \

\ ;; \

\ Val (D$NOT, \

\ << Om ->> Om, \

\ lda P: Om. ($$P ---> F)>>)"

end

ML

A.1.2 B-closedness and other issues

(*

File: /home/cao/isabelle/mphol/closed.thy

Theory Name: closed

Logic Image: HOL

*)

closed = bind +
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consts

Size :: "Term => nat"

FFree :: "[Term] => FVar set"

FOccurs :: "[FVar, Term] => bool"

BOccurs :: "[BVar, Term] => bool"

BOccursA :: "[BVar, Term] => bool"

BClosed :: "Term set"

BClosedA :: "Term set"

BClosedB :: "Term set"

BClosedC :: "(Term * BVar set) set"

BClosedWRT :: "BVar set => Term set"

translations

"M: BClosedWRT(s)" == "<M, s> : BClosedC"

(*

* The size of a Term. A slightly odd definition in that the

* size of atoms is 0. Has the property that the size of

* constructed terms is greater than the size of all subterms.

*)

primrec "Size" bind.Term

SizeB "Size ($$b) = \

\ 0"

SizeF "Size ($f’) = \

\ 0"

SizeC "Size (C$c) = \

\ 0"

SizeApp "Size (M ‘ M’) = \

\ Suc(Size (M) + Size (M’))"

SizeLda "Size (lda b: tau. M) = \

\ Suc(Size (M))"

(*

* An FVar appears in a Term.
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*)

primrec "FOccurs" bind.Term

FOccursB "FOccurs (f, $$b) = \

\ False"

FOccursF "FOccurs (f, $f’) = \

\ (f = f’)"

FOccursC "FOccurs (f, C$c) = \

\ False"

FOccursApp "FOccurs (f, M ‘ M’) = \

\ (FOccurs (f, M) | FOccurs (f, M’))"

FOccursLda "FOccurs (f, lda b: tau. M) = \

\ FOccurs (f, M)"

(*

* A BVar appears in a Term.

*)

primrec "BOccurs" bind.Term

BOccursB "BOccurs (b, $$b’) = \

\ (b = b’)"

BOccursF "BOccurs (b, $f) = \

\ False"

BOccursC "BOccurs (b, C$c) = \

\ False"

BOccursApp "BOccurs (b, M ‘ M’) = \

\ (BOccurs (b, M) | BOccurs (b, M’))"

BOccursLda "BOccurs (b, lda b’: tau. M) = \

\ if (b = b’, False, BOccurs (b, M))"

(*

* The free FVars of a Term.

*)

primrec "FFree" bind.Term

FFreeB "FFree ($$b) = \

\ {}"

FFreeF "FFree ($f) = \

\ {f}"

FFreeC "FFree (C$c) = \
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\ {}"

FFreeApp "FFree (M ‘ M’) = \

\ (FFree (M) Un FFree (M’))"

FFreeLda "FFree (lda b: tau. M) = \

\ FFree (M)"

(*

* A Term has no free BVars.

*)

inductive "BClosed"

intrs

BClosedF "$f: BClosed"

BClosedC "C$c: BClosed"

BClosedApp "[| M: BClosed; M’: BClosed |] ==> \

\ (M ‘ M’): BClosed"

BClosedLda "[| M[$f/b]: BClosed; ˜FOccurs(f, M) |] ==> \

\ (lda b: tau. M): BClosed"

(*

* A Term has no free BVars. A different formulation with no

* side condition on the Lda rule.

*)

inductive "BClosedA"

intrs

BClosedAF "$f: BClosedA"

BClosedAC "C$c: BClosedA"

BClosedAApp "[| M: BClosedA; M’: BClosedA |] ==> \

\ (M ‘ M’): BClosedA"

BClosedALda "M[$f/b]: BClosedA ==> \

\ (lda b: tau. M): BClosedA"

(*

* A Term has no free BVars, except those mentioned.

*)

inductive "BClosedC"

intrs
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BClosedWRTF "$f: BClosedWRT(s)"

BClosedWRTB "b: s ==> \

\ $$b: BClosedWRT(s)"

BClosedWRTC "C$c: BClosedWRT(s)"

BClosedWRTApp "[| M: BClosedWRT(s); M’: BClosedWRT(s) |] ==> \

\ M ‘ M’: BClosedWRT(s)"

BClosedWRTLda "[| M[$f/b]: BClosedWRT(s); \

\ ˜FOccurs(f,M) |] ==> \

\ lda b: tau. M: BClosedWRT(s)"

rules

FreshFVar "? f. ˜(FOccurs (f, M))"

BOccursA_def "BOccursA (b, M) == \

\ (! f. ˜FOccurs (f, M) --> FOccurs (f, M [$f/b]))"

(*

* Yet another formulation of BOccurs. It’s an inductive set,

* but because of the quantifier in the lda rule, it can’t be

* declared as inductive.

*)

BClosedB_def "BClosedB == \

\ lfp(%X. {z. \

\ (? f. z = $f) | \

\ (? c. z = C$c) | \

\ (? M M’. z = M ‘ M’ & M : X & M’ : X) | \

\ (? M b f tau. \

\ z = lda b: tau. M & \

\ (! f. M [$f/b] : X))})"

end

A.1.3 Terms

(*

File: /home/cao/isabelle/mpc/bind.thy

Theory Name: bind

Logic Image: HOL
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*)

(*

* Warning: some priorities, translations etc. are wrong.

*)

bind = Arith +

classes

Var < term

types

TyId,

Id,

BVar,

TyVar,

Scheme 0

arities

TyId,

Id,

Scheme :: term

BVar :: Var

TyVar :: Var

datatype

Ty = Base (TyId) ("(T$_)" 210)

| Fun (Ty, Ty) ("(3 _ ->>/ _)"

[111, 110] 110)

datatype

Const = IMP

| EQ

| ANY

datatype

Conn = TRUE | FALSE | FORALL | EXISTS | NOT | AND | OR
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datatype

FVar = Def (Conn) ("(D$_)" [240] 240)

| Var (Id) ("(V$_)" [240] 240)

datatype

Term = BV (BVar) ("($$_)" [230] 230)

| FV (FVar) ("($_)" [230] 230)

| Constant (Const) ("(C$_)" [220] 220)

| Lda (BVar, Ty, Term) ("(3lda _:/ _./ _)"

[0, 0, 180] 181)

| App (Term, Term) ("(3_ ‘ _)"

[190, 191] 190)

datatype

’a Dec = Vbl (’a, Ty) ("(3vbl _:/ _)" 200)

| Val (’a, Scheme)

types

BDec = "BVar Dec"

FDec = "FVar Dec"

datatype

BList = BNil

| BCons (BDec, BList)

datatype

FList = FNil ("nothing")

| FCons (FList, FDec) ("(3_ ;;/ _)"

[120, 121] 120)

datatype

Renaming = RNil ("{||}")

| RCons (Renaming, FVar, FVar) ("(3_ ++/ _ |->/ _)"

[120, 121, 121] 120)

consts

(*
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* We’d really like Scheme to be a datatype. There’s

* no (theoretical) reason why it shouldn’t be, so we just

* give the freeness theorems and the induction rule as

* axioms.

*)

BasicSch :: "[Ty, Term] => Scheme" ("<<_,/ _>>")

AbsSch :: "(Ty => Scheme) => Scheme" (binder "SCH " 100)

"@val" :: "[FVar, idts, Ty, Term] => FDec"

("val _ :/ Sch _./ _ =/ _"

100)

"@@val" :: "[FVar, Ty, Term] => FDec" ("val _ :/ _ =/ _"

100)

"@Free" :: "Id => Term" ("(F$_)" [210] 210)

F :: "Term"

T :: "Term"

Forall :: "Term"

Exists :: "Term"

Not :: "Term"

And :: "Term"

Or :: "Term"

"@Forall" :: "[BVar, Ty, Term] => Term"

("(3forall _:/ _./ _)"

[0, 0, 180] 181)

"@Exists" :: "[BVar, Ty, Term] => Term"

("(3exists _:/ _./ _)"

[0, 0, 180] 181)

"@Not" :: "Term => Term" ("(3˜˜_)" 180)

"@Andd" :: "[Term, Term] => Term" ("(3_ &&/ _)" 180)

"@Orr" :: "[Term, Term] => Term" ("(3_ ||/ _)" 170)

Imp :: "Term"

Eq :: "Term"

Any :: "Term"

154



"@Imp" :: "[Term, Term] => Term" ("(3_ --->/ _)"

[111, 110] 110)

"@Eq" :: "[Term, Term] => Term" ("(3_ ===/ _)"

[100, 101] 100)

"@Any" :: "[BVar, Ty, Term] => Term" ("(3any _:/ _./ _)"

[0, 0, 180] 181)

OMEGA :: "TyId"

Om :: "Ty"

ConstTy :: "(Const * Ty) set"

"@ConstTy":: "[Const, Ty] => bool" ("_ HasTy/ _")

BSubst :: "[Term, Term, BVar] => Term"

("_ [_’/_]"

[200, 100, 100] 200)

FSubst :: "[Term, FVar, Term] => Term"

("_ [_=_]"

[200, 100, 100] 200)

RMap :: "[Renaming, FVar] => FVar"

Ren :: "[Renaming, Term] => Term"

FBoundBy :: "FList => FVar set"

BoundByDec:: "’a Dec => ’a"

FAppend :: "[FList, FList] => FList" ("(3_ @@/ _)"

[120, 121] 120)

(*

* Substitution for a BVar in a Term.

*)

primrec "BSubst" Term

BSubstB "($$b’)[N/b] = \

\ if (b = b’, N, $$b’)"

BSubstF "($f) [N/b] = \

\ $f"

BSubstC "(C$c) [N/b] = \

\ C$c"
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BSubstApp "(M ‘ M’) [N/b] = \

\ M[N/b] ‘ M’[N/b]"

BSubstLda "(lda b’ : tau. M)[N/b] = \

\ if (b = b’, lda b’: tau. M, lda b’: tau. M[N/b])"

(*

* Substitution for an FVar in a Term.

*)

primrec "FSubst" Term

FSubstB "($$b) [f=N] = \

\ $$b"

FSubstF "($f’) [f=N] = \

\ if (f = f’, N, $f’)"

FSubstC "(C$c) [f=N] = \

\ C$c"

FSubstApp "(M ‘ M’) [f=N] = \

\ M[f=N] ‘ M’[f=N]"

FSubstLda "(lda b: tau. M)[f=N] = \

\ lda b: tau. M[f=N]"

(*

* Applying Renamings to an FVar and to a Term.

*)

primrec "RMap" Renaming

RMapNil "RMap ({||}, f) \

\ = f"

RMapCons "RMap (R ++ f |-> g, f’) = \

\ if (f = f’, g, RMap (R, f’))"

primrec "Ren" Term

RenB "Ren (R, $$b) = \

\ $$b"

RenF "Ren (R, $f) = \

\ $(RMap (R, f))"

RenC "Ren (R, C$c) = \

\ C$c"

RenApp "Ren (R, M ‘ M’) = \
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\ Ren (R, M) ‘ Ren (R, M’)"

RenLda "Ren (R, lda b: tau. M) = \

\ lda b: tau. Ren (R, M)"

(*

* The FVars bound by the declarations in an FList.

*)

primrec "FBoundBy" FList

FBoundByFNil "FBoundBy (nothing) = \

\ {}"

FBoundByFCons "FBoundBy (G ;; dec) = \

\ insert (BoundByDec(dec), FBoundBy (G))"

(*

* The variable bound in a declaration.

*)

primrec "BoundByDec" Dec

BoundByVbl "BoundByDec (vbl x: tau) = \

\ x"

BoundByVal "BoundByDec (Val (x, S)) = \

\ x"

(*

* Appending FLists.

*)

primrec "FAppend" FList

FAppendFNil "G @@ nothing = \

\ G"

FAppendFCons "G @@ (G’ ;; d) = \

\ (G @@ G’) ;; d"

translations

(*

* Some of these don’t work as well as intended.

*)

"val f : Sch as . tau = M" == "Val (f, SCH as . <<tau, M>>)"
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"val f : tau = M" == "Val (f, <<tau, M>>)"

"c HasTy tau" == "<c, tau>: ConstTy"

"F$f" == "$V$f"

"Eq" == "C$EQ"

"Imp" == "C$IMP"

"Any" == "C$ANY"

"Om" == "T$OMEGA"

"x === y" == "Eq ‘ x ‘ y"

"P ---> Q" == "Imp ‘ P ‘ Q"

"any x: A. P" == "Any ‘ (lda x: A. P)"

"F" == "$D$FALSE"

"T" == "$D$TRUE"

"Forall" == "$D$FORALL"

"Exists" == "$D$EXISTS"

"Not" == "$D$NOT"

"And" == "$D$AND"

"Or" == "$D$OR"

"forall x: A. P" == "Forall ‘ (lda x: A. P)"

"exists x: A. P" == "Exists ‘ (lda x: A. P)"

"˜˜P" == "Not ‘ P"

"P && Q" == "And ‘ P ‘ Q"

"P || Q" == "Or ‘ P ‘ Q"

(*

* Types of constants.

*)

inductive "ConstTy"

intrs

TyOfImp "IMP HasTy (Om ->> Om ->> Om)"

TyOfEq "EQ HasTy (tau ->> tau ->> Om)"

TyOfAny "ANY HasTy ((tau ->> Om) ->> tau)"

rules

(*

* These rules make Scheme a datatype.
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*)

SchemeDistinct "<<tau, M>> ˜= AbsSch(S)"

BasicInject "(<<tau, M>> = <<tau’, M’>>) \

\ = (tau = tau’ & M = M’)"

AbsInject "(AbsSch(S) = AbsSch(S’)) = (S = S’)"

SchemeInduct "[| P(<<tau, M>>); \

\ !!S. (!A. P(S(A))) ==> P(AbsSch(S)) |] ==> \

\ P(S’)"

end

A.1.4 Distinctness

(*

File: /home/cao/isabelle/mphol/distinct.thy

Theory Name: distinct

Logic Image: HOL

*)

distinct = List +

consts

distFrom :: "[’a, ’a list] => bool"

distinct :: "’a list => bool"

primrec "distFrom" List.list

distFromNil "distFrom (x, []) = True"

distFromCons "distFrom (x, a # l) = \

\ ((x ˜= a) & (a ˜= x) & distFrom (x, l))"

primrec "distinct" List.list

distinctNil "distinct ([]) = True"

distinctCons "distinct (a # l) = \

\ (distFrom(a, l) & distinct (l))"

end
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A.2 The ML files

A.2.1 The main theory

(*

File: /home/cao/isabelle/mpc/MPHOL.thy

Theory Name: MPHOL

Logic Image: HOL

*)

MPHOL = closed + distinct +

consts

NoConns :: "FList set"

ValidExts :: "(FList * FList) set"

ValidContexts :: "FList set"

Ctxt :: "FList => bool"

WellTypedDecs :: "(FList * FVar Dec) set"

IsDec :: "[FList, FVar Dec] => bool"

TypesOfF :: "(FList * FVar * Ty) set"

LookupTypes :: "[FList, FVar] => Ty set"

TypesOfSch :: "(Scheme * Ty) set"

TermsOfSch :: "(Scheme * Term) set"

TyTermsOfSch :: "(Scheme * Ty * Term) set"

InstType :: "[Scheme, Ty] => bool"

InstTerm :: "[Scheme, Term] => bool"

InstTyTerm :: "[Scheme, Ty, Term] => bool"

Judge :: "(FList * Term) set"

"@Judge" :: "[FList, Term] => bool" ("(4_ |- _)"

[100, 100] 10)

TyJudge :: "(FList * Term * Ty) set"

"@TyJudge" :: "[FList, Term, Ty] => bool" ("(3_ |-/ _:/ _)"

[100, 100, 100] 10)

G0 :: "[BVar, BVar, BVar, BVar] => FList"

translations

"tau: LookupTypes (G, f)" == "<G, f, tau>: TypesOfF"
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"Ctxt (G)" == "G: ValidContexts"

"IsDec (G, dec)" == "<G, dec>: WellTypedDecs"

"InstType (S, tau)" == "<S, tau>: TypesOfSch"

"InstTerm (S, M)" == "<S, M>: TermsOfSch"

"InstTyTerm (S, tau, M)" == "<S, tau, M>: TyTermsOfSch"

"G |- M : tau" == "<G, M, tau>: TyJudge"

"G |- P" == "<G, P>: Judge"

(*

* How declaration schemes are instantiated.

*)

inductive "TyTermsOfSch"

intrs

InstTyTermSchBasic "InstTyTerm (<<tau, M>>, tau, M)"

InstTyTermSchAbs "InstTyTerm (S(tau’), tau, M) ==> \

\ InstTyTerm (SCH A. S(A), tau, M)"

inductive "TypesOfSch"

intrs

InstType "InstTyTerm (S, tau, M) ==> \

\ InstType(S, tau)"

inductive "TermsOfSch"

intrs

InstTerm "InstTyTerm (S, tau, M) ==> InstTerm(S, M)"

(*

* Typing judgements.

*)

inductive "TypesOfF"

intrs

LookupVbl "tau : LookupTypes (G ;; vbl f: tau, f)"

LookupVal "InstType(S, tau) ==> \

\ tau : LookupTypes (G ;; Val (f, S), f)"

161



LookupWeak "[| f ˜= BoundByDec (dec); \

\ tau : LookupTypes (G, f) |] ==> \

\ tau : LookupTypes (G ;; dec, f)"

inductive "TyJudge"

intrs

TyLookup "tau: LookupTypes (G, f) ==> \

\ G |- $f: tau"

TyConst "c HasTy tau ==> \

\ G |- C$c: tau"

TyLda "[| ˜ FOccurs (f, M); \

\ (G ;; vbl f: tau) |- M[$f/v]: tau’ |] ==> \

\ G |- lda v: tau. M: tau ->> tau’"

TyApp "[| G |- M: tau ->> tau’; G |- N: tau|] ==> \

\ G |- M ‘ N: tau’"

inductive "WellTypedDecs"

intrs

IsDecVal "(! tau M. InstTyTerm (S, tau, M) --> \

\ (G |- M: tau)) ==> \

\ IsDec (G, Val (f, S))"

IsDecVbl "IsDec (G, vbl f: tau)"

(*

* Intuitively, H is a valid extension of the context G if

* G @@ H is a valid context.

*)

inductive "ValidExts"

intrs

ValidExtsNothing "<G, nothing> : ValidExts"

ValidExtsDec "[| <G, H> : ValidExts; \

\ IsDec (G @@ H, dec) |] ==> \

\ <G, H ;; dec> : ValidExts"

(*
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* G is a valid context if it is a valid extension of

* the empty context.

*)

inductive "ValidContexts"

intrs

Ctxt "<nothing, G> : ValidExts ==> Ctxt(G)"

(*

* A context has no declarations of connectives.

*)

inductive "NoConns"

intrs

NoConnsNothing "nothing : NoConns"

NoConnsDec "[| G : NoConns; \

\ ! conn. BoundByDec(dec) ˜= D$conn |] ==> \

\ (G ;; dec) : NoConns"

rules

(*

* Axioms of the formal system.

*)

EqRefl "[| Ctxt (G); G |- M: tau |] ==> \

\ G |- M === M"

BetaConv "[| Ctxt (G); \

\ G |- (lda b: tau. M) ‘ N : tau’ |] ==> \

\ G |- ((lda b: tau. M) ‘ N) === M [N/b]"

OmegaCases "Ctxt (G) ==> \

\ G |- (forall P: Om. ($$P === T) || ($$P === F))"

ImpAntiSym "Ctxt (G) ==> \

\ G |- forall P: Om. forall Q: Om. \

\ ($$P ---> $$Q) ---> ($$Q ---> $$P) \

\ ---> ($$P === $$Q)"
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EtaConv "Ctxt (G) ==> \

\ G |- forall H: tau ->> tau’. \

\ (lda b: tau. $$H ‘ $$b) === $$H"

Select "Ctxt (G) ==> \

\ G |- forall P: A ->> Om. forall x: A. \

\ $$P ‘ $$x ---> $$P ‘ (Any ‘ $$P)"

(*

* Rules of the formal system.

*)

(*

* The McKinna-Pollack formulation of the substitution rule is:

*

* Subst "[| G |- M === M’; G |- P[f=M] |] ==> \

* \ G |- P[f=M’]"

*

* But due to the nature of FSubst, this can be simplified

* to the rule below.

*)

Subst "[| G |- M === M’; G |- P(M) |] ==> \

\ G |- P(M’)"

AbsCong "[| ˜ FOccurs(f, M); ˜ FOccurs(f, M’); \

\ (G ;; vbl f: tau ) |- M[$f/b] === N[$f/b’] |] ==> \

\ G |- (lda b: tau. M) === (lda b’: tau. N)"

ImpI "(G |- P ==> G |- Q) ==> \

\ G |- P ---> Q"

MP "[| G |- P; G |- P ---> Q |] ==> \

\ G |- Q"

Lookup "[| IsDec (G, Val (f, S)); ˜ FOccurs(f, M’); \

\ InstTerm(S, M); G |- M === M’ |] ==> \
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\ (G ;; Val (f, S)) |- $f === M’"

Weak "[| IsDec (G, dec); \

\ ˜FOccurs(BoundByDec(dec), P); \

\ G |- P |] ==> \

\ (G ;; dec) |- P"

(* Definitions of the logical connectives. *)

G0_def "G0(P,Q,R,x) == \

\ nothing \

\ ;; \

\ Val (D$TRUE, \

\ << Om, ((lda x: A. $$x) === (lda x: A. $$x)) >>) \

\ ;; \

\ Val (D$FORALL, \

\ SCH A. << (A ->> Om) ->> Om, \

\ lda P: A ->> Om. ($$P === (lda x: A. T))>>) \

\ ;; \

\ Val (D$AND, \

\ << Om ->> Om ->> Om, \

\ lda P: Om. lda Q: Om. forall R: Om. \

\ (($$P ---> $$Q ---> $$R) ---> $$R)>>) \

\ ;; \

\ Val (D$OR, \

\ << Om ->> Om ->> Om, \

\ lda P: Om. lda Q: Om. forall R: Om. \

\ (($$P ---> $$R) ---> ($$Q ---> $$R) ---> $$R)>>) \

\ ;; \

\ Val (D$FALSE, \

\ << Om, \

\ forall x: Om. $$x >>) \

\ ;; \

\ Val (D$EXISTS, \

\ SCH A. << (A ->> Om) ->> Om, \

\ lda P: A ->> Om. forall R: Om. \

\ ((forall x: A. $$P ‘ $$x ---> $$R) ---> $$R)>>) \
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\ ;; \

\ Val (D$NOT, \

\ << Om ->> Om, \

\ lda P: Om. ($$P ---> F)>>)"

end

ML

A.2.2 B-closedness and other issues

(*

File: /home/cao/isabelle/mphol/closed.thy

Theory Name: closed

Logic Image: HOL

*)

closed = bind +

consts

Size :: "Term => nat"

FFree :: "[Term] => FVar set"

FOccurs :: "[FVar, Term] => bool"

BOccurs :: "[BVar, Term] => bool"

BOccursA :: "[BVar, Term] => bool"

BClosed :: "Term set"

BClosedA :: "Term set"

BClosedB :: "Term set"

BClosedC :: "(Term * BVar set) set"

BClosedWRT :: "BVar set => Term set"

translations

"M: BClosedWRT(s)" == "<M, s> : BClosedC"

(*

* The size of a Term. A slightly odd definition in that the
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* size of atoms is 0. Has the property that the size of

* constructed terms is greater than the size of all subterms.

*)

primrec "Size" bind.Term

SizeB "Size ($$b) = \

\ 0"

SizeF "Size ($f’) = \

\ 0"

SizeC "Size (C$c) = \

\ 0"

SizeApp "Size (M ‘ M’) = \

\ Suc(Size (M) + Size (M’))"

SizeLda "Size (lda b: tau. M) = \

\ Suc(Size (M))"

(*

* An FVar appears in a Term.

*)

primrec "FOccurs" bind.Term

FOccursB "FOccurs (f, $$b) = \

\ False"

FOccursF "FOccurs (f, $f’) = \

\ (f = f’)"

FOccursC "FOccurs (f, C$c) = \

\ False"

FOccursApp "FOccurs (f, M ‘ M’) = \

\ (FOccurs (f, M) | FOccurs (f, M’))"

FOccursLda "FOccurs (f, lda b: tau. M) = \

\ FOccurs (f, M)"

(*

* A BVar appears in a Term.

*)

primrec "BOccurs" bind.Term

BOccursB "BOccurs (b, $$b’) = \

\ (b = b’)"

BOccursF "BOccurs (b, $f) = \
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\ False"

BOccursC "BOccurs (b, C$c) = \

\ False"

BOccursApp "BOccurs (b, M ‘ M’) = \

\ (BOccurs (b, M) | BOccurs (b, M’))"

BOccursLda "BOccurs (b, lda b’: tau. M) = \

\ if (b = b’, False, BOccurs (b, M))"

(*

* The free FVars of a Term.

*)

primrec "FFree" bind.Term

FFreeB "FFree ($$b) = \

\ {}"

FFreeF "FFree ($f) = \

\ {f}"

FFreeC "FFree (C$c) = \

\ {}"

FFreeApp "FFree (M ‘ M’) = \

\ (FFree (M) Un FFree (M’))"

FFreeLda "FFree (lda b: tau. M) = \

\ FFree (M)"

(*

* A Term has no free BVars.

*)

inductive "BClosed"

intrs

BClosedF "$f: BClosed"

BClosedC "C$c: BClosed"

BClosedApp "[| M: BClosed; M’: BClosed |] ==> \

\ (M ‘ M’): BClosed"

BClosedLda "[| M[$f/b]: BClosed; ˜FOccurs(f, M) |] ==> \

\ (lda b: tau. M): BClosed"

(*
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* A Term has no free BVars. A different formulation with no

* side condition on the Lda rule.

*)

inductive "BClosedA"

intrs

BClosedAF "$f: BClosedA"

BClosedAC "C$c: BClosedA"

BClosedAApp "[| M: BClosedA; M’: BClosedA |] ==> \

\ (M ‘ M’): BClosedA"

BClosedALda "M[$f/b]: BClosedA ==> \

\ (lda b: tau. M): BClosedA"

(*

* A Term has no free BVars, except those mentioned.

*)

inductive "BClosedC"

intrs

BClosedWRTF "$f: BClosedWRT(s)"

BClosedWRTB "b: s ==> \

\ $$b: BClosedWRT(s)"

BClosedWRTC "C$c: BClosedWRT(s)"

BClosedWRTApp "[| M: BClosedWRT(s); M’: BClosedWRT(s) |] ==> \

\ M ‘ M’: BClosedWRT(s)"

BClosedWRTLda "[| M[$f/b]: BClosedWRT(s); \

\ ˜FOccurs(f,M) |] ==> \

\ lda b: tau. M: BClosedWRT(s)"

rules

FreshFVar "? f. ˜(FOccurs (f, M))"

BOccursA_def "BOccursA (b, M) == \

\ (! f. ˜FOccurs (f, M) --> FOccurs (f, M [$f/b]))"

(*

* Yet another formulation of BOccurs. It’s an inductive set,

* but because of the quantifier in the lda rule, it can’t be
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* declared as inductive.

*)

BClosedB_def "BClosedB == \

\ lfp(%X. {z. \

\ (? f. z = $f) | \

\ (? c. z = C$c) | \

\ (? M M’. z = M ‘ M’ & M : X & M’ : X) | \

\ (? M b f tau. \

\ z = lda b: tau. M & \

\ (! f. M [$f/b] : X))})"

end

A.2.3 Terms

(*

File: /home/cao/isabelle/mpc/bind.thy

Theory Name: bind

Logic Image: HOL

*)

(*

* Warning: some priorities, translations etc. are wrong.

*)

bind = Arith +

classes

Var < term

types

TyId,

Id,

BVar,

TyVar,

Scheme 0

arities

TyId,

Id,
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Scheme :: term

BVar :: Var

TyVar :: Var

datatype

Ty = Base (TyId) ("(T$_)" 210)

| Fun (Ty, Ty) ("(3 _ ->>/ _)"

[111, 110] 110)

datatype

Const = IMP

| EQ

| ANY

datatype

Conn = TRUE | FALSE | FORALL | EXISTS | NOT | AND | OR

datatype

FVar = Def (Conn) ("(D$_)" [240] 240)

| Var (Id) ("(V$_)" [240] 240)

datatype

Term = BV (BVar) ("($$_)" [230] 230)

| FV (FVar) ("($_)" [230] 230)

| Constant (Const) ("(C$_)" [220] 220)

| Lda (BVar, Ty, Term) ("(3lda _:/ _./ _)"

[0, 0, 180] 181)

| App (Term, Term) ("(3_ ‘ _)"

[190, 191] 190)

datatype

’a Dec = Vbl (’a, Ty) ("(3vbl _:/ _)" 200)

| Val (’a, Scheme)

types

BDec = "BVar Dec"

FDec = "FVar Dec"
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datatype

BList = BNil

| BCons (BDec, BList)

datatype

FList = FNil ("nothing")

| FCons (FList, FDec) ("(3_ ;;/ _)"

[120, 121] 120)

datatype

Renaming = RNil ("{||}")

| RCons (Renaming, FVar, FVar) ("(3_ ++/ _ |->/ _)"

[120, 121, 121] 120)

consts

(*

* We’d really like Scheme to be a datatype. There’s

* no (theoretical) reason why it shouldn’t be, so we just

* give the freeness theorems and the induction rule as

* axioms.

*)

BasicSch :: "[Ty, Term] => Scheme" ("<<_,/ _>>")

AbsSch :: "(Ty => Scheme) => Scheme" (binder "SCH " 100)

"@val" :: "[FVar, idts, Ty, Term] => FDec"

("val _ :/ Sch _./ _ =/ _"

100)

"@@val" :: "[FVar, Ty, Term] => FDec" ("val _ :/ _ =/ _"

100)

"@Free" :: "Id => Term" ("(F$_)" [210] 210)

F :: "Term"

T :: "Term"

Forall :: "Term"

Exists :: "Term"
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Not :: "Term"

And :: "Term"

Or :: "Term"

"@Forall" :: "[BVar, Ty, Term] => Term"

("(3forall _:/ _./ _)"

[0, 0, 180] 181)

"@Exists" :: "[BVar, Ty, Term] => Term"

("(3exists _:/ _./ _)"

[0, 0, 180] 181)

"@Not" :: "Term => Term" ("(3˜˜_)" 180)

"@Andd" :: "[Term, Term] => Term" ("(3_ &&/ _)" 180)

"@Orr" :: "[Term, Term] => Term" ("(3_ ||/ _)" 170)

Imp :: "Term"

Eq :: "Term"

Any :: "Term"

"@Imp" :: "[Term, Term] => Term" ("(3_ --->/ _)"

[111, 110] 110)

"@Eq" :: "[Term, Term] => Term" ("(3_ ===/ _)"

[100, 101] 100)

"@Any" :: "[BVar, Ty, Term] => Term" ("(3any _:/ _./ _)"

[0, 0, 180] 181)

OMEGA :: "TyId"

Om :: "Ty"

ConstTy :: "(Const * Ty) set"

"@ConstTy":: "[Const, Ty] => bool" ("_ HasTy/ _")

BSubst :: "[Term, Term, BVar] => Term"

("_ [_’/_]"

[200, 100, 100] 200)

FSubst :: "[Term, FVar, Term] => Term"

("_ [_=_]"

[200, 100, 100] 200)

RMap :: "[Renaming, FVar] => FVar"
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Ren :: "[Renaming, Term] => Term"

FBoundBy :: "FList => FVar set"

BoundByDec:: "’a Dec => ’a"

FAppend :: "[FList, FList] => FList" ("(3_ @@/ _)"

[120, 121] 120)

(*

* Substitution for a BVar in a Term.

*)

primrec "BSubst" Term

BSubstB "($$b’)[N/b] = \

\ if (b = b’, N, $$b’)"

BSubstF "($f) [N/b] = \

\ $f"

BSubstC "(C$c) [N/b] = \

\ C$c"

BSubstApp "(M ‘ M’) [N/b] = \

\ M[N/b] ‘ M’[N/b]"

BSubstLda "(lda b’ : tau. M)[N/b] = \

\ if (b = b’, lda b’: tau. M, lda b’: tau. M[N/b])"

(*

* Substitution for an FVar in a Term.

*)

primrec "FSubst" Term

FSubstB "($$b) [f=N] = \

\ $$b"

FSubstF "($f’) [f=N] = \

\ if (f = f’, N, $f’)"

FSubstC "(C$c) [f=N] = \

\ C$c"

FSubstApp "(M ‘ M’) [f=N] = \

\ M[f=N] ‘ M’[f=N]"

FSubstLda "(lda b: tau. M)[f=N] = \

\ lda b: tau. M[f=N]"
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(*

* Applying Renamings to an FVar and to a Term.

*)

primrec "RMap" Renaming

RMapNil "RMap ({||}, f) \

\ = f"

RMapCons "RMap (R ++ f |-> g, f’) = \

\ if (f = f’, g, RMap (R, f’))"

primrec "Ren" Term

RenB "Ren (R, $$b) = \

\ $$b"

RenF "Ren (R, $f) = \

\ $(RMap (R, f))"

RenC "Ren (R, C$c) = \

\ C$c"

RenApp "Ren (R, M ‘ M’) = \

\ Ren (R, M) ‘ Ren (R, M’)"

RenLda "Ren (R, lda b: tau. M) = \

\ lda b: tau. Ren (R, M)"

(*

* The FVars bound by the declarations in an FList.

*)

primrec "FBoundBy" FList

FBoundByFNil "FBoundBy (nothing) = \

\ {}"

FBoundByFCons "FBoundBy (G ;; dec) = \

\ insert (BoundByDec(dec), FBoundBy (G))"

(*

* The variable bound in a declaration.

*)

primrec "BoundByDec" Dec

BoundByVbl "BoundByDec (vbl x: tau) = \

\ x"

BoundByVal "BoundByDec (Val (x, S)) = \
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\ x"

(*

* Appending FLists.

*)

primrec "FAppend" FList

FAppendFNil "G @@ nothing = \

\ G"

FAppendFCons "G @@ (G’ ;; d) = \

\ (G @@ G’) ;; d"

translations

(*

* Some of these don’t work as well as intended.

*)

"val f : Sch as . tau = M" == "Val (f, SCH as . <<tau, M>>)"

"val f : tau = M" == "Val (f, <<tau, M>>)"

"c HasTy tau" == "<c, tau>: ConstTy"

"F$f" == "$V$f"

"Eq" == "C$EQ"

"Imp" == "C$IMP"

"Any" == "C$ANY"

"Om" == "T$OMEGA"

"x === y" == "Eq ‘ x ‘ y"

"P ---> Q" == "Imp ‘ P ‘ Q"

"any x: A. P" == "Any ‘ (lda x: A. P)"

"F" == "$D$FALSE"

"T" == "$D$TRUE"

"Forall" == "$D$FORALL"

"Exists" == "$D$EXISTS"

"Not" == "$D$NOT"

"And" == "$D$AND"

"Or" == "$D$OR"

"forall x: A. P" == "Forall ‘ (lda x: A. P)"

"exists x: A. P" == "Exists ‘ (lda x: A. P)"

"˜˜P" == "Not ‘ P"
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"P && Q" == "And ‘ P ‘ Q"

"P || Q" == "Or ‘ P ‘ Q"

(*

* Types of constants.

*)

inductive "ConstTy"

intrs

TyOfImp "IMP HasTy (Om ->> Om ->> Om)"

TyOfEq "EQ HasTy (tau ->> tau ->> Om)"

TyOfAny "ANY HasTy ((tau ->> Om) ->> tau)"

rules

(*

* These rules make Scheme a datatype.

*)

SchemeDistinct "<<tau, M>> ˜= AbsSch(S)"

BasicInject "(<<tau, M>> = <<tau’, M’>>) \

\ = (tau = tau’ & M = M’)"

AbsInject "(AbsSch(S) = AbsSch(S’)) = (S = S’)"

SchemeInduct "[| P(<<tau, M>>); \

\ !!S. (!A. P(S(A))) ==> P(AbsSch(S)) |] ==> \

\ P(S’)"

end

A.2.4 Distinctness

(*

File: /home/cao/isabelle/mphol/distinct.thy

Theory Name: distinct

Logic Image: HOL

*)

177



distinct = List +

consts

distFrom :: "[’a, ’a list] => bool"

distinct :: "’a list => bool"

primrec "distFrom" List.list

distFromNil "distFrom (x, []) = True"

distFromCons "distFrom (x, a # l) = \

\ ((x ˜= a) & (a ˜= x) & distFrom (x, l))"

primrec "distinct" List.list

distinctNil "distinct ([]) = True"

distinctCons "distinct (a # l) = \

\ (distFrom(a, l) & distinct (l))"

end
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Get stewed:
Books are a load of crap.

—Philip Larkin, A Study of Reading Habits
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Communism is Soviet power plus the electrification of the whole coun-
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