
Counting unlabelled subtrees of a tree
is #P-complete∗

Leslie Ann Goldberg†

Department of Computer Science
University of Warwick

Mark Jerrum‡

Division of Informatics
University of Edinburgh

November 26th, 1999

Abstract

The problem of counting unlabelled subtrees of a tree (i.e., subtrees that
are distinct up to isomorphism) is #P-complete, and hence equivalent in
computational difficulty to evaluating the permanent of a 0,1-matrix.

∗This work was supported in part by the ESPRIT Working Group 21726 “RAND2” and by
EPSRC grant GR/L60982.
†Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United

Kingdom.
E-mail leslie@dcs.warwick.ac.uk, URL http://www.dcs.warwick.ac.uk/˜leslie/.
‡School of Computer Science, University of Edinburgh, The King’s Buildings, Edinburgh

EH9 3JZ, United Kingdom.
E-mail mrj@dcs.ed.ac.uk, URL http://www.dcs.ed.ac.uk/˜mrj/.

1 Introduction

Valiant’s complexity class #P [10] stands in relation to counting problems as
NP does to decision problems. A function f : Σ ∗ → N is in #P if there is a
nondeterministic polynomial-time Turing machine M such that the number of
accepting computations of M on input x is f(x), for all x ∈ Σ ∗. A counting
problem, i.e., a function f : Σ ∗ → N, is said to be #P-hard if every function in
#P is polynomial-time Turing reducible to f ; it is complete for #P if, in addition,
f ∈ #P. A #P-complete problem is equivalent in computational difficulty to such
problems as counting the number of satisfying assignments to a Boolean formula,
or evaluating the permanent of a 0,1-matrix, which are widely believed to be
intractable. For background information on #P and its completeness class, refer
to one of the standard texts, e.g., [3, 8].

The main result of the paper—advertised in the abstract, and stated more
formally below—is interesting on two counts. First, it provides a rare example of
a natural question about trees which is unlikely to be polynomial-time solvable.
(Two other examples are determining a vertex ordering of minimum bandwidth [1,
4], or determining the “harmonious chromatic number” [2].) Second, it is, as far as
we are aware, the first intractability result concerning the counting of unlabelled
structures.

Some definitions. By rooted tree (T, r) we simply mean a tree T with a
distinguished vertex r, the root. An embedding of a tree T ′ in a tree T is a injective
map ι from the vertex set of T ′ to the vertex set of T such that (ι(u), ι(v)) is an
edge of T whenever (u, v) is a edge of T ′. Sometimes T ′ and T will be rooted, in
which case we may insist that ι maps the root r′ of T ′ to the root r = ι(r′) of T .
We now define a sequence of problems leading to one of interest; we do not claim
that both the intermediate problems are particularly natural.

Name. #BipartiteMatchings.

Instance. A bipartite graph G.

Output. The number of matchings of all sizes in G.

Name. #CommonRootedSubtrees.

Instance. Two rooted trees, (T1, r1) and (T2, r2).

Output. The number of distinct (up to isomorphism) rooted trees (T, r) such
that (T, r) embeds in (T1, r1) and (T2, r2) with r mapped to r1 and r2,
respectively.

Name. #RootedSubtrees.

Instance. A rooted tree, (T, r).

Output. The number of distinct (up to isomorphism) rooted trees (T ′, r′) such
that (T ′, r′) embeds in (T, r) with r′ mapped to r.

1

Name. #Subtrees.

Instance. A tree T .

Output. The number of distinct (up to isomorphism) subtrees of T .

We will use each of the problem names in an obvious way to denote a function
from instances to outputs: thus #RootedSubtrees(T, r) denotes the number
of distinct rooted subtrees of the rooted tree (T, r). Our main result is the
following.

Theorem 1 #Subtrees is #P-complete.

Proof. #BipartiteMatchings is the sixth problem on Valiant’s original list
of #P-complete problems [10]. So #P-hardness of #Subtrees follows from
Lemmas 2–4 and from the transitivity of polynomial-time Turing reducibility.
We will now show that #Subtrees is in #P. Suppose that T is a tree with
vertex set Vn = {v0, . . . , vn−1}. We will order the vertices in Vn so that vi < vj
iff i < j. For every (labelled) subtree T ′ of T , let V (T ′) denote the vertex set
of T ′. We will say that subtree T ′′ is larger than subtree T ′ if and only if there
is a vertex vi ∈ Vn such that vi ∈ V (T ′′), vi 6∈ V (T ′) and

V (T ′) ∩ {vi+1, . . . , vn} = V (T ′′) ∩ {vi+1, . . . , vn}.

Let T ′′ be a subtree of T . Either T ′′ is the smallest subtree of T in its isomorphism
class or there is a vertex v` ∈ V (T ′′) such that the sub-forest F` of T induced by
vertex set

{vi ∈ Vn | vi < v`} ∪ {vi ∈ V (T ′′) | vi > v`}
contains a tree isomorphic to T ′′. Thus, one can determine whether T ′′ is the
smallest subtree of T in its isomorphism class by solving subgraph isomorphism
with inputs F` and T ′′ for all v` ∈ V (T ′′). Since F` is a forest and T ′′ is a tree, this
can be done in polynomial time [3] using the method of Edmonds and Matula.
It is now simple to describe the #P computation: With input T , each branch
picks a subtree T ′′ of T and rejects unless T ′′ is the smallest subtree of T in its
isomorphism class.

2 The reductions

Denote by ≤T the relation “is polynomial-time Turing reducible to.”

Lemma 2

#BipartiteMatchings ≤T #CommonRootedSubtrees.

2

T1

r1

T2

r2
r

r

�
�

�
�

� r r

@
@
@
@
@

r

r

�
�
�

�
� r r

@
@
@
@
@

x0,0 . . . xi,0 . . . xn−1,0 y0,0 . . . yj,0 . . . yn−1,0

r

r

r r r r

x0,n2+1

xi,n2+i+1

xn−1,n2+n y0,n2+n yj,n2+n yn−1,n2+n

�
�

r

r r

xi,in+j �
�

r yj,in+j

Figure 1: The skeleton of trees T1 and T2, illustrating the presence of edge (ui, vj)
in G.

Proof. LetG be an instance of #BipartiteMatchings with vertex sets {u0, . . . ,
un−1} and {v0, . . . , vn−1}. From G, we construct two rooted trees, (T1, r1) and
(T2, r2), each based on a fixed skeleton. The skeleton of T1 has vertex set

{xi,j : 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n2 + i+ 1} ∪ {r1},

and edge set

{(xi,j, xi,j+1) : 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n2 + i} ∪ {(r1, xi,0) : 0 ≤ i ≤ n− 1}.

Informally, the skeleton of T1 consists of n paths of different lengths emanating
from the root r1, as illustrated in Figure 1. These n paths correspond to the
n vertices {ui} of G.

3

The skeleton of T2 is similar to the skeleton of T1, except the paths now have
equal length. It has vertex set

{yi,j : 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n2 + n} ∪ {r2},

and edge set

{(yij, yi,j+1) : 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n2 + n− 1} ∪ {(r2, yi,0) : 0 ≤ i ≤ n− 1}.

The n paths emanating from r2 correspond to the to the n vertices {vi} of G.
The trees T1 and T2 themselves are built by adding to the respective skeletons

certain edges encoding the graph G. Specifically, for each edge (ui, vj) of G, we
add an edge from a new vertex to vertex xi,in+j of T1 and add an edge from a
new vertex to vertex yj,in+j of T2.

Let T ∗ denote the set of all finite (unlabelled) rooted trees (T, r) that have
leaves at all distances in the range [n2 + 2, n2 + n+ 1] from the root r. For any
rooted tree (T, r), let T (T, r) denote the set of all (unlabelled) rooted subtrees of
(T, r). Thus, the quantity #RootedSubtrees(T, r) is just the size of T (T, r).
We first observe that there is a bijection between the set of matchings (of all
sizes) in G and the set T (T1, r1) ∩ T (T2, r2) ∩ T ∗, and then conclude the proof
by showing how to compute the size of T (T1, r1)∩T (T2, r2)∩T ∗ using an oracle
for #CommonRootedSubtrees.

Consider some tree (T, r) ∈ T (T1, r1) ∩ T (T2, r2) ∩ T ∗. From the definition
of T ∗ we see that T must contain the entire skeleton of T1. In addition, T
may contain up to n additional pendant edges. Any pendant edge must be
attached to the skeleton at a vertex at distance in+ j + 1 from the root r, where
(ui, vj) ∈ E(G). Furthermore, if there are pendant edges at distances in+ j + 1
and i′n+ j′+ 1 from the root then i 6= i′ and j 6= j′. Thus, every such rooted tree
(T, r) may be interpreted as a matching inG, and vice versa. This is the sought for
bijection between the set of matchings in G and the set T (T1, r1)∩T (T2, r2)∩T ∗.
To conclude, we just need to show how compute the size of the latter set using
an oracle for #CommonRootedSubtrees.

Let L be the set of all leaves in (T1, r1) whose distances from the root r1 are
in the range [n2 + 2, n2 + n+ 1]. Let U be the set of all vertices in (T2, r2) whose
distances from r2 are in the range [n2 + 2, n2 +n+ 1]. For each j ∈ {0, . . . , n}, let
T j1 be the tree formed from (T1, r1) by adorning every vertex in L with a tuft of
n+ j edges and let T j2 be the tree formed from (T2, r2) by adorning every vertex
in U with a tuft of n+ j edges. By the phrase “adorning a vertex v with a tuft of
t edges” we mean the following: create t new vertices and add an edge from each
of these new vertices to v.” For k ∈ {0, . . . , n}, let ak be the number of rooted
trees in T (T 0

1 , r1) ∩ T (T 0
2 , r2) that have k vertices of degree n+ 1. Clearly,

an = | T (T1, r1) ∩ T (T2, r2) ∩ T ∗ |.

4

So we want to show how to compute an using an oracle for #CommonRoot-

edSubtrees.
We claim (and shall justify presently) that

|T (T j1 , r1) ∩ T (T j2 , r2)| =
n∑
k=0

ak(j + 1)k. (1)

Thus, we can use an oracle for #CommonRootedSubtrees to evaluate the
left-hand side of 1 at j = 0, . . . n; then we can compute an by Lagrange interpo-
lation.1

It remains to prove equation (1). We define a projection function

π : T (T j1 , r1) ∩ T (T j2 , r2)→ T (T 0
1 , r1) ∩ T (T 0

2 , r2)

as follows. For any rooted tree (T, r) in the domain, (T ′, r) = π(T, r) is the
maximum r-rooted subtree of (T, r) that has no vertex of degree greater than
n + 1. To see that T ′ is uniquely defined, consider an embedding of (T, r) into
(T j1 , r1). The only vertices of degree greater than n+1 are those which are mapped
to tufts. Thus, (T ′, r) is obtained from (T, r) by pruning tufts with more than
n pendant edges down to exactly n pendant edges. Note also that the resulting
tree (T ′, r) can be embedded in both (T 0

1 , r1) and (T 0
2 , r2), so π is indeed well

defined.
How large is π−1(T ′, r)? To every tuft with exactly n pendant edges we may

add any number of pendant edges, from 0 to j. All the tufts are distinguishable,
because they are all at distinct distances from the root r. Thus all these possible
augmentations lead to distinct trees, and π−1(T ′, r) = (j + 1)k, where k is the
number of vertices in (T ′, r) of degree n + 1. Thus, each of the ak rooted trees
in T (T 0

1 , r1) ∩ T (T 0
2 , r2) with k vertices of degree n + 1 are mapped by π−1 to

(j + 1)k trees in T (T j1 , r1) ∩ T (T j2 , r2). The lemma follows.

Lemma 3

#CommonRootedSubtrees ≤T #RootedSubtrees.

Proof. Suppose that (T1, r1) and (T2, r2) constitute an instance of #Common-

RootedSubtrees. Let (T, r) be the rooted tree formed by taking T1 and T2 and
adding a new root, r, and edges (r, r1) and (r, r2). For notational convenience,
introduce the following quantities:

N1 = #RootedSubtrees(T1, r1),
N2 = #RootedSubtrees(T2, r2),
N = #RootedSubtrees(T, r), and

1See Valiant [10] for details of this process, particularly the claim that interpolation is a
polynomial-time operation.

5

C = #CommonRootedSubtrees((T1, r1), (T2, r2)).

We start by observing that

N = 1 +N1 +N2 − C +N1N2 −
(
C

2

)
.

To see this, note that (T, r) has

• one distinct subtree in which the degree of r is 0, and

• N1 +N2 −C distinct subtrees in which the degree of r is 1, and

• N1N2 −
(
C
2

)
distinct subtrees in which the degree of r is 2.

Thus, C(C + 1) = 2Z, where Z denotes

1 +N1 +N2 +N1N2 −N.
To compute C, first calculate Z using an oracle for #RootedSubtrees. Then,
observe that

C2 < 2Z < (C + 1)2,

so C is the integer square root of 2Z, which can be computed in Θ(logZ) time.
Note that logZ is polynomial in the size of the input, since, for example,N1 ≤ 2n1 ,
where n1 is the number of vertices in T1.

Lemma 4
#RootedSubtrees ≤T #Subtrees.

Proof. For any i, an “i-star” is a tree consisting of one (centre) vertex with
degree i and i (outer) vertices, each of which has degree 1.

Suppose that (T, r) is an instance of #RootedSubtrees. Let ∆ denote the
maximum degree of a vertex in T . Let T ′ be the tree formed from T by taking
a new (∆ + 3)-star, and identifying one of the outer vertices with r. Let T ′′

be the tree formed from T by taking a new (∆ + 2)-star, and identifying one
of the outer vertices with r. Let N ′ denote #Subtrees(T ′) and let N ′′ denote
#Subtrees(T ′′). Then #RootedSubtrees(T, r) is equal to N ′ − N ′′, so it
can be computed using an oracle for #Subtrees.

3 Some consequences

Following Valiant [10], we say that a function f : Σ ∗ → N is in FP if it can be
computed by a deterministic polynomial-time Turing machine. We say that it is
in FPg for a problem g if it can be computed by a deterministic polynomial-time
Turing machine which is equipped with an oracle for g. Finally, we say that it is
in FPA for a complexity class A if there is some g ∈ A such that f ∈ FPg.

Let #ConnectedSubgraphs be the problem of counting unlabelled con-
nected subgraphs of a graph. Formally, let it be defined as follows.

6

Name. #ConnectedSubgraphs

Instance. A graph G.

Output. The number of distinct (up to isomorphism) connected subgraphs of G.

Corollary 5 #ConnectedSubgraphs is complete for FP#P.

Proof. #ConnectedSubgraphs is FP#P-hard by Theorem 1. We will show
that #ConnectedSubgraphs is in the class FPspan-P, which will be defined
shortly. The result will then follow by Toda’s theorem [9].

We start by defining the relevant complexity classes. A function f : Σ ∗ → N
is in the class span-P [7] if there is a polynomial-time nondeterministic Turing
machine M (with an output device) such that the number of different accepting
outputs of M on input x is f(x), for all x ∈ Σ ∗.

A function f : Σ ∗ → N is in #NP if there is a polynomial-time nondeter-
ministic Turing machine M and an an oracle A ∈ NP such that the number of
accepting computations of MA on input x is f(x), for all x ∈ Σ ∗.

The classes #P, span-P, and #NP are related [7] by

#P ⊆ span-P ⊆ #NP.

Thus,

FP#P ⊆ FPspan-P ⊆ FP#NP.

As Welsh notes [11, eq. (1.8.6)], the identity

FP#P = FP#NP. (2)

follows from Toda’s theorem [9]. Thus,

FP#P = FPspan-P.

(To verify (2) independently, start with Toda’s Theorem 4.10, concerning the
complexity classes PH and PP. Then the required inclusion FP#NP ⊆ FP#P

follows via a little manipulation involving the elementary relationships NP ⊆ PH
and FPPP = FP#P.)

We now complete the proof by showing that #ConnectedSubgraphs is
in FPspan-P. Let N(G, k) denote k! times the number of distinct (up to isomor-
phism) connected size-k subgraphs of G. Since

#ConnectedSubgraphs(G) =
n∑
k=1

1
k!
N(G, k),

where n is the number of vertices of G, it suffices to show that computing N(G, k)
is in span-P. Each branch of the computation tree for N(G, k) chooses

7

• a size-k connected subgraph H of G,

• a bijection σ from the vertices of H to the set {v1, . . . , vk}, and

• a permutation π of v1, . . . , vk.

Let H ′ be the graph formed from H by relabelling each vertex v of H with the
label σ(v). If π is an automorphism of H ′ then (H ′, π) is output. Otherwise, the
branch rejects. The result now follows from Burnside’s Lemma, which implies
that for any given isomorphism class of k-vertex graphs, the number of graphs
in the isomorphism class times the number of automorphisms of any member of
the class is equal to k!. (For example, see [5].)

Let #GraphSubtrees be the problem of counting unlabelled subtrees of a
graph. Formally, let it be defined as follows.

Name. #GraphSubtrees

Instance. A graph G.

Output. The number of distinct (up to isomorphism) subtrees of G.

Corollary 6 #GraphSubtrees is complete for FP#P.

Proof. This is the same as the proof of Corollary 5, except that the span-P
computation rejects any subgraph H which is not a tree. A more direct proof
could be obtained by using a polynomial-time canonical labelling algorithm for
trees such as the one by Hopcroft and Tarjan [6].

References

[1] G. Blache, M. Karpinski and J. Wirtgen, On approximation intractability of
the bandwidth problem, Electronic Colloquium on Computational Complexity,
Report TR98-014, 1998.

[2] K. J. Edwards and C. J. H. McDiarmid, The complexity of harmonious colour-
ing for trees, Discrete Applied Mathematics 57 (1995), 133–144.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[4] M. R. Garey, R. L. Graham, D. S. Johnson and D. E. Knuth, Complexity re-
sults for bandwidth minimization, SIAM Journal on Applied Mathematics 34
(1978), 477–495.

[5] F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

8

[6] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, Journal of the
ACM 21 (1974) 549–568.

[7] J. Köbler, U. Schöning and J. Toran, On counting and approximation, Acta
Informatica 26 (1989) 363–379.

[8] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[9] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM Journal on
Computing 20 (1991), 865–877.

[10] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM
Journal on Computing 8 (1979), 410–421.

[11] D. J. A. Welsh, Complexity: Knots, Colourings and Counting, Cambridge
University Press, 1993.

9

