Counting unlabelled subtrees of a tree is #P-complete^{*}

Leslie Ann Goldberg[†] Department of Computer Science University of Warwick Mark Jerrum[‡] Division of Informatics University of Edinburgh

November 26th, 1999

Abstract

The problem of counting unlabelled subtrees of a tree (i.e., subtrees that are distinct up to isomorphism) is #P-complete, and hence equivalent in computational difficulty to evaluating the permanent of a 0,1-matrix.

^{*}This work was supported in part by the ESPRIT Working Group 21726 "RAND2" and by EPSRC grant GR/L60982.

 $^{^\}dagger \mathrm{Department}$ of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom.

E-mail leslie@dcs.warwick.ac.uk, URL http://www.dcs.warwick.ac.uk/~leslie/.

[‡]School of Computer Science, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JZ, United Kingdom.

E-mail mrj@dcs.ed.ac.uk, URL http://www.dcs.ed.ac.uk/~mrj/.

1 Introduction

Valiant's complexity class #P [10] stands in relation to counting problems as NP does to decision problems. A function $f : \Sigma^* \to \mathbb{N}$ is in #P if there is a nondeterministic polynomial-time Turing machine M such that the number of accepting computations of M on input x is f(x), for all $x \in \Sigma^*$. A counting problem, i.e., a function $f : \Sigma^* \to \mathbb{N}$, is said to be #P-hard if every function in #P is polynomial-time Turing reducible to f; it is complete for #P if, in addition, $f \in \#P$. A #P-complete problem is equivalent in computational difficulty to such problems as counting the number of satisfying assignments to a Boolean formula, or evaluating the permanent of a 0,1-matrix, which are widely believed to be intractable. For background information on #P and its completeness class, refer to one of the standard texts, e.g., [3, 8].

The main result of the paper—advertised in the abstract, and stated more formally below—is interesting on two counts. First, it provides a rare example of a natural question about trees which is unlikely to be polynomial-time solvable. (Two other examples are determining a vertex ordering of minimum bandwidth [1, 4], or determining the "harmonious chromatic number" [2].) Second, it is, as far as we are aware, the first intractability result concerning the counting of unlabelled structures.

Some definitions. By rooted tree (T, r) we simply mean a tree T with a distinguished vertex r, the root. An embedding of a tree T' in a tree T is a injective map ι from the vertex set of T' to the vertex set of T such that $(\iota(u), \iota(v))$ is an edge of T whenever (u, v) is a edge of T'. Sometimes T' and T will be rooted, in which case we may insist that ι maps the root r' of T' to the root $r = \iota(r')$ of T. We now define a sequence of problems leading to one of interest; we do not claim that both the intermediate problems are particularly natural.

Name. #BIPARTITEMATCHINGS.

Instance. A bipartite graph G.

Output. The number of matchings of all sizes in G.

Name. #COMMONROOTEDSUBTREES.

Instance. Two rooted trees, (T_1, r_1) and (T_2, r_2) .

Output. The number of distinct (up to isomorphism) rooted trees (T, r) such that (T, r) embeds in (T_1, r_1) and (T_2, r_2) with r mapped to r_1 and r_2 , respectively.

Name. #ROOTEDSUBTREES.

Instance. A rooted tree, (T, r).

Output. The number of distinct (up to isomorphism) rooted trees (T', r') such that (T', r') embeds in (T, r) with r' mapped to r.

Name. #Subtrees.

Instance. A tree T.

Output. The number of distinct (up to isomorphism) subtrees of T.

We will use each of the problem names in an obvious way to denote a function from instances to outputs: thus #ROOTEDSUBTREES(T, r) denotes the number of distinct rooted subtrees of the rooted tree (T, r). Our main result is the following.

Theorem 1 #SUBTREES is #P-complete.

Proof. #BIPARTITEMATCHINGS is the sixth problem on Valiant's original list of #P-complete problems [10]. So #P-hardness of #SUBTREES follows from Lemmas 2–4 and from the transitivity of polynomial-time Turing reducibility. We will now show that #SUBTREES is in #P. Suppose that T is a tree with vertex set $V_n = \{v_0, \ldots, v_{n-1}\}$. We will order the vertices in V_n so that $v_i < v_j$ iff i < j. For every (labelled) subtree T' of T, let V(T') denote the vertex set of T'. We will say that subtree T'' is *larger* than subtree T' if and only if there is a vertex $v_i \in V_n$ such that $v_i \in V(T'')$, $v_i \notin V(T')$ and

$$V(T') \cap \{v_{i+1}, \dots, v_n\} = V(T'') \cap \{v_{i+1}, \dots, v_n\}.$$

Let T'' be a subtree of T. Either T'' is the smallest subtree of T in its isomorphism class or there is a vertex $v_{\ell} \in V(T'')$ such that the sub-forest F_{ℓ} of T induced by vertex set

$$\{v_i \in V_n \mid v_i < v_\ell\} \cup \{v_i \in V(T'') \mid v_i > v_\ell\}$$

contains a tree isomorphic to T''. Thus, one can determine whether T'' is the smallest subtree of T in its isomorphism class by solving subgraph isomorphism with inputs F_{ℓ} and T'' for all $v_{\ell} \in V(T'')$. Since F_{ℓ} is a forest and T'' is a tree, this can be done in polynomial time [3] using the method of Edmonds and Matula. It is now simple to describe the #P computation: With input T, each branch picks a subtree T'' of T and rejects unless T'' is the smallest subtree of T in its isomorphism class.

2 The reductions

Denote by \leq_T the relation "is polynomial-time Turing reducible to."

Lemma 2

```
\#BIPARTITEMATCHINGS \leq_{T} \#CommonRootedSubtrees.
```

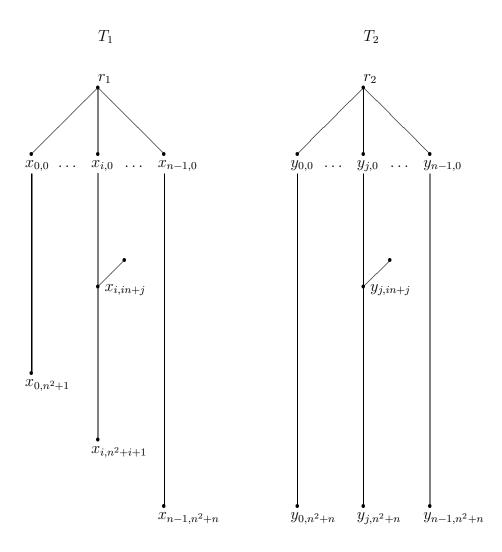


Figure 1: The skeleton of trees T_1 and T_2 , illustrating the presence of edge (u_i, v_j) in G.

Proof. Let G be an instance of #BIPARTITEMATCHINGS with vertex sets $\{u_0, \ldots, u_{n-1}\}$ and $\{v_0, \ldots, v_{n-1}\}$. From G, we construct two rooted trees, (T_1, r_1) and (T_2, r_2) , each based on a fixed skeleton. The skeleton of T_1 has vertex set

$$\{x_{i,j}: 0 \le i \le n-1 \text{ and } 0 \le j \le n^2 + i + 1\} \cup \{r_1\},\$$

and edge set

$$\{(x_{i,j}, x_{i,j+1}) : 0 \le i \le n-1 \text{ and } 0 \le j \le n^2 + i\} \cup \{(r_1, x_{i,0}) : 0 \le i \le n-1\}.$$

Informally, the skeleton of T_1 consists of n paths of different lengths emanating from the root r_1 , as illustrated in Figure 1. These n paths correspond to the n vertices $\{u_i\}$ of G. The skeleton of T_2 is similar to the skeleton of T_1 , except the paths now have equal length. It has vertex set

$$\{y_{i,j}: 0 \le i \le n-1 \text{ and } 0 \le j \le n^2+n\} \cup \{r_2\},\$$

and edge set

$$\{(y_{ij}, y_{i,j+1}) : 0 \le i \le n-1 \text{ and } 0 \le j \le n^2 + n - 1\} \cup \{(r_2, y_{i,0}) : 0 \le i \le n-1\}.$$

The *n* paths emanating from r_2 correspond to the to the *n* vertices $\{v_i\}$ of *G*.

The trees T_1 and T_2 themselves are built by adding to the respective skeletons certain edges encoding the graph G. Specifically, for each edge (u_i, v_j) of G, we add an edge from a new vertex to vertex $x_{i,in+j}$ of T_1 and add an edge from a new vertex to vertex $y_{j,in+j}$ of T_2 .

Let \mathcal{T}^* denote the set of all finite (unlabelled) rooted trees (T, r) that have leaves at all distances in the range $[n^2 + 2, n^2 + n + 1]$ from the root r. For any rooted tree (T, r), let $\mathcal{T}(T, r)$ denote the set of all (unlabelled) rooted subtrees of (T, r). Thus, the quantity #ROOTEDSUBTREES(T, r) is just the size of $\mathcal{T}(T, r)$. We first observe that there is a bijection between the set of matchings (of all sizes) in G and the set $\mathcal{T}(T_1, r_1) \cap \mathcal{T}(T_2, r_2) \cap \mathcal{T}^*$, and then conclude the proof by showing how to compute the size of $\mathcal{T}(T_1, r_1) \cap \mathcal{T}(T_2, r_2) \cap \mathcal{T}^*$ using an oracle for #COMMONROOTEDSUBTREES.

Consider some tree $(T, r) \in \mathcal{T}(T_1, r_1) \cap \mathcal{T}(T_2, r_2) \cap \mathcal{T}^*$. From the definition of \mathcal{T}^* we see that T must contain the entire skeleton of T_1 . In addition, Tmay contain up to n additional pendant edges. Any pendant edge must be attached to the skeleton at a vertex at distance in + j + 1 from the root r, where $(u_i, v_j) \in E(G)$. Furthermore, if there are pendant edges at distances in + j + 1and i'n + j' + 1 from the root then $i \neq i'$ and $j \neq j'$. Thus, every such rooted tree (T, r) may be interpreted as a matching in G, and vice versa. This is the sought for bijection between the set of matchings in G and the set $\mathcal{T}(T_1, r_1) \cap \mathcal{T}(T_2, r_2) \cap \mathcal{T}^*$. To conclude, we just need to show how compute the size of the latter set using an oracle for #COMMONROOTEDSUBTREES.

Let L be the set of all *leaves* in (T_1, r_1) whose distances from the root r_1 are in the range $[n^2 + 2, n^2 + n + 1]$. Let U be the set of all vertices in (T_2, r_2) whose distances from r_2 are in the range $[n^2 + 2, n^2 + n + 1]$. For each $j \in \{0, \ldots, n\}$, let T_1^j be the tree formed from (T_1, r_1) by adorning every vertex in L with a tuft of n + j edges and let T_2^j be the tree formed from (T_2, r_2) by adorning every vertex in U with a tuft of n + j edges. By the phrase "adorning a vertex v with a tuft of t edges" we mean the following: create t new vertices and add an edge from each of these new vertices to v." For $k \in \{0, \ldots, n\}$, let a_k be the number of rooted trees in $\mathcal{T}(T_1^0, r_1) \cap \mathcal{T}(T_2^0, r_2)$ that have k vertices of degree n + 1. Clearly,

$$a_n = |\mathcal{T}(T_1, r_1) \cap \mathcal{T}(T_2, r_2) \cap \mathcal{T}^*|.$$

So we want to show how to compute a_n using an oracle for #COMMONROOT-EDSUBTREES.

We claim (and shall justify presently) that

$$|\mathcal{T}(T_1^j, r_1) \cap \mathcal{T}(T_2^j, r_2)| = \sum_{k=0}^n a_k (j+1)^k.$$
(1)

Thus, we can use an oracle for #COMMONROOTEDSUBTREES to evaluate the left-hand side of 1 at j = 0, ..., n; then we can compute a_n by Lagrange interpolation.¹

It remains to prove equation (1). We define a projection function

$$\pi: \mathcal{T}(T_1^j, r_1) \cap \mathcal{T}(T_2^j, r_2) \to \mathcal{T}(T_1^0, r_1) \cap \mathcal{T}(T_2^0, r_2)$$

as follows. For any rooted tree (T, r) in the domain, $(T', r) = \pi(T, r)$ is the maximum *r*-rooted subtree of (T, r) that has no vertex of degree greater than n + 1. To see that T' is uniquely defined, consider an embedding of (T, r) into (T_1^j, r_1) . The only vertices of degree greater than n+1 are those which are mapped to tufts. Thus, (T', r) is obtained from (T, r) by pruning tufts with more than n pendant edges down to exactly n pendant edges. Note also that the resulting tree (T', r) can be embedded in both (T_1^0, r_1) and (T_2^0, r_2) , so π is indeed well defined.

How large is $\pi^{-1}(T', r)$? To every tuft with exactly n pendant edges we may add any number of pendant edges, from 0 to j. All the tufts are distinguishable, because they are all at distinct distances from the root r. Thus all these possible augmentations lead to distinct trees, and $\pi^{-1}(T', r) = (j + 1)^k$, where k is the number of vertices in (T', r) of degree n + 1. Thus, each of the a_k rooted trees in $\mathcal{T}(T_1^0, r_1) \cap \mathcal{T}(T_2^0, r_2)$ with k vertices of degree n + 1 are mapped by π^{-1} to $(j + 1)^k$ trees in $\mathcal{T}(T_1^j, r_1) \cap \mathcal{T}(T_2^j, r_2)$. The lemma follows.

Lemma 3

#CommonRootedSubtrees $\leq_{T} \#$ RootedSubtrees.

Proof. Suppose that (T_1, r_1) and (T_2, r_2) constitute an instance of #COMMON-ROOTEDSUBTREES. Let (T, r) be the rooted tree formed by taking T_1 and T_2 and adding a new root, r, and edges (r, r_1) and (r, r_2) . For notational convenience, introduce the following quantities:

> $N_1 = \# \text{ROOTEDSUBTREES}(T_1, r_1),$ $N_2 = \# \text{ROOTEDSUBTREES}(T_2, r_2),$ N = # ROOTEDSUBTREES(T, r), and

 $^{^1 \}mathrm{See}$ Valiant [10] for details of this process, particularly the claim that interpolation is a polynomial-time operation.

$$C = #COMMONROOTEDSUBTREES((T_1, r_1), (T_2, r_2)).$$

We start by observing that

$$N = 1 + N_1 + N_2 - C + N_1 N_2 - \binom{C}{2}.$$

To see this, note that (T, r) has

- one distinct subtree in which the degree of r is 0, and
- $N_1 + N_2 C$ distinct subtrees in which the degree of r is 1, and
- $N_1N_2 \binom{C}{2}$ distinct subtrees in which the degree of r is 2.

Thus, C(C+1) = 2Z, where Z denotes

$$1 + N_1 + N_2 + N_1 N_2 - N.$$

To compute C, first calculate Z using an oracle for #ROOTEDSUBTREES. Then, observe that

$$C^2 < 2Z < (C+1)^2$$

so C is the *integer square root* of 2Z, which can be computed in $\Theta(\log Z)$ time. Note that $\log Z$ is polynomial in the size of the input, since, for example, $N_1 \leq 2^{n_1}$, where n_1 is the number of vertices in T_1 .

Lemma 4

#ROOTEDSUBTREES $\leq_{T} \#$ SUBTREES.

Proof. For any i, an "*i*-star" is a tree consisting of one (centre) vertex with degree i and i (outer) vertices, each of which has degree 1.

Suppose that (T, r) is an instance of #ROOTEDSUBTREES. Let Δ denote the maximum degree of a vertex in T. Let T' be the tree formed from T by taking a new $(\Delta + 3)$ -star, and identifying one of the outer vertices with r. Let T'' be the tree formed from T by taking a new $(\Delta + 2)$ -star, and identifying one of the outer vertices with r. Let N' denote #SUBTREES(T') and let N'' denote #SUBTREES(T'). Then #ROOTEDSUBTREES(T, r) is equal to N' - N'', so it can be computed using an oracle for #SUBTREES.

3 Some consequences

Following Valiant [10], we say that a function $f : \Sigma^* \to \mathbb{N}$ is in FP if it can be computed by a deterministic polynomial-time Turing machine. We say that it is in FP^g for a problem g if it can be computed by a deterministic polynomial-time Turing machine which is equipped with an oracle for g. Finally, we say that it is in FP^A for a complexity class A if there is some $g \in A$ such that $f \in FP^g$.

Let #CONNECTEDSUBGRAPHS be the problem of counting unlabelled connected subgraphs of a graph. Formally, let it be defined as follows. *Name.* #CONNECTEDSUBGRAPHS

Instance. A graph G.

Output. The number of distinct (up to isomorphism) connected subgraphs of G.

Corollary 5 #CONNECTEDSUBGRAPHS is complete for $FP^{\#P}$.

Proof. #CONNECTEDSUBGRAPHS is $FP^{\#P}$ -hard by Theorem 1. We will show that #CONNECTEDSUBGRAPHS is in the class $FP^{\text{span-P}}$, which will be defined shortly. The result will then follow by Toda's theorem [9].

We start by defining the relevant complexity classes. A function $f : \Sigma^* \to \mathbb{N}$ is in the class span-P [7] if there is a polynomial-time nondeterministic Turing machine M (with an output device) such that the number of *different* accepting outputs of M on input x is f(x), for all $x \in \Sigma^*$.

A function $f : \Sigma^* \to \mathbb{N}$ is in #NP if there is a polynomial-time nondeterministic Turing machine M and an an oracle $A \in$ NP such that the number of accepting computations of M^A on input x is f(x), for all $x \in \Sigma^*$.

The classes #P, span-P, and #NP are related [7] by

$$\#P \subseteq \text{span-}P \subseteq \#NP$$
.

Thus,

$$\mathrm{FP}^{\#\mathrm{P}} \subseteq \mathrm{FP}^{\mathrm{span-P}} \subseteq \mathrm{FP}^{\#\mathrm{NP}}$$

As Welsh notes [11, eq. (1.8.6)], the identity

$$FP^{\#P} = FP^{\#NP}.$$
 (2)

follows from Toda's theorem [9]. Thus,

$$FP^{\#P} = FP^{span-P}$$

(To verify (2) independently, start with Toda's Theorem 4.10, concerning the complexity classes PH and PP. Then the required inclusion $FP^{\#NP} \subseteq FP^{\#P}$ follows via a little manipulation involving the elementary relationships $NP \subseteq PH$ and $FP^{PP} = FP^{\#P}$.)

We now complete the proof by showing that #CONNECTEDSUBGRAPHS is in FP^{span-P}. Let N(G, k) denote k! times the number of distinct (up to isomorphism) connected size-k subgraphs of G. Since

#CONNECTEDSUBGRAPHS(G) =
$$\sum_{k=1}^{n} \frac{1}{k!} N(G, k)$$
,

where n is the number of vertices of G, it suffices to show that computing N(G, k) is in span-P. Each branch of the computation tree for N(G, k) chooses

- a size-k connected subgraph H of G,
- a bijection σ from the vertices of H to the set $\{v_1, \ldots, v_k\}$, and
- a permutation π of v_1, \ldots, v_k .

Let H' be the graph formed from H by relabelling each vertex v of H with the label $\sigma(v)$. If π is an automorphism of H' then (H', π) is output. Otherwise, the branch rejects. The result now follows from Burnside's Lemma, which implies that for any given isomorphism class of k-vertex graphs, the number of graphs in the isomorphism class times the number of automorphisms of any member of the class is equal to k!. (For example, see [5].)

Let #GRAPHSUBTREES be the problem of counting unlabelled subtrees of a graph. Formally, let it be defined as follows.

Name. #GRAPHSUBTREES

Instance. A graph G.

Output. The number of distinct (up to isomorphism) subtrees of G.

Corollary 6 #GRAPHSUBTREES is complete for $FP^{\#P}$.

Proof. This is the same as the proof of Corollary 5, except that the span-P computation rejects any subgraph H which is not a tree. A more direct proof could be obtained by using a polynomial-time canonical labelling algorithm for trees such as the one by Hopcroft and Tarjan [6].

References

- G. Blache, M. Karpinski and J. Wirtgen, On approximation intractability of the bandwidth problem, *Electronic Colloquium on Computational Complexity*, Report TR98-014, 1998.
- [2] K. J. Edwards and C. J. H. McDiarmid, The complexity of harmonious colouring for trees, *Discrete Applied Mathematics* 57 (1995), 133–144.
- [3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.
- [4] M. R. Garey, R. L. Graham, D. S. Johnson and D. E. Knuth, Complexity results for bandwidth minimization, SIAM Journal on Applied Mathematics 34 (1978), 477–495.
- [5] F. Harary and E. M. Palmer, *Graphical Enumeration*, Academic Press, 1973.

- [6] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, Journal of the ACM 21 (1974) 549–568.
- [7] J. Köbler, U. Schöning and J. Toran, On counting and approximation, Acta Informatica 26 (1989) 363–379.
- [8] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
- [9] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM Journal on Computing 20 (1991), 865–877.
- [10] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM Journal on Computing 8 (1979), 410–421.
- [11] D. J. A. Welsh, Complexity: Knots, Colourings and Counting, Cambridge University Press, 1993.