

Abstract Machines for Dynamic
Computation

Christopher David Walton

Doctor of Philosophy
University of Edinburgh

2001

Abstract

In this thesis we address the challenges associated with the provision of dynamic
software architectures. These are systems in which programs are constructed from
separately compiled units with a facility for the replacement of these units at
runtime. Typical examples of applications which will benefit from this dynamic
approach are long-lived systems in which downtime is highly undesirable, for
example, web-servers, database engines, and equipment controllers. In addition,
dynamic software architectures are also gaining popularity with the recent advent
of wide-area Internet applications, where it is often impractical to compile a
program in its entirety or begin execution in a single step.

Our approach to dynamic software architectures differs from earlier attempts
in that we guarantee the safety of the replacement operation. This is done by
founding our techniques on the rigour of strong typing. In the first half of the
thesis we take an existing static software architecture with strong typing facilities
and modular program construction, namely the Standard ML platform, and equip
it with facilities for separate-compilation and code-replacement of modules. The
resulting dynamic software architecture, which we call Dynamic ML, ensures the
safety of replacement through an effective use of state-of-the-art advances in the
fields of types in compilation and abstract machines.

In the latter half of the thesis we extend Dynamic ML with a facility for
distributed execution and adapt our code-replacement model accordingly. This
will permit the construction of larger dynamic architectures, for example, across
a distributed network of workstations. We also perform a mechanical verification
of the distributed algorithm by model checking, to gain further confidence in the
correctness of our approach. At the end of the thesis we outline an implementation
of our techniques for the Java language, demonstrating the portability of our
approach.

Acknowledgements
First and foremost I would like to thank my supervisor Stephen Gilmore. He was
generous with his time and provided invaluable help and support throughout. I
was very fortunate to work in the LFCS at Edinburgh, a place full of friendly,
talented, and helpful people. In particular, special thanks are due to Mike Four-
man, and my colleagues Dilsun Kırlı and Kostas Tourlas. I am also grateful to
the EPSRC for providing the funding for my work. This thesis is dedicated to
my parents, who have always been a supportive influence in my life.

Declaration

I declare that this thesis was composed by myself and that the work contained
therein is my own, with the exception that some parts of Chapter 7 were composed
in collaboration with Stephen Gilmore and Dilsun Kırlı, and where explicitly
stated otherwise in the text.

Parts of this thesis have already been published elsewhere. Earlier versions of
Chapter 6 have appeared in [Wal99] and [Wal00], and early revisions of Chapter 7
appeared in [WKG98] and [WKG00].

(Christopher D. Walton)

Table of Contents

Chapter 1 Introduction and Synopsis 5

1.1 Modular Code Replacement . 7
1.1.1 Expressing Replacement 11

1.2 Types and Type Systems . 13
1.2.1 Type-Preserving Compilation 16

1.3 Abstract Machines . 18
1.3.1 Type-Preserving Evaluation 21

1.4 Thesis Aims . 23

Chapter 2 MΛ Language 25

2.1 Notation and Mathematical Conventions 26
2.2 Abstract Syntax . 27

2.2.1 Type Language . 29
2.2.2 Expression Language . 29

2.3 Threaded Concurrency . 35

Chapter 3 Static Semantics of MΛ 37

3.1 Static Typing-Environments . 38
3.1.1 The Initial Environment 39
3.1.2 Well-Formed Environments 40

3.2 Type Schemes . 41
3.2.1 Type Scheme Instantiation 42

3.3 Typing Rules . 43
3.4 Type Checking . 48
3.5 System F . 50

Chapter 4 Translating Dynamic ML to MΛ 54

4.1 Dynamic ML Syntax . 55
4.2 Two-Step Translation . 57
4.3 Type Inference . 57

2

4.3.1 Algorithm W . 59
4.3.2 Let-bound Polymorphism 69

4.4 Syntax-Directed Translation . 72
4.4.1 Pattern Matching . 77

4.5 Example Translation . 81
4.6 Further Work . 85

Chapter 5 Dynamic Semantics of MΛ 86

5.1 Abstract Machine Syntax . 87
5.2 Abstract Machine Semantics . 91

5.2.1 Runtime Types . 92
5.2.2 Machine Transitions . 97

5.3 Example Evaluation . 108

Chapter 6 Memory Management in MΛ 110

6.1 Copying Garbage Collection . 111
6.1.1 Tag-free Collection . 111

6.2 Abstract Machine Garbage Collection 113
6.2.1 Top-level Machine Transitions 113
6.2.2 Type Collection . 116
6.2.3 Value Collection . 118

6.3 Alternative Algorithms . 121

Chapter 7 Code Replacement 123

7.1 Dynamic ML Modules . 124
7.1.1 Elaboration of Modules . 125

7.2 Signature Replacement . 133
7.3 Translating Dynamic ML Modules to MΛ 134
7.4 Runtime Module Replacement . 139
7.5 An Example Replacement . 144
7.6 Further Work . 151

Chapter 8 Distributed Evaluation 153

8.1 The LEMMA Interface . 154
8.2 Distributed Abstract Machine . 156

8.2.1 Machine Evaluation . 159
8.2.2 Memory Access and Caching 164
8.2.3 Memory Allocation . 167
8.2.4 Thread Creation and Communication 169

3

8.2.5 Distributed Expression Evaluation 171
8.3 Implicit Concurrency . 174

Chapter 9 Distributed Code-Replacement 178

9.1 Distributed Garbage Collection 179
9.1.1 Abstract Machine Definition 180
9.1.2 Collecting Types and Values 181
9.1.3 Collecting Environments and Stacks 187
9.1.4 Evaluation with Garbage Collection 190

9.2 Code Replacement . 191
9.2.1 Replacement of Types and Values 193

9.3 Optimisation . 194

Chapter 10 Verification 195

10.1 Model Checking . 196
10.2 System Model . 200

10.2.1 Shared Memory . 201
10.2.2 Garbage Collection Threads 204
10.2.3 User Program . 211
10.2.4 Initialisation . 214

10.3 Validation . 216
10.4 Results and Conclusions . 221
10.5 Limitations of Model Checking 222

Chapter 11 Conclusions and Further Work 224

11.1 Thesis Summary . 225
11.2 Thesis Achievements . 228
11.3 Implementation Issues . 229
11.4 Performance Modelling . 233
11.5 Code-Replacement in Java . 237

Bibliography 242

4

Chapter 1

Introduction and Synopsis

Traditional software architectures are static in nature. Programs are treated as
atomic entities; designed to be compiled as a whole and executed to completion.
In this thesis, we explore the relatively new field of dynamic software architec-
tures, in which programs are constructed from separately compiled units and
updated during runtime.

One particular application which would benefit from a dynamic approach is
a web server. The global nature of the World Wide Web demands that many
of these servers remain operational for 24 hours, 7 days a week. This presents
an interesting challenge to the web server administrator who wishes to seamlessly
upgrade the web server, or migrate the server to a new machine. Similar problems
exist in many long-lived systems where software maintenance is required without
interruption of a service. While ‘hot’ upgrading of hardware architectures has
become commonplace, corresponding techniques for software architectures have
not been fully developed. Typically, arcane ad-hoc solutions are employed which
provide few, if any, guarantees of safety, e.g. [SF93].

The benefits of dynamic architectures are not limited to long-lived systems.
A broadening class of systems and applications are beginning to exhibit similar
properties in an effort to provide customisation and extensibility. In particular,
with the advent of wide-area ‘Internet’ applications, where it is rapidly becoming
impractical to compile a program in its entirety or begin execution in a single
step. Such applications require enhanced flexibility which traditional static ar-
chitectures are struggling to provide.

In an effort to add some degree of software dynamism to static architectures,
runtime extensions have recently become available in several operating systems:
shared libraries in UNIX, and dynamically linked libraries (DLLs) in Windows. In
a similar vein, the component object models CORBA [Obj98] and DCOM [Red97]
contain runtime component loading facilities. However, these extensions do not

5

provide the full flexibility offered by dynamic architectures, e.g. general code
replacement. Moreover, these extensions are rather flimsy; missing libraries and
incompatibilities between versions can readily lead to system chaos.

A better approach is offered by the Java platform [Kra96]. Java offers dynamic
loading and execution of compiled classes through the ClassLoader mechanism.
Java also allows a restricted form of code replacement called binary-compatibility.
This allows the definition of a class to be replaced with another at runtime,
though it does not update any objects which are based on the old definition of
the class. The Java Language Specification [GJS96] defines a set of properties,
which must be satisfied in order for a class (or interface) to be considered a valid
binary-compatible replacement. However, it has been demonstrated that these
properties are flawed [DEW99]; it is possible to perform a sequence of program
modifications, each of which are binary compatible in the Java sense, and produce
a program which cannot be executed.

The Erlang programming language [AVWW96] offers true dynamism in that
arbitrary program modules may be loaded and replaced at runtime. Erlang has
enjoyed moderate success in programming long-lived systems in the telecommu-
nications industry. However, code replacement in Erlang is not altogether robust.
Code replacement is unrestricted in that any module may be replaced with any
other. This produces a very general model of code replacement, but provides no
protection from runtime failures.

A different kind of dynamism can be provided through an extension of persist-
ent programming language features. In such languages, program code and data
is stored in a persistent database, enabling programs to be readily halted and
restarted as required. Code replacement can be provided in such languages by
performing meta-level transformations on the persistent database between pro-
gram runs. This technique is flexible in that persistence can often be included in
existing programming languages with only minimal changes. In [KMM97] a form
of code-replacement, called application evolution, is defined and an implementa-
tion sketched for the persistent object-serialisation facility of Java.

In contrast with the above systems, we take an approach to software dynam-
ism founded on strong typing, making full use of modern developments in the
areas of types in compilation and abstract machines. The main focus of atten-
tion in this thesis is the Standard ML programming language [MTHM97], though
an implementation for the Java programming language is discussed in the con-
cluding chapter. We will define an extension to Standard ML, hereafter called
Dynamic ML, with a facility for run-time code-replacement.

6

1.1 Modular Code Replacement

To facilitate the construction of large programs, Standard ML has a sophisticated
modules system. Standard ML modules, called structures, provide flexible encap-
sulation through interfaces called signatures, and flexible assembly by parametric
modules called functors. In order to facilitate the replacement process, and to
indicate a suitable size of component for replacements, we will fix on first-order
module-level replacement. That is, we allow the replacement of signatures by
other signatures and structures by other structures, under conditions which we
will discuss later. We treat functors as purely compile-time objects, used only
to generate structures, and so we do not present a replacement model for them.
Semantically, module-level replacement is an apt choice because it facilitates the
improvement of programs by revision and replacement of data structures in tan-
dem with the creation and access functions which are associated with them. In
implementation terms, module-level replacement is supported by the facility to
compile Standard ML modules in isolation. Thus an executing program may be
upgraded without the need to re-compile it in its entirety.

A runtime code-replacement using the modules system of ML was first pro-
posed in [App94]. This paper presents a rough outline of a technique for replacing
one module with another at runtime. The technique hinges on a flexible runtime
linking operation. The replacement of one module with another is performed by
defining a cut-off point where the usage of the old module is discontinued and
usage of the new module begins. Though, as there may still be instances of func-
tions and data values which depend on the old definition, the old module code is
retained for as long as necessary. However, this proposal has remained a rough
outline and has never been formalised or implemented. Although the underlying
concepts are sound, there is a problem with the implementation in that permit-
ting the use of transparent signatures means that code may depend on internal
representation types used within modules, and will break the program when the
new module definition is introduced.

We define a more advanced form of code-replacement in ML where introducing
a new module definition results in the complete update of any functions and data
values which were constructed with the old definition. After a replacement, the
old definition is entirely removed from the system. The main advantage of our
method is that a replacement which fixes an error in the program or enhances the
performance will have an immediate effect. Furthermore, this approach is more
space-efficient in that it is not necessary to keep copies of old module definitions
around indefinitely. However, it is worth noting that we must take steps to

7

prevent the replacement of any function which is currently being executed. If
allowed, such unguarded replacements would result in undefined behaviour as the
continuation point for the computation would no longer exist. Consequently, our
technique only permits the replacement of functions that are inactive. We will
now illustrate our replacement technique by means of an example.

As a running example we consider the replacement of one implementation of
a name table with another which is functionally equivalent but offers improved
performance. For simplicity we choose the type of names to be character strings.
The table type is abstract and in moving from the inefficient implementation to
the more efficient one we are in fact replacing an unsorted list with a binary search
tree. Both implementations match the TABLE signature shown in Figure 1.1. That
is, both implementations provide an abstract type for tables, a declaration of a
type of names to be implemented by strings, a constant value denoting the empty
table and functions to insert names and the test for membership in the table.
Standard ML structures provide a dot notation for accessing the components
of structures and thus structures named Table matching the TABLE signature
would define types Table.name and Table.table, a constant Table.empty and
functions Table.insert and Table.member.

signature TABLE =
sig
type name = string
type table
val empty : table
val insert : name * table -> table
val member : name * table -> bool

end;

Figure 1.1: Signature for the Table Module.

The implementations are shown in Figure 1.2 and Figure 1.3. Matching
against the signature, using the :> syntax, is opaque and thus outside the struc-
ture body we cannot make use of the typing information which is known inside
the structure body. For example, we cannot make use of the fact that in the
first version of the structure tables are implemented as Standard ML lists. This
prevents us from applying functions defined on lists, such as List.rev, to values
of type Table.table. Inside the structure body we are free to use list constants
such as the empty list, denoted by two square brackets, and list constructors such
as cons, denoted by two colons.

8

structure Table :> TABLE =
struct

type name = string
type table = name list
val empty = []
fun insert (s, t) = s :: t
fun member (s, []) = false

| member (s, h :: t) = s = h orelse member (s, t)
end;

Figure 1.2: Inefficient Implementation of Tables.

After a careful comparison of the two implementations, we should be able
to agree that the second implementation could be used as a replacement for
the first. A specification-based analysis of the two implementations would judge
them to be behaviourally equivalent. Less prosaically, we could think that we
would not compute any different results if we had initially built our system using
the second implementation of the structure instead of the first. Our notion of
structure replacement certainly includes logically undetectable replacements such
as this one but it is more lax, additionally allowing replacements which change
the observable behaviour of the program under modification. Examples of the
latter would include replacing a structure with a version which logged function

structure Table :> TABLE =
struct

type name = string
datatype table = empty

| node of table * name * table

fun insert (s, empty) = node (empty, s, empty)
| insert (s, node (l, v, r)) =

if s < v then node (insert (s, l), v, r)
else if s > v then node (l, v, insert (s, r))

else node (l, v, r)

fun member (s, empty) = false
| member (s, node (l, v, r)) =

if s < v then member (s, l)
else if s > v then member (s, r)

else true
end;

Figure 1.3: An Improved Implementation.

9

calls, perhaps in order to extract statistical information about the program’s
runtime performance or in order to aid with the detection of logical errors in the
implementation.

The formal requirement which structure replacements must satisfy can be
captured by static type-checking: a replacement S2 for a structure S must match
every signature constraint which S matched in the original program. In practice,
this means that the replacement structure must not omit any functions, types
or values which were exported by the structure which it replaces. Functions,
values and types which were defined and only used internally may be omitted
in the implementation of the replacement structure. For simplicity here, we do
not provide a facility for combining replacement with renaming. Structures and
signatures replace structures and signatures which have the same name.

Signature replacement is a facilitating operation which allows more permissive
signatures to replace more restrictive ones. An effect of this can be to make
visible functions, types and values which had been hidden by the application of
a signature constraint. Replacement such as this is subject to type preservation
conditions which constrain the relationship between the signatures. Signature
replacement must not cause changes of typing information about visible values
and functions. It might be more appropriate to term this operation signature
extension since it will be most often used to allow the declarations in a structure
to be supplemented by others which increase the functionality of any matching
structure.

Consider the situation where we replace our TABLE signature with one which
includes the function specification shown in Figure 1.4. That is, upon being
applied to a pair of a table and an output stream such as TextIO.stdOut the
function will serialise the contents of the table to the output stream and return a
unit value, of type unit, to signal completion. We could not replace our previous
version of the TABLE signature with one extended by the check-pointing function
without first upgrading all structures which match this signature to contain an
implementation of the function. This would not be visible under the old signature
but would become visible when we upgrade the signature to include it. We could
then replace client structures of the TABLE structure to allow them to make calls
to the newly added check-pointing function.

val checkpoint : table * TextIO.outstream -> unit

Figure 1.4: A Check-pointing Function.

10

1.1.1 Expressing Replacement

Our method of code replacement is intended to be suitable for updating pro-
grams where the application programmer has followed good software engineering
practice by encapsulating information such as the concrete representation of data
structures. This disciplined approach to programming facilitates our replacement
of a list by a tree, ensuring that the change is invisible to the users of the Table

structure. However, this proves to be a disadvantage when we come to consider
the problem of describing the replacement of values of the old datatype with values
of the new datatype. Specifically, the constructors of the old concrete representa-
tion are not visible, due to the encapsulation which is provided by the application
of the TABLE signature constraint to the Table structure in our example.

In order to circumvent this difficulty we could abstract over a Table struc-
ture which is specialised to implement a name table as a list of character strings.
Structure abstractions such as these are Standard ML functors. Given a struc-
ture matching the specialised TABLE signature the functor body could describe a
structure which implements name tables as binary search trees. In addition the
structure could contain functions to convert from the types of the given structure
to the types of the new. We place the conversion functions inside an Install

structure and we follow a convention of mapping values from their old represent-
ation to their new one using functions which have the same identifier as the type
which they update. Such duplicate use of identifiers is possible in Standard ML
because the language maintains different name spaces for different categories of
identifiers (value constructors, type constructors and record labels in the core lan-
guage and signature, structure and functor identifiers in the modules language).

Figure 1.5 shows this method of structure replacement encoded as a Stand-
ard ML functor. The functions to update values of type name and table to
use the new types are respectively the identity function, mapping x to x, and
an application of the Standard ML Basis library function implementing folding a
function across a list with right associativity. The List.foldr function is applied
to the insert function for trees and the empty tree, specialising it to provide a
function which maps lists to binary search trees.

The expressive power which Standard ML functors provide is sufficient to
allow us to state our wish to replace lists by binary search trees but it would not
be sufficient to allow us to subsequently replace these trees with, say, balanced
trees. The reason is this: in Standard ML the type expression which appears in a
qualification of a signature expression may only refer to type constructors which
are in the scope of the signature expression. The nullary type constructor string

11

functor InstallTable (structure Table : TABLE where
type table = string list) :> TABLE =

struct
type name = string
datatype table = empty

| node of table * name * table

fun insert (s, empty) = node (empty, s, empty)
| insert (s, node (l, v, r)) =

if s < v then node (insert (s, l), v, r)
else if s > v then node (l, v, insert (s, r))

else node (l, v, r)

fun member (s, empty) = false
| member (s, node (l, v, r)) =

if s < v then member (s, l)
else if s > v then member (s, r)

else true

structure Install =
struct

val name : Table.name -> name = fn x => x
val table : Table.table -> table = List.foldr insert empty

end
end;

Figure 1.5: Functor For Replacing Tables.

and the unary type constructor list are in scope by virtue of being pre-defined in
the language. However, the binary search tree datatype which we defined in the
body of the InstallTable functor is not pre-defined. Further, it is not exported
from the structure which is formed by applying the functor to the old version
of the Table structure due to the opaque signature matching. For this reason,
we include in Dynamic ML an extended version of Standard ML’s where type

qualification, illustrated in Figure 1.6. The where datatype qualification enables
us to express the replacement of local datatypes with alternate definitions.

functor InstallTable (structure Table : TABLE
where datatype table = empty
| node of table * name * table) :> TABLE

Figure 1.6: The where datatype Qualification.

12

1.2 Types and Type Systems

A type is defined as a collection of values that share some computationally-
checkable property, e.g. a type of integer values. Program variables are assigned
values during execution. A programming language which allows variables to be
restricted to certain types is called a typed language, while a language which does
not restrict the range of variables is called an untyped language. We will only be
concerned with typed languages in this thesis as they provide a far greater degree
of predictability of behaviour than untyped languages, e.g. LISP, Scheme, PHP.

In most typed languages, a process called type checking is performed. A
program that passes the type checking is said to be well typed. Type checking can
be done at compile-type, called static typing, e.g. Standard ML, or at runtime,
called dynamic typing, e.g. Erlang. The fundamental purpose of type checking
is to prevent the occurrence of execution errors. In static typing, we perform a
compile-time check that each program fragment, i.e. statement, expression, etc.
defines an element of a type that is specified in the program text, or inferred
from the context. A program which fails to type check in this manner is rejected
by the compiler and may not be executed. Dynamic typing similarly tries to
prevent the execution of erroneous operations, but the check is performed while
the program is executed. Dynamic typing is more forgiving in that only errors
which actually occur are detected. To illustrate the difference between static and
dynamic typing, we consider the following program fragment:

if X then 1 else 2 + "hello"

The addition 2 + "hello" would be considered an error if 2 has integer type
and "hello" has string type. This error would only be detected by dynamic
typing if the conditional expression X evaluated to false. At compile-time, when
static-typing is performed, it is usually impossible to determine the value of the
arbitrary expression X. Thus, both branches of the conditional expression are
checked and the error would always be detected. Static typing always detects er-
rors earlier than dynamic typing, and may also detect errors that would otherwise
remain hidden.

The static and dynamic typing disciplines are not altogether mutually exclus-
ive. There have been a number of hybrid schemes which combine dynamic types
with static typing. The most popular of these languages is Java, which performs
static type checking augmented with runtime checks, e.g. on array bounds and
coercions. The Amber language [Car86] was the first ML-like language to include
dynamic types with static type checking. The primary motivation for including

13

dynamic types is that it allows for structured I/O, and enables the definition
of straightforward interfaces to other programming languages. The technique
hinges on the addition of a special type, called a dynamic, to the language. A
dynamic is a pair of a value v and a type expression τ , such that v has type τ .
There are essentially just two operations required in a language for operating on
dynamics: a constructor dynamic for building objects of type Dynamic, and a
typecase operation for operating on the type of a dynamic. The technique for
including dynamics in the first-order types of ML was presented in [ACPP91].
This was later extended to include polymorphic types in [LM93] and [ACPR95].
These extensions permit ML programs such as the example in Figure 1.7 to be
constructed. In this example, the type of the read operation is determined at
runtime, rather than compile-time.

fun displayFile (filename : string) =
let val image = read (filename)
in

typecase image of
(v : Vector) => displayVector v
(b : Bitmap) => displayBitmap b
(s : string) => displayString s
_ => raise UnknownType

end;

Figure 1.7: Dynamic Typing in ML Example.

The inclusion of dynamic types in an ML-like language allows a number of
language extensions to be readily defined. For example, a restricted form of
code-replacement, called meta-programming, is defined in [Dor98], and a form
of dynamic code-mobility is described in [Dug96]. Nonetheless, we have decided
against using dynamic types in this thesis. Although a solution founded on dy-
namic types would be perfectly valid, we adopt an approach that we believe to
be superior based on static typing and dynamic linking. We feel that dynamic
types simply shift the burden of code-replacement from the language designer to
the programmer. Furthermore, the introduction of dynamic types removes the
predictability of behaviour, and hence safety, from the model. Finally, dynamic
typing introduces significant overheads on evaluation, due to the requirement for
runtime consistency checks.

Our model of code-replacement is based on static types and all checks for
correctness are performed at compile time. Replacement is accomplished by a
dynamic linking operation defined in Chapter 7. Furthermore, only minor exten-

14

sions to the definition of the ML module system are required. In principle, existing
Standard ML programs can be used for code-replacement without requiring any
source-level changes.

A type system formalises the type rules of a programming language. In gen-
eral, the type system of a programming language is specified separately from the
algorithm used to perform type-checking. It is easier to explain the typing as-
pects of the language by a type system rather than an algorithm. Moreover, there
may be many type-checking algorithms for a single type system [Ler92]. In this
thesis, we will only deal with type systems rather than type-checking algorithms.
Our type systems are formulated in the style of [Car97]. Two descriptions of
type-checking algorithms are presented in [Car87] and [Pey87].

A program which does not generate any runtime type errors is called type
safe. A static type system should reject, at compile-time, all programs which are
not type safe. A static type system with this property is said to be sound, and
a programming language with a sound static type system is said to be strongly
typed. It is worth noting that the static prediction of all runtime type errors is
an undecidable property of programs. Thus, any sound type system will also
reject some programs that would not generate runtime type errors. However, it is
generally possible to minimise these rejections and therefore generate a useful type
system. In reality, certain statically checked languages do not ensure type safety.
These languages are called weakly typed meaning that some unsafe operations
are detected while others are not. For example, the C programming language
has many unsafe features such as casting and pointer arithmetic. Many of these
deficiencies have been addressed in Java, but some have not [DEK99].

Languages in the Standard ML family are strongly typed. In order to enforce
the application of the type-checking stage, these languages make a strict distinc-
tion between elaboration and evaluation, insisting that programs which have not
successfully elaborated cannot be evaluated at all. The rigid ordering of these two
stages prohibits the execution of any programs which attempt to use data values
in ways which are not allowed by their type and thus eliminates a large number
of software errors which would manifest themselves at runtime if working in an
untyped programming language. However, several authors have observed that
two stages are not enough for complex applications such as program generators.
This has led to approaches such as the multi-stage programming paradigm for
MetaML [TS97], and the staged type inference paradigm [SSP98]. Dynamic ML
retains the distinction between elaboration and evaluation but enhances the flex-
ibility of the model by allowing safe runtime updates.

15

1.2.1 Type-Preserving Compilation

The compilation of functional programming languages is typically performed by
a sequence of translations between intermediate representations. Figure 1.8 il-
lustrates the compilation phases and intermediate forms of a typical ML com-
piler. The compiler is divided into the front end which deals directly with the
source language, and the back end which is responsible for optimisation and code-
generation. The compiler back-end generally attracts the majority of compiler
research as it has the greatest impact on the performance of the final code. The
representation upon which optimisations are performed is typically an enriched
variant of the λ-calculus.

Front

End

Back

End

Lambda
Intermediate

Representation

Standard ML

Lexer

Parser

Type

Lambda

Compiler

Optimiser

Lambda

Generator

Code

Abstract
Syntax

Tree

Tokens
Lexical

Annotated
Syntax
Tree

Representation
Lambda
Optimised

Abstract Machine Code

Inference

Figure 1.8: Standard ML Compiler Overview.

Until recently, type information was only present in the front-end of the com-
piler: after the type-inference phase the type information was considered an un-
necessary overhead and was discarded. This also allowed the reuse of common
untyped LISP-style compiler back-ends. However, modern compiler research has
highlighted the fact that this type information can also be useful in the compiler
back-end [Ler98]. Compilers that propagate type information into the back-end
are called type-preserving compilers. Most of the current Standard ML com-
pilers are type preserving, e.g. Standard ML of New Jersey [Sha97], the ML-
Kit [TBE+98], TILT [TMC+96], and MLj [BKR98].

16

In type-preserving compilers, the intermediate representations are predomin-
antly based on variants of the typed λ-calculus. Type-checking may be performed
at each stage of the compilation process. This is used to ensure that the trans-
lations between intermediate representations and the code optimisations have
preserved the safety of the code. The structure of a type-preserving compiler
back-end is illustrated in Figure 1.9.

Abstract Machine Code

Lambda Lambda

Compiler Optimiser

Checker

Type

Generator

Code

Front End

Figure 1.9: Type-Preserving Compiler Back-End.

Typed intermediate representations are particularly useful for compiler devel-
opment as the type-checking acts as a debugging tool [BKR98]. However, the
type information is also useful for guiding a number of optimisations. For ex-
ample, the compiler can choose to represent certain types of data more efficiently,
e.g. arrays, rather than using a universal ‘boxed’ representation. An aggressively
optimising compiler may use several different typed intermediate representations
and perform a range of optimisations on each.

Typed intermediate representations are also useful for describing transform-
ations on the Standard ML language. By basing a transformation on a suitable
intermediate representation, it is possible to obtain an operation that is applic-
able to the whole of Standard ML while avoiding a great deal of unnecessary
complexity. For example, pattern matching may appear in the intermediate lan-
guage as simple switch statements, having been converted by a higher-level match
compiler. We use this approach to define code replacement and translation in this
thesis. In Chapter 2 we define an intermediate language, called MΛ, which is
powerful enough to represent the whole of Dynamic ML. We define a sound
type-system for the language in Chapter 3 which we use as the foundation for
code-replacement.

17

1.3 Abstract Machines

A type system defines the static semantics of a programming language. It is
important to note that a type system is not an arbitrary collection of rules. Well-
typing is intended to correspond to a semantic notion of good program behaviour.
The execution behaviour of a programming language is defined by the dynamic
semantics of the language. Type-soundness essentially states that the static and
dynamic semantics of the language are consistent.

In the formal presentation of dynamic semantics there is a much greater vari-
ance in style than within static semantics, primarily dependent on the properties
of the language being described. However, the two foremost semantic styles are
operational and denotational. Operational semantics is concerned with defin-
ing how programs are executed, in particular, specifying the exact sequence of
evaluation steps associated with the execution of a program. In contrast, de-
notational semantics is concerned with what mathematical function a program
computes, without saying explicitly how it is to be computed. The two methods
are complementary. Roughly speaking, the operational semantics are most useful
for specification and implementation, while the denotational semantics are most
useful for proofs of properties of a language. Since the emphasis of this thesis
is on providing a specification for a dynamic software architecture, we shall be
concerned only with the operational technique. Expressing parallelism and non-
determinism, as required by a dynamic architecture, is considered harder in a
denotational semantics. Note that it is perfectly possible to prove properties of
a language using the operational technique. However, the resulting proofs are
generally more cumbersome than their denotational equivalents.

There are two different styles of operational semantics, distinguished by the
kind of mathematical relation which they use. In a relational semantics, we define
a relation between the initial and final states of a whole program fragment. By
contrast, in a structured-transition semantics, the relation is defined only between
the current and next computational step. In order to illustrate the difference
between these two approaches, we define sequential composition in a relational
style (Figure 1.10), and in a structured-transition style (Figure 1.11).

σ ` p1 ⇓ σ′ σ′ ` p2 ⇓ σ′′

σ ` p1; p2 ⇓ σ′′
(1.1)

Figure 1.10: Relational Semantics

18

The relational rules have the general form σ ` p ⇓ σ′ which should be read: in
state σ, the evaluation of the program fragment p yields a new state σ′. Typically,
the state σ is used to hold the values of the bound variables. The structured-
transition rules have the form 〈p, σ〉 →1 〈p′, σ′〉 which should be read: one step
of the evaluation of p in state σ yields a new program fragment p′ and a new
state σ′.

In the relational semantics, the sequential evaluation of both program frag-
ments p1 and p2 is captured by a single rule. By contrast, in the structured
transition semantics, the evaluation will result in a long chain of steps for each
program fragment (Rule 1.2), terminating with ε (Rule 1.3).

〈p1, σ〉 →1 〈p′1, σ′〉
〈p1; p2, σ〉 →1 〈p′1; p2, σ

′〉
(1.2)

〈p1, σ〉 →1 〈ε, σ′〉
〈p1; p2, σ〉 →1 〈p2, σ

′〉
(1.3)

Figure 1.11: Structured-transition Semantics

In this thesis, we will only be concerned with the relational approach. The
primary reason for this choice is that the structured-transition approach requires
a large number of rules for even the simplest of operations. This would become
extremely cumbersome for a language such as Dynamic ML. In general, the
advantage of the structured-transition approach is that it allows concurrency to
be easily expressed: each rule is treated as an atomic action in the computation,
concurrency is then introduced simply by interleaving these atomic actions. Since
we will require concurrency in Dynamic ML, it may appear that we have no choice.
However, in Chapter 8, we demonstrate that concurrency can be expressed in a
relational semantics using events.

A form of relational semantics, called natural semantics [Kah87], is used in
the Definition of Standard ML [MTHM97], so called because the evaluation of
the rules is reminiscent of Natural Deduction. Unfortunately, this style of se-
mantics is too high-level for defining Dynamic ML. The state (σ in our examples
above) hides all the details of memory management, for example, how data ob-
jects should be represented in memory, and the memory location at which they
reside. However, for dynamic code replacement, these are precisely the details
which we wish to expose. We therefore adopt a more discriminating relational
style called an abstract-machine semantics.

19

In the abstract machine style we define relations, called transitions, between
machine states (also called configurations). The machine state is generally rep-
resented by a tuple of stacks or finite-maps. For example, the state of the SECD
abstract machine [Lan64] is a four-tuple consisting of a Stack, an Environment,
a Control stack, and a Dump stack, hence the name SECD. The Stack is used to
hold intermediate results when computing the value of expressions, the Environ-
ment is used to hold variables bound during execution, the Control stack is used
to hold the program being executed, and the Dump stack is used to save values
during function calls. Execution of the SECD machine is defined by transitions
between machine states: (S, E, C, D) ⇒ (S ′, E′, C ′, D′). The sequential
composition of two program fragments is therefore defined as in Figure 1.12. We
evaluate the control sequence p1 · p2 · C, where C is the remaining program and
the dot symbol is the stack element separator.

(S, E, p1 · p2 · C, D)⇒ (S ′, E ′, p2 · C, D′)
(S ′, E ′, p2 · C, D′)⇒ (S ′′, E ′′, C, D′′)

(S, E, p1 · p2 · C, D)⇒ (S ′′, E ′′, C, D′′)

(1.4)

Figure 1.12: SECD Abstract Machine Semantics

The abstract machine style is clearly much closer to an actual implementation
than the previous relational form. In fact, it is relatively straightforward to
construct a program which performs identically to an abstract machine definition.
For this reason, there has been some research into automating the translation from
natural-semantics into the abstract machine style for the purpose of compiler
generation, e.g. [Die96, Pet99].

There are many differing configurations of abstract machines, largely determ-
ined by the language which they represent. For example, the SECD abstract
machine above is designed for executing simple LISP programs and was implemen-
ted in the LispKit compiler [Hen80]. Similarly, the Functional Abstract Machine
(FAM) [Car83] is an abstract machine designed for the execution of strict func-
tional programming languages, such as Standard ML. A direct implementation of
the FAM appeared in the Edinburgh ML compiler. For lazy functional languages
such as Haskell, an abstract machine based on graph-reduction is generally used,
for example the G-machine [Pey87]. The Java Virtual Machine (JVM) [LY96]
can also be considered an implementation of an abstract machine for an object-
oriented language.

20

1.3.1 Type-Preserving Evaluation

In a type-preserving compilation, type information is present throughout the
compilation process. This enables a range of optimisations that are not possible
using untyped representations. Extending this idea further, we can propagate
the type information into the evaluation process. Once again, we find that this
provides a number of benefits which cannot be readily achieved with an untyped
evaluation, namely tag-free garbage collection, and code-replacement. Further
benefits such as type-based security schemes, run-time profiling, debugging and
optimisation are also possible, though we do not discuss them here.

The propagation of type information into the evaluation process is a relatively
new concept, previously dismissed as too expensive for use in a real implementa-
tion. However, recent developments in abstract machine technology, exemplified
by the Java Virtual Machine [LY96] (which retains class and method typing in-
formation at run-time) have shown that efficient implementations are certainly
possible. While we favour clarity of definition over efficiency of implementation
in this thesis, we note that similar techniques, such as just-in-time compilation,
can readily be applied to our abstract machine definitions.

We will define type-preserving evaluation by means of a typed abstract ma-
chine definition. In this abstract machine, each stage of the evaluation yields both
a type and an associated value. As an example, we define two rules of a naive
type-preserving variant of the SECD abstract machine in Figure 1.13. These rules
may be used to perform the addition of two integers. In Rule 1.5, the evaluation
of the instruction INT i yields a pair containing the type int and the value i on
the stack. In Rule 1.6, the addition of two expressions is performed. Note that
both expressions evaluate to integer values. Thus, the sequence of instructions
INT 1 · INT 2 · IADD would yield the pair (int, 3) on S.

(S, E, INT i · C, D)⇒ ((int, i) · S, E, C, D)
(1.5)

(S, E, e1 · C, D)⇒ ((int, v1) · S, E, e2 · IADD · C, D)

((int, v1) · S, E, e2 · IADD · C, D)⇒
((int, v2) · (int, v1) · S, E, IADD · C, D)

(S, E, e1 · e2 · IADD · C, D)⇒ ((int, v1 + v2) · S, E, C, D)

(1.6)

Figure 1.13: Typed SECD Abstract Machine

21

In Chapter 5 we define a typed abstract machine semantics for our MΛ lan-
guage. For our purposes, the type-preserving abstract machine approach provides
exactly the right level of detail. The state of the abstract machine makes explicit
the structures required for garbage collection and code replacement, as illustrated
in Figure 1.14. The abstract machine definition itself can be used to show the
correctness of the code replacement, and the abstract machine definition could
easily serve as the basis for an implementation of Dynamic ML.

Abstract

Replacement

Code

Garbage

Collector

Machine

Abstract Machine Code

Figure 1.14: Type Preserving Run-Time System.

We note that type-preserving evaluation becomes significantly more complex
in the presence of polymorphic types. It becomes necessary to provide expli-
cit type environments for binding type variables to types. This clearly adds a
layer of complexity to the abstract machine definition which would incur a sig-
nificant runtime penalty in an implementation. A possible solution would be
the elimination of all polymorphism from the language at compile-time. Each
polymorphic function could be specialised, producing a separate version for each
type instance at which it is used. A scheme for eliminating polymorphism in this
manner for Standard ML is detailed in [Els98], and a similar scheme is employed
by the MLj [BKR98] compiler. Unfortunately, this scheme is incompatible with
code replacement, as we can clearly no longer determine at compile-time all of
the type instances for a function. We therefore define a scheme which manipu-
lates polymorphic types in a lazy manner, which we call deferred instantiation,
in Chapter 5. This scheme may be used to provide an efficient implementation
of our type-preserving abstract machine. We discuss the provision of an imple-
mentation of our abstract machine definitions in the concluding chapter, together
with a number of techniques for further improving the performance.

22

1.4 Thesis Aims

In summary, the main aim of this thesis is the provision of a detailed defini-
tion of a runtime code-replacement strategy for the Standard ML programming
language. Current techniques for runtime code-replacement, such as dynamic-
linking and binary-compatibility, enable only the replacement of functions and
do not provide any guarantees of safety for the replacement. By contrast, our
replacement strategy will be a module-level operation over functions, types, and
data. We will permit the complete replacement of one module (and its data)
with another at runtime, under the condition that both modules match the same
signature. We will also allow the extension of signatures, facilitating the intro-
duction of new types and functions into the computation. In essence, any kind of
replacement that can be expressed as a Standard ML type transformation can be
performed. For example, data structures can be completely changed, functions
can be optimised or rewritten, and mistakes in the source program can be correc-
ted. Thus, our operation will accommodate a far greater degree of flexibility in
performing runtime customisation and optimisation than is currently available.
Our intention is that this should be achieved with only minor changes to the
syntax and semantics of Standard ML, meaning that existing programs can be
easily adapted for code-replacement.

The published semantics of Standard ML do not allow a definition of our
intended model of code-replacement to be easily defined. In particular, the pres-
ence of type inference in the static semantics would unnecessarily complicate the
definition, and the absence of memory management in the dynamic semantics
means that our chosen technique cannot readily be defined. Consequently, we
will take a layered approach to our definition, making use of intermediate repres-
entations, as in a typical compilation of the language. We will therefore define
an explicitly typed intermediate language, calledMΛ, with an abstract machine
semantics for providing code-replacement. We will then define a translation from
the full language intoMΛ. We believe that there is significant novelty involved in
this approach, e.g. modules translation and efficient tag-free garbage-collection,
to make this a profitable exercise. In defining these stages we will take advant-
age of state-of-the-art advances in the fields of types in compilation and abstract
machines. Furthermore, this layered approach mirrors all the stages that would
be required in a compiler implementation of code-replacement.

In the latter part of the thesis we recognise the evolving nature of computer
architectures, in particular the recent trend towards distributed execution of com-
puter programs. Our aim here is to demonstrate that our code replacement

23

operation is not limited to single machine architectures with a single thread of
execution. We will first define an extension of the Dynamic ML programming
language which facilitates a form of distributed evaluation. We will then show
how our code replacement operations can be extended to cover this extended
case. Distributed algorithms are notoriously difficult to construct correctly owing
to unexpected interactions between asynchronous components. Consequently, we
aim to gain confidence in our distributed extension by performing a mechanical
verification of our definition using model-checking techniques.

The outline of work for the remainder of the thesis is as follows. In Chap-
ters 2 through 7 we define the syntax and semantics of our Dynamic ML lan-
guage, with procedures for dynamic compilation and replacement of modules. In
Chapter 8 we extend the Dynamic ML language with distributed execution and in
Chapter 9 adapt our models of dynamic compilation and replacement accordingly.
In Chapter 10 we address the issue of verifying our code replacement algorithms.
This is performed mechanically using a model checking technique. Finally, in
Chapter 11 we summarise our results, discuss the extent to which the thesis aims
have been achieved, and identify a number of directions for further research.

24

Chapter 2

MΛ Language

In this chapter we define the syntax of an explicitly typed intermediate lan-
guage, called MΛ, which we have developed for describing code replacement in
Dynamic ML. The language is explicitly typed in that all type information is
present in the syntax of the language. It is worth bearing in mind that programs
in MΛ would not generally be constructed by hand, rather an MΛ program
would be generated automatically by a translation operation. Explicit typing in
an intermediate language consigns the complex problems associated with type
inference completely to the front-end. The Dynamic ML language is a (syntactic-
ally) simplified variant of Standard ML. In Chapter 4 we present the syntax of
Dynamic ML, and define a translation from Dynamic ML toMΛ.

Of particular importance in our intermediate language is the representation
of polymorphism. Therefore, at its lowest level, our MΛ language is based
on a call-by-value variant of the Girard-Reynolds second-order polymorphic λ-
calculus [Rey74], called System F2. This calculus provides a general kind of poly-
morphism sufficient for our intermediate language. However, while System F2 has
significant theoretical importance, it would be very difficult to translate a real pro-
gramming language into this calculus. Thus, our language is essentially a heavily
sugared variant of the calculus. The relationship between MΛ and System F2

is detailed in Chapter 3. Our language contains additional support for datatype
declarations, let/letrec polymorphism, reference types, threads, and exceptions.
The language is designed to be sufficiently rich to efficiently represent the entire
core Standard ML language (and hence Dynamic ML). We are confident in this
claim as the language has been adapted from an intermediate representation used
in the ML-Kit with Regions compiler [TBE+98]. Despite the richness of ourMΛ
language, it is still at an altogether lower-level than Standard ML. Therefore, to
aid the reader in understanding the language, we present many examples in this
chapter comparing the syntax of Standard ML and MΛ.

25

2.1 Notation and Mathematical Conventions

Before describing the syntax and semantics of theMΛ language, we briefly intro-
duce the mathematical notation that will be used throughout the thesis. Nothing
more complex than a basic knowledge of set theory will be required.

A set is defined by enumerating its members in braces, e.g:

x = { red, orange, yellow, green, blue, violet }

As a special case, {} is the empty set, more commonly written ∅. The standard
operations will be applied to sets: membership ∈, union ∪, disjoint union],
intersection ∩, and difference \.

Given a set x, a sequence is an ordered list of members of x. Sequences are
enclosed by brackets, e.g:

x = (red, green, blue, red)

Unlike sets, sequences are ordered: the sequence (red, blue) is distinct from
the sequence (blue, red). As indicated above, the same object may appear more
than once in a sequence. Only non-empty finite sequences will be considered here.
A sequence with k elements is written x k, where k > 0. The ith element of a
sequence is xi, where 0 < i ≤ k.

Given two sets x and y, a relation is an arbitrary set of pairs (xi, yi), where
every xi is a member of x, and every yi is a member of y, e.g:

R = { (x1, y1), (x2, y2), (x3, y3), . . . }

The domain and range of a relation, written Dom R and Rng R, are the sets
of objects which appear as the first and second elements of the pairs respectively,
for a total relation, the domain is the set x. Only finite partial functional relations,
called finite maps, will be considered here. That is, relations with a finite domain,
where there is at most one element of the range y for each element of the domain
x in the relation. For simplicity, finite maps will be constructed as a one-to-
one relation between sequences of equal length (the first sequence must have no
repeated elements). The finite map from the sequence x k to the sequence y k is
defined:

x
map7→ y = { x1 7→ y1, . . . , xk 7→ yk }

The pairs of elements in a finite map are written xi 7→ yi for clarity.

26

2.2 Abstract Syntax

The abstract syntax of theMΛ language is defined by the grammar presented in
Figure 2.2. The MΛ language is composed of a type language and an expression
language. The syntactic categories of the language include special constants scon
(unit, integer, word, real, character, and string), user-defined type-names tn, and
constructors con. Type names, constructor names, and exception names must
be distinct and uniquely defined. For clarity, we will prefix type names with
‘t ’ (e.g. t bool and t list), constructors with ‘c ’ (e.g. c cons and c true), and
exceptions with ‘e ’ (e.g. e overflow and e match) in our examples. The meta-
variable c ranges over special constants and constructors, and the meta-variable i
over special constants of integer type. A number of functions are predefined on the
special constants, as illustrated in Figure 2.1. These built-in functions coincide
with the initial Basis of the Standard ML language [MTHM97].

Standard ML Operation MΛ Function
Absolute Value (abs) ABSi, ABSr
Negate (˜) NEGi, NEGr

Integer Divide (div) DIVi, DIVw

Modulo (mod) MODi, MODw

Divide (/) DIVr

Multiply (*) MULi, MULw, MULr
Add (+) ADDi, ADDw, ADDr

Subtract (-) SUBi, SUBw, SUBr

Less (<) LTi, LTw, LTr, LTc, LTs

Greater (>) GTi, GTw, GTr, GTc, GTs

Less or Equal (<=) LEQi, LEQw, LEQr, LEQc, LEQs

Greater or Equal (>=) GEQi, GEQw, GEQr, GEQc, GEQs

Equal (=) EQi, EQw, EQr, EQc, EQs

i = integer, w = word, r = real, c = char, s = string

Figure 2.1: Built-in Functions.

There are two classes of variables in the language: lambda variables x, and
type variables α. Lambda variables, corresponding to variables in the lambda
calculus, are bound to values generated by the evaluation of expressions, and
type variables α are bound to types. Both lambda variables and type variables
must also be uniquely defined inMΛ. The uniqueness property means that we do
not have to worry about renaming (α-conversion) during function applications.
Therefore, during translation into MΛ, a renaming operation on the variables
will generally be required.

27

τ ∈ Type ::= tn (type name)
| tn(τ k) (constructed type)
| τ k (tuple type)
| τ1 → τ2 (function type)
| α (type variable)

σ ∈ Type scheme ::= τ (monotype)
| ∀ α k. τ (polytype)

P ∈ Program ::= (D, X, E)

D ∈ Datatype ::= datatype tn of C (monomorphic)
| datatype (αk, tn) of C (polymorphic)

X ∈ Exception ::= exception C

C ∈ Constructor ::= con (nullary declaration)
| (con, τ) (unary declaration)

E ∈ Expression ::= scon scon (special constant)
| var x (variable)
| var (x, τ k) (polymorphic var)
| fn (x, τ1 → τ2) = E (function)
| fn (xk, τ1

k → τ2) = E (multi-argument fn)

| con con (nullary constructor)
| con (con, E) (unary constructor)
| con (con, τ k) (nullary polymorphic)
| con (con, τ k, E) (unary polymorphic)
| decon (con, E) (deconstructor)
| decon (con, τ k, E) (polymorphic decon)

| tuple E k (tuple)
| select (i, E) (selection)
| let (x, σ) = E1 in E2 (binding)
| let (x, σ)k = E1 in E2 (multi-binding)
| switch E1 case (c

map7→ E2, E3) (conditional)

| fix (x, σ) = E1
k in E2 (recursive binding)

| app (E1, E2) (application)
| app (E1, E2

k) (multi-argument app)
| assign (E1, E2) (assignment)
| raise (E, τ) (raise exception)
| handle E1 with E2 (handle exception)

Figure 2.2: MΛ Abstract Syntax.

28

2.2.1 Type Language

The type language is structured into two levels: a type level τ , and a type scheme
level σ. The type level defines the monomorphic types, usually called monotypes.
These include user-defined type names tn and tn(τ k). The second form is used for
representing instances of polymorphic datatypes e.g. t list(t int). The type names
include the basic types, as required by the special constants; value constructor
types; reference types; and exception types. Function values have function types
τ1 → τ2. For convenience, we also include a tuple type τ k which can be used to
type records and functions with more than one argument. Finally, we have type
variables α.

Polymorphic types, called polytypes, are defined by type-schemes σ. At this
level we have the universally quantified type ∀ α k. τ , where α k is a sequence
of type variables that occur in τ . Since we do not allow empty sequences, we
include the monotype τ in the definition. We say that a type variable in τ is
bound if it is quantified by the polytype, i.e. it appears in the sequence ∀ α k,
and free otherwise. A closed polytype is one with no free type variables. As an
example, the polymorphic identity function is represented by the (closed) type
scheme ∀α . α→ α.

2.2.2 Expression Language

The expression language is structured as a hierarchy; the top of which is a pro-
gram P . A program contains a set of datatype declarations D, a set of exception
declarations X, and a single expression E. Each datatype declaration consists
of a unique type name tn and a set of constructors C. Datatypes may be poly-
morphic, in which case the declaration includes a list of type variables α k. Each
constructor declaration may be nullary con or unary (con, τ). As an example, a
polymorphic list datatype, containing a nullary and unary constructor, is repres-
ented inMΛ according to Figure 2.3. The remaining MΛ expressions E divide
into the following categories: values, value constructors, structured expressions,
function expressions, references, and exceptions.

Standard ML: datatype ’a list = nil
| cons of ’a * ’a list

MΛ Syntax: datatype ((α), t list) of {c nil, (c cons, (α, t list(α)))}

Figure 2.3: Datatype Example.

29

Values

The MΛ values are the special constants, e.g. scon 7, variables, and functions.
Variables are referenced by var expressions. If the variable is polymorphic, an
instance may be created by supplying types τ k. Functions values (λ-abstractions)
are created by fn expressions as shown in Figure 2.4. A function may take a single
argument or a tuple of arguments, allowing both curried and uncurried forms to
be represented.

Standard ML: fn (x : int) => fn y => x + y
fn (x : int, y) => x + y

MΛ Syntax: fn (x, t int→ (t int→ t int)) =
fn (y, t int→ t int) = app (ADDi, tuple (var x, var y))

fn ((x, y), (t int, t int)→ t int) =
app (ADDi, tuple (var x, var y))

Figure 2.4: Function Example.

Value Constructors

The MΛ value constructors are used to generate datatype values. There are
four forms of con expression corresponding to nullary and unary constructors
for both monomorphic and polymorphic datatypes respectively. Deconstructor
expressions decon are also provided for the unary constructors. Deconstructors
are generally used for representing pattern matching operations. An example
illustrating the usage of these expressions is given in Figure 2.5.

Standard ML: datatype bool = true | false;
val x = true;
val y = [1];
fn (h :: t) => h;

MΛ Syntax: datatype t bool of {c true, c false}
let (x, t bool) = con c true
let (y, t list(t int)) =

con (c cons, (t int), tuple (scon 1, con (c nil, (t int))))
fn (l, t list(α)→ α) =

let ((h, t), (α, t list(α))) = decon (c list, var l)
in var h

Figure 2.5: Constructor Example.

30

Structured Expressions

The let expression binds values to lambda variables. Figure 2.6 illustrates a
renaming of Standard ML variables to ensure the uniqueness of the identifiers.

Standard ML: let val y = 2
val y = y + y

in y end;

MΛ Syntax: let (a, t int) = scon 2
in let (b, t int) = app (ADDi, tuple (var a, var a))

in var b

Figure 2.6: Variable Renaming Example.

Standard ML records and tuples are represented inMΛ by tuple expressions.
During translation from Standard ML to MΛ, the field labels of a record are
sorted alphabetically. This avoids the need to retain these labels in MΛ. The
fields of a tuple are accessed using select and let expressions (Figure 2.7).

Standard ML: let val file = {size = 17373, name = "thesis.tex"}
in #size file end;
let val vector = (1.0, 1.5, 6.8)

val (x, y, z) = vector
in x end;

MΛ Syntax: let (file, (t string, t int)) =
tuple (scon “thesis.tex”, scon 17373)

in select (2, var file)
let (vector, (t real, t real, t real)) =

tuple (scon 1.0, scon 1.5, scon 6.8)
in let ((x, y, z), (t real, t real, t real)) = var vector

in var x

Figure 2.7: Records and Tuples Example.

The switch expression is used to perform control flow. In particular, pat-
tern matching is represented by switch statements inMΛ. A switch statement
contains an argument expression E1, a finite map from constants c to case expres-
sions E2, and a wild-card expression E3. If the argument expression evaluates to
a constant which is in the domain of the finite map, the corresponding expression
from the range is subsequently evaluated. If there is no matching constant in the
domain, the wild-card expression is evaluated.

31

Function Expressions

The let expression may be used to bind non-recursive function values to lambda
variables. However, recursive and mutually-recursive functions must be bound
using the fixed-point expression (often called ‘letrec’ in other lambda languages).
The fix expression binds a sequence of functions values to lambda variables sim-
ultaneously, such that any function may refer to any other.

Function application is performed by an app expression which applies the
function E1 to the argument E2 (or arguments E2

k). Function application cor-
responds to β-reduction in the λ-calculus. As we will see in Chapter 5, a call-by-
value strategy is used in MΛ for function application, meaning that E1 and E2

are fully evaluated before the function is applied. For convenience, there are two
forms of app expression which correspond to the single and multiple argument
forms of function declaration.

An example is given in Figure 2.8 to illustrate the representation of pattern
matching using a switch expression, the use of a fixed-point expression for declar-
ing a recursive function, and the use of application expressions. Note that this
example is a completeMΛ program, rather than a fragment of MΛ expressions
as previously illustrated in our examples. Also note that the wild-card of the
switch expression is defined to raise a match exception since there are no other
appropriate values. Exceptions are described in the following section.

Standard ML:

fun fact 0 = 1
| fact n = n * fact(n - 1);

fact 10;

MΛ Syntax:

(∅, ∅,
fix ((fact, t int→ t int) =

fn (n, t int→ t int) =
switch (app (EQi, tuple (var n, scon 0)))
case ({c true 7→ scon 1,

c false 7→
app (MULi, tuple (var n,

app (var fact, app (SUBi, tuple (var n, scon 1)))))},
raise (con e match, t int)))

in app (var fact, scon 10))

Figure 2.8: Factorial Example.

32

References and Exceptions

References and exceptions are represented in MΛ by special reserved datatypes
t ref and t exn respectively. These datatypes would be defined in Standard ML
according to Figure 2.9.

datatype ’a t ref = c ref of ’a

datatype t exn = e match
| e bind
| e overflow
| ...
| e error of int * string
| ...

Figure 2.9: Reference and Exception Datatypes.

References are represented as values of the polymorphic constructor c ref.
References are constructed and deconstructed using the polymorphic forms of
the con and decon expressions described earlier. A special assign (E1, E2)
expression is provided for updating the value of a reference, where E1 evaluates
to a reference, and E2 evaluates to the new value. An example illustrating the
usage of references inMΛ is given in Figure 2.10. The dereferencing function !

is part of the Standard ML Basis.

Standard ML: let fun ! (ref x) = x
val a = ref 6
val = a := 9
val b = !a

in b end;

MΛ Syntax: (∅, ∅,
let (deref, t ref(α)→ α) =

fn (x, t ref(α)→ α) =
decon (c ref, var x)

in let (a, t ref(t int)) =
con (c ref, (t int), scon 6)

in let (, t unit) =
assign (var a, scon 9)

in let (b, t int) =
app (var (deref, (t int)), var a)

in var b)

Figure 2.10: References Example.

33

By contrast, exceptions are represented as constructors of the monomorphic
datatype t exn. Each exception declaration appears as a separate constructor of
t exn. InMΛ, exceptions are statically declared at the beginning of a program.
This avoids the need to deal with a datatype which has a varying number of
constructors. The exceptions e match, e bind, and e overflow are predefined in
MΛ. As in Standard ML we do not allow polymorphic exceptions.

We construct exceptions, called exception packets, using the monomorphic
forms of the con expressions. Exception packets can be deconstructed using the
decon expression. The raise (E, τ) expression is used to raise an exception,
where E evaluates to an exception packet, and τ corresponds to the type that
would be required if an exception were not raised. A raise expression causes a
change in the flow of control. The handle expression tests whether E1 raises an
exception packet. If so, the function expression E2 is applied to the packet. An
example, which uses exceptions to prevent underflow of the factorial function,
from Figure 2.8, is presented in Figure 2.11.

Standard ML:

exception Factorial
fun errorfact n = if n < 0 then raise Factorial

else fact n
fun nicefact n = errorfact n handle Factorial => 0
nicefact ˜10;

MΛ Syntax:

(∅, {exception e factorial},
let (errorfact, t int→ t int) =

fn (n, t int→ t int) =
switch (app (LTi, tuple (var n, scon 0)))
case ({c true 7→ raise (con e factorial, t int),

c false 7→ app (var fact, var n)},
raise (con e match, t int))

in let (nicefact, t int→ t int) =
fn (n, t int→ t int) =

handle (app (var errorfact, var n))
with

fn (exn, t exn→ t int) =
switch (var exn)
case ({e factorial 7→ scon 0}, raise (var exn, t int))

in app (var fac, scon −10))

Figure 2.11: Exceptions Example.

34

2.3 Threaded Concurrency

The MΛ language also contains expressions for creating and communicating
between threads. These threads are not part of Standard ML, rather they are
derived from Concurrent ML, a distributed extension described in [Mat91]. This
extension is designed for executing ML programs on a distributed network of
workstations. The Concurrent ML language extends Standard ML with the lan-
guage constructs illustrated in Figure 2.12.

eqtype α channel
val channel : unit→ α channel
val send : α channel× α→ unit
val receive : α channel→ α
val fork : (unit→ unit)→ unit
val rfork : int× (unit→ unit)→ unit

Figure 2.12: Concurrent ML Language Extensions.

Communication between threads is performed via blocking polymorphic chan-
nels of type α channel. The type system ensures that values sent and received
on a particular channel have the same type. New channels are constructed using
the channel function, and may be passed around as values. A thread sends a
value to another thread using the send function, which takes two arguments:
a channel and a value. The receiving thread uses the receive function, which
takes a channel argument. Both threads are blocked until the value is passed,
which happens atomically. Threads are created either using the fork function,
which runs the child thread on the same processor as its parent, or the rfork

function, which runs the child thread on a specified processor. Both fork and
rfork take a function argument, whose body is evaluated in the child thread.
When the function returns, the thread is terminated. The rfork function takes
an additional integer argument which specifies where the child thread is to run.

As with references, we represent channels inMΛ as values of the polymorphic
constructor c chan of a reserved datatype t chan. In Concurrent ML the commu-
nication and threading primitives are represented by functions. However, apply-
ing one of these functions has the side-effect of sending a value, creating a thread,
etc. Since we cannot represent these operations by the usual functions inMΛ, we
include extra expressions in the language which correspond to these operations.
The t chan datatype, and the extra expressions are illustrated in Figure 2.13.

35

datatype ((α), t chan) of {(c chan, α)} (channel datatype)

E ∈ Expression ::= fork E (local thread)
| rfork (E1, E2) (remote thread)
| send (E1, E2) (send value)
| receive E (receive value)

Figure 2.13: MΛ Thread Expressions.

An example illustrating the thread operations in Concurrent ML, and their
translation intoMΛ is shown in Figure 2.14. In this example, a thread is created
on processor 2 that simply waits for an integer value on channel c, then returns
the value, incremented by 3, on the same channel. The example concludes by
sending the value 7 to the thread, and returns the response (which will be 10).

Concurrent ML: let val c = channel()
val = rfork(2,

fn => send(c, receive(c) + 3))
val = send(c, 7)

in
receive(c)

end

MΛ Syntax: (∅, ∅, let (c, t chan(t int)) = con(c chan, (t int))
in let (, t unit) = rfork (scon 2,

fn (, t unit→ t unit) =
send (var c,

app (ADDi, tuple (receive (var c), scon 3))))
in let (, t unit) = send (var c, scon 7)

in receive (var c))

Figure 2.14: Threads Example.

36

Chapter 3

Static Semantics of MΛ

We define the static semantics of the MΛ intermediate language in this chapter
by presenting a formal type system. The type system is defined by a collection
of rules which are used to determine if a program is well-typed. Well-typing
corresponds to a notion of predictability of program behaviour. The syntax of
MΛ is based on an enriched variant of System F2. It therefore follows that our
type system is derived from the type system of System F2. We discuss the relation
between our type system and the type system for System F2 at the end of this
chapter.

Γ ` 3 (well-formedness)
Γ ` σ (existence)
Γ ` σ1 = σ2 (equivalence)
Γ ` P : τ (typing)

Figure 3.1: Type System Judgements.

The description of a type system begins with a collection of rules called judge-
ments. The judgements for the MΛ language are given in Figure 3.1. Judge-
ments are formulated as assertions. The well-formedness judgement asserts that
an environment Γ is well formed. The existence judgement asserts that σ is a
well-formed type-scheme in Γ. The equivalence judgement asserts that the type-
schemes σ1 and σ2 are equivalent in Γ. The typing judgement asserts that P is a
well-formed program with type τ in Γ. The rules in the remainder of this chapter
assert the validity of these judgements. Validity of the judgements formalises well-
typing. Validity is derived inductively from judgements that are already known
to be valid. The process begins with the intrinsically valid judgement ∅ ` 3

which asserts that the empty environment is valid.

37

3.1 Static Typing-Environments

Our formal judgements all refer to a static typing environment Γ. We must
therefore provide a definition for this environment before proceeding. The main
purpose of the environment is to track the allocation of the variables and their
corresponding types. InMΛ we also allow variables of user-defined types. Thus,
our environment must track these also. The structure of the MΛ static typing-
environment is illustrated in Figure 3.2.

Environment Γ ::= (TE , VE , DE , CE)

Type Variables TE ::= α

Lambda Variables VE ::= x
map7−→ σ

Datatype Names DE ::= tn
map7−→ (n, con)

Constructors CE ::= con
map7−→ σ

Figure 3.2: MΛ Static Typing Environment.

The environment is represented by a four-tuple comprising a type-variable en-
vironment, a lambda-variable environment, a datatype environment, and a con-
structor environment. The type-variable environment TE maintains a set of type
variables. This set of type variables is used to determine the validity of a type
scheme (Section 3.2). The lambda-variable environment VE maps bound variable
identifiers to type schemes. We can use a finite map because the variable identi-
fiers are unique. The datatype environment DE maps the type names tn to sets
of constructors con. The number of free type variables in the datatype (called
the arity) is given by the parameter n. Finally, the constructor environment CE
maps constructors to type schemes.

We will use the notation Γ[θ] for extending an environment Γ with a binding
θ, where θ is one of α, x 7→ σ, tn 7→ (n, con), or con 7→ σ. We do not need to
specify the sub-environment in Γ as it follows from the naming of θ; type variables
are named α; type names are prefixed by t ; constructors are prefixed by c ;
exceptions are prefixed e ; anything else is considered a lambda variable. We will
use the notation Γ[θ1, . . . , θk] for adding multiple binding of the same kind to
an environment, and Γ[θ1] · · · [θk] for adding multiple bindings of different kinds.
The notation Γ(φ) will be used for retrieving a binding φ from an environment
Γ, where φ is one of α, x, tn , or con. For simplicity, we will define the domain of
the environment Dom Γ as the union of the domains of all the finite-maps in the
environment, together with the set of type variables.

38

3.1.1 The Initial Environment

In the previous chapter we saw that the MΛ language contains a number of
predefined functions and types, corresponding to the initial static basis of Stand-
ard ML [MTHM97]. These functions, and their types, are included in the initial
typing environment ofMΛ, shown in Figure 3.3. The initial lambda variable en-
vironment contains the primitive functions on the special constants. For brevity,
only the operations on the integers are shown.

The initial types include the basic types for the special constants: t unit, t int,
t word, t real, t char, and t string. These types appear with an arity of 0 (i.e.
they are non polymorphic) and are defined with an empty set of constructors. The
definition of the boolean datatype t bool references the two nullary constructors
c true and c false. The type of a nullary constructor is simply the parent data-
type, in this case t bool. The definition of the list datatype references a nullary
constructor c nil and a unary constructor c cons. The type of a unary constructor
is a function type from the arguments of the constructor to the parent datatype,
in this case ∀(α). (α, t list(α))→ t list(α).

Γ = (∅, VE , DE , CE)

VE =

ABSi 7→ t int→ t int, NEGi 7→ t int→ t int,
DIVi 7→ (t int, t int)→ t int, MODi 7→ (t int, t int)→ t int,
MULi 7→ (t int, t int)→ t int,
ADDi 7→ (t int, t int)→ t int, SUBi 7→ (t int, t int)→ t int,
LTi 7→ (t int, t int)→ t bool, GTi 7→ (t int, t int)→ t bool,
LEQi 7→ (t int, t int)→ t bool, GEQi 7→ (t int, t int)→ t bool,
EQi 7→ (t int, t int)→ t bool,

DE =

t unit 7→ (0, ∅), t int 7→ (0, ∅), t word 7→ (0, ∅),
t real 7→ (0, ∅), t char 7→ (0, ∅), t string 7→ (0, ∅),
t bool 7→ (0, {c true, c false}), t list 7→ (1, {c nil, c cons}),
t ref 7→ (1, {c ref}), t chan 7→ (1, {c chan}),
t exn 7→ (0, {e div, e mod, e match, e bind, e overflow})

CE =

c true 7→ t bool, c false 7→ t bool,
c nil 7→ ∀(α). t list(α), c cons 7→ ∀(α). (α, t list(α))→ t list(α),
c ref 7→ ∀(α). α→ t ref(α), c chan 7→ ∀(α). α→ t chan(α),
e match 7→ t exn, e bind 7→ t exn, e overflow 7→ t exn

Figure 3.3: Initial Static Environment.

39

3.1.2 Well-Formed Environments

Given an environment Γ, we can define the first judgement Γ ` 3, which asserts
that Γ is a well-formed environment. Informally, well-formedness of an environ-
ment corresponds to the following conditions: all finite-maps are correctly con-
structed (e.g. no duplicates in the domain), all datatype constructors are defined,
and any types which appear in the range are valid.

We define well-formedness inductively in Figure 3.4 with the base-case ∅ ` 3

(Rule 3.1): the empty environment is well-formed. The remaining rules extend the
environment Γ with a new entry and check for validity. For example, extending
Γ with a new lambda variable: Γ[x 7→ σ] (Rule 3.3) is valid if σ is a valid type
in Γ and x has not previously been declared. We must add a datatype and its
constructors simultaneously (Rule 3.5) as a datatype refers to its constructors
which in turn refer to the datatype. The dtype function (3.6) returns the parent
datatype of a constructor. There are four cases corresponding to nullary and
unary constructors of monomorphic and polymorphic datatypes.

∅ ` 3 (3.1)

Γ ` 3 α /∈ Dom Γ

Γ[α] ` 3
(3.2)

Γ ` 3 Γ ` σ x /∈ Dom Γ

Γ[x 7→ σ] ` 3
(3.3)

Γ ` 3 tn /∈ Dom Γ

Γ[tn 7→ (0, ∅)] ` 3
(3.4)

Γ ` 3 tn /∈ Dom Γ n ≥ 0

con1 = {con1
2, . . . , con

k
2} dtype(σ1) = tn · · · dtype(σk) = tn

Γ′ = Γ[tn 7→ (n, con1)] Γ′ ` σ1 · · · Γ′ ` σk

Γ[tn 7→ (n, con1)][con1
2 7→ σ1, . . . , conk2 7→ σk] ` 3

(3.5)

dtype(tn) = tn
dtype(τ → tn) = tn
dtype(∀ α k. tn(α k)) = tn
dtype(∀ α k. τ → tn(α k)) = tn

(3.6)

Figure 3.4: Valid Environments.

40

3.2 Type Schemes

We can now define the existence judgement Γ ` σ and equivalence judgement
Γ ` σ1 = σ2 over type-schemes (Figure 3.5). The environment Γ is assumed to be
well-formed. The rules for existence (Rule 3.7 through 3.12) are largely trivial.
For example, a function type is valid Γ ` τ1 → τ2 (Rule 3.10) if the argument
type is valid Γ ` τ1 and the result type is valid Γ ` τ2. For a polymorphic
type-scheme Γ ` ∀ α k. τ , the type variables α k are temporarily added to the
environment while the type τ is checked for validity. The rules for equivalence
(Rule 3.13 through 3.18) are similarly straightforward. Types are matched by
virtue of being structurally equivalent. For a type-scheme (Rule 3.18), equivalence
is checked by substituting the type variables for a common set α3

k and checking
the resulting types for equivalence.

Γ(tn) = (0, con)

Γ ` tn
(3.7)

Γ(tn) = (k, con)

Γ ` τ k

Γ ` tn(τ k)

(3.8)

Γ ` τ1 · · · Γ ` τk

Γ ` τ k
(3.9)

Γ ` τ1 Γ ` τ2

Γ ` τ1 → τ2
(3.10)

α ∈ Dom Γ

Γ ` α
(3.11)

Γ[α1, . . . , αk] ` τ
Γ ` ∀ α k. τ

(3.12)

tn ∈ Dom Γ
Γ ` tn = tn

(3.13)

Γ ` tn1 = tn2

Γ ` τ1
k = τ2

k

Γ ` tn1(τ1
k) = tn2(τ2

k)

(3.14)

Γ ` τ1
1 = τ1

2 · · · Γ ` τk1 = τk2

Γ ` τ1
k = τ2

k
(3.15)

Γ ` τ1 = τ3 Γ ` τ2 = τ4

Γ ` τ1 → τ2 = τ3 → τ4
(3.16)

α ∈ Dom Γ

Γ ` α = α
(3.17)

α3
k fresh

S1 = {α1
1 7→ α1

3, . . . , α
k
1 7→ αk3}

S2 = {α1
2 7→ α1

3, . . . , α
k
2 7→ αk3}

subst(S1, τ1) = subst(S2, τ2)

Γ ` ∀ α1
k. τ1 = ∀ α2

k. τ2

(3.18)

Figure 3.5: Valid and Equivalent Types.

41

3.2.1 Type Scheme Instantiation

Before defining the typing judgement, it is necessary to define a number of func-
tions on type schemes. In particular, we need a definition of an instance of a type
scheme. Recall that a type-scheme can represent a polymorphic type (polytype).
A type scheme σ′ is called an instance, or specialisation, of a type scheme σ, if
there exists a substitution S of types for type variables such that σ′ = Sσ. We
define a substitution S as a finite-map from type variables to types α map7→ τ . If α
are the free type variables of σ, then Sσ is obtained by replacing each occurrence
of α in σ with S(α). Instantiation creates an instance of a polytype.

Instantiation of type schemes is performed by two functions instance and
subst defined in Figure 3.6. The instance function is invoked with a type-scheme
and a list of types to be substituted for the free type variables. If the type scheme
is polymorphic, a substitution environment S is created, and the subst function
is invoked to perform the substitutions. The subst function is defined recursively.
There is a separate rule for each of theMΛ types. An actual substitution is only
performed in the final rule for type variables α which occur in the domain of S..
For later convenience, we also define functions mono and tvs. The mono function
simply returns the type associated with a type scheme, i.e. excluding the type
variables, while the tvs function returns the set of the quantified type variables
for a type scheme, i.e. excluding the type.

instance(τ1, τ2
k) = τ1

instance(∀ α k. τ1, τ2
k) = subst({α1 7→ τ1

2 , . . . , α
k 7→ τk2 }, τ1)

(3.19)

subst(S, tn) = tn
subst(S, tn(τ k)) = tn(subst(S, τ k))
subst(S, τ k) = (subst(S, τ1), . . . , subst(S, τk))
subst(S, τ1 → τ2) = subst(S, τ1)→ subst(S, τ2)
subst(S, α) = α (α /∈ Dom S)
subst(S, α) = S(α) (α ∈ Dom S)

(3.20)

mono(τ) = τ
mono(∀ α k. τ) = τ

(3.21)

tvs(τ) = ∅
tvs(∀ α k. τ) = {α1, . . . , αk} (3.22)

Figure 3.6: Type Scheme Instantiation.

42

3.3 Typing Rules

The typing judgement Γ ` P : τ asserts that a program P is valid (i.e. type-able)
and has type τ in Γ. This final judgement is the most complex and forms the
essence of the type system. The top-level rule for this judgement is Rule: 3.23.
Type checking of a program is performed in four stages, defined by the premise
of this rule:

1. The initial environment Γ is extended with the datatype declarations Γ[D]
yielding the environment Γ′. The set of datatypes are decomposed and
entered into the environment according to Rule 3.24. There are separ-
ate cases for dealing with monomorphic and polymorphic datatypes. Each
datatype declaration extends the environment with a single entry for the
type name and a separate entry for each of the constructors. The functions
cname (3.26) and ctype (3.27) provide the name and type of each con-
structor. The type of a nullary constructor is the parent datatype, while
the type of a unary constructor is a function from the type of the con-
structor to the parent datatype. A constructor of a polymorphic datatype
is universally quantified over the type variables of the parent datatype.

2. The environment is further extended with the exception declarations Γ′[X]
according to Rule 3.25. This rule is similar to the rule for monomorphic
datatype declarations. However, the exception declarations collectively
form the constructors of a single monomorphic datatype t exn.

3. The environment containing the datatypes and exceptions is checked for
validity Γ′′ ` 3.

4. Finally, the expression E is type-checked in the environment Γ′′. The res-
ulting type of the program is obtained from the type of this expression.

The rules in the remainder of this chapter determine the valid expressions
and their types Γ ` E : τ . There are many similarities between these rules.
Therefore, rather than explaining each rule in turn, we will just highlight the
main features. It is worth noting that each expression yields a monotype, or a
monomorphic instance of a polytype. Polymorphism is hidden inside the let and
fix expressions. This is called let-bound polymorphism, and is discussed in more
detail in Chapter 4.

43

Programs

Γ′ = Γ[D] Γ′′ = Γ′[X] Γ′′ ` 3 Γ′′ ` E : τ

Γ ` (D, X, E) : τ
(3.23)

Γ[∅] = Γ

Γ[{D1, . . . , Dk}] = Γ[D1] · · · [Dk]

Γ[datatype tn of {C1, . . . , Ck}] =

Γ[tn 7→ (0, {cname(C1), . . . , cname(Ck)})]
[cname(C1) 7→ ctype(C1, tn), . . . , cname(Ck) 7→ ctype(Ck, tn)]

Γ[datatype (α k, tn) of {C1, . . . , Cl}] =

Γ[tn 7→ (k, {cname(C1), . . . , cname(Cl)})]
[cname(C1) 7→ ctype(C1, (α k, tn)), . . . ,

cname(Cl) 7→ ctype(Cl, (αk, tn))]

(3.24)

Γ[∅] = Γ

Γ[{exception C1, . . . , exception Ck}] =

Γ[t exn 7→ (0, {cname(C1), . . . , cname(Ck)})]
[cname(C1) 7→ ctype(C1, t exn), . . . , cname(Ck) 7→ ctype(Ck, t exn)]

(3.25)

cname(con) = con
cname((con, τ)) = con

(3.26)

ctype(con, tn) = tn
ctype((con, τ), tn) = τ → tn
ctype(con, (α k, tn)) = ∀ α k. tn(αk)
ctype((con, τ), (αk, tn)) = ∀ α k. τ → tn(α k)

(3.27)

Values

Γ ` scon scon : tnscon
(3.28)

Comment: (Rule 3.28) The type of the special constant tnscon (e.g. t int) is
uniquely determined by the lexical structure of scon.

Γ ` var x : Γ(x) (3.29)

Γ ` τ k

Γ ` var (x, τ k) : instance(Γ(x), τ k)
(3.30)

Comment: (Rule 3.30) All types which are explicitly specified in the syntax of
language must be checked for validity. In this case, these types τ k are used to
generate an instance of a polymorphic value.

44

Γ ` τ1 → τ2 Γ[x 7→ τ1] ` E : τ3 Γ ` τ2 = τ3

Γ ` fn (x, τ1 → τ2) = E : τ1 → τ2
(3.31)

Γ ` τ1
k → τ2 Γ[x1 7→ τ1

1 , . . . , x
k 7→ τk1] ` E : τ3 Γ ` τ2 = τ3

Γ ` fn (x k, τ1
k → τ2) = E : τ1

k → τ2
(3.32)

Comment: (Rule 3.32) This form of fn expression is an optimisation for functions
of multiple arguments to prevent the unnecessary creation of closures.

Value Constructors

Γ ` con con : Γ(con)
(3.33)

Γ(con) = τ1 → τ2 Γ ` E : τ3 Γ ` τ1 = τ3

Γ ` con (con, E) : τ2
(3.34)

Comment: (Rule 3.34) Constructing a unary datatype value is analogous to ap-
plying the constructor function τ1 → τ2. The expression E must have the same
type as the argument type τ1, and the type of the entire expression is the result
type τ2.

Γ ` τ k

Γ ` con (con, τ k) : instance(Γ(con), τ k)
(3.35)

Γ ` τ1
k instance(Γ(con), τ1

k) = τ2 → τ3 Γ ` E : τ4 Γ ` τ2 = τ4

Γ ` con (con, τ1
k, E) : τ3

(3.36)

Γ(con) = τ1 → τ2 Γ ` E : τ3 Γ ` τ2 = τ3

Γ ` decon (con, E) : τ1
(3.37)

Comment: (Rule 3.37) De-constructing a unary datatype value applies the con-
structor function τ1 → τ2 in reverse. The expression E must have the same type
as the result type τ2, and the type of the entire expression is the argument type
τ1.

Γ ` τ1
k instance(Γ(con), τ1

k) = τ2 → τ3 Γ ` E : τ4 Γ ` τ3 = τ4

Γ ` decon (con, τ1
k, E) : τ2

(3.38)

45

Structured Expressions

Γ ` E1 : τ1 · · · Γ ` Ek : τk

Γ ` tuple E k : τ k
(3.39)

Γ ` E : τ k 0 < i ≤ k
Γ ` select (i, E) : τ i

(3.40)

Γ ` σ Γ[tvs(σ)] ` E1 : τ1 Γ ` mono(σ) = τ1 Γ[x 7→ σ] ` E2 : τ2

Γ ` let (x, σ) = E1 in E2 : τ2
(3.41)

Comment: (Rule 3.41) Binding a polymorphic value to a variable requires some
subtlety as expressions are not permitted to yield type-schemes. The expression
E1 must therefore return a type which matches the quantified type of σ. Since
this type may contain free type variables and would therefore constitute an invalid
type (according to our definition in Section 3.2) we must extend the environment
with the type variables tvs(σ) before checking E1. The mono function is used to
ensure that the resulting type is the same as the quantified type of σ. The type
of the entire expression is obtained from the type of the expression E2.

Γ ` σ1 · · · Γ ` σk

Γ[tvs(σ1) · · · tvs(σk)] ` E1 : τ1
k

Γ ` mono(σ1) = τ1
1 · · · Γ ` mono(σk) = τk1

Γ[x1 7→ σ1, . . . , xk 7→ σk] ` E2 : τ2

Γ ` let (x, σ)k = E1 in E2 : τ2

(3.42)

Γ ` E1 : τ1 Γ ` τ1 = τc1 = · · ·= τck

Γ ` E1
2 : τ1

2 · · · Γ ` Ek
2 : τk2

Γ ` E3 : τ3 Γ ` τ3 = τ1
2 = · · · = τk2

Γ ` switch E1 case ({c1 7→ E1
2 , . . . , c

k 7→ Ek
2}, E3) : τ3

(3.43)

Comment: (Rule 3.43) We denote the type of a constant c, which represents
either a special constant or a constructor, by τc. The switch expression contains
a finite map from constants to expressions. The constants in the domain of this
finite-map must all have the same type, which must be equal to the type of the
condition expression E1. Similarly, the expressions in the range of the finite map
must all have the same type, which must be equal to the type of the default
expression E3.

46

Function Expressions

Γ ` σ1 · · · Γ ` σk

Γ′ = Γ[tvs(σ1) · · · tvs(σk)][x1 7→ mono(σ1), . . . , xk 7→ mono(σk)]

Γ′ ` E1
1 : τ1

1 · · · Γ′ ` Ek
1 : τk1

Γ ` mono(σ1) = τ1
1 · · · Γ ` mono(σk) = τk1

Γ[x1 7→ σ1, . . . , xk 7→ σk] ` E2 : τ2

Γ ` fix (x, σ) = E1
k in E2 : τ2

(3.44)

Comment: (Rule 3.44) The fixed-point expression uses the same technique as
the let expression (3.41) to enable the binding of polymorphic function values to
variables. However, as any function may refer to any other, we check the func-
tion expressions in an environment Γ′ which already contains all of the function
bindings.

Γ ` E1 : τ1 → τ2 Γ ` E2 : τ3 Γ ` τ1 = τ3

Γ ` app (E1, E2) : τ2
(3.45)

Γ ` E1 : τ1
k → τ2 Γ ` E1

2 : τ1
3 · · · Γ ` Ek

2 : τk3
Γ ` τ1

1 = τ1
3 · · · Γ ` τk1 = τk3

Γ ` app (E1, E2
k) : τ2

(3.46)

References and Exceptions

Γ ` E1 : τ1 Γ ` E2 : τ2

instance(Γ(c ref), (τ2)) = τ3 → τ4 Γ ` τ1 = τ4

Γ ` assign (E1, E2) : t unit

(3.47)

Γ ` τ Γ ` E : t exn

Γ ` raise (E, τ) : τ
(3.48)

Comment: (Rule 3.48) The supplied type τ provides the type of the raise expres-
sion, as the type t exn here would, in general, cause a type error. This is simply
a convenience to simplify the typing rules.

Γ ` E1 : τ1 Γ ` E2 : t exn→ τ3 Γ ` τ1 = τ3

Γ ` handle E1 with E2 : τ1
(3.49)

47

Threads
Γ ` E : t unit→ t unit

Γ ` fork E : t unit
(3.50)

Γ ` E1 : t int Γ ` E2 : t unit→ t unit

Γ ` rfork (E1, E2) : t unit
(3.51)

Comment: (Rule 3.51) The expression E1 evaluates to an integer which determ-
ines the remote processor on which E2 should be executed. For convenience we
assume that any integer can denote a processor. We can easily map arbitrary
integers onto processor numbers using i mod n, where i is the integer value and
n is the maximum number of processors.

Γ ` E1 : τ1 Γ ` E2 : τ2

instance(Γ(c chan), (τ2)) = τ3 → τ4 Γ ` τ1 = τ4

Γ ` send (E1, E2) : t unit

(3.52)

Comment: (Rule 3.51) Compare with Rule 3.47; sending a value across a poly-
morphic channel is essentially the same as assigning a value to a polymorphic
reference.

Γ ` E : t chan(τ)

Γ ` receive E : τ
(3.53)

3.4 Type Checking

In Chapter 1 we stated that a type system is specified separately from the al-
gorithm used to perform the type checking. In general, it is useful to decouple
the type system from the type checking-algorithm. The type system is part of
the language definition, while the type-checking algorithm is part of the compiler.
Moreover, it is often possible to define different type checking algorithms for the
same type system. However, it is also possible to define type systems for which
no type checking algorithm can be constructed.

In this chapter we have defined the type system for MΛ. This type system
is relatively straightforward as it is completely deterministic. Consequently,MΛ
can be type-checked with a simple pattern-matching depth-first algorithm, though
we do not give the details here. In Figure 3.7 we illustrate the type checking
process on the identity function.

48

α ∈ Dom Γ′′′︸ ︷︷ ︸
(3.11)

α ∈ Dom Γ′′′︸ ︷︷ ︸
(3.11)

α ∈ Dom Γ′′′︸ ︷︷ ︸
(3.11)

α ∈ Dom Γ′′′︸ ︷︷ ︸
(3.11)

Γ′′′ ` α Γ′′′ ` α︸ ︷︷ ︸
(3.10)

Γ′′′ ` α Γ′′′ ` α︸ ︷︷ ︸
(3.10)

Γ′′′ ` var x : Γ′′′(x)︸ ︷︷ ︸
(3.29)

α ∈ Dom Γ′′′︸ ︷︷ ︸
(3.17)

...︸︷︷︸
Γ′′[α] ` α→ α︸ ︷︷ ︸

(3.12)

Γ′′[α] ` α→ α Γ′′[α][x 7→ α] ` var x : α Γ′′[α] ` α = α︸ ︷︷ ︸
(3.31)

Γ′′′ ` . . . : τ︸ ︷︷ ︸
Γ[∅] = Γ︸ ︷︷ ︸

(3.24)

Γ′[∅] = Γ′︸ ︷︷ ︸
(3.25)

Γ′′ ` ∀(α). α→ α Γ′′[α] ` fn (x, α→ α) = var x : α→ α Γ′′ ` α→ α = α→ α Γ′′[x 7→ ∀(α). α→ α] ` . . . : τ︸ ︷︷ ︸
(3.41)

Γ′ = Γ[∅] Γ′′ = Γ′[∅] Γ′′ ` 3 (follows from Γ ` 3) Γ′′ ` let (ident, ∀(α). α→ α) = (fn (x, α→ α) = var x) in . . . : τ︸ ︷︷ ︸
(3.23)

Γ ` (∅, ∅, let (ident, ∀(α). α→ α) = (fn (x, α→ α) = var x) in . . .) : τ

F
igure

3.7:
T

ype
C

hecking
E

xam
ple.

49

3.5 System F

The representation of polymorphism in theMΛ intermediate language is particu-
larly important. There are many different styles of polymorphism, and we must be
careful to ensure that the polymorphism inMΛ is a suitable match for that found
in Standard ML (and hence Dynamic ML). Sound type systems for polymorphic
languages are particularly difficult to construct. Therefore, the type systems of
a variety of typed λ-calculi have been the object of much theoretical study over
many years. A hierarchy of typed λ-calculi has been developed, called System
F [PDM89]. The first-order simply-typed (non-polymorphic) λ-calculus is classi-
fied as F1. The second-order polymorphic λ-calculus of Girard-Reynolds [Rey74]
is classified as F2. This is an extension of F1 with type-parameters, i.e. functions
from types to expressions. There are further higher-order typed λ-calculi: F3, F4,
etc. These calculi are extensions of F2 that allow functions from types to types.
However, in order to keep the types of these functions under control, a new layer
of types for the type themselves are introduced called kinds.

The polymorphism which is found in Dynamic ML is defined by F2. Con-
sequently, we have also chosen F2 polymorphism as the basis ofMΛ. Nonetheless,
this choice is not as obvious as it seems. The entire System F hierarchy can be
represented by the ω-order polymorphic λ-calculus defined by Fω. The language
Fω differs from F3, F4, etc. only in that the set of kinds is larger. There is a
certain intuitive appeal for using Fω as the basis for our intermediate language.
Indeed, the FLINT/ML intermediate language [Sha97] used in the Standard ML
of New Jersey is based on Fω. However, after careful consideration we decided
not to take this approach. FLINT/ML is intended as a general purpose interme-
diate representation for a range of programming languages. Thus, the generality
provided by Fω may prove useful. On the other hand,MΛ is intended as a simple
language on which we will define a number of operations in a clean manner while
avoiding a great deal of unnecessary complexity associated with Dynamic ML.
Consequently, if we were to base our intermediate language on a kind of poly-
morphism that is more general than that found in Dynamic ML we would be
increasing, rather than decreasing, the complexity of the task. Thus, F2 appears
to be the correct choice for our purposes. In the remainder of this chapter we will
present the syntax, semantics, and type system for a call-by-value variant of F2

and explain its relation to MΛ.

50

σ ∈ Type ::= α (type variable)
| σ1 → σ2 (function type)
| ∀α. σ (polymorphic type)

e ∈ Expression ::= x (lambda variable)
| λx : σ. e (function abstraction)
| e1 e2 (function application)
| Λα. e (type abstraction)
| e[σ] (type application)

Figure 3.8: Syntax of F2.

The syntax of F2 is defined by the grammar presented in Figure 3.8. The
calculus contains two syntactic classes: types σ, and expressions e. In MΛ, as
in F2, the types are separated from the expressions. We will refer to the types
collectively as the type language, and the expressions collectively as the expression
language. Although the MΛ and F2 type languages are broadly similar, there
are some important differences discussed below.

At first glance, theMΛ expression language appears completely different from
F2. However, this is primarily due to the addition of user-defined datatypes and
exceptions into the language, and the adoption of ML-style keywords and other
syntactic-sugaring. Figure 3.9 illustrates the basic correspondence between the
F2 expressions and their MΛ counterparts. There are other matches between
the languages, not illustrated in this table. For example, a polymorphic datatype
declaration is effectively a type abstraction, and a constructor for a polymorphic
datatype is effectively a type application. It would be possible to encode the
entireMΛ language in F2. However, the new expression forms, such as multiple-
argument functions, make MΛ more efficient as a typed intermediate language
of a compiler.

F2 Expression e MΛ Expression E
x var x
λx : σ. e fn (x, τ1 → τ2) = E
e1 e2 app (E1, E2)
Λα. e let (x, σ) = E1 in E2
e[σ] var (x, τ k)

Figure 3.9: Relationship between F2 and MΛ expressions.

51

In F2, polytypes and monotypes are not distinguished. This complicates the
semantics and makes the calculus ‘circular’ or impredicative. In an impredicative
system, the definition of an object can refer to the collection to which the object
belongs. For example, the polymorphic identity Λα. (λx : α. x) can take its own
type α→ (α→ α) and then itself as arguments. By contrast, a predicative system
is structured into levels so that each object is defined in terms of components that
belongs to a level smaller than the one to which the defined object itself belongs.
In MΛ we take the standard approach of splitting the type hierarchy into two
levels: a type level τ which expresses the monomorphic types, and a type scheme
level σ which expresses the polymorphic types. This distinction leaves us with
a predicative type language. In our predicative type language we can no longer
embed universally quantified types. We therefore alter the universally quantified
type to take a sequence of type variables, e.g. (∀α. (∀α′. (∀α′′. σ))) is represented
in MΛ as ∀(α, α′, α′′). τ . Since we do not allow empty sequences, we provide
a separate monomorphic type in the definition of type schemes to represent an
instance.

At the monomorphic type level, we have enriched the language with user
defined type names tn and tn(τ k). Recall that the type names tn include the basic
types, as required by the special constants; value constructor types; reference
types; and exception types. The second form tn(τ k) is used for representing
polymorphic datatypes e.g. t list(α). For convenience, we also include a tuple
type τ k which can be used to type records and functions with more than one
argument.

∅ ` 3
(3.54)

Γ ` σ x /∈ Dom Γ

Γ[x 7→ σ] ` 3
(3.55)

Γ ` 3 α /∈ Dom Γ

Γ[α] ` 3
(3.56)

α ∈ Dom Γ

Γ ` α
(3.57)

Γ ` σ1 Γ ` σ2

Γ ` σ1 → σ2
(3.58)

Γ[α] ` σ
Γ ` ∀α. σ

(3.59)

Figure 3.10: Valid Environments Γ ` 3 and Types Γ ` σ.

52

We will now look briefly at the type system for F2 upon which our MΛ type
system, presented in this chapter, is based. The typing judgements for valid
environments Γ ` 3 and valid types Γ ` σ are defined in Figure 3.10. Note that
the typing environment Γ in F2 contains a set of type variables α and a mapping
between lambda variables and their types x 7→ σ. It is immediately apparent
that the equivalentMΛ typing rules in Figures 3.4 and 3.5 are a direct superset
of the rules in F2. The typing judgement for the F2 expressions Γ ` e : σ is
defined in Figure 3.11. Again, it is clear that the rules for the equivalent forms in
MΛ are very similar to those found in F2. However, inMΛ as in Dynamic ML,
polymorphism is let-bound and all of the expressions are typed to monomorphic
or instantiated polymorphic types.

The connection between the MΛ type system and the F2 type system upon
which it is based is clearly apparent. We therefore argue that theMΛ type system
is likely to be sound, as the type systems of F2 is known to be sound, though we
do not give a proof here. In the following chapter we define the translation from
Dynamic ML toMΛ and thereby reinforce the connection between Dynamic ML
and the underlying type theory.

Γ ` x : Γ(x) (3.60)

Γ[x 7→ σ1] ` e : σ2

Γ ` λx : σ1. e : σ1 → σ2
(3.61)

Γ ` e1 : σ1 → σ2

Γ ` e2 : σ1

Γ ` e1 e2 : σ2

(3.62)

Γ[α] ` e : σ

Γ ` Λα. e : ∀α. σ
(3.63)

Γ ` σ1 Γ ` e : ∀α. σ2

Γ ` e[σ1] : subst({α 7→ σ1}, σ2)
(3.64)

Figure 3.11: Well-Formed Expressions Γ ` e : σ

53

Chapter 4

Translating Dynamic ML to MΛ

An outline of the translation from Dynamic ML into the MΛ intermediate lan-
guage is presented in this chapter. In previous chapters we have exhibited a
number of program examples which illustrate the translation process. We will
now reinforce this material by taking a formal approach to the translation. This
is intended to convince the reader that the MΛ language is indeed a suitable
candidate for the compilation of Dynamic ML. In later chapters we will use the
simpler MΛ language to express a number of definitions which would be cum-
bersome in terms of the full language.

Standard ML
Abstract Syntax

IntermediateAnnotated
Syntax Tree Representation

Elaboration

Inference

Type Lambda

Compiler

Match Compilation

Figure 4.1: Two-Step Translation.

The translation is defined by a set of inference rules, in a similar style to the
typing rules of Chapter 3. The Dynamic ML language contains pattern matching,
and type information is inferred (i.e. implicit). In order to effect the translation
intoMΛ it is necessary to perform an elaboration step to generate explicit type
information, and a match-compilation step to convert pattern matching into sim-
pler switch statements (Figure 4.1). Both of these operations are well-understood,
and a variety of different techniques exist. In this chapter we adapt these tech-
niques to the translation intoMΛ. We have presented the translation process in
a very straightforward manner. Thus, the resultingMΛ programs are somewhat
suboptimal. In order to generate efficient programs, the usual lambda language
optimisations, e.g. lambda lifting, closure elimination, constant folding [App92],
should be applied to the resulting programs, though we do not give the details
here.

54

4.1 Dynamic ML Syntax

The abstract syntax of the Dynamic ML core language is defined in Figure 4.2.
The base syntactic categories of the language are type variables tyvar, type con-
structors tycon, value identifiers vid, record labels lab, and special constants scon.
Optional elements are enclosed in angled brackets 〈 〉. Sequences are represen-
ted as dotted · · · lists, they differ from the earlier MΛ definition in that empty
sequences are permitted.

ty ::= tyvar Type Variable
| {lab1 : ty1, · · ·, labn : tyn} Record Type
| (ty1, · · ·, tyn) tycon Type Construction
| ty1 -> ty2 Function Type

program ::= dec

dec ::= val (tyvar1, · · ·, tyvarn) pat = expr Value
| val (tyvar1, · · ·, tyvarn) rec pat = expr Recursive Value
| dec1 〈;〉 dec2 Sequencing
| local dec1 in dec2 end Local
| exception vid 〈of ty〉 Exception
| datatype datbind Datatype

datbind ::= (tyvar1, · · ·, tyvarn) tycon = conbind 〈and datbind〉
conbind ::= vid 〈of ty〉 〈| conbind〉

expr ::= scon Special Constant
| vid Value Identifier
| {lab1 = expr1, · · ·, labn = exprn} Record
| let dec in expr end Binding
| expr1 expr2 Application
| expr : ty Type Annotation
| expr handle match Handle Exception
| raise expr Raise Exception
| fn match Function

match ::= pat => expr 〈| match〉
pat ::= _ Wildcard

| scon Constant
| vid Identifier
| {lab1 = pat1, · · ·, labn = patn} Record
| pat : ty Typed
| vid pat Constructed
| vid 〈: ty〉 as pat Layered

Figure 4.2: Dynamic ML Abstract Syntax.

55

We only define the Dynamic ML core language in this chapter. The Dy-
namic ML modules language is presented in Chapter 7. We have made a number
of simplifications and minor changes to the syntax of the core language presented
in the Definition of Standard ML [MTHM97], which are detailed below:

1. A program is defined as a single declaration dec. Complex programs can
be built using the sequencing ; operation.

2. All of the derived forms described in Appendix A of [MTHM97] have been
removed from the language, e.g. tuples are represented as records, fun is
represented by val rec, etc.

3. For clarity, the syntactic categories have been slightly rearranged. For ex-
ample, we do not distinguish the atomic forms of patterns and expressions.

4. The abstype declaration has been removed as it is essentially deprecated
in the 1997 revision of Standard ML. Opaque signature matching at the
module level can now be used in place of abstype. In Chapter 7 we will
discuss how module-level constructs can be synthesised without requiring
any extra code to be generated.

5. We require that all identifiers vid (including type variables α) are unique,
i.e. the same identifier must not be bound more than once. This can be
accomplished by a simple renaming process. We also require that no record
expression, pattern or type contains duplicate field labels.

6. Type abbreviations and datatype/exception replication have been removed
as they can largely be implemented by a straightforward syntactic substitu-
tion. Abbreviated record patterns (using ... notation) are not included as
they significantly complicate the translation process by requiring incomplete
tuple types.

7. Any type variable appearing in a conbind must also appear in the parent
datbind.

8. In a val rec pat = expr declaration, the pattern pat must be of the form:

{lab1 = vid1, · · · , labn = vidn}

and the expression expr must be of the form:

{lab1 = fn match1, · · · , labn = fn matchn}

56

4.2 Two-Step Translation

As stated earlier, the translation from Dynamic ML toMΛ will be performed in
two steps; a elaboration step, and a match-compilation step. These steps could
in principle be combined into a single operation, since both perform a straightfor-
ward depth-first traversal of the abstract-syntax tree. However, the presentation
is significantly clearer if we treat these operations independently. The translation
from Dynamic ML abstract-syntax toMΛ code, written program�P , is captured
by Rule 4.1. The premise of this rule corresponds to the elaboration operation (:)
and match-compilation operation (;). The remainder of this chapter is devoted
to providing a definition of these two rules.

Γ ` program : (Γ′, S) Γ′, S ` program′ ; P

| program′ | = program

Γ ` program� P

(4.1)

Comment: (Rule 4.1) During type inference, the abstract syntax tree is annot-
ated with all of the intermediate type information. Hence, the input to the
translation step is the annotated tree, which we denote program′. For clarity, we
have omitted the definition of this annotation process from the rules, though the
annotation process is illustrated in the example shown towards the end of this
chapter. The side-condition | program′ | = program means that the annotated
program′ is identical to the initial program under the removal of all annotations,
i.e. annotation does not change the meaning or form of the program.

4.3 Type Inference

We will initially turn our attention to the translation of Dynamic ML type in-
formation into MΛ type information. We have previously stated that the type
information in Dynamic ML is implicit and is obtained by elaboration. Nonethe-
less, this does not tell the whole story. Dynamic ML contains both explicit and
implicit type information. Explicit type information is included directly in the
syntax of the Dynamic ML program, in the form of type annotations, and there-
fore does not need to be inferred. This explicit type information is represented
by the syntactic category ty in Figure 4.2. Therefore, before we tackle the more
difficult elaboration problem, we will define the translation of the explicit types
ty intoMΛ types τ .

57

The translation of the explicit types is captured by the judgement Γ ` ty : τ .
The environment Γ is the static typing environment from Chapter 3. The type
ty is a Dynamic ML type from Figure 4.2, and type type τ is the equivalentMΛ
type. The rules for this judgement are given below. We assume that Γ contains
the initial static environment from Section 3.1.1. Note that Dynamic ML type
variables tyvar and type constructors tycon are directly equivalent to MΛ type
variables α and type names tn respectively. We will express the conversion using
the notation: tyvar ; α and tycon ; tn.

tyvar ; α

Γ ` tyvar : α
(4.2)

Γ ` {} : t unit (4.3)

Comment: (Rule 4.3) The unit type is represented by the empty record type in
Dynamic ML. We translate this into the MΛ type t unit.

Γ ` ty1 : τ1 · · · Γ ` tyn : τn
δ a permutation of 1 . . .n, where labδ(1) < · · · < labδ(n)

Γ ` {lab1 : ty1, · · ·, labn : tyn} : (τδ(1), . . . , τδ(n))

(4.4)

Comment: (Rule 4.4) Records are represented by ordered tuples inMΛ. We sort
the labels lexicographically (using <) with a permutation function δ.

tycon ; tn Γ(tn) = (0, con)

Γ ` () tycon : tn
(4.5)

Comment: (Rule 4.5) If no types are supplied, we check that the arity of the
type constructor is 0. The elaboration of monomorphic datatypes is defined in
Rule 4.25.

Γ ` ty1 : τ1 · · · Γ ` tyn : τn tycon ; tn Γ(tn) = (n, con)

Γ ` (ty1, · · ·, tyn) tycon : tn(τ1, . . . , τn)
(4.6)

Comment: (Rule 4.5) When constructing an instance of a polymorphic datatype,
the number of types n must match the arity of the datatype. The elaboration of
polymorphic datatypes is defined in Rule 4.26.

Γ ` ty1 : τ1 Γ ` ty2 : τ2

Γ ` ty1 -> ty2 : τ1 → τ2
(4.7)

58

4.3.1 Algorithm W
We will now turn our attention to the implicit types of Dynamic ML. We must
convert these implicit types into explicitMΛ types through a process of elabora-
tion. The type system for Standard ML is presented in the Definition [MTHM97].
However, as discussed in Chapter 3, the type system alone is usually insufficient
to determine the actual type information, due to non-determinism present in the
rules. For the Dynamic ML type system, we need to use a variant of Milner’s
algorithmW [Mil78] to obtain the actual types of the expressions. This algorithm
finds the principal (most polymorphic) type for an expression, if one exists. We
will adapt this algorithm to elaborate the implicit Dynamic ML types into explicit
MΛ types.

The definition of algorithm W, which we will shortly present, is centred on
the unification algorithm of Robinson [Rob65]. The unification algorithm takes a
pair of types (τ1, τ2) and returns the most general unifier; a substitution S from
type variables to types (Section 3.2.1), such that subst(S, τ1) = subst (S, τ2). A
particular unification may also fail to have a unifier, in which case the inference
algorithm will fail. Failure of unification is typically used in an ML compiler to
report a type error to the programmer. The unification algorithm for the MΛ
types is presented in the unify function defined below.

` unify(tn, tn) = ∅
(4.8)

` unify(τ1
k, τ2

k) = S
` unify(tn(τ1

k), tn(τ2
k)) = S

(4.9)

Comment: (Rules 4.8 and 4.9) Unifying a type name tn with itself (Rule 4.8)
succeeds, but results in an empty substitution as there are no type variables
involved. For a constructed type (Rule 4.9), we must also check that the tuple of
types unify correctly.

` unify(τ1
1 , τ

1
2) = S1

` unify(subst(S1, τ
2
1), subst(S1, τ

2
2)) = S2 · · ·

` unify(subst(Sk−1, τ
k
1), subst(Sk−1, τ

k
2)) = Sk

` unify(τ1
k, τ2

k) = Sk · · · S1

(4.10)

Comment: (Rule 4.10) We perform unification of tuples in left-to-right order.
Each substitution is applied to the remaining types before they are unified. The
result is the composition of all the substitutions.

59

` unify(τ1, τ
′
1) = S1

` unify(subst(S1, τ2), subst(S1, τ
′
2)) = S2

` unify(τ1 → τ2, τ
′
1 → τ ′2) = S2S1

(4.11)

` unify(α, α) = ∅
(4.12)

Comment: (Rule 4.12) Unifying a type variable with itself succeeds and results
in an empty substitution.

α /∈ ftvs(τ)

` unify(α, τ) = {α 7→ τ}
(4.13)

Comment: (Rule 4.13) The condition α /∈ ftvs(τ) is called the occurs check and
is used to eliminate cyclic types. The ftvs(τ) function is defined in 4.15.

α /∈ ftvs(τ) τ 6= α′

` unify(τ, α) = {α 7→ τ}
(4.14)

Comment: (Rule 4.14) The condition τ 6= α′ ensures that only Rule 4.13 may be
applied when both types are (distinct) type variables.

ftvs(tn) = ∅
ftvs(tn(τ k)) = ftvs(τ k)
ftvs(τ k) = ftvs(τ1) ∪ · · · ∪ ftvs(τk)
ftvs(τ1 → τ2) = ftvs(τ1) ∪ ftvs(τ2)
ftvs(α) = {α}

(4.15)

Comment: (Rule 4.15) The ftvs(τ) function returns the set of all type variables
which occur in τ .

Algorithm W takes the form W(Γ, expr) = (σ, S), where Γ is the typing
environment, expr is an expression, σ is the resulting principal type of the ex-
pression, and S is a substitution. A definition of the algorithm for a small typed
lambda language, together with a proof of soundness, is given in [Mil78] (com-
pleteness of the algorithm was proven some years later). A more modern present-
ation of the algorithm, as a collection of inference rules, appears in [Tof88]. In
the following section we adapt these inference rules for the core Dynamic ML
language.

60

Informally, algorithm W works as follows. If we examine the static semantics
of Standard ML [MTHM97], it is clear that the type of each expression, even
though it may not be unique, is constrained by three factors: the form of the ex-
pression, the types of any subexpressions, and the context (typing environment).
The algorithm proceeds by performing a traversal of the structure of the expres-
sion. If the corresponding rule of the static semantics requires a non-deterministic
choice of type, then a fresh type variable is introduced to represent this choice. If
the rule also requires an equation to hold between types, the algorithm attempts
to solve the equation by unification, producing a substitution. Since all of the
equational constraints must hold, the substitutions are propagated (by applying
them to the context) for the subexpressions, and composed in the results. The
final result is the type from the static semantics, together with the most general
substitution.

We define type inference for the core Dynamic ML language (as defined in
Figure 4.2) by a collection of judgements shown in Figure 4.3. Each of these
judgements is an implementation of Algorithm W for a different syntactic cat-
egory of the language. Note that the results of these judgements are MΛ types
and environments.

Γ ` program : (Γ′, S) (program)

Γ ` dec : (Γ′, S) (declaration)

Γ ` expr : (τ, S) (expression)

Γ ` match : (τ, S) (match rule)

Γ ` pat : (τ, VE , S) (pattern)

Figure 4.3: Type Inference Judgements.

The judgements shown above collectively form the type inference algorithm.
We will now provide a definition for each of these judgements in turn. As there
are a large number of similar rules, we will restrict our explanation to a series
of comments. To gain a better understanding of the rules, the reader will find
it helpful to compare the rules with their equivalent typing rules in the defini-
tion [MTHM97]. A number of operations in these rules are defined in Section 4.3.2
where we discuss polymorphism in more detail. For convenience, we treat the
environment Γ as a set in a number of rules. The set-theoretic operations on
environments have the usual meanings.

61

Program Γ ` program : (Γ′, S)

The elaboration process begins with Rule 4.16. A program is represented by
a single declaration. Thus, we begin the judgement for the elaboration of the
declaration dec. The resulting environment Γ′ will contain only the declarations
that are visible at the top-level of the program. By contrast, substitutions are
not scoped, and S will contain a mapping for every type variable in the program
to its corresponding (most general) type.

Γ ` dec : (Γ′, S)

Γ ` dec : (Γ′, S)
(4.16)

Declarations Γ ` dec : (Γ′, S)

The elaboration of a declaration dec yields a new environment Γ′ and a substitu-
tion S. The new environment Γ′ contains the elaboration environment Γ, together
with any new variable, datatype, or exception declarations, and their types.

Γ ` pat : (τ1, VE , S1) subst(S1, Γ) ` expr : (τ2, S2)

` unify(subst(S1S2, τ1), τ2) = S3 S4 = S3S2S1

Γ ` val () pat = expr : (subst(S4, Γ ∪ VE), S4)

(4.17)

Comment: (Rule 4.17) The elaboration of a monomorphic value declaration is
performed in a number of stages. The pattern pat is elaborated to give a type
τ1, a variable environment VE 1 containing any variables declared in pat, and
a substitution S1. The expression expr is then elaborated to give the type τ2,
and a substitution S2. The types τ1 and τ2 are then unified with a substitution
S3. Finally, the environment Γ is extended with VE 1 and the substitutions are
composed in the result.

Γ ` tyvar1 : α1 · · · Γ ` tyvarn : αn TE = {α1, . . . , αn}
Γ′ = Γ ∪TE Γ′ ` pat : (τ1, VE1, S1) subst(S1, Γ′) ` expr : (τ2, S2)

` unify(subst(S1S2, τ1), τ2) = S3 S4 = S3S2S1

Γ ` close(subst(S4, VE1), expr) = VE2 TE ∩ ftvs(VE 1) = ∅
Γ ` val (tyvar1, · · ·, tyvarn) pat = expr : (subst(S4, Γ ∪VE2), S4)

(4.18)

Comment: (Rule 4.18) The elaboration of a polymorphic value declaration begins
with the creation of an environment Γ′ containing the type variables. The elabor-
ation then proceeds as in the monomorphic case. However, the resulting variable
environment VE 1 will contain types, rather than type-schemes. Therefore, the
closure VE 2 is obtained which converts the types into general type-schemes.

62

Γ ` pat : (τ1, VE1, S1) subst(S1, Γ ∪ VE1) ` expr : (τ2, S2)

` unify(subst(S1S2, τ1), τ2) = S3 S4 = S3S2S1

Γ ` val () rec pat = expr : (subst(S4, Γ ∪ VE1), S4)

(4.19)

Γ ` tyvar1 : α1 · · · Γ ` tyvarn : αn TE = {α1, . . . , αn} Γ′ = Γ ∪TE

Γ′ ` pat : (τ1, VE1, S1) subst(S1, Γ′ ∪VE1) ` expr : (τ2, S2)

` unify(subst(S1S2, τ1), τ2) = S3 S4 = S3S2S1

Γ ` close(subst(S4, VE 1), expr) = VE2 TE ∩ ftvs(VE1) = ∅
Γ ` val (tyvar1, · · ·, tyvarn) rec pat = expr : (subst(S4, Γ ∪VE2), S4)

(4.20)

Comment: (Rules 4.19 and 4.20) The elaboration of a recursive value declaration
is performed in the same manner as a non-recursive binding. However, because
the expression expr may refer to any of the declarations in pat, the environment
is extended with the value environment VE 1 during the elaboration of expr.

Γ ` dec1 : (S1, Γ′) subst(S1, Γ′) ` dec2 : (Γ′′, S2)

Γ ` dec1 〈;〉 dec2 : (subst(S2, Γ′′), S2S1)
(4.21)

Comment: (Rule 4.21) Sequentially composed declarations are evaluated in left-
to-right order. The resulting environment Γ′′ contains the definitions from both
dec1 and dec2.

Γ ` dec1 : (Γ′, S1) subst(S1, Γ′) ` dec2 : (Γ′′, S2)

Γ ` local dec1 in dec2 end : (subst(S2, Γ′′ − Γ′), S2S1)
(4.22)

Comment: (Rule 4.22) The rule for local declarations is very similar to sequential
composition. However, the resulting environment contains only the definitions
from dec2.

vid ; con 〈Γ ` ty : τ〉
Γ′ = (∅, ∅, {t exn 7→ (0, {con})}, {con 7→ 〈τ →〉 t exn})
Γ ` exception vid 〈of ty〉 : (Γ ∪ Γ′, ∅)

(4.23)

Comment: (Rule 4.23) Dynamic ML exception identifiers vid are directly equi-
valent toMΛ exception constructors con. Therefore, a direct translation is per-
formed: vid ; con. Exceptions may be typed, though they may not be poly-
morphic. Exceptions inMΛ are represented as constructors of a special datatype
t exn. In the remainder of the rule, we construct a new environment Γ′ containing
a datatype representing the exception and combine it with Γ.

63

Γ ` datbind : (DE , CE)

Γ ` datatype datbind : (Γ ∪ (DE , CE), ∅)
(4.24)

Comment: (Rule 4.24) Datatype declarations are more complex than exception
declarations, since each datbindmay define multiple datatypes, and datatypes can
be polymorphic. Hence, a separate judgement is used Γ ` datbind : (DE , CE).
This judgement does not return a substitution since no type inference is neces-
sary. The environments DE and CE contain the datatypes and constructors
respectively.

Datatype Bindings Γ ` datbind : (DE , CE)

Each datatype binding datbind may contain a sequence of datatype declarations.
Polymorphic and monomorphic datatype declarations may also be combined in
a single sequence. Therefore, datatype declarations are processed by the follow-
ing doubly-recursive rules. Rule 4.25 is used for monomorphic declarations and
Rule 4.26 is used for polymorphic declarations. The rules are essentially the same:
the constructors of a single datatype are converted into a constructor environment
by a further judgement Γ, tn 〈, α k〉 ` conbind : CE. The names of the con-
structors (obtained from the domain of the constructor environment Dom CE 1)
are then recorded in a new datatype environment, together with the arity of the
constructor (the number of type variables). Finally, the datatype environments
of any remaining datatypes in the sequence are combined, as are the constructor
environments. The result is a single datatype environment containing all of the
datatype declarations, and a single constructor environment containing all of the
constructor declarations.

〈Γ ` datbind : (DE1, CE1)〉 tycon ; tn Γ, tn ` conbind : CE2

Γ ` () tycon = conbind 〈and datbind〉 :

({tn 7→ (0, Dom CE1)} 〈∪ DE 1〉, CE2 〈∪ CE1〉)
(4.25)

〈Γ ` datbind : (DE1, CE2)〉 tycon ; tn

Γ ` tvar1 : α1 · · · Γ ` tvarn : αn Γ, tn, αn ` conbind : CE1

Γ ` (tyvar1, · · ·, tyvarn) tycon = conbind 〈and datbind〉 :

({tn 7→ (n, Dom CE1)} 〈∪ DE1〉, CE1 〈∪ CE2〉)

(4.26)

Comment: (Rules 4.25 and 4.26) These rules construct the environment which is
used in the definition of Rules 4.5 and 4.6.

64

Constructor Bindings Γ, tn 〈, α k〉 ` conbind : CE

Constructor bindings conbind are translated into constructor environments in
Rule 4.27 below. A single conbind may contain a sequence of constructors. There-
fore, as with the datbind rules, a recursive definition is used. However, note that
monomorphic and polymorphic constructors may not be combined in a single se-
quence. A sequence of mappings between the constructor names con and their
types are created to form the constructor environment CE . The ctype function
(4.28) is used to determine the type of each constructor. There are four cases,
corresponding to nullary monomorphic, unary monomorphic, nullary polymorphic
and unary polymorphic constructors respectively.

vid ; con 〈〈Γ ` ty : τ〉〉 〈〈〈Γ, tn 〈, α k〉 ` conbind : CE〉〉〉
Γ, tn 〈, α k〉 ` vid 〈〈of ty〉〉 〈〈〈| conbind〉〉〉 :

{con 7→ ctype(tn 〈, α k〉 〈〈, τ1〉〉)} 〈〈〈∪ CE〉〉〉
(4.27)

ctype(tn) = tn
ctype(tn, τ) = τ → tn
ctype(tn, α k) = ∀ α k. tn(α k)
ctype(tn, α k, τ) = ∀ α k. τ → tn(α k)

(4.28)

Expressions Γ ` expr : (τ, S)

The elaboration of an expression expr results in a type τ and a substitution
S. As in MΛ, the expressions all have monomorphic types. This is because
Dynamic ML only contains let polymorphism.

Γ ` scon : (tnscon, ∅)
(4.29)

vid ; x Γ(x) = τ

Γ ` vid : (τ, ∅)
(4.30)

vid ; x Γ(x) = ∀ α1
k. τ1 α2

k fresh

subst({α1
1 7→ α1

2, . . . , α
k
1 7→ αk2}, τ1) = τ2

Γ ` vid : (τ2, ∅)
(4.31)

Comment: (Rules 4.30 and 4.31) The type of an identifier is obtained directly
from the environment. If the type is polymorphic (Rule 4.31), then the type
variables are substituted with fresh type variables. This allows multiple instances
of an identifier to have different types.

65

Γ ` {} : (t unit, ∅)
(4.32)

Γ ` expr1 : (τ1, S1) subst(S1, Γ) ` expr2 : (τ2, S2) · · ·
subst(S1 · · · S(n−1), Γ) ` exprn : (τn, Sn)

δ a permutation of 1 . . .n, where labδ(1) < · · · < labδ(n)

Γ ` {lab1 = expr1, · · ·, labn = exprn} : ((τδ(1), . . . , τδ(n)), S1 · · · Sn)

(4.33)

Comment: (Rule 4.33) Dynamic ML records are represented by unlabelled MΛ
tuples. Therefore, as in Rule 4.4, we permute the resulting types by the function
δ, which defines a lexicographic ordering of the labels.

Γ ` dec : (Γ′, S1) subst(S1, Γ′) ` expr : (τ, S2)

Γ ` let dec in expr end : (τ, S2S1)
(4.34)

Comment: (Rule 4.34) In a let expression, the declaration dec is elaborated to
provide an environment Γ′ used in the elaboration of the expression expr. This
environment is not preserved at the end of the rule, correctly limiting the scope
of the declaration. Note that the type of the whole expression is the type τ of
the subexpression.

Γ ` expr1 : (τ1, S1) subst(S1, Γ) ` expr2 : (τ2, S2)

α fresh ` unify(subst(S2, τ1), τ2 → α) = S3

Γ ` expr1 expr2 : (subst(S3, α), S3S2S1)

(4.35)

Comment: (Rule 4.35) The application of a function expression expr1 to an
argument expression expr2 is captured in this rule. The unification is essentially
a check that τ1 is a function type. Note that a fresh type variable α is introduced
in order that we may return the result type of the function at the end of the rule.

Γ ` expr : (τ1, S1) subst(S1, Γ) ` ty : τ2 ` unify(τ1, τ2) = S2

Γ ` (expr : ty) : (subst(S2, τ2), S1S2)
(4.36)

Comment: (Rule 4.36) A type constraint may restrict the polymorphism of the
expression. By unifying the type constraint with the type of the expression, we
obtain the appropriate substitution.

66

Γ ` expr : (τ1, S1) subst(S1, Γ) ` match : (τ2, S2)

` unify(t exn→ τ1, τ2) = S3

Γ ` expr handle match : (subst(S3S2, τ1), S3S2S1)

(4.37)

Comment: (Rule 4.37) In this rule, we check that the exception handler match
is a function with the correct argument type t exn.

Γ ` expr : (τ1, S1) ` unify(t exn, τ1) = S2 α fresh

Γ ` raise expr : (α, S2S1)
(4.38)

Comment: (Rule 4.38) Raising an exception corresponds to applying an exception
handling function. We check that the exception expression expr has the correct
type t exn for the handle function. A fresh type variable is introduced as the
type of the whole expression, since there is no other appropriate type.

Γ ` match : (τ1, S1)

Γ ` fn match : (τ1, S1)
(4.39)

Comment: (Rule 4.39) The body of a Dynamic ML function is defined by a
match, consisting of a sequence of pat => expr pairs.

Match Rules Γ ` match : (τ, S)

A match takes the form of a function with a sequence of patterns as arguments,
and a corresponding sequence of expressions as results. The elaboration of a
match is performed recursively in left-right order. The base-case, a single pat-
tern/expression pair, is defined by Rule 4.40. The recursive-case, for a sequence
of patterns and expressions, is defined by Rule 4.41. We must check that every
pattern/expression pair has the correct type, i.e. they can all be unified to a single
function type.

Γ ` pat : (τ1, VE1, S1) subst(S1, Γ) ∪VE 1 ` expr : (S2, τ2)

Γ ` pat => expr : (subst(S2S1, τ1)→ τ2, S2S1)
(4.40)

Γ ` pat : (τ1, VE1, S1) subst(S1, Γ) ∪VE 1 ` expr : (S2, τ2)

subst(S2S1, Γ) ` match : (S3, τ3)

` unify(τ3, subst(S3, subst(S2S1, τ1)→ τ2)) = S4

Γ ` pat => expr | match : (subst(S4, τ3), S4S3S2S1)

(4.41)

67

Patterns Γ ` pat : (τ, VE , S)

Informally, a pattern pat is a description of a set of values. In the following rules,
we determine the (most general) type of this set. A pattern may define variables,
which will be bound on a successful match. Thus, in addition to the type τ and
substitution S, the elaboration of a pattern also results in a variable environment
VE . The variable environment maps any variables bound in a pattern to their
corresponding types.

α fresh

Γ ` _ : (α, ∅, ∅)
(4.42)

Comment: (Rule 4.42) The type of the wild-card pattern is unknown, hence a
fresh type variable is introduced.

Γ ` scon : (tnscon, ∅, ∅) (4.43)

vid ; x x /∈ Dom Γ α fresh

Γ ` vid : (α, {x 7→ α}, ∅)
(4.44)

Comment: (Rule 4.44) The condition x /∈ Dom Γ ensures that a single variable
cannot occur more than once in a pattern.

vid ; con Γ(con) = τ

Γ ` vid : (τ, ∅, ∅)
(4.45)

vid ; con Γ(con) = ∀ α1
k. τ1 α2

k fresh

subst({α1
1 7→ α1

2, . . . , α
k
1 7→ αk2}, τ1) = τ2

Γ ` vid : (τ2, ∅, ∅)
(4.46)

Comment: (Rules 4.45 and 4.46) The type of a constructor which occurs in a
pattern is obtained from the environment. If the constructor is polymorphic, its
type variables are mapped to a fresh set.

Γ ` {} : (t unit, ∅, ∅) (4.47)

Γ ` pat1 : (τ1, VE1, S1) · · · Γ ` patn : (τn, VEn, Sn)

δ a permutation of 1 . . .n, where labδ(1) < · · · < labδ(n)

Γ ` {lab1 = pat1, · · ·, labn = patn} :

((τδ(1), . . . , τδ(n)), VE1 ∪ · · · ∪ VEn, S1 · · · Sn)

(4.48)

68

Γ ` pat : (τ1, VE1, S1) Γ ` ty : τ2

` unify(τ1, τ2) = S2 S3 = S2S1

Γ ` (pat : ty) : (subst(S3, τ1), subst(S3, VE1), S3)

(4.49)

Comment: (Rule 4.49) The type ty may restrict the type of the pattern. Thus, a
unification is performed between the pattern type τ1 and the type constraint τ2.

vid ; con Γ ` pat : (τ1, VE1, S1)

Γ(con) = ∀ α1
k. τ2 α2

k fresh

subst({α1
1 7→ α1

2, . . . , α
k
1 7→ αk2}, τ2) = τ3

α3 fresh ` unify(τ1 → α3, τ3) = S2

Γ ` vid pat : (subst(S2, α3), subst(S2, VE1), S2S1)

(4.50)

Comment: (Rule 4.50) A constructor is represented as a function. Therefore, the
type τ1 of the constructed pattern pat must match the argument type τ3 of the
constructor function.

vid ; x Γ ` pat : (τ1, VE1, S1) x /∈ Dom VE1

〈Γ ` ty : τ2 ` unify(τ1, τ2) = S2〉 S3 = S1〈S2〉
Γ ` vid 〈: ty〉 as pat : (subst(S3, τ1), subst(S3, VE1 ∪ {x 7→ τ1}), S3)

(4.51)

Comment: (Rule 4.51) The test x /∈ Dom VE 1 is required to ensure that the
variable x does not occur inside the layered pattern pat.

4.3.2 Let-bound Polymorphism

The judgement for the elaboration of expressions Γ ` expr : (τ, S) results in a
type τ rather than a general type scheme σ as we would expect from algorithm
W. This is because of let polymorphism in Dynamic ML. Type schemes are
only introduced inside val and val rec declarations (Rules 4.18 and 4.20). In
these rules, types are converted into type schemes by the closure function close
operation which we define below. Recall that a similar operation was necessary
when type checking let and fix expressions in Chapter 3. The act of forming a
type scheme from a type is called quantification. A total closure of a type τ is
the type scheme σ = ∀f tvs(τ). τ . The closure operation which we now define in
Rules 4.52 and 4.53, operates on a variable environment VE , rather than a single
type.

69

Γ ` nexp(expr)
VE1 = {x1 7→ τ1, . . . , xk 7→ τk}
VE2 = {x1 7→ ∀(ftvs(τ1)− ftvs(Γ)). τ1, . . .

. . . , xk 7→ ∀(ftvs(τk)− ftvs(Γ)). τk}
Γ ` close(VE1, expr) = VE2

(4.52)

Γ ` ¬nexp(expr)

Γ ` close(VE1, expr) = VE1
(4.53)

When constructing the closure of an variable environment VE , we do not con-
struct the total closure; any type variables appearing in the environment f tvs(Γ)
are excluded (Rule 4.52). Moreover, we do not close the environments correspond-
ing to the class of expansive expression (Rule 4.53). These are expressions which
generate exceptions or manipulate references. The non-expansive expressions are
defined by the predicate nexp in Figure 4.4.

A detailed justification of the closure operation is given in [MT91]. We briefly
note that using the total closure may result in an unsound elaboration, as poly-
morphic declarations can be embedded, i.e. we do not want to capture all of the
free type variables. Also, exceptions and references depend on the type in the
memory rather than the type in the environment Γ, and polymorphic exceptions
are forbidden.

Γ ` nexp(scon) (4.54)

Γ ` nexp(vid)
(4.55)

Γ ` nexp(expr1 expr2)

Γ ` nexp((expr1 : ty) expr2)
(4.56)

Γ ` nexp(fn match) (4.57)

Γ ` nexp(expr : ty)
(4.58)

vid ; x

Γ ` nexp(vid expr)
(4.59)

vid ; con ` dtype(Γ(con)) 6= t ref ` dtype(Γ(con)) 6= t exn

Γ ` nexp(vid expr)
(4.60)

Γ ` nexp(expr1) · · · Γ ` nexp(exprn)

Γ ` nexp({lab1 = expr1, · · ·, labn = exprn})
(4.61)

Figure 4.4: Non-Expansive Expressions.

70

Polymorphic Operations

We have used the f tvs and subst operations on type schemes and environments
in our earlier rules. The additional cases required to cover polymorphism are
defined below. This completes the definition of the type inference algorithm for
Dynamic ML.

` ftvs(∀α k. τ) = ftvs(τ)− {α1, . . . , αk}
(4.62)

Comment: (Rule 4.62) The free type variables of a type scheme are those which
are not captured by the quantification.

VE = {x1 7→ σ1, . . . , xk 7→ σk}
` ftvs(VE) = ftvs(σ1) ∪ · · · ∪ ftvs(σk)

(4.63)

Comment: (Rule 4.63) The type variables for a variable environment VE are
obtained from the union of all of the type variables in the range.

` ftvs(Γ) = TE ∈ Γ
(4.64)

Comment: (Rule 4.64) The free type variables of an environment are contained
in the type environment TE

subst(S, τ1) = τ2

` subst(S, ∀α k. τ1) = ∀ftvs(τ2). τ2
(4.65)

Comment: (Rule 4.65) The resulting type scheme is constructed as a total closure
after performing the substitution on the quantified type τ1.

VE1 = {x1 7→ σ1, . . . , xk 7→ σk}
VE2 = {x1 7→ subst(S, σ1), . . . , xk 7→ subst(S, σk)}
` subst(S, VE1) = VE2

(4.66)

Comment: (Rule 4.66) A substitution over a variable environment is achieved by
performing a substitution over each of the types in the range.

Γ = (TE , VE1, DE , CE) ` subst(S, VE1) = VE2

` subst(S, Γ) = (TE , VE2, DE , CE)
(4.67)

71

4.4 Syntax-Directed Translation

The remaining step in the translation of Dynamic ML is the generation of the
MΛ expressions. In particular, the generation of appropriate MΛ expressions
for Dynamic ML pattern matching. The remaining Dynamic ML expressions
are translated by a relatively straightforward process as they are largely similar
to their MΛ equivalents. Only minor changes are required, e.g. hoisting the
datatype and exception declarations to the top-level. The translation is defined
by a set of rules shown in Figure 4.5.

Γ, S ` program ; P (program)

S, E1 ` dec ; (D, X, E2) (declaration)

S ` expr ; (D, X, E) (expression)

S, E1, E2 ` match ; (D, X, E3) (match rule)

S, E1, E2, E3 ` pat ; E4 (pattern)

Figure 4.5: Translation Rules.

With reference to Rule 4.1, the elaboration step produces an environment Γ′

and a substitution S, which are passed to the translation step. The environment
Γ′ contains all of the top-level declarations, and the substitution S maps the free
type variables in the program to their corresponding types. After elaboration, the
program will contain type annotations. We make use of these annotations in a
number of rules. For example, the conclusion of Rule 4.80 reads S ` vid (: τ) ;

(∅, ∅, var x). Here, the type τ enclosed in parentheses is the type annotated
during elaboration. Note that the annotated type may contain free type variables,
and therefore must be substituted from S.

Program Γ, S ` program ; P

The translation begins with Rule 4.68; a Dynamic ML program dec is translated
into a MΛ program (D, X, E). The result of evaluating a program is a tuple
containing all of the variables which are visible at the top-level.

VE ∈ Γ = {x1 7→ σ1, . . . , xk 7→ σk}
S, tuple (var x1, . . . , var xk) ` dec ; (D, X, E)

Γ, S ` dec ; (D, X, E)

(4.68)

72

Declarations S, E ` dec ; P

A Dynamic ML declaration is translated by the rule S, E ` dec ; P . The
expression E is the scope of the declaration, i.e. let dec in E end.

S ` expr (: τ) ; (D1, X1, E2) x fresh

S, E2, E1, raise (e bind, subst(S, τ)) ` pat ; E3

S, E1 ` val (tyvar1, · · ·, tyvarn) pat = expr ; (D1, X1, E3)

(4.69)

Comment: (Rule 4.69) Translating the pattern pat will result in a let expression
(Section 4.4.1). Therefore we do not need to introduce one directly in this rule. An
e bind exception will be raised if the pattern is not matched. Polymorphic value
declarations are translated in an identical manner to monomorphic declarations.
The explicit type variables tyvar1, · · · , tyvarn are only used during elaboration
and are ignored.

vid1 ; x1
1 · · · vidn ; xn1 x2

n fresh Γ = (TE , VE , DE , CE)

S, var x1
2, raise (e bind, ret(VE(x1

1))) ` match1 ; (D1, X1, E
1
2) . . .

S, var xn2 , raise (e bind, ret(VE(xn1))) ` matchn ; (Dn, Xn, E
n
2)

S, E1 ` val (tyvar1, · · ·, tyvarn) rec {lab1 = vid1, · · ·, labn = vidn} =

{lab1 = fn match1, · · ·, labn = fn matchn} (: Γ) ;

(D1 ∪ · · · ∪Dn, X1 ∪ · · · ∪Xn,

fix ((x1
1, VE(x1

1)) = (fn (x1
2, VE(x1

1)) = E1
2), . . .

. . . , (xn1 , VE(xn1)) = (fn (xn1 , VE(xn1)) = En
2)) in E1

(4.70)

Comment: (Rule 4.70) A val rec declaration in Dynamic ML, containing a
sequence of recursive function declarations, is translated into anMΛ fix expres-
sion. The names of the functions are given by vid1, . . . , vidn. The first step is
to translate these names into theirMΛ counterparts x1

1, . . . , x
n
1 . We also intro-

duce a fresh set of variables x2
n which will hold the arguments to each function.

The type of each function is obtained from VE in the annotated environment
Γ. Polymorphic functions will have already elaborated to type schemes in VE .
The function expressions match1, . . . , matchn are translated in-turn into MΛ
expressions E1

2 , . . . , E
n
2 . Each function may raise an e bind exception, if an

incomplete match is specified. The type of this exception is the return type of
the function, where ret(τ1 → τ2) = τ2. The translated functions E2 are gathered
together into a large fix expression at the end of the rule. Any datatypes or
exceptions which are defined within any function are hoisted to the top-level.
Although the functions are supplied as a record, we do not sort them by name
here, as the order in which they occur in the fix expression is unimportant.

73

S, E1 ` dec2 ; (D1, X1, E2) S, E2 ` dec1 ; (D2, X2, E3)

S, E1 ` dec1 〈;〉 dec2 ; (D1 ∪D2, X1 ∪X2, E3)
(4.71)

S, E1 ` dec2 ; (D1, X1, E2) S, E2 ` dec1 ; (D2, X2, E3)

S, E1 ` local dec1 in dec2 end ; (D1 ∪D2, X1 ∪X2, E3)
(4.72)

Comment: (Rules 4.71 and 4.72) Sequential composition and local declarations
are translated in the same manner; the second declarations forms the scope of
the first declaration in the translation.

vid ; con 〈Γ(con) = τ → t exn〉
S, E ` exception vid 〈of ty〉(: Γ) ; (∅, {exception (con 〈, τ〉)}, E)

(4.73)

S ` datbind ; D

S, E ` datatype datbind ; (D, ∅, E)
(4.74)

Datatype Bindings S ` datbind ; D

〈S ` datbind ; D〉 S ` conbind ; C tycon ; tn

S ` () tycon = conbind 〈and datbind〉; {datatype tn of C} 〈∪ D〉
(4.75)

〈S ` datbind ; D〉 S ` conbind ; C tycon ; tn

tyvar1 ; α1 · · · tyvarn ; αn

S ` (tyvar1, · · ·, tyvarn) tycon = conbind 〈and datbind〉;
{datatype (αn, tn) of C} 〈∪ D〉

(4.76)

Constructor Bindings S ` conbind ; C

vid ; con 〈〈S ` conbind ; C〉〉
S ` vid 〈of ty〉 〈〈| conbind〉〉 (: CE) ; { contype(con, CE(con) } 〈〈∪ C〉〉

(4.77)

Comment: (Rule:4.77) A Dynamic ML constructor binding, or sequence of con-
structor bindings, is translated into a set ofMΛ constructor declarations C. The
type of a constructor is determined from the annotated constructor environment
CE using the contype function defined below (4.78).

contype(con, tn) = con
contype(con, τ → tn) = (con, τ)
contype(con, ∀ α k. tn(α k)) = con
contype(con, ∀ α k. τ → tn(α k)) = (con, τ)

(4.78)

74

Expressions S ` expr ; (D, X, E)

A Dynamic ML expression expr is directly translated into a MΛ expression by
the rule S ` expr ; (D, X, E) defined below. A Dynamic ML expression may
contain datatype and exception declarations, while in MΛ all datatype and ex-
ception declarations must appear separately. Therefore, the translated datatypes
D and exceptions X are returned separately in this rule.

S ` scon ; (∅, ∅, scon scon)
(4.79)

vid ; x ftvs(τ) = ∅
S ` vid (: τ) ; (∅, ∅, var x)

(4.80)

vid ; x ftvs(τ) = {α1, . . . , αk}
S ` vid (: τ) ; (∅, ∅, var (x, (S(α1), . . . , S(αk))))

(4.81)

Comment: (Rules 4.80 and 4.81) The type τ is obtained from the annotated
syntax tree. If τ has no free type variables, then a monomorphic var expression
is generated. However, if τ has free type variables, an instance is created using S
to obtain the types for the type variables.

vid ; con ftvs(τ) = ∅
S ` vid (: τ) ; (∅, ∅, con con)

(4.82)

vid ; con ftvs(τ) = {α1, . . . , αk}
S ` vid (: τ) ; (∅, ∅, con (con, (S(α1), . . . , S(αk))))

(4.83)

Comment: (Rules 4.82 and 4.83) Monomorphic and polymorphic constructors are
translated in the same manner as variables.

S ` {} ; (∅, ∅, scon unit)
(4.84)

S ` expr1 ; (D1, X1, E1) · · · S ` exprn ; (Dn, Xn, En)

δ a permutation of 1 . . .n, where labδ(1) < · · ·< labδ(n)

S ` {lab1 = expr1, · · ·, labn = exprn} ;

(D1 ∪ · · · ∪Dn, X1 ∪ · · · ∪Xn, tuple (Eδ(1), . . . , Eδ(n)))

(4.85)

Comment: (Rules 4.84 and 4.85) A non-empty record is translated into an ordered
tuple. However, an empty record is translated into the special unit value.

75

S ` expr ; (D1, X1, E1) S, E1 ` dec ; (D2, X2, E2)

S ` let dec in expr end ; (D1 ∪D2, X1 ∪X2, E2)
(4.86)

Comment: (Rule 4.86) The expression expr is translated before the declaration
dec, although they will be evaluated in the correct order.

S ` expr1 ; (D1, X1, E1) S ` expr2 ; (D2, X2, E2)

S ` expr1 expr2 ; (D1 ∪D2, X1 ∪X2, app (E1, E2))
(4.87)

S ` expr ; (D, X, E)

S ` expr : ty ; (D, X, E)
(4.88)

Comment: (Rule 4.88) The type annotation ty is only relevant to elaboration and
is therefore ignored.

S ` expr ; (D1, X1, E1) x fresh

S, var x, raise (var x, subst(S, τ)) ` match ; (D2, X2, E2)

S ` expr handle match (: τ) ;

(D1 ∪D2, X1 ∪X2, handle E1 with (fn (x, t exn→ subst(S, τ)) = E2))

(4.89)

Comment: (Rule 4.89) An exception handler is translated into a function, taking
an exception packet (of type t exn) as arguments. A fresh variable x is introduced
to hold the exception packet. If the handler does not match the exception packet,
then the exception is raised again.

S ` expr ; (D, X, E)

S ` raise expr (: τ) ; (D, X, raise (E, subst(S, τ)))
(4.90)

Comment: (Rule 4.90) The type of the raise expression is obtained from the
annotated syntax tree. For reasons discussed in chapter 3, the type t exn is not
the type of the raise.

x fresh S, var x, raise (e match, subst(S, τ)) ` match ; (D, X, E)

S ` fn match (: τ) ; (D, X, fn (x, subst(S, τ)) = E)
(4.91)

Comment: (Rule 4.91) The fresh variable x will be bound to the function argu-
ment upon application. If this argument does not match any of the patterns in
match, the exception e match will be raised.

76

4.4.1 Pattern Matching

Pattern matching is an integral part of Dynamic ML as it allows functions over
datatypes to be expressed in an intuitive manner. The simplest kind of pattern
matching is string-matching. A string matcher takes two inputs: a pattern string
and an object string. The matcher finds the first occurrence (if any) of the pattern
in the object string. There are many efficient algorithms for performing string
matching, e.g. Knuth-Morris-Pratt. Dynamic ML has a more advanced form of
pattern matching, called term-matching. This takes two inputs: a match, which
is a sequence of patterns, and an object term. Patterns are incomplete terms
with variables. The matcher finds the first pattern (if any) which is matched
by the object term. Any variables in the matching pattern are bound to the
corresponding values of the term.

Dynamic ML pattern matching allows complex nested patterns to be ex-
pressed, and permits partial overlap between matches. In order to reduce this
complexity, a typical Dynamic ML compiler will perform a match-compilation
step. The match compiler translates complex patterns into simple conditional
statements with no nesting or overlap. The match compiler will also warn of
non-exhaustive or redundant cases. There are many different algorithms for per-
forming match compilation, e.g. [Pey87], [Ses96], and [Pet99]. However, they
are all based on a similar idea. Patterns can be viewed as regular expressions
consisting of constructor names, atomic values, and wild-cards. These regular
expressions can be easily mapped to tree-based deterministic finite automata.
The leaves of the tree correspond to right-hand side expressions, and the internal
nodes correspond to conditional tests. This provides an efficient encoding of the
patterns without requiring backtracking. Further improvements can be made by
eliminating unnecessary arcs, and combining identical states in the automaton.
An example match compilation is shown in Figure 4.6.

In this chapter, our interest in match compilation is not primarily motiv-
ated by efficiency, rather the fact that MΛ does not contain pattern matching.
Therefore, we must use a technique similar to the one outlined above to con-
vert Dynamic ML pattern matching into simpler MΛ conditionals. In order to
present the translation is a clean manner, we will adopt the most naive approach
to pattern matching; each pattern is translated into a sequence of conditional
tests which are applied in turn until a match is found. This is somewhat waste-
ful, since many of the tests may be repeated. However, we note that an actual
implementation of the translation would benefit from a more efficient approach,
such as the one outlined above.

77

1. Standard ML Function:

fun test (false, nil) = nil
| test (true, w) = w
| test (false, x :: nil) = x :: x :: nil
| test (false, y :: z) = z;

2. Deterministic Finite Automata:

nil

::
nil

!nil
z

nil

x::x::nil

false

true
w

3. Optimised Function:

fun test (a, b) =
case a of true => b

| false =>
case b of nil => nil

| (c :: d) =>
case d of nil => c :: c :: nil

| _ => d;

Figure 4.6: Match Compilation.

The translation of Dynamic ML pattern matching into MΛ expressions is
defined by a set of rules in the following section. It is important to remember
that we are performing a translation operation, rather than an evaluation. In
some instances, the expressions are translated in a different order from the one
which will be used for evaluation. In particular, the patterns are translated in
reverse order, starting with the last pattern and working backwards to the first
pattern. However, when the resulting expressions are composed at the end of the
translation, the outcome will be a single expression which will evaluate in the
correct left-right order.

78

Match Compilation S, E1, E2 ` match ; (D, X, E3)

The translation of a Dynamic ML match expression is defined below using a
pair of rules of the form S, E1, E2 ` match ; E3. The MΛ expression E1

is the translated object term against which the patterns will be matched. The
expression E2 is evaluated if a particular pattern is not matched. As the patterns
are processed in reverse order, this expression will initially correspond to the
failure of pattern matching, i.e. a Match exception, unless the match is itself
part of an exception handler (Rule 4.89). Following this, the expression E2 will
accumulate the patterns that have already been translated. The result of the
translation is a expression E3 which corresponds to an evaluation where each of
the patterns are applied in turn. The translation is expressed recursively. Note
that Rule 4.93 immediately invokes itself recursively on the remaining match in
the sequence. Hence, the base case (Rule 4.92) is applied to the last match in
the sequence.

S ` expr ; (D, X, E3)

S, E1, E3, E2 ` pat ; E4

S, E1, E2 ` pat => expr ; (D, X, E4)

(4.92)

S, E1, E2 ` match ; (D1, X1, E3)

S ` expr ; (D2, X2, E4)

S, E1, E4, E3 ` pat ; E5

S, E1, E2 ` pat => expr | match ; (D1 ∪D2, X1 ∪X2, E5)

(4.93)

Pattern Compilation S, E1, E2, E3 ` pat ; E4

Patterns are translated by a series of rules of the form S, E1, E2, E3 ` pat ; E4

which we define below. The expression E1 is the object term against which the
pattern pat is to be matched. The expression E2 is to be evaluated if the pattern
is matched, and the expression E3 is to be evaluated otherwise. The expression
E4 is the result of the translation. It is helpful to think of the rules below as a
translation of an expression if E1 = pat then E2 else E3 for each different form
of pat.

S, E1, E2, E3 ` _ ; E2
(4.94)

Comment: (Rule 4.94) The wild-card pattern _ is always matched, so the expres-
sion E2 is simply returned. Note that the expression E3, i.e. any pattern which
follows the wild-card, is ignored.

79

S, E1, E2, E3 ` scon ;

switch (app (EQtnscon, tuple (E1, scon scon)))

case (c true 7→ E2, E3)

(4.95)

Comment: (Rule 4.95) We compare the special constant scon with E1 using the
EQ function from the Basis.

vid ; x

S, E1, E2, E3 ` vid (: τ) ; let (x, subst(S, τ)) = E1 in E2
(4.96)

Comment: (Rule 4.96) A variable which occurs in a pattern is bound to E1 in the
scope of E2. Note that the type of the variable is obtained from the annotated
type.

vid ; con

S, E1, E2, E3 ` vid ; switch E1 case (con 7→ E2, E3)
(4.97)

Comment: (Rule 4.97) A constructor pattern is translated directly into a switch
expression.

S, E1, E2, E3 ` {} ;

switch (app (EQt unit, tuple (E1, scon unit)))

case (c true 7→ E2, E3)

(4.98)

Comment: (Rule 4.98) An empty record pattern, representing the unit value, is
compared using the basis function EQt unit.

δ a permutation of 1 . . .n, where labδ(1) < · · · < labδ(n)

S, select (n, E1), E2, E3 ` patσ(n) ; E1
4 · · ·

S, select (1, E1), En−1
4 , E3 ` patσ(1) ; En

4

S, E1, E2, E3 ` {lab1 = pat1, · · ·, labn = patn} ; En
4

(4.99)

Comment: (Rule 4.99) A record pattern is processed in translated in reverse
order, as defined by the permutation function δ. A select expression is used as
E1 to obtain the correct component of the record.

80

S, E1, E2, E3 ` pat ; E4

S, E1, E2, E3 ` pat : ty ; E4
(4.100)

Comment: (Rule 4.100) The type constraint ty is only relevant to the elaboration
phase and is simply ignored in the translation.

vid ; con ftvs(τ) = ∅
S, decon(con, E1), E2, E3 ` pat ; E4

S, E1, E2, E3 ` vid pat (: τ) ; E4

(4.101)

vid ; con ftvs(τ) = {α1, . . . , αk}
S, decon(con, (S(α1), . . . , S(αk)), E1), E2, E3 ` pat ; E4

S, E1, E2, E3 ` vid pat (: τ) ; E4

(4.102)

Comment: (Rules 4.101 and 4.102) The match a constructed pattern, we must
deconstruct E1.

S, E1, E2, E3 ` pat ; E4 vid ; x

S, E1, E2, E3 ` vid 〈: ty〉 as pat (: τ) ; let (x, subst(S, τ)) = E1 in E4
(4.103)

Comment: (Rule 4.103) A layered pattern is translated into a let expression such
that the variable x is only visible to E4.

4.5 Example Translation

We now present a detailed example to illustrate the translation process in oper-
ation. Our example performs the translation of the factorial function from Dy-
namic ML toMΛ. Figure 4.7 illustrates the difference between the Standard ML
and Dynamic ML definitions. The Dynamic ML form corresponds to the removal
of all of the derived forms given in the Definition of Standard ML [MTHM97],
and provides the starting point for our translation.

The first step in the translation is the elaboration phase, illustrated in Fig-
ure 4.8. We have omitted the substitutions S for clarity. The figure shows the
syntax tree for the program, annotated with type inference information. The
syntax of the program appears in boxes to separate it from the types. The in-
ference operation begins at the bottom-left of this diagram and proceeds in an

81

approximately clockwise manner. The inference rules invoked at each step are
shown in parentheses. The result is the initial environment Γ extended with the
mapping fact 7→ t int→ t int. The second and final step is the generation of
MΛ code, illustrated in Figure 4.9. We have omitted the datatype and exception
parts of the program, since neither are required in the definition of the factorial
function. As noted earlier in this chapter, the elaboration and generation phases
perform a similar traversal of the syntax tree, and could therefore be combined
for efficiency in an implementation.

TheMΛ factorial program, resulting from our translation operation, is shown
in Figure 4.7. Comparing this program to the hand-translated version in Chap-
ter 2 reveals that there is some redundancy: the let expression could be removed
and the variable x substituted in place of n. As stated earlier, our translator
does not currently perform any optimisation on the code, and pattern match-
ing is only translated using a naive algorithm. The code could be significantly
improved by performing a post-processing optimisation stage with a number of
λ-calculus based optimisations, though these techniques are well known and we
do not present further details here.

Standard ML:

fun fact 0 = 1
| fact n = n * fact(n - 1);

Dynamic ML:

val () rec {lab1 = fact} =
{lab1 = fn 0 => 1 |

n => * {1 = n, 2 = fact (- {1 = n, 2 = 1})}

MΛ Translation:

(∅, ∅,
fix ((fact, t int→ t int) =

(fn (x, t int→ t int) =
switch (app (=, tuple (var x, scon 0)))
case (c true 7→ scon 1,

let (n, t int) = var x
in app (var ∗, tuple (var n,

app(var fact, app (var −, tuple (var n, scon 1)))))))
in tuple (var fact))

Figure 4.7: Factorial Translation Example.

82

n
;
n

Γ
′′

(n
)

=
α

2

(4
.3

0
)

-
;
−

Γ
′′

(−
)

=
(t

in
t,

t
in

t)
→

t
in

t (4
.3

0
)

Γ
`

n
:
α

2
Γ
`

1
: (

4
.4

3
)

t
in

t (4
.3

3
)

f
a
c
t

;
f
a
c
t

Γ
′′

(f
a
c
t)

=
α

1

(4
.3

0
)

Γ
`

-
:

(t
in

t,
t

in
t)
→

t
in

t
Γ
′′
`

{
1

=
n
,

2
=
1
}

:
(α

2
,

t
in

t)
α

3
fr

es
h

u
n
if
y
((

t
in

t,
t

in
t)
→

t
in

t,
(α

2
,

t
in

t)
→
α

3

(4
.3

5
)

n
;
n

Γ
′′

(n
)

=
α

2

(4
.3

0
)

Γ
′′
`

f
a
c
t

:
α

1
Γ
′′
`

-
{
1
=

n
,

2
=

1
}

:
t

in
t

α
4

fr
es

h
u
n
if
y
(α

1
,

t
in

t
→
α

4
) (4
.3

5
)

*
;
∗

Γ
′′

(∗
)

=
(t

in
t,

t
in

t)
→

t
in

t (4
.3

0
)

Γ
′′
`

n
:
α

2
Γ
′′
`

f
a
c
t

(
-
{
1

=
n
,

2
=
1
}
)

:
t

in
t (4
.3

3
)

n
;
n

α
2

fr
es

h

(4
.4

4
)

Γ
′′
`

*
:
(t

in
t,

t
in

t)
→

t
in

t
Γ
`

{
1
=

n
,
2

=
f
a
c
t

(
-

{
1

=
n
,

2
=
1
}
)
}

:
(α

2
,

t
in

t
→
α

4
)

α
5

fr
es

h
u
n
if
y
((

t
in

t,
t

in
t)
→

t
in

t,
(α

2
,

t
in

t)
→
α

5
) (4
.3

5
)

Γ
′
`

n
:

(α
2
,
{n
7→

α
2
})

Γ
′ [
n
7→

α
2
]
`

*
{
1

=
n
,

2
=

f
a
c
t

(
-

{
1
=

n
,

2
=
1
}
)
}

:
t

in
t (4
.4

0
)

Γ
′
`

0
: (

4
.4

3
)

t
in

t
Γ
′
`

1
: (

4
.2

9
)

t
in

t
Γ
′
`

n
=
>

*
{
1

=
n
,

2
=

f
a
c
t

(
-

{
1
=

n
,

2
=
1
}
)
}

:
α

2
→

t
in

t
u
n
if
y
(α

2
→

t
in

t,
t

in
t
→

t
in

t)

(4
.4

1
)

f
a
c
t

;
f
a
c
t

α
1

fr
es

h

(4
.3

0
)

Γ
′
`

0
=
>
1

|
n

=
>
*

{
1
=

n
,

2
=

f
a
c
t

(
-
{
1

=
n
,
2

=
1
}
)
}

:
t

in
t
→

t
in

t (4
.3

9
)

Γ
`

f
a
c
t

:
(α

1
,
{f
a
c
t
7→

α
1
})

(4
.3

3
)

Γ
′
`

f
n

0
=
>

1
|

n
=
>

*
{
1

=
n
,

2
=
f
a
c
t

(
-

{
1

=
n
,

2
=

1
}
)
}

:
(t

in
t
→

t
in

t)

(4
.3

3
)

Γ
`

{
l
a
b
1

=
f
a
c
t
}

:
((
α

1
),
{f
a
c
t
7→

α
1
})

Γ
[f
a
c
t
7→

α
1
]
`

{
l
a
b
1

=
f
n
0

=
>
1

|
n

=
>
*

{
1

=
n
,

2
=

f
a
c
t

(
-

{
1
=

n
,
2

=
1
}
)
}

:
(t

in
t
→

t
in

t)
u
n
if
y
((
α

1
),

(t
in

t
→

t
in

t)
) (4
.1

9
)

Γ
`

v
a
l

(
)
r
e
c

{
l
a
b
1

=
f
a
c
t
}

=
{
l
a
b
1

=
f
n

0
=
>

1
|

n
=
>

*
{
1

=
n
,
2

=
f
a
c
t

(
-

{
1

=
n
,

2
=

1
}
)
}

:
Γ

[f
a
c
t
7→

t
in

t
→

t
in

t]

(4
.1

6
)

Γ
`

v
a
l

(
)

r
e
c

{
l
a
b
1

=
f
a
c
t
}

=
{
l
a
b
1

=
f
n

0
=
>

1
|
n
=
>

*
{
1
=

n
,
2

=
f
a
c
t

(
-
{
1

=
n
,

2
=
1
}
)
}

:
Γ

[f
a
c
t
7→

t
in

t
→

t
in

t]

Figure 4.8: Type Inference Phase.

83

n
;
n

(4
.8

0
)

-
;
−

(4
.8

0
)

`
n

;
v
a
r
n

`
1

;
(4
.7

9
)

sc
o
n

1 (4
.8

5
)

`
-

;
v
a
r
−

`
{
1

=
n
,

2
=

1
}

;
tu

p
le

(v
a
r
n
,
sc

o
n

1)

(4
.8

7
)

n
;
n

(4
.8

0
)

`
f
a
c
t

;
v
a
r
f
a
c
t

`
-
{
1

=
n
,

2
=

1
}

;
a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
) (4
.8

7
)

*
;
∗ (4

.8
0
)

`
n

;
v
a
r
n

`
f
a
c
t

(
-

{
1
=

n
,

2
=
1
}
)

;
a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

(4
.8

5
)

`
*

;
v
a
r
∗

`
{
1

=
n
,

2
=
f
a
c
t

(
-

{
1

=
n
,

2
=

1
}
)

;
tu

p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

) (4
.8

7
)

n
;
n

(4
.9

6
)

`
*

{
1
=

n
,
2

=
f
a
c
t

(
-

{
1

=
n
,

2
=
1
}
)

;
a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))
↑

v
a
r
x
,

a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))
,

ra
is

e
(e

b
in

d
,
t

in
t)
`

n
;

le
t

(n
,

t
in

t)
=

v
a
r
x

in
a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))

(4
.9

2
)

v
a
r
x
,

ra
is

e
(e

b
in

d
,
t

in
t)
`

n
=
>
*

{
1
=

n
,

2
=

f
a
c
t

(
-
{
1

=
n
,
2

=
1
}
)
}

;

le
t

(n
,

t
in

t)
=

v
a
r
x

in
a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))

`
1

;
(4
.7

9
)

sc
o
n

1
v
a
r
x
,

sc
o
n

1,
le

t
(n
,

t
in

t)
=

v
a
r
x

in
a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))
`

0
;

(4
.9

5
)

sw
it

ch
(a

p
p

(=
,

tu
p
le

(v
a
r
x
,

sc
o
n

0)
))

c
a
se

(c
tr

u
e
7→

sc
o
n

1,
le

t
(n
,

t
in

t)
=

v
a
r
x

in
a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))
)

(4
.9

3
)

fa
ct

;
f
a
c
t

x
fr

es
h

v
a
r
x
,

ra
is

e
(e

b
in

d
,
t

in
t)
`

0
=
>

1
|

n
=
>

*
{
1

=
n
,

2
=
f
a
c
t

(
-

{
1

=
n
,

2
=

1
}
)
}

;

sw
it

ch
(a

p
p

(=
,

tu
p
le

(v
a
r
x
,

sc
o
n

0)
))

c
a
se

(c
tr

u
e
7→

sc
o
n

1,
le

t
(n
,

t
in

t)
=

v
a
r
x

in
a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))
)

(4
.7

0
)

V
E
∈

Γ
=
{f
a
c
t
7→

t
in

t
→

t
in

t}
tu

p
le

(v
a
r
f
a
c
t)
`

v
a
l

(
)

r
e
c

{
l
a
b
1

=
f
a
c
t
}

=
{
l
a
b
1

=
f
n

0
=
>

1
|
n
=
>

*
{
1
=

n
,
2

=
f
a
c
t

(
-
{
1

=
n
,

2
=
1
}
)
}

;

fi
x

((
f
a
c
t,

t
in

t
→

t
in

t)
=

(f
n

(x
,

t
in

t
→

t
in

t)
=

sw
it

ch
(a

p
p

(=
,

tu
p
le

(v
a
r
x
,

sc
o
n

0)
))

c
a
se

(c
tr

u
e
7→

sc
o
n

1,
le

t
(n
,

t
in

t)
=

v
a
r
x

in
a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))
))

in
tu

p
le

(v
a
r
f
a
c
t)

)

(4
.6

8
)

Γ
`

v
a
l

(
)
r
e
c

{
l
a
b
1

=
f
a
c
t
}

=
{
l
a
b
1

=
f
n

0
=
>

1
|

n
=
>

*
{
1

=
n
,

2
=
f
a
c
t

(
-

{
1

=
n
,

2
=

1
}
)
}

;

fi
x

((
f
a
c
t,

t
in

t
→

t
in

t)
=

(f
n

(x
,

t
in

t
→

t
in

t)
=

sw
it

ch
(a

p
p

(=
,

tu
p
le

(v
a
r
x
,

sc
o
n

0)
))

c
a
se

(c
tr

u
e
7→

sc
o
n

1,
le

t
(n
,

t
in

t)
=

v
a
r
x

in
a
p
p

(v
a
r
∗,

tu
p
le

(v
a
r
n
,

a
p
p

(v
a
r
f
a
c
t,

a
p
p

(v
a
r
−
,

tu
p
le

(v
a
r
n
,
sc

o
n

1)
))

))
))

in
tu

p
le

(v
a
r
f
a
c
t)

)

Figure 4.9: Code Generation Phase.

84

4.6 Further Work

The definition of the Standard ML language as presented in [MTHM97] contains
a number of ‘dark alleys’ [Kah93], resulting from ambiguities in the semantics,
and unexpected combinations of operations. Consequently, these ambiguities are
also present in Dynamic ML. We have attempted to provide a translation for
the most common cases in this chapter. However, it is probable that there are a
number of omissions in the translation when dealing with the less common cases,
particularly concerning generativity and equality. Nonetheless, the purpose of
this chapter is simply to illustrate that Dynamic ML can be translated intoMΛ.
Ensuring that the translation is correct in all possible cases is left as further work.
In later chapters, when dealing purely with the simplerMΛ language, we will be
considerably more rigorous in our approach.

It is worth noting that our translation is similar in style to [HS97] which details
the translation from Standard ML into a lambda language called IL (Internal Lan-
guage). IL is based on the translucent-sum module calculi [Lil97] which provides
such features as first-order modules and higher-order functors. Datatypes and
polymorphism are also translated into module-level operations. Although this
formalism is very powerful, we have not adopted it here as we feel that their mod-
ule system would considerably obfuscate the code-replacement operation which
we are seeking to define. In Chapter 7 we discuss a simpler approach, inspired by
the ML-Kit compiler [Els99], in which the module system is treated as a compile-
time linking language, and no actual module code is generated.

85

Chapter 5

Dynamic Semantics of MΛ

A typed programming language is said to obey the phase distinction [Car88] if
the type of any expression in the language can be determined without evaluating
any other expressions. This allows the semantics of the language to be split into
a static semantics of elaboration and a dynamic semantics of evaluation. MΛ
is one such language which obeys the phase-distinction. As we have seen in the
Chapter 3, our static semantics does not rely on the evaluation of any expressions.
We may therefore define the dynamic semantics of the language in this chapter
entirely separately from the static semantics. The loss of the phase distinction
manifests itself as the inability to perform compilation of the language, hence its
retention is an important pragmatic consideration.

The dynamic semantics formalise the execution behaviour of programs. Our
definition is based on a series of equivalence relations, which we call transitions,
between states of an abstract machine. This machine describes the execution
and memory allocation behaviour of an implementation of the language, except
that it abstracts from the allocation of environments as this simply adds extra
baggage to the rules; for a treatment of this topic see [MMH96]. The organisation
of theMΛ abstract machine has some features in common with the λ→∀gc abstract
machine [MH96] which is used in the formal description of the behaviour of the
TIL/ML compiler. However, our relations differ considerably as MΛ does not
adopt a continuation-passing style or named-form representations.

The abstract machine is type-preserving in that type information is main-
tained throughout the evaluation process. As stated in the introduction, this type
information will allow us to provide a clean definition of garbage-collection and
code-replacement. The presence of type-information in the dynamic semantics
does not violate the phase distinction as we are not performing any type check-
ing. We can only evaluate well-typed programs, as defined by the static semantics,
and each stage of the evaluation preserves this well-typing.

86

5.1 Abstract Machine Syntax

We only consider the dynamic semantics of the sequential part of MΛ in this
chapter, i.e. excluding the threading and communication primitives. The dynamic
semantics for the full distributed language, presented in Chapter 8, is an extension
of the sequential case.

The syntax of our abstract machine is defined in Figure 5.1. The state of
the abstract machine is defined by a four-tuple (H, ∆, XS , RS) of a heap, an
environment, an exception stack, and a result stack. We denote a stack as a
dotted sequence, e.g. (a · b · c). The leftmost element of the sequence is the top
of the stack, and a pair of adjacent parentheses () is used to represent an empty
stack.

Machine State M ::= (H, ∆, XS , RS)

Heap H ::= (TH , VH)
Pointer p

Type Heap TH ::= p
map7→ ty

Heap Types ty ::= tn (type name)
| tn(p) (constructed type)
| p k (tuple type)
| p1 → p2 (function type)
| α (type variable)
| 〈〈TE , p〉〉 (polymorphic type)

Location l

Value Heap VH ::= l
map7→ val

Heap Values val ::= scon (special constant)
| con (nullary constructor)
| con(l) (unary constructor)
| l k (tuple)
| 〈〈∆, x k, E〉〉 (closure)
| Ω (dummy closure)

Environment ∆ ::= (TE , VE , DE , CE)
Type Variables TE ::= α

map7→ p

Lambda Variables VE ::= x
map7→ (l, p)

Datatype Names DE ::= tn
map7→ p

Constructors CE ::= con
map7→ p

Exception Stack XS ::= () | (l, p) · XS

Result Stack RS ::= () | p · RS | (l, p) · RS | ∆ · RS

Figure 5.1: Abstract Machine Syntax.

87

Runtime Heap

The runtime heap is an abstraction for the memory of the abstract machine. The
environment and stacks simply contain references into the heap and are therefore
not considered part of the memory itself in our model. For convenience, we
make a distinction in the heap between runtime types and runtime values. This
division is not strictly necessary as we could store both values and types in the
same heap. Indeed, in an actual implementation this would be advisable to avoid
memory wastage. However, the separation of the values and types in the heap
will make it easier to ensure that our definitions are correct, e.g. by ensuring that
we do not accidentally treat values as types.

The runtime values, e.g. special constants and closures, are stored in the value
heap VH , and the runtime types, corresponding to types and type schemes in the
MΛ language, are stored in the type heap TH . We distinguish between pointers
to runtime types p, and pointers to runtime values which we call locations l. The
type heap and value heap are represented by finite-maps, as locations and pointers
may be bound only once, i.e. there cannot be more than one value at a particular
heap location. The separation of types and values in the heap is illustrated in
Figure 5.2.

Type Heap TH Value Heap VH

t_int

t_real

t_list(p0)

t_exn

1000

e_error

3.141592

42p3

p2

p1

p0 l0

l1

l2

l3

Figure 5.2: An Example Runtime Heap H.

A value val in the value heap will always be paired with a type ty in the type
heap. We will use pairs of the form (l, p) throughout this chapter to reference
a value and its corresponding type. The reason for this pairing is that the type
is required to determine the shape of the value. This will be explained in detail
in Chapter 6 when we define garbage collection. Despite the pairing of values
and types, it will generally be the case that the type heap will contain consid-
erably less information than the value heap. This is due to the sharing of type

88

information, e.g. only one integer type in the type heap is required for pairing
every integer value in the value heap. It is worth noting that type information
can be manipulated independently of the values, i.e. we can have types that do
not correspond to values, but not vice-versa. This is because we require more
flexibility when operating on types than we do with values, e.g. the instantiation
of a polytype may require complex type manipulations.

It is important to note that there is no explicit notion of a memory address in
our model of the heap. This is a deliberate abstraction which removes the need
to consider explicit sizes of data items in the heap. As a result, it is not possible
to perform such operations as pointer arithmetic, e.g. l1 + l2. The only operations
permitted on pointers and locations are the comparison for equality, e.g. l1 =
l2, and a dereferencing operation to perform the retrieval of the corresponding
value and types from the heap : VH (l) = val and TH (p) = ty. For notational
convenience, we will refer only to the heap H, rather than the sub-heaps V H and
TH, since the relevant sub-heap can always be determined from the context.

We will assume that values and types are allocated in a linear fashion through
the heap. The management of the heap is discussed in more detail in Chapter 6,
where a definition of garbage collection is presented. The following syntactic
conventions are used for performing heap allocations: H ↑ l reserves and returns
the next available location l in H, and H[l 7→ val] allocates value val at reserved
location l in the value heap of H. Where multiple allocations are required we
use the shorthand H ↑ (l1, . . . , lk) which reserves and returns a sequence of
locations (l1, . . . , lk), and H[l1 7→ val1, . . . , lk 7→ valk] which allocates values
val1, . . . , valk on the value heap, binding them to reserved locations. The
notation for types is identical: H ↑ p reserves and returns the next available
pointer p in H, and H[p 7→ ty] allocates type ty at p in the type heap of H.

There are no corresponding operations for removing values or types from the
heap as this is achieved through garbage collection. However, the assignment
of references, and the implementation of the fixed-point operator, necessitate a
heap-update operation. Assignment uses the update operation H[l1

upd7→ c ref(l2)]
to update the reference at l1 to c ref(l2). This is clearly a trivial operation as it
only requires the update of a single location. The fixed-point case is slightly
more complex: H[l 7→ Ω] allocates a dummy closure on the value heap bound
to a fresh location l. This location can subsequently be updated with a mapping
to a closure H[l upd7→ 〈〈∆, x k, E〉〉]. In an implementation of this operation, a
suitably-sized area of the heap must be reserved to hold the closure.

89

Runtime Environment

The runtime environment ∆ is essentially the dynamic counterpart of the static
environment Γ defined in Chapter 3. The main purpose of the runtime environ-
ment is to record the allocation of MΛ variables and their corresponding values
and types on the heap. We may consider the runtime environment as providing
a view of the heap relevant to the program fragment being evaluated, i.e. the
heap values and types corresponding to the bound variables which are currently
in scope. The runtime environment also tracks the allocation of type variables,
type names, and constructor types on the heap. This is an optimisation which
we will use later in this chapter to prevent multiple allocations of the same types
on the heap.

The runtime environment is composed of a four-tuple of sub-environments ex-
actly as the static environment, i.e. a type variable environment TE , a lambda-
variable environment VE , a datatype environment DE , and a constructor envir-
onment CE . However, we note that the definition of these sub-environments is
different as we now map the variables, types, and constructors to explicit values
and types on the heap. The notation for extending the runtime environment is
exactly the same as for static environments: ∆[θ] adds a binding θ to the envir-
onment, and ∆(φ) retrieves the binding associated with φ from the environment.
As before, the sub-environment in ∆ is uniquely determined by the naming of
θ and φ. There are no operations for removing bindings from the environment.
However, unlike the heap, a copy of the current environment may be made at any
time, e.g. by creating a closure. Thus, bindings can effectively be removed from
the environment by reverting to an old copy of the environment.

Runtime Stacks

The runtime stacks store references into the heap. We do not store values or
types directly on the stack. Scientific opinion is divided on whether this yields
any performance advantage. In particular, memory management of the stack
is considerably easier than the heap [Wil92], but stack allocation may itself be
more costly [App87]. However, the avoidance of stack-allocated values and types
will simplify the definition of garbage collection and code replacement since we
can assume that all data is contained in the heap. The exception stack XS
references exception handling functions (i.e. closures) and the result stack RS
references temporary results during evaluation. The result stack is also used to
hold temporary environments generated during let/letrec bindings.

90

5.2 Abstract Machine Semantics

The semantics of our abstract machine are defined by transitions between success-
ive machine states. Evaluation of a program corresponds to a sequence of these
transitions, beginning with an initial machine state, and terminating in a machine
state representing the result of the computation. There is also the possibility of
non-termination, corresponding to an infinite sequence of transitions, and early
termination as a result of an uncaught exception, where the final machine state
contains the exception packet.

As stated in the introduction, type-preserving evaluation becomes significantly
more complex in the presence of polymorphism. The abstract machine presented
in this chapter has undergone several revisions in order to provide efficient support
for polymorphism. The first of these, presented in [WKG98], contained only
monomorphic types. This definition is relatively straightforward as types are
simply treated as static tags on the values, albeit allocated in a separate heap.
With only monomorphic types, the abstract machine is entirely described by 21
rules. We originally intended this machine to be combined with a pre-processing
stage, such as the one defined in [Els98], for converting the polymorphic types into
monomorphic types. However, for reasons explained in Chapter 1, this technique
was found to be incompatible with code-replacement.

Support for explicit polymorphism was introduced in a later revision of the
abstract machine, presented in [Wal99]. The number of rules in the definition
increased to 34. The definition presented in this paper is very clean, but not
entirely satisfactory for an implementation of the language. In particular, each
instantiation of a polymorphic type involves creating a completely new type in
the type heap. This operation would be very costly to implement for all but the
simplest type schemes, and would consume a large amount of heap space.

The latest revision of the abstract machine, presented in this chapter, con-
tains an efficient scheme for manipulating polymorphic types, at the expense
of increasing the complexity of the machine definition. The number of rules in
this latest revision has increased to 47. However, an implementation of the ma-
chine should be significantly less costly, and considerably more space-efficient.
Our scheme for manipulating polymorphic types is similar to the lazy scheme
described in [Tol94], though the language on which we define our operation is
somewhat different. We describe our scheme in detail in the following section,
before presenting the abstract machine definition.

91

5.2.1 Runtime Types

It is clear that the syntax of the runtime types, defined in Figure 5.1, differs from
the syntax of the static types defined previously in Chapter 2. Although the same
classes of types are present in the runtime definition, we use pointers in place of
syntactic categories to define the types. We therefore require a mechanism for
converting static type definitions into heap-allocated runtime types. For mono-
morphic types, the τ alloc(τ) function defined in Figure 5.3 performs this task.
There is a separate rule for each of the types τ inMΛ. Each rule is of the form:
(H1, ∆, XS , RS , τ alloc(τ))⇒ (H2, ∆, XS , p · RS), where τ is the static
type definition, H1 is the heap before allocation, H2 is the heap after allocation,
and p is a pointer into H2 to the newly allocated runtime type. The rules are
defined recursively, with base cases for type names (Rule 5.1) and type variables
(Rule 5.5). The example presented in Figure 5.4 illustrates the allocation of a
type for a set-of-sets style representation of integer-labelled graphs.

(H, ∆, XS , RS , τ alloc(tn))⇒ (H, ∆, XS , ∆(tn) · RS)
(5.1)

(H1, ∆, XS , RS , τ alloc(τ k))⇒ (H2, ∆, XS , p1 · RS) H2 ↑ p3

(H1, ∆, XS , RS , τ alloc(tn(τ k)))⇒ (H2[p3 7→ tn(p1)], ∆, XS , p3 · RS)
(5.2)

(H1, ∆, XS , RS 1, τ alloc(τ1))⇒ (H2, ∆, XS , RS 2) · · ·
(Hk, ∆, XS , RSk, τ alloc(τk))⇒ (Hk+1, ∆, XS , pk · · ·p1 · RS 1)

Hk+1 ↑ pk+1

(H1, ∆, XS , RS 1, τ alloc(τ k))⇒
(Hk+1[pk+1 7→ (p1, . . . , pk)], ∆, XS , pk+1 · RS 1)

(5.3)

(H1, ∆, XS , RS , τ alloc(τ1))⇒ (H2, ∆, XS , p1 · RS)

(H2, ∆, XS , p1 · RS , τ alloc(τ2))⇒ (H3, ∆, XS , p2 · p1 · RS) H3 ↑ p3

(H1, ∆, XS , RS , τ alloc(τ1→ τ2))⇒
(H3[p3 7→ p1 → p2], ∆, XS , p3 · RS)

(5.4)

(H, ∆, XS , RS , τ alloc(α))⇒ (H, ∆, XS , ∆(α) · RS) (5.5)

Figure 5.3: Monotype Allocation.

92

Standard ML Type: type intgraph = ((string * int) list) * (string -> (string * int) list)

MΛ Static Type: (t list(t string, t int), t list((t string→ (t string, t int))))

MΛ Dynamic Type Allocation:

τ alloc(t string)⇒ p2 τ alloc(t int)⇒ p1 p4 7→ (p2, p1)︸ ︷︷ ︸
(5.3)

τ alloc(t string)⇒ p2 τ alloc(t int)⇒ p1 p5 7→ (p2, p1)︸ ︷︷ ︸
(5.3)

τ alloc(t string)⇒ p2 τ alloc((t string, t int))⇒ p4 p6 7→ p2 → p4︸ ︷︷ ︸
(5.4)

τ alloc((t string, t int))⇒ p5 p7 7→ t list(p5)︸ ︷︷ ︸
(5.2)

τ alloc((t string→ (t string, t int)))⇒ p6 p8 7→ t list(p6)︸ ︷︷ ︸
(5.2)

τ alloc(t list(t string, t int))⇒ p7 τ alloc(t list((t string→ (t string, t int))))⇒ p8 p9 7→ (p7, p8)︸ ︷︷ ︸
(5.3)

τ alloc((t list(t string, t int), t list((t string→ (t string, t int)))))⇒ p9

F
igure

5.4:
R

untim
e

T
ype

A
llocation

E
xam

ple.

93

A number of simplifications have been made in the presentation of the ex-
ample: the rules are given in the form τ alloc(τ)⇒ p; the heap, environment and
stacks are not shown, and the notation p 7→ ty is used to indicate the binding
of a new type ty to a new pointer p in the heap. We assume that the heap ini-
tially contains the bindings {p1 7→ t int, p2 7→ t string} and the environment
contains the bindings {t int 7→ p1, t string 7→ p2}. The braces are numbered
according to the rule used at each stage. The rules should be read in bottom-up
left-right order. The result of the allocation is the pointer p9 to the heap-allocated
type.

We now turn our attention to the allocation of type-schemes. As stated earlier
in this chapter, we require a space-efficient representation, and a cheap imple-
mentation of instantiation. If we consider the type scheme for the polymorphic
identity function ∀α. α → α, a straightforward representation is a runtime type
of the form ∀p. p→ p, where p is a pointer to a heap allocated type variable α. It
appears that we may perform instantiation cheaply by simply replacing the type
variable with a type, e.g. to generate the integer identity function we perform
a heap update H[p upd7→ t int]. This technique appears to be space efficient and
cheap. However, with a little thought it is clear that is it flawed. By updating
the type variable with a type, we permit only one instance of a type scheme. If
we use the update operation to perform multiple instantiations, we will overwrite
any previous instances with our new type.

We may avoid the update problem by considering the runtime type scheme as
a template. A new instance may therefore be generated by recursively traversing
the type scheme and filling in the actual types in place of the type variables.
This scheme was used successfully in an earlier definition [Wal99]. However,
we now have neither a cheap implementation or a space-efficient representation;
the recursive traversal operation will be costly to implement, particularly for
complex types, and each instance will be separately heap-allocated. When we
define garbage collection and replacement, we will need to examine every instance
of a type scheme on the heap. Yet, we are only concerned with the types of the
variables which are live at the point of collection and replacement. Thus, a great
deal of the instantiation work is completely unnecessary.

We have therefore developed an alternative scheme which performs a deferred
style of instantiation. We represent a type scheme as a construct which we
call a type closure containing a type-variable environment, and a type pointer:
〈〈TE, p〉〉. The type variable environment maps type variables to types, and the
type pointer points to the type-scheme template as before. For example, the iden-

94

tity function type is represented as 〈〈{α 7→ α}, p 7→ α→ α〉〉. Instantiation is
now achieved by creating a new closure containing an updated type environment,
e.g. 〈〈{α 7→ t int}, p 7→ α→ α〉〉. Note that the pointer to the template does
not require updating. Thus, this operation can be implemented very cheaply.
However, when one operates on the type scheme, it is necessary to consult the
associated type environment to interpret the type variables. Thus, the work per-
formed by instantiation is deferred until it is actually required. We define deferred
instantiation in Figure 5.5. The instance function is invoked with a pointer pσ
to a type closure, and a pointer pτ to a tuple of type pointers which are bound
to type variables in the type environment. The result is a new pointer p4 to the
new type closure on the heap. This technique is clearly far more space-efficient
than allocating separate types for each instance. However, the abstract machine
definition becomes necessarily more complex when referring to polymorphic types.

H(pσ) = 〈〈{α1 7→ p1
1, . . . , α

k 7→ pk1}, p2〉〉 H(pτ) = p3
k H ↑ p4

(H, ∆, XS , RS , instance(pσ, pτ))⇒
(H [p4 7→ 〈〈{α1 7→ p1

3, . . . , α
k 7→ pk3}, p2〉〉], ∆, XS , p4 · RS)

(5.6)

Figure 5.5: Deferred Type Instantiation.

We are now in a position to define the runtime allocation of type-schemes as
type closures. The allocation is performed by two functions: α alloc(σ) which
allocates the quantified type variables, and σ alloc(σ) which generates the type
closures. Note that the monomorphic rule for type variables 5.5 returns a pointer
obtained from the environment ∆. Thus, in order to create a polymorphic
type, it is first necessary to extend the environment with the type variables,
which in turn requires the type variables to be allocated on the heap. These
steps are performed by the function defined in Figure 5.6 which has the form:
(H1, ∆1, XS , RS , α alloc(σ))⇒ (H2, ∆2, XS , RS).

(H, ∆, XS , RS , α alloc(τ))⇒ (H, ∆, XS , RS) (5.7)

H ↑ (p1, . . . , pk)

(H, ∆, XS , RS , α alloc(∀ α k. τ))⇒
(H [p1 7→ α1, . . . , pk 7→ αk], ∆[α1 7→ p1, . . . , αk 7→ pk], XS , RS)

(5.8)

Figure 5.6: Type-Variable Allocation.

95

There are two definitions of the σ alloc function. The first of these (Rule 5.10)
has the form (H1, ∆, XS , RS , σ alloc(σ))⇒ (H2, ∆, XS , p · RS), where p is a
pointer to the resulting type closure. This rule takes a type scheme as an argument
and allocates the type variables using α alloc before allocating the quantified type
using τ alloc, and constructing the type closure. Note that the environment ∆1

is stored on the result stack at the beginning of the rule and restored at the end.
This removes the type variables from the main environment once they are present
in the environment of the type closure. In the monomorphic case (Rule 5.9) the
type is simply passed to τ alloc and no type closure is constructed.

The second definition of σ alloc (Rule 5.12) takes a type scheme and a pointer
as arguments: (H1, ∆, XS , RS , σ alloc(σ, p1))⇒ (H2, ∆, XS , p2 · RS). This
definition assumes that the type variables have already been allocated and are
present in the environment, and the quantified type τ has been allocated and is
referenced by the pointer p1. This form is used for binding values to polymorphic
types inside the let expressions (recall from Chapter 3 that expressions always
have monomorphic types). In this case, a type closure is simply created from the
type variables in the environment, and the supplied pointer p1. The monomorphic
case (Rule 5.11) simply returns the pointer as it is not necessary to create a type
closure.

(H1, ∆, XS , RS 1, τ alloc(τ))⇒ (H2, ∆, XS , RS 2)

(H1, ∆, XS , RS 1, σ alloc(τ))⇒ (H2, ∆, XS , RS 2)
(5.9)

(H1, ∆1, XS , ∆1 · RS 1, α alloc(∀ α k. τ))⇒ (H2, ∆2, XS , RS 2)

(H2, ∆2, XS , RS 2, τ alloc(τ))⇒ (H3, ∆2, XS , p2 · ∆1 · RS 1)

H3 ↑ p3

(H1, ∆1, XS , RS 1, σ alloc(∀ α k. τ))⇒
(H3[p3 7→ 〈〈{α1 7→ ∆2(α1), . . . , αk 7→ ∆2(αk)}, p2〉〉], ∆1, XS , p3 · RS 1)

(5.10)

(H, ∆, XS , RS , σ alloc(τ, p))⇒ (H, ∆, XS , p · RS)
(5.11)

H ↑ p2

(H, ∆, XS , RS , σ alloc(∀ α k. τ, p1))⇒
(H [p2 7→ 〈〈{α1 7→ ∆(α1), . . . , αk 7→ ∆(αk)}, p1〉〉], ∆, XS , p2 · RS)

(5.12)

Figure 5.7: Type-Scheme Allocation.

96

5.2.2 Machine Transitions

The initial machine state, corresponding to the initial dynamic basis of Stand-
ard ML, is given in Figure 5.8. The initial type heap contains the types of the
special constants, built-in functions, datatypes, constructors, and exceptions. The
value heap contains closures which represent the built-in functions on the special
constants. For brevity we have again only presented the functions on the integers.
The actual code for these functions is denoted by the lower-case name e.g. absi,
as we cannot directly express these operations as MΛ expressions. We assume
that an actual compiler would substitute these with the necessary machine-level
instructions. The variable environment maps the identifiers of these functions to
their heap types and closures. For later convenience we provide an additional
variable called UNIT. The datatype environment and constructor environment
map the datatype and constructor identifiers to their types in the type heap.
The datatype environment is primarily an optimisation to prevent the repeated
allocation of type names. The exception stack and result stack are initially empty.

M = (H, ∆, (), ()) H = (TH , VH) ∆ = (∅, VE , DE , CE)

TH =

p1 7→ t unit, p2 7→ t int, p3 7→ t word, p4 7→ t real,
p5 7→ t char, p6 7→ t string, p7 7→ t bool, p8 7→ t exn,
p9 7→ (p2, p2), p10 7→ p2 → p2, p11 7→ p9 → p2, p12 7→ p9 → p7,
p13 7→ α, p14 7→ t list(p13), p15 7→ 〈〈{α 7→ p13}, p14〉〉,
p16 7→ (p13, p14), p17 7→ p16 → p14, p18 7→ 〈〈{α 7→ p13}, p17〉〉,
p19 7→ t ref(p13), p20 7→ p13 → p19, p21 7→ 〈〈{α 7→ p13}, p20〉〉

VH =

l1 7→ sconunit, l2 7→ 〈〈∅, (x1), absi〉〉, l3 7→ 〈〈∅, (x1), negi〉〉,
l4 7→ 〈〈∅, (x1, x2), divi〉〉, l5 7→ 〈〈∅, (x1, x2), modi〉〉,
l6 7→ 〈〈∅, (x1, x2), muli〉〉, l7 7→ 〈〈∅, (x1, x2), addi〉〉,
l8 7→ 〈〈∅, (x1, x2), subi〉〉, l9 7→ 〈〈∅, (x1, x2), lti〉〉,
l10 7→ 〈〈∅, (x1, x2), gti〉〉, l11 7→ 〈〈∅, (x1, x2), leqi〉〉,
l12 7→ 〈〈∅, (x1, x2), geqi〉〉, l13 7→ 〈〈∅, (x1, x2), eqi〉〉

VE =

UNIT 7→ (l1, p1), ABSi 7→ (l2, p10), NEGi 7→ (l3, p10),
DIVi 7→ (l4, p11), MODi 7→ (l5, p11), MULi 7→ (l6, p11),
ADDi 7→ (l7, p11), SUBi 7→ (l8, p11), LTi 7→ (l9, p12),
GTi 7→ (l10, p12), LEQi 7→ (l11, p12), GEQi 7→ (l12, p12),
EQi 7→ (l13, p12)

DE =

{
t unit 7→ p1, t int 7→ p2, t word 7→ p3, t real 7→ p4,
t char 7→ p5, t string 7→ p6, t bool 7→ p7, t exn 7→ p8

}

CE =

{
c true 7→ p7, c false 7→ p7, c nil 7→ p15, c cons 7→ p18,
c ref 7→ p21, e match 7→ p8, e bind 7→ p8, e overflow 7→ p8

}

Figure 5.8: Initial Machine State.

97

We may now define the dynamic semantics of the sequential fragment ofMΛ.
As with the functions for type allocation and instantiation, we will enumerate
the entire machine state in each rule. Evaluation of anMΛ program begins with
Rule 5.13. The datatypes and exceptions are evaluated in turn resulting in an
extended heap and environment. The main body of the program, given by the
expression E, is evaluated in this extended environment to yield a result on the
result stack. As with the typing judgements, there are many similarities between
the rules. Therefore, we will just highlight the main features as comments.

In order to support garbage collection and replacement, we impose a number of
restrictions on our rules. As the garbage collector is a copying collector, we must
assume that the entire machine state may change during collection. Thus, each
time we evaluate an expression, we assume that a new machine state is generated:
(H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, XS 2, (l, p) · RS 2), i.e. even though RS2

will contain the same items as RS1. In Chapter 6 (Rule 6.1) we define precisely
when a collection may occur. Informally, a collection can only happen at the
beginning of the evaluation of an expression (or sub-expression), i.e. immediately
after we start the evaluation but before any work is done. Consequently, we
must take care to store any live pointers on the result stack before evaluating any
sub-expressions. This is neatly illustrated in Rule 5.38. Since we have adopted
a left-to-right evaluation strategy, we must evaluate the function expression E1,
before evaluating the argument expression E2. Since garbage collection may occur
between the evaluation of E1 and E2, we must store the pair (l1, p1), which
references the function closure, on the result stack before evaluating E2 or it may
be discarded. After the evaluation of E2, we write this pair as (l′1, p

′
1) to indicate

that the pair may have been updated by garbage collection. We will also use this
notation for the result stack, e.g. the result stack RS ′′1 has the same contents as
the result stack RS 1 but may have been garbage collected twice.

A number of abstract machines for ML-like languages, e.g. the λ→∀gc abstract
machine [MH96], adopt a restricted named-form representation of types and val-
ues. This restriction amounts to the requirement that every step in the evaluation
be bound to a variable, i.e. every expression is a let. This is largely a technical
convenience as it allows a number of simplifications to the abstract machine defin-
ition, e.g. the type of an expression can easily be obtained from the types of it’s
sub-expressions. In the MΛ abstract machine, we always return a pair (l, p) on
the result stack as the result of every evaluation. We call this implicit named-form,
as it gives all the benefits of the named form representation, without cluttering
the environment with superfluous variable declarations.

98

Programs

(H1, ∆1, XS 1, RS 1, D)⇒ (H2, ∆2, XS1, RS 1)

(H2, ∆2, XS 1, RS 1, X)⇒ (H3, ∆3, XS 1, RS 1)

(H3, ∆3, XS 1, RS 1, E)⇒ (H4, ∆4, XS 2, RS 2)

(H1, ∆1, XS 1, RS 1, (D, X, E))⇒ (H4, ∆4, XS 2, RS 2)

(5.13)

Datatype Declarations

(H, ∆, XS , RS , ∅)⇒ (H, ∆, XS , RS)
(5.14)

(H1, ∆1, XS , RS , D1)⇒ (H2, ∆2, XS , RS) · · ·
(Hk, ∆k, XS , RS , Dk)⇒ (Hk+1, ∆k+1, XS , RS)

(H1, ∆1, XS , RS , {D1, . . . , Dk})⇒ (Hk+1, ∆k+1, XS , RS)

(5.15)

H1 ↑ p1

(H1[p1 7→ tn], ∆1[tn 7→ p1], XS , RS 1, τ alloc(ctype(C1, tn)))⇒
(H2, ∆2, XS , RS 2) · · ·

(Hk, ∆k, XS , RSk, τ alloc(ctype(Ck, tn)))⇒
(Hk+1, ∆k+1, XS , pk2 · · ·p1

2 · RS 1)

(H1, ∆1, XS , RS 1, datatype tn of {C1, . . . , Ck})⇒
(Hk+1, ∆k+1[cname(C1) 7→ p1

2, . . . , cname(C
k) 7→ pk2], XS , RS 1)

(5.16)

Comment: (Rule 5.16) Evaluation of a monomorphic datatype declaration begins
with the allocation of the datatype name tn on the heap, and a corresponding
mapping tn 7→ p1 in the environment. We reuse this mapping in the allocation
of monomorphic constructor types (Rule 5.1). The constructor types are then
allocated on the heap using the τ alloc function, and the environment is extended
with a set of mappings from each of the constructors con to their heap allocated
types. The functions ctype (5.17) and cname (5.18) return the static type and
name for a constructor respectively

ctype(con, tn) = tn
ctype((con, τ), tn) = τ → tn
ctype(con, (α k, tn)) = ∀ α k. tn(α k)
ctype((con, τ), (α k, tn)) = ∀ α k. τ → tn(α k)

(5.17)

cname(con) = con

cname((con, τ)) = con
(5.18)

99

(H1, ∆1, XS , RS 1, σ alloc(ctype(C1, (α k, tn))))⇒
(H2, ∆2, XS , RS 2) · · ·

(Hk, ∆k, XS , RSk, σ alloc(ctype(Ck, (α k, tn))))⇒
(Hk+1, ∆k+1, XS , pk1 · · ·p1

1 · RS 1)

(H1, ∆1, XS , RS 1, datatype (α k, tn) of {C1, . . . , Ck})⇒
(Hk+1, ∆k+1[cname(C1) 7→ p1

1, . . . , cname(C
k) 7→ pk1], XS , RS 1)

(5.19)

Comment: (Rule 5.19) The evaluation of a polymorphic datatype is very similar
to the monomorphic case. However, the datatype name tn is not allocated on
the heap as it is not used in the allocation of polymorphic constructor types
(Rule 5.2). Also, note that it is necessary to use the σ alloc function in this rule
for the allocation of the constructor types.

Exception Declarations

(H, ∆, XS , RS , ∅)⇒ (H, ∆, XS , RS)
(5.20)

(H1, ∆1, XS , RS 1, τ alloc(ctype(C1, t exn)))⇒ (H2, ∆2, XS , RS 2) · · ·
(Hk, ∆k, XS , RSk, τ alloc(ctype(Ck, t exn)))⇒

(Hk+1, ∆k+1, XS , pk · · ·p1 · RS 1)

(H1, ∆1, XS , RS 1, {exception C1, . . . , exception Ck})⇒
(Hk+1, ∆k+1[cname(C1) 7→ p1, . . . , cname(Ck) 7→ pk], XS , RS 1)

(5.21)

Comment: (Rule 5.21) The evaluation of the exception declarations essentially
corresponds to the evaluation of a single monomorphic datatype (Rule 5.16).
However, the type name t exn is not allocated on the heap as it is present in the
initial machine state (Figure 5.8). Note that all of the exception declarations are
treated as constructors of the t exn datatype.

Values
H ↑ l
(H, ∆, XS , RS , scon scon)⇒

(H [l 7→ scon], ∆, XS , (l, ∆(tnscon)) · RS)

(5.22)

Comment: (Rule 5.22) Special constants are allocated directly on the heap. The
type pointer for the special constant is obtained from the environment. The type
tnscon is trivially determined from the lexical structure of scon.

100

(H, ∆, XS , RS , var x)⇒ (H, ∆, XS , ∆(x) · RS)
(5.23)

∆(x) = (l1, p1)

(H1, ∆, XS , RS , τ alloc(τ k))⇒ (H2, ∆, XS , p2 · RS)

(H2, ∆, XS , RS , instance(p1, p2))⇒ (H3, ∆, XS , p3 · RS)

(H1, ∆, XS , RS , var (τ k, x))⇒ (H3, ∆, XS , (l1, p3) · RS)

(5.24)

Comment: (Rule 5.24) The instantiation of a polymorphic variable is performed in
three steps. A reference p1 to the type scheme of the variable is obtained from the
environment. The types τ k which will replace the type variables are allocated on
the heap at p2. Finally, an instance is created by invoking instance(p1, p2). Recall
that we use a deferred instantiation scheme. Thus, the result of the instantiation
p3 will be a reference to a type closure.

(H1, ∆, XS , RS , τ alloc(τ1→ τ2))⇒ (H2, ∆, XS , p · RS) H2 ↑ l
(H1, ∆, XS , RS , fn (x, τ1 → τ2) = E)⇒

(H2[l 7→ 〈〈∆, (x), E〉〉], ∆, XS , (l, p) · RS)

(5.25)

(H1, ∆, XS , RS , τ alloc(τ1
k → τ2))⇒ (H2, ∆, XS , p · RS) H2 ↑ l

(H1, ∆, XS , RS , fn (x k, τ1
k → τ2) = E)⇒

(H2[l 7→ 〈〈∆, xk, E〉〉], ∆, XS , (l, p) · RS)

(5.26)

Comment: (Rules 5.25 and 5.26) These rules allocate a new closure on the value
heap. The second form (5.26) is for functions which take multiple arguments.
The closure consists of a copy of the environment, a sequence of variables to be
bound to the function parameters, and an expression for the body of the function.

Value Constructors
H ↑ l
(H, ∆, XS , RS , con con)⇒ (H [l1 7→ con], ∆, XS , (l, ∆(con)) · RS)

(5.27)

Comment: (Rule 5.27) A monomorphic nullary constructor (e.g. c true) is alloc-
ated directly on the heap l 7→ con. The type of the constructor is obtained from
the environment ∆(con).

101

(H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

H2(∆2(con)) = p3 → p4 H2 ↑ l2
(H1, ∆1, XS 1, RS 1, con (con, E))⇒

(H2[l2 7→ con(l1)], ∆2, XS 2, (l2, p4) · RS ′1)

(5.28)

Comment: (Rule 5.28) A unary constructor is built by evaluating an expressionE,
which forms the body of the constructed value. The type of the unary constructor
∆2(con) is the function type p3 → p4. Note that the function result type p4 is
returned as the type of the constructed value.

(H1, ∆, XS , RS , τ alloc(τ k))⇒ (H2, ∆, XS , p1 · RS)

H2(∆(con)) = 〈〈{α1 7→ p1
2, . . . , α

k 7→ pk2}, p3〉〉 H2(p1) = p4
k

H2 ↑ l1 H2 ↑ p5

(H1, ∆, XS , RS , con (con, τ k))⇒
(H2[l1 7→ con][p5 7→ 〈〈{α1 7→ p1

4, . . . , α
k 7→ pk4}, p3〉〉],

∆, XS , (l1, p5) · RS)

(5.29)

Comment: (Rule 5.29) The construction of a nullary polymorphic constructor
(e.g. c nil) is essentially the same as the instance function defined in Figure 5.5,
given pσ = ∆(con) and pτ = p1.

(H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

(H2, ∆2, XS 2, (l1, p1) · RS ′1, τ alloc(τ
k))⇒

(H3, ∆2, XS 2, p2 · (l1, p1) · RS ′1)

H3(∆(con)) = 〈〈{α1 7→ p1
3, . . . , α

k 7→ pk3}, p4〉〉 H3(p2) = p5
k

H3(p4) = p6 → p7 H3 ↑ l2 H3 ↑ p8

(H1, ∆1, XS 1, RS 1, con (con, τ k, E))⇒
(H3[l2 7→ con(l1)][p8 7→ 〈〈{α1 7→ p1

5, . . . , α
k 7→ pk5}, p7〉〉],

∆2, XS 2, (l2, p8) · RS ′1)

(5.30)

Comment: (Rule 5.30) As in the monomorphic case, the expression E is evaluated
to form the body of the constructor. For example, with the polymorphic unary
constructor c cons, the expression would evaluate to a tuple containing a list
element and the remainder of the list. The type of the constructor is derived
from an instance-style operation. However, note that the resulting type closure
is built using the result type p7 of the constructor function, rather than the
constructor type p4.

102

(H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

H2(∆2(con)) = p2 → p3 H2(l1) = con(l2)

(H1, ∆1, XS 1, RS 1, decon (con, E))⇒ (H2, ∆2, XS 2, (l2, p2) · RS ′1)

(5.31)

(H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

(H2, ∆2, XS 2, (l1, p1) · RS ′1, τ alloc(τ
k))⇒

(H3, ∆2, XS 2, p2 · (l1, p1) · RS ′1)

H3(∆(con)) = 〈〈{α1 7→ p1
3, . . . , α

k 7→ pk3}, p4〉〉 H3(p2) = p5
k

H3(p4) = p6 → p7 H3(l1) = con(l2) H3 ↑ p8

(H1, ∆1, XS 1, RS 1, decon (con, τ k, E))⇒
(H3[p8 7→ 〈〈{α1 7→ p1

5, . . . , α
k 7→ pk5}, p6〉〉], ∆2, XS 2, (l2, p8) · RS ′1)

(5.32)

Comment: (Rule 5.31 and 5.32) Deconstruction is the reverse of construction
(compare with Rules 5.28 and 5.30). Deconstruction is only applicable to unary
constructors. Note that it is now the argument type of the constructor function
which forms the type of the result.

Structured Expressions

(H1, ∆1, XS 1, RS 1, E
1)⇒ (H2, ∆2, XS2, RS 2) · · ·

(Hk, ∆k, XSk, RS k, E
k)⇒

(Hk+1, ∆k+1, XSk+1, (lk1 , p
k
1) · · · (l11, p1

1) · RS ′1)

Hk+1 ↑ l2 Hk+1 ↑ p2

(H1, ∆1, XS 1, RS 1, tuple E k)⇒
(Hk+1[l2 7→ (l11, . . . , l

k
1)][p2 7→ (p1

1, . . . , p
k
1)], ∆k+1,

XSk+1, (l2, p2) · RS ′1)

(5.33)

Comment: (Rule 5.33) A tuple is constructed by evaluating its members E k in
left-to-right order. The resulting (lk1 , p

k
1) pairs are kept on the result stack RS

until the last one is evaluated. A tuple is then allocated on the value heap (with
a corresponding type on the type heap) to hold the results.

(H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

H2(l1) = l2
k H2(p1) = p2

k

(H1, ∆1, XS 1, RS 1, select (i, E))⇒ (H2, ∆2, XS 2, (li2, p
i
2) · RS ′1)

(5.34)

103

(H1, ∆1, XS 1, RS 1, E1)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

H2(l1) = val cmap = {c1 7→ E1
2 , . . . , c

k 7→ Ek
2}

(H2, ∆2, XS 2, RS ′1, if (val ∈ Dom cmap) then cmap(val) else E3)⇒
(H3, ∆3, XS 3, (l, p) · RS ′′1)

(H1, ∆1, XS 1, RS 1, switch E1 case (cmap, E3))⇒
(H3, ∆3, XS 3, (l, p) · RS ′′1)

(5.35)

Comment: (Rule 5.35) The condition expression E1 is evaluated to obtain the
value val. If this value occurs in the domain of cmap, then the corresponding
expression E2 is evaluated. If there is no match, then the default expression E3

is evaluated.

(H1, ∆1, XS 1, ∆1 · RS 1, α alloc(σ))⇒ (H2, ∆2, XS 1, RS 2)

(H2, ∆1, XS 1, RS 2, E1)⇒ (H3, ∆2, XS 2, (l1, p1) · RS ′2)

(H3, ∆3, XS 2, (l1, p1) · RS ′2, σ alloc(σ, p1))⇒
(H4, ∆3, XS 2, p2 · (l1, p1) · ∆′1 · RS ′1)

(H4, ∆′1[x 7→ (l1, p2)], XS2, ∆′1 · RS ′1, E2)⇒
(H5, ∆4, XS 3, (l2, p3) · ∆′′1 · RS ′′1)

(H1, ∆1, XS 1, RS 1, let (x, σ) = E1 in E2)⇒
(H5, ∆′′1, XS 3, (l2, p3) · RS ′′1)

(5.36)

Comment: (Rule 5.36) The basic let rule is used to bind a single value to a
variable. The complexity of this rule arises from the fact that expressions always
return monomorphic types, although we may have polymorphic values. In order
to remain consistent with the static semantics (compare with Rule 3.41) the
evaluation is performed as follows: A copy of the environment is stored on the
result stack and the type variables (if any) are allocated. The expression E1 is
evaluated to obtain the value and type (l1, p1) of the variable. The type of the
value is then allocated on the heap, using the σ alloc function applied to the static
type σ and the monomorphic type referenced by p1. The old environment ∆′1 is
then restored from the result stack (although a copy remains on the result stack)
to remove the free type variables, as they are now bound in the type referenced
by p2. A binding is created in the main environment from the variable to its
value and type x 7→ (l1, p2), and the expression E2 is evaluated to obtain the
result (l2, p3). In the conclusion of the rule, the original environment ∆′′1 is again
restored from the result stack to remove the variable from the current scope. The
result stack is left containing only the pair (l2, p3). An example of this rule in
action is presented later in this chapter (Figure 5.9).

104

(H1, ∆1, XS 1, ∆1 · RS 1, α alloc(σ1))⇒ (H2, ∆2, XS 1, RS 2) · · ·
(Hk, ∆k, XS 1, RS 2, α alloc(σk))⇒ (Hk+1, ∆k+1, XS 1, RS 2)

(Hk+1, ∆k+1, XS 1, RS 2, E1)⇒
(Hk+2, ∆k+2, XS2, (l1, p1) · RS ′2)

Hk+2(p1) = p2
k

(Hk+2, ∆k+2, XS 2, (l1, p1) · RS ′2, σ alloc(σ
1, p1

2))⇒
(Hk+3, ∆k+3, XS2, RS 3) · · ·

(H2k+2, ∆2k+2, XS 2, RSk, σ alloc(σk, pk2))⇒
(H2k+3, ∆2k+3, XS 2, p

k
3 · · ·p1

3 · (l′1, p′1) · ∆′1 · RS ′1)

Hk+2(l1) = l2
k

(H2k+3, ∆′1[x1 7→ (l12, p
1
3), . . . , xk 7→ (lk2 , p

k
3)], XS2, ∆′1 · RS ′1, E2)⇒

(H2k+4, ∆2k+4, XS 3, (l3, p4) · ∆′′1 · RS ′′1)

(H1, ∆1, XS 1, RS , let (x, σ)k = E1 in E2)⇒
(H2k+4, ∆′′1, XS 3, (l3, p4) · RS ′′1)

(5.37)

Comment: (Rule 5.37) The second form of let rule binds a sequence of variables
to a tuple of values. The steps performed by this rule are essentially the same as
the basic let expression, though each is repeated k times.

Function Expressions

(H1, ∆1, XS 1, RS 1, E1)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

(H2, ∆2, XS 2, (l1, p1) · RS ′1, E2)⇒ (H3, ∆3, XS 3, (l2, p2) · (l′1, p′1) · RS ′′1)

H3(l′1) = 〈〈∆c, (x), Ec〉〉
(H3, ∆c[x 7→ (l2, p2)], XS3, ∆3 · RS ′′1, Ec)⇒

(H4, ∆4, XS 4, (l3, p3) · ∆′3 · RS ′′′1)

(H1, ∆1, XS 1, RS 1, app (E1, E2))⇒ (H4, ∆′3, XS4, (l3, p3) · RS ′′′1)

(5.38)

Comment: (Rule 5.38) The function application rule applies the function expres-
sion E1 (which evaluates to a closure) to the argument expression E2. Evaluation
inMΛ is performed in a strict call-by-value manner. Firstly, both expressions are
evaluated in left-to-right order. The closure is then obtained from the result of
E1, and the result of E2 is bound to the variable x in the closure environment ∆c.
The body of the closure Ec is then evaluated in this environment. The previous
environment ∆′3 is then restored. The result of the function application remains
on the result stack.

105

(H1, ∆1, XS 1, RS 1, E1)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

(H2, ∆2, XS 2, (l1, p1) · RS ′1, E
1
2)⇒ (H3, ∆3, XS 3, RS 2) · · ·

(Hk+1, ∆k+1, XSk+1, RSk, Ek
2)⇒

(Hk+2, ∆k+2, XSk+2, (lk2, p
k
2) · (l12, p1

2) · (l′1, p′1) · RS ′′1)

Hk+2(l′1) = 〈〈∆c, x
k, Ec〉〉

(Hk+2, ∆c[x1 7→ (l12, p
1
2), . . . , xk 7→ (lk2, p

k
2)], XSk+2, ∆k+2 · RS ′′1, Ec)⇒

(Hk+3, ∆k+3, XSk+3, (l3, p3) · ∆′k+2 · RS ′′′1)

(H1, ∆1, XS 1, RS 1, app (E1, E2
k))⇒ (Hk+3, ∆′k+2, XSk+3, RS ′′′1)

(5.39)

Comment: (Rule 5.39) When applying a function to a sequence of arguments in
a strict manner, the arguments must all be evaluated in left-to-right order before
the actual application may occur.

(H1, ∆1, XS 1, ∆1 · RS 1, α alloc(σ1))⇒ (H2, ∆2, XS1, RS 2) · · ·
(Hk, ∆k, XS 1, RS 2, α alloc(σk))⇒ (Hk+1, ∆k+1, XS 1, RS 2)

(Hk+1, ∆k+1, XS1, RS 2, τ alloc(mono(σ1)))⇒
(Hk+2, ∆k+1, XS 1, RS 3) · · ·

(H2k, ∆k+1, XS 1, RS k+1, τ alloc(mono(σk)))⇒
(H2k+1, ∆k+1, XS1, p

k
1 · · ·p1

1 · RS 2)

H2k+1 ↑ (l11, . . . , l
k
1)

(H2k+1[l11 7→ Ω, . . . , lk1 7→ Ω],

∆k+1[x1 7→ (l11, p
1
1), . . . , xk 7→ (lk1 , p

k
1)], XS 1, RS 2, E

1
1)⇒

(H2k+2, ∆k+2, XS 2, RS3) · · ·
(H3k, ∆2k, XSk, RSk+3, E

k
1)⇒

(H3k+1, ∆2k+1, XSk+1, (lk2, p
k
2) · · · (l12, p1

2) · RS ′2)

(H3k+1, ∆2k+1, XSk+1, RS ′2, σ alloc(σ1, p
1
2))⇒

(H3k+2, ∆2k+1, XSk+1, RS 3) · · ·
(H4k, ∆2k+1, XSk+1, σ alloc(σ1, p

1
2))⇒

(H4k+1, ∆2k+1, XSk+1, p
k
3 · · ·p1

3 · ∆′1 · RS ′1)

(H4k+1[l11
upd7→ l12, . . . , l

k
1

upd7→ lk2],

∆′1[x1 7→ (l11, p
1
3), . . . , xk 7→ (lk1, p

k
3)], XSk+1, RS ′1, E2)⇒

(H4k+2, ∆2, XSk+2, (l4, p4) · RS ′′1)

(H1, ∆1, XS 1, RS 1, fix (x, σ) = E1
k in E2)⇒

(H4k+2, ∆2, XSk+2, (l4, p4) · RS ′′1)

(5.40)

Comment: (Rule 5.40) The fixed point rule is clearly the most complex in the
abstract machine. As with the let rule, the majority of this complexity arises

106

from the treatment of polymorphism in MΛ, and the fact that we must remain
consistent with the static semantics (compare with rule 3.44). Recall, that for
typing purposes, the variables are bound to monomorphic types (mono(σ)) during
the evaluation of the function expressions E1, and are rebound to polymorphic
types σ during the evaluation of the main expression E2. Also, the variables
must all be present in the environment before any of the function expressions
can be evaluated, since any function may refer to any other. Since we do not
allow dangling pointers (as they would be invalidated by garbage collection), the
variables are initially bound to dummy closures Ω, and are later updated to the
actual function closures.

References and Exceptions

(H1, ∆1, XS 1, RS 1, E1)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

(H2, ∆2, XS 2, (l1, p1) · RS ′1, E2)⇒ (H3, ∆3, XS 3, (l2, p2) · (l′1, p′1) · RS ′′1)

(H1, ∆1, XS 1, RS 1, assign (E1, E2))⇒
(H3[l′1

upd7→ c ref(l2)], ∆3, XS 3, ∆3(UNIT) · RS ′′1)

(5.41)

Comment: (Rule 5.41) Assignment uses the update operation l1
upd7→ c ref(l2) to

update the reference at l1 to c ref(l2). For consistency we return UNIT on the
result stack.

(H1, ∆1, (), RS 1, E)⇒ (H2, ∆2, (), (l, p) · RS ′1)

(H1, ∆1, (), RS 1, raise (E, τ))⇒ halt (H2, ∆2, (), (l, p) · RS ′1)
(5.42)

Comment: (Rule 5.42) If there are no closures on the exception stack then a
raised exception will not be handled. The effect of an un-handled exception is to
halt the evaluation of the abstract machine.

(H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, (l1, p1) · XS 2, (l2, p2) · RS ′1)

H2(l1) = 〈〈∆c, (x), Ec〉〉
(H2, ∆c[x 7→ (l2, p2)], XS2, ∆2 · RS ′1, Ec)⇒

(H3, ∆3, XS 3, (l3, p3) · ∆′2 · RS ′′1)

(H1, ∆1, XS 1, RS 1, raise (E, τ))⇒ (H3, ∆′2, XS3, (l3, p3) · RS ′′1)

(5.43)

Comment: (Rule 5.43) If an exception is raised, and the exception stack is non-
empty, the closure at the top of the exception stack is evaluated (see Rule 5.38).

107

(H1, ∆1, XS 1, RS 1, E2)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

(H2, ∆2, (l1, p1) · XS 2, RS ′1, E1)⇒ (H3, ∆3, (l′1, p
′
1) · XS ′2, (l2, p2) · RS ′′1)

(H1, ∆1, XS 1, RS 1, handle E1 with E2)⇒ (H3, ∆3, XS 3, (l2, p2) · RS ′′1)

(5.44)

Comment: (Rule 5.44) This rule ensures that an exception raised in E1 is handled
by E2. This amounts to simply applying Rule 5.25 to E2 and placing it on
the exception stack while E1 is evaluated. The raise rule performs the actual
evaluation of the exception handler.

5.3 Example Evaluation

The machine transitions are unfortunately rather complex. This is mainly due
to the efficient representation of polymorphism, and the need to carry the entire
machine state through each rule. To illustrate the rules in action, we present
an example in Figure 5.9. In this example we declare and bind a polymorphic
identity function to the variable ‘ident’. The example should be compared with
the earlier type checking example in Chapter 3. Note that we are only evaluating
the function expression here, not the entire program as before. Owing to page-
width restrictions, we have used indentation to express the evaluation order. The
rules are triggered in the following order: Rule 5.36, Rule 5.8, Rule 5.25, Rule 5.4,
Rule 5.5, Rule 5.5, Rule 5.12, etc. The result of the evaluation is the pair (l2, p4)
on the result stack.

It is worth noting that the evaluation forms an inference-style tree struc-
ture. This is very similar to the graph-reduction style of evaluation, e.g. the
G-machine [Pey87]. However, the actual evaluation path in our abstract machine
is defined by a strict depth-first traversal of the tree. We cannot apply graph-
reduction techniques such as out-of-order or lazy evaluation owing to side-effects
and exceptions in our language.

It is also the case that the runtime types generated at each stage of the eval-
uation correspond directly to the static types generated at each stage of elab-
oration. In an untyped dynamic semantics, a type-soundness proof [WF94] is
often performed to ensure that the static and dynamic semantics are consistent.
However, this kind of proof is significantly simplified by the presence of runtime
type information. InMΛ there is a one-to-one correspondence between the static
and dynamic types, and so we consider this kind of proof unnecessary.

108

H1 ↑ (p1)

(H1, ∆1, XS 1, ∆1 · RS1, α alloc(∀(α). α→ α))⇒ (H1[p1 7→ α]︸ ︷︷ ︸
H2

, ∆1[α 7→ p1]︸ ︷︷ ︸
∆2

, XS 1, RS2)

 (5.8)

(H2, ∆2, XS1, RS2, τ alloc(α))⇒ (H2, ∆2, XS 1, ∆2(α)︸ ︷︷ ︸
= p1

· RS2)

 (5.5)

(H2, ∆2, XS1, p1 · RS2, τ alloc(α))⇒ (H2, ∆2, XS1, ∆2(α)︸ ︷︷ ︸
= p1

· p1 · RS2)

 (5.5)

H2 ↑ p2

(H2, ∆2, XS1, RS2, τ alloc(α→ α))⇒ (H2[p2 7→ p1 → p1]︸ ︷︷ ︸
H3

, ∆2, XS1, p2 · RS2)

(5.4)

H3 ↑ l1
(H2, ∆2, XS 1, RS2, fn (x, α→ α) = var x)⇒ (H3[l1 7→ 〈〈∆, (x), var x〉〉]︸ ︷︷ ︸

H4

, ∆2, XS 1, (l1, p2) · RS ′2)

(5.25)

H4 ↑ p3

(H4, ∆2, XS 1, (l1, p2) · RS ′2, σ alloc(∀(α). α→ α, p2))⇒ (H4[p3 7→ 〈〈α 7→ ∆2(α), p2〉〉]︸ ︷︷ ︸
H5

, ∆2, XS1, p3 · (l1, p2) · ∆′1 · RS ′1︸ ︷︷ ︸
from RS′2

)

 (5.12)

. . .

(H5, ∆′1[ident 7→ (l1, p3)], XS1, ∆′1 · RS ′1, . . .)⇒ (H6, ∆3, XS2, (l2, p4) · ∆′′1 · RS ′′1)

}
(· · ·)

(H1, ∆1, XS1, RS1, let (ident, ∀(α). α→ α) = (fn (x, α→ α) = var x) in . . .)⇒ (H6, ∆′′1 , XS2, (l2, p4) · RS ′′1)

(5.36)

F
igure

5.9:
E

valuation
E

xam
ple.

109

Chapter 6

Memory Management in MΛ

Memory is typically modelled using a stack and a heap. The stack holds tempor-
ary values of known size whose lifetime is determined by function applications,
e.g. function parameters and local variables. The heap holds all other values, e.g.
closures and dynamic data structures. Memory management of the stack is relat-
ively straightforward as values are simply added or removed from the top of the
stack. By contrast, the management of the heap is considerably more challenging,
and therefore forms the topic of this chapter.

Without a system for automatic heap management, the programmer is left to
manage the heap using explicit allocation and deallocation facilities, e.g. malloc
and free in C. For non-trivial programs this can be a very significant burden
as it is, in general, very difficult to ensure that an area of memory will not be
required by a later computation. If memory is deallocated too hastily, then the
program will fail when it requires a value that has been removed. Conversely,
if memory is deallocated too conservatively, then the program may exhaust the
supply of memory available.

The prevailing technique for automatic memory management of the heap is
garbage collection. Heap allocation is performed (implicitly) by the programmer,
and deallocation by the garbage collector. Garbage collection is based on the
idea that if a value is reachable, either from the stack or from a set of roots, then
it must not be discarded. A survey of different garbage collection techniques is
presented in [Wil92] and [JL96]. In this chapter we present an abstract machine
formalism of garbage collection which integrates with the dynamic semantics of
MΛ. Our formalisation is based on a two-space copying garbage collection al-
gorithm which utilises the tag-free technique described in [Tol94]. We will extend
this formalism to a distributed setting in Chapter 8. As with the dynamic se-
mantics, the distributed case is a generalisation of the sequential case. Earlier
versions of this abstract machine appeared in [Wal99] and [WKG00].

110

6.1 Copying Garbage Collection

Before proceeding with our definition, we will briefly describe the basic two-space
copying algorithm, illustrated in Figure 6.1. The advantages of the two-space
technique are well known, for example, the data is compacted during collection
which improves locality, and cyclic garbage is removed. The address space of the
heap is divided into two contiguous semi-spaces. During normal program exe-
cution, only one of these semi-spaces is used. Memory is allocated in a linear
fashion until garbage collection appears to be profitable. At this point, the copy-
ing collector is called to reclaim space. The current semi-space (from space) is
recursively scanned from the root objects in a depth-first fashion, and all reach-
able objects (via pointers) are copied into the other semi-space (to space). When
all of the objects that are reachable from the roots have been copied, the collection
is finished, and the old semi-space (from space) can be discarded. Subsequent
memory allocations are performed in the new space (to space). The role of the
semi-spaces is then reversed for the next garbage collection.

Garbage

TO SpaceFROM Space

Roots

Free Memory

Before Collection After Collection

Figure 6.1: Two-Space Copying Garbage Collection

6.1.1 Tag-free Collection

One of the main difficulties with garbage collection is distinguishing between
pointers and data values during the scanning process. For example, it is not
immediately apparent whether location 102 of the value heap in Figure 6.2 con-
tains the integer 100 or a pointer to location 100. Therefore, garbage-collected
languages typically use headers and extra data fields, called tags, to store the
lengths of data items, and to distinguish between pointers and integers. Remov-
ing these tags would considerably decrease the space requirements of a program,
and save allocation time. Furthermore, it would allow a more natural style of rep-

111

resentation, much closer that used by the machine, and therefore save processing
time, e.g. removing the tags on integers when performing arithmetic operations.
This approach was first demonstrated in the STG machine [Pey92].

Our garbage collection algorithm adopts the typed tag-free style of [Tol94].
In principle, this technique may be applied to any language with strong static
typing. In Chapter 5, we paired every location l with a pointer p. We can
use the type information referenced by p to determine the shape of the value
referenced by l, and therefore distinguish between pointers and values without
resorting to the use of tags. This gives rise to a symmetric garbage collection;
during the collection process the collector continually maintains one pointer in
the value heap, and another pointer on the corresponding type in the type heap.
This is illustrated in Figure 6.2. The value 1 at location 100 in the value heap is
paired with the type t bool at location 12 in the type heap. The garbage collector
can therefore determine that the value 1 corresponds to the boolean truth value
and is not a pointer. The value 102 at location 101 in the value heap is paired
with the type t ref(11). Since references are represented by pointers, the garbage
collector determines that the value 102 is a pointer, and the corresponding type
is at location 11 in the type heap. Thus, the value 100 at location 102 is paired
with the type t int and is therefore an integer. Note that we also garbage collect
the type information as a separate operation, as we may have types that are no
longer required.

Type HeapValue Heap

Roots

100

102

1

t_int

t_bool

t_ref(11)

102

101

100

12

11

10

Figure 6.2: Tag-free Collection

It may be argued that we have not really eliminated the tags, rather we have
simply moved them into the type heap. However, we now only require one type
t int in the type heap for all of the integers in the value heap, potentially a
considerable saving in space. Furthermore, we now have detailed information on
the values instead of simple tags. As we will see in later chapters, this information
is also of use for code replacement and optimisation.

112

6.2 Abstract Machine Garbage Collection

We define garbage collection using an abstract machine model. The syntax of the
abstract machine is defined in Figure 6.3. The state of the garbage collector is
the 4-tuple (Hf , Ht , PF , LF). The from semi-space (heap) is denoted Hf , and
the to semi-space (heap) is denoted Ht . When a type or a value is copied from Hf
into Ht , an entry is created in either PF or LF respectively. An entry p1 7→ p2 in
PF represents a copied type where p1 is the old type-pointer in Hf , and p2 is the
new type-pointer in Ht . Similarly, an entry l1 7→ l2 in LF represents a copied
value. These forwarding tables are used during garbage collection to ensure that
a type or value is copied only once between spaces. The type environment TE is
required for garbage collecting values with polymorphic types, due to the deferred
instantiation method described in Chapter 5.

Garbage Collection State GC ::= (Hf , Ht , PF , LF , TE)

From Semi-space Hf ::= H
To Semi-space Ht ::= H
Forwarding Type Pointer PF ::= p1 7→ p2
Forwarding Value Pointer LF ::= l1 7→ l2
Type Environment TE ::= α

map7→ p

Figure 6.3: Abstract Machine Syntax.

6.2.1 Top-level Machine Transitions

Garbage collection is defined by a transition between states of the abstract ma-
chine. Garbage collection is incorporated into the dynamic semantics of MΛ
through the Rule 6.1. The roots for the collection are the environment ∆, the
exception stack XS , and the result stack RS , at the point when garbage collec-
tion is initiated. We define the rules for collection of these roots below. The
complex issue of when to initiate a collection will not be dealt with in detail here.
However, a discussion can be found in [App92] where the author arrives at the
following rule:

• For some constant R > 1, when current memory usage is more than R times
the amount of reachable data preserved by the previous garbage collection,
start a new garbage collection.

113

Initiation
(Hf , ∅, ∅, ∅, ∅, ∆1)⇒gc (Hf , Ht1, PF1, LF1, TE , ∆2)

(Hf , Ht1, PF 1, LF1, TE , XS 1)⇒gc (Hf , Ht2, PF2, LF2, TE , XS 2)

(Hf , Ht2, PF 2, LF2, TE , RS 1)⇒gc (Hf , Ht3, PF 3, LF 3, TE , RS 2)

(Ht3, ∆2, XS2, RS 2, E)⇒ (Ht4, ∆3, XS 3, RS 3)

(Hf , ∆1, XS 1, RS 1, E)⇒ (Ht4, ∆3, XS3, RS 3)

(6.1)

Comment: (Rule 6.1) Collection can occur when an expression (or sub-expression)
E is to be evaluated (using the rules from Chapter 5). At this point, the machine
is interrupted, the garbage collector is initialised, and collection proceeds from
each of the roots in turn. Once collection has completed, Hf is discarded, and
the evaluation of E resumes with the new abstract machine state.

Stack Collection

(Hf , Ht , PF , LF , TE , ())⇒gc (Hf , Ht , PF , LF , TE , ())
(6.2)

(Hf , Ht1, PF 1, LF1, TE , p1)⇒gc (Hf , Ht2, PF 2, LF1, TE , p2)

(Hf , Ht2, PF 2, LF1, TE , S1)⇒gc (Hf , Ht3, PF 3, LF2, TE , S2)

(Hf , Ht1, PF 1, LF1, TE , p1 · S1)⇒gc (Hf , Ht3, PF 3, LF2, TE , p2 · S2)

(6.3)

(Hf , Ht1, PF 1, LF1, TE , p1)⇒gc (Hf , Ht2, PF 2, LF1, TE , p2)

(Hf , Ht2, PF 2, LF1, TE , (l1, p1))⇒gc (Hf , Ht3, PF 3, LF2, TE , (l2, p2))

(Hf , Ht3, PF 3, LF2, TE , S1)⇒gc (Hf , Ht4, PF 4, LF3, TE , S2)

(Hf , Ht1, PF 1, LF1, TE , (l1, p1) · S1)⇒gc

(Hf , Ht4, PF4, LF3, TE , (l2, p2) · S2)

(6.4)

(Hf , Ht1, PF 1, LF1, TE , ∆1)⇒gc (Hf , Ht2, PF 2, LF2, TE , ∆2)

(Hf , Ht2, PF 2, LF2, TE , S1)⇒gc (Hf , Ht3, PF 3, LF3, TE , S2)

(Hf , Ht1, PF 1, LF1, TE , ∆1 · S1)⇒gc (Hf , Ht3, PF 3, LF3, TE , ∆2 · S2)

(6.5)

Comment: (Rules 6.2 to 6.5) The garbage collection of the stacks XS and RS
is defined inductively. The base case is Rule 6.2; an empty stack requires no
collection. The remaining rules perform the recursive step; the item on the top
of the stack is garbage collected to give a new item, then the remainder of the
stack S1 is garbage collected to give a new stack S2, finally the item is pushed
onto the top of the stack S2. The stacks may contain type pointers (Rule 6.3),
pairs of locations and pointers (Rule 6.4), and environments (Rule 6.5).

114

Environment Collection
∆1 = (TE1, VE1, DE 1, CE1) TE1 = {α1 7→ p1

1, . . . , α
k 7→ pk1}

(Hf , Ht1, PF 1, LF1, TE , p1
1)⇒gc (Hf , Ht2, PF2, LF1, TE , p1

2) · · ·
(Hf , Htk, PF k, LF1, TE , pk1)⇒gc (Hf , Htk+1, PFk+1, LF 1, TE , pk2)

TE2 = {α1 7→ p1
2, . . . , α

k 7→ pk2}
VE1 = {x1 7→ (l11, p

1
3), . . . , xl 7→ (ll1, p

l
3)}

(Hf , Htk+1, PFk+1, LF 1, TE , p1
3)⇒gc

(Hf , Htk+2, PF k+2, LF1, TE , p1
4) · · ·

(Hf , Htk+l, PFk+l, LF1, TE , pl3)⇒gc

(Hf , Htk+l+1, PF k+l+1, LF1, TE , pl4)

(Hf , Htk+l+1, PF k+l+1, LF1, TE , (l11, p
1
3))⇒gc

(Hf , Htk+l+2, PFk+l+2, LF2, TE , (l12, p
1
4)) · · ·

(Hf , Htk+2l, PFk+2l, LF l, TE , (ll1, p
l
3))⇒gc

(Hf , Htk+2l+1, PF k+2l+1, LF l+1, TE , (ll2, p
l
4))

VE2 = {x1 7→ (l12, p
1
4), . . . , xl 7→ (ll2, p

l
4)}

DE 1 = {tn1 7→ p1
5, . . . , tnm 7→ pm5 }

(Hf , Htk+2l+1, PFk+2l+1, LF l+1, TE , p1
5)⇒gc

(Hf , Htk+2l+2, PF k+2l+2, LF l+1, TE , p1
6) · · ·

(Hf , Htk+2l+m, PF k+2l+m, LF l+1, TE , pm5)⇒gc

(Hf , Htk+2l+m+1, PFk+2l+m+1, LF l+1, TE , pm6)

DE 2 = {tn1 7→ p1
6, . . . , tnm 7→ pm6 }

CE1 = {con1 7→ p1
7, . . . , con

n 7→ pn7}
(Hf , Htk+2l+m+1 , PF k+2l+m+1, LF l+1, TE , p1

7)⇒gc

(Hf , Htk+2l+m+2, PFk+2l+m+2, LF l+1, TE , p1
8) · · ·

(Hf , Htk+2l+m+n, PF k+2l+m+n, LF l+1, TE , pn7)⇒gc

(Hf , Htk+2l+m+n+1 , PFk+2l+m+n+1 , LF l+1, TE , pn8)

CE2 = {con1 7→ p1
8, . . . , con

n 7→ pn8} ∆2 = (TE2, VE 2, DE 2, CE2)

(Hf , Ht1, PF 1, LF1, TE , ∆1)⇒gc

(Hf , Htk+2l+m+n+1 , PFk+2l+m+n+1 , LF l+1, TE , ∆2)

(6.6)

Comment: (Rule 6.6) Garbage collecting an environment ∆1 yields a new environ-
ment ∆2. The environment ∆1 is decomposed into sub-environments TE 1, VE 1,
DE 1, and CE 1. These sub-environments are further decomposed into sequences
of mappings. All of the pointers and locations contained within the ranges of
these mappings are garbage collected, and new mappings are constructed from
the results. The old mappings reference the from heap Hf , while the new map-
ping reference the to heap Ht . These new mappings are subsequently combined
into new sub-environments, resulting in the new environment ∆2.

115

6.2.2 Type Collection

We define the collection of the type information in this section. Unlike the collec-
tion of the values which follows, there is no potential confusion between integers
and pointers, and therefore we can perform a straightforward copying collection.
In actual fact, a copy of the types is not performed, rather the reachable types
are reallocated from scratch in the to heap. This reallocation process effects the
compaction of the type information.

Garbage collection of the types is defined by Rule 6.7 through 6.13. Each of
the rules attempts the collection of a type, referenced by a pointer p1, in the from
heap Hf . Each of these types is essentially a graph structure in Hf . Collection
corresponds to a depth-first traversal of this graph. As the collector descends the
graph, a pointer is reserved in Ht to hold the type, although a copy is not made
at this stage, and an entry is created in the forwarding table which maps the old
pointer to the new pointer PF [p1 7→ p2]. As the collector re-ascends the graph,
the types are copied (i.e. reallocated) into Ht using the pointers returned from the
collection of the child types. Cycles in the traversal are eliminated by Rule 6.7,
which ensures that a type is collected only once. This is achieved through a
comparison of the pointer p1 with the entries in the forwarding table PF . Each
of the remaining rules performs the collection of a different type. If the type is
a type name (Rule 6.8), or type variable (Rule 6.12), and therefore contains no
children, then the type is simply reallocated in Ht and the collection is complete.
However, if the type contains pointers to child types, then the rules are invoked
recursively to perform the traversal. Each rule returns a pointer to the collected
type in Ht .

p1 ∈ Dom PF

(Hf , Ht , PF , LF , TE , p1)⇒gc (Hf , Ht , PF , LF , TE , PF (p1))
(6.7)

Comment: (Rule: 6.7) This rule ensures that we do not collect a type more than
once. We simply return a pointer to the type in Ht obtained from PF .

p1 /∈ Dom PF Hf (p1) = tn Ht ↑ p2

(Hf , Ht , PF , LF , TE , p1)⇒gc

(Hf , Ht [p2 7→ tn], PF [p1 7→ p2], LF , TE , p2)

(6.8)

Comment: (Rule: 6.8) A type name (corresponding to a special constant or nul-
lary constructor) contains no additional type pointers. Therefore, the type name
is allocated directly in Ht , and the pointer p2 returned.

116

p1 /∈ Dom PF 1 Hf (p1) = tn(p2) Ht1 ↑ p3

(Hf , Ht1, PF 1[p1 7→ p3], LF , TE , p2)⇒gc (Hf , Ht2, PF 2, LF , TE , p4)

(Hf , Ht1, PF 1, LF , TE , p1)⇒gc

(Hf , Ht3[p3 7→ tn(p4)], PF 3, LF , TE , p3)

(6.9)

Comment: (Rule 6.9) A constructor type contains a single type pointer: tn(p2).
The pointer p2 is collected yielding a new pointer p4, which is combined with
the original type name to form the new constructor type tn(p4). Note that the
mapping p1 7→ p3 is added to the forwarding table PF 1 before these types are
collected.

p1 /∈ Dom PF 1 Hf (p1) = p2
k Ht1 ↑ p3

(Hf , Ht1, PF 1[p1 7→ p3], LF , TE , p1
2)⇒gc (Hf , Ht2, PF 2, LF , TE , p1

4) · · ·
(Hf , Htk, PF k, LF , TE , pk2)⇒gc (Hf , Htk+1, PFk+1, LF , TE , pk4)

(Hf , Ht1, PF 1, LF , TE , p1)⇒gc

(Hf , Htk+1[p3 7→ p4
k], PFk+1, LF , TE , p3)

(6.10)

p1 /∈ Dom PF 1 Hf (p1) = p2 → p3 Ht1 ↑ p4

(Hf , Ht1, PF 1[p1 7→ p4], LF , TE , p2)⇒gc (Hf , Ht2, PF 2, LF , TE , p5)

(Hf , Ht2, PF 2, LF , TE , p3)⇒gc (Hf , Ht3, PF3, LF , TE , p6)

(Hf , Ht1, PF 1, LF , TE , p1)⇒gc

(Hf , Ht3[p4 7→ p5 → p6], PF 3, LF , TE , p4)

(6.11)

p1 /∈ Dom PF Hf (p1) = α Ht ↑ p2

(Hf , Ht , PF , LF , TE , p1)⇒gc

(Hf , Ht [p2 7→ α], PF [p1 7→ p2], LF , TE , p2)

(6.12)

p1 /∈ Dom PF 1 Hf (p1) = 〈〈TE1, p2〉〉 Ht1 ↑ p3

TE1 = {α1 7→ p1
4, . . . , α

k 7→ pk4}
(Hf , Ht1, PF 1[p1 7→ p3], LF , TE , p1

4)⇒gc (Hf , Ht2, PF 2, LF , TE , p1
5) · · ·

(Hf , Htk, PF k, LF , TE , pk4)⇒gc (Hf , Htk+1, PFk+1, LF , TE , pk5)

TE2 = {α1 7→ p1
5, . . . , α

k 7→ pk5}
(Hf , Htk+1, PFk+1, LF , TE , p2)⇒gc (Hf , Htk+2, PFk+2, LF , TE , p6)

(Hf , Ht1, PF 1, LF , TE , p1)⇒gc

(Hf , Htk+2[p3 7→ 〈〈TE2, p6〉〉], PF k+2, LF , TE , p3)

(6.13)

Comment: (Rule: 6.13) A type closure contains a type environment. We collect
this environment TE 1 in a similar manner to Rule 6.6 by decomposing the envir-
onment into mappings, collecting the ranges of these mappings, and constructing
a new type environment TE 2.

117

6.2.3 Value Collection

Garbage collection of the values is defined in this section. As with the collection of
types, the collection corresponds to a depth-first traversal of the graph represented
by each value. However, we now have the potential for confusion between integers
and pointers, and therefore resort to the symmetric tag-free approach to collection
described earlier; at each stage of the collection we use the type to determine the
shape of the value.

The collection of the values is defined by Rule 6.14 through Rule 6.21. Each
rule operates on a pair (l1, p1) which references a value and the corresponding
type in Hf . Rule 6.14 ensures that we do not collect a value more than once by
comparing l1 with the forwarding table LF . Each of the remaining rules performs
the collection of a different value. The premises of these rules are very similar.
We first check that the value has not already been copied l1 /∈ Dom LF 1. We then
examine the type Hf (p1) associated with the value. This type information is used
to determine the shape of the value. Once the shape is known, we may extract the
value from the heap Hf (l1). We then reserve a location Ht ↑ l2 to hold the copied
value and update the forwarding table to point to this new location LF [l1 7→ l2].
The remaining steps depend on the value. If the value is a special constant or
constructor (Rule 6.15) then we simply reallocate the value in Ht and return the
new location. However, if the value contains any references to other locations,
we must collect these in depth-first fashion as before. The result of each rule is a
pair (l2, p2) containing a reference to the collected value, and its corresponding
type in Ht . The type pointer p2 is obtained from the forwarding table PF . This
pointer will always be available as the types of the lambda variables are collected
before their values (Rule 6.6). This step is necessary as we must always pair a
location with a pointer inMΛ, and it would be undesirable to pair a location in
Ht with a pointer in Hf .

l1 ∈ Dom LF LF(l1) = l2

(Hf , Ht , PF , LF , TE , (l1, p1))⇒gc (Hf , Ht , PF , LF , TE , (l2, PF (p1)))
(6.14)

l1 /∈ Dom LF Hf (p1) = tn Ht ↑ l2
(Hf , Ht , PF , LF , TE , (l1, p1))⇒gc

(Hf , Ht [l2 7→ Hf (l1)], PF , LF [l1 7→ l2], TE , (l2, PF (p1)))

(6.15)

Comment: (Rule 6.15) A special constant or nullary constructor, with corres-
ponding type tn , contains no additional references and may simply be copied
between heaps Ht [l2 7→ Hf (l1)].

118

l1 /∈ Dom LF1 Hf (p1) = tn(p2) Hf (l1) = con(l2) Ht1 ↑ l3
(Hf , Ht1, PF 1, LF1[l1 7→ l3], TE , (l2, p2))⇒gc

(Hf , Ht2, PF 2, LF2, TE , (l4, p3))

(Hf , Ht1, PF 1, LF1, TE , (l1, p1))⇒gc

(Hf , Ht2[l3 7→ con(l4)], PF2, LF2, TE , (l3, PF2(p1)))

(6.16)

Comment: (Rule 6.16) A value constructor con(l2) contains a reference to a value
l2. We must therefore copy this value before we can copy the value constructor. As
this value may itself reference other values, we must invoke the garbage collection
rules recursively to copy this value. We obtain the type of the value from the
type of the value constructor p2(p3). We construct a new pair (l2, p3) and invoke
the rules to obtain a new pair (l4, p4) which reference the copied value in Ht .
Finally, we copy and update the value constructor Ht [l4 7→ con(l4)].

l1 /∈ Dom LF1 Hf (p1) = p2
k Hf (l1) = l2

k Ht1 ↑ l3
(Hf , Ht1, PF 1[l1 7→ l3], LF1, TE , (l12, p

1
2))⇒gc

(Hf , Ht2, PF 2, LF2, TE , (l14, p
1
3)) · · ·

(Hf , Htk, PFk, LFk, TE , (lk2 , p
k
2))⇒gc

(Hf , Htk+1, PF k+1, LFk+1, TE , (lk4, p
k
3))

(Hf , Ht1, PF 1, LF1, TE , (l1, p1))⇒gc

(Hf , Htk+1[l3 7→ l4
k], PF k+1, LFk+1, TE , (l3, PFk+1(p1)))

(6.17)

Comment: (Rule 6.17) A tuple l2 k references a sequence of values. We therefore
adopt the same strategy as Rule 6.16 for copying these values. Using the type
of the tuple p2

k, we construct and garbage collect a sequence of pairs (l12, p1
2)

to (lk2 , pk2) which yields a new sequence of pairs (l14, p1
3) to (lk4 , pk3). Finally, we

construct a new tuple Htk+1[l3 7→ l4 k].

l1 /∈ Dom LF1 Hf (p1) = p2 → p3 Hf (l1) = 〈〈∆1, x
k, E〉〉 Ht1 ↑ l2

(Hf , Ht1, PF 1, LF1[l1 7→ l2], TE , ∆1)⇒gc

(Hf , Ht2, PF 2, LF2, TE , ∆2)

(Hf , Ht1, PF 1, LF1, TE , (l1, p1))⇒gc

(Hf , Ht2[l2 7→ 〈〈∆2, x
k, E〉〉], PF 2, LF2, TE , (l2, PF 2(p1)))

(6.18)

Comment: (Rule 6.18) A closure 〈〈∆1, xk, E〉〉 contains an environment ∆1 which
must be collected. We therefore invoke Rule 6.6 which yields a new environment
∆2. Finally, we copy and update the closure Ht [l2 7→ 〈〈∆2, x

k, E〉〉].

119

l1 /∈ Dom LF1 Hf (p1) = p2 → p3 Hf (l1) = Ω Ht ↑ l2
(Hf , Ht1, PF 1, LF1, TE , (l1, p1))⇒gc

(Hf , Ht2[l2 7→ Ω], PF 1, LF 2[l1 7→ l2], TE , (l2, PF 2(p1)))

(6.19)

Comment: (Rule 6.19) A dummy closure contains no environment and is therefore
simply copied into Ht .

l1 /∈ Dom LF1 Hf (p1) = α

(Hf , Ht1, PF 1, LF1, TE , (l1, TE1(α)))⇒gc

(Hf , Ht2, PF2, LF2, TE , (l2, p2))

(Hf , Ht1, PF 1, LF1, TE , (l1, p1))⇒gc

(Hf , Ht2, PF2, LF2, TE , (l2, PF 2(p1)))

(6.20)

l1 /∈ Dom LF1 Hf (p1) = 〈〈TE , p2〉〉
(Hf , Ht1, PF 1, LF1, TE , (l1, p2))⇒gc

(Hf , Ht2, PF2, LF2, TE , (l2, p2))

(Hf , Ht1, PF 1, LF1, ∅, (l1, p1))⇒gc

(Hf , Ht2, PF2, LF2, ∅, (l2, PF 2(p1)))

(6.21)

Comment: (Rule 6.20 and 6.21) As a result of the deferred instantiation of poly-
morphic types, defined in Chapter 5, a value may be paired with an instance
of a polymorphic type, represented by a type closure 〈〈TE , p2〉〉 (Rule 6.21). In
order to collect such values, we use the type environment of the garbage col-
lection abstract machine to store the mappings between the type variables and
their types, contained within the closure. We then invoke the value collection
rules recursively with the pair (l1, p2) and continue as before. On completing
the collection of the value, the type environment is cleared. Since MΛ does not
permit type schemes to be nested, we require only one type environment in the
garbage collection machine, which will always be empty at the beginning of the
rule. In the subsequent depth-first traversal, we may encounter a value paired
with a type variable (Rule 6.20). However, we can now obtain the necessary type
from the type environment, and thus we simply continue the collection with the
pair (l1, TE (α)).

120

6.3 Alternative Algorithms

The abstract machine model of garbage collection presented in this chapter is
both novel and powerful. We have presented a formalism of a two-space copy-
ing collector which makes all the details of memory management visible at just
the right level of detail for an implementation. It is worth noting that the ab-
stract machine model may easily be used to represent other garbage collection
algorithms. For example, a generational copying collector could be defined by
further segmentation of the heaps. Similarly, a mark and sweep collector may be
expressed by maintaining a list of free pointers and collecting over a single heap.
In both cases, the tag-free technique may be used, essentially without alteration,
to improve the efficiency of the collection. In Chapter 9 we define a distributed
variant of our copying collector. By introducing concurrency into the model, we
can further improve the efficiency of the collection. For example, we are no longer
forced to artificially order the collection of the roots as in Rule 6.1, rather we can
collect from all of the roots simultaneously. In this chapter we also address the
verification of the garbage collection algorithm. This is an essential step as an in-
correct algorithm will have a devastating effect on program execution behaviour.
In particular, we verify the algorithm for progress (correct termination), preser-
vation (no dangling pointers), and correctness (no corrupt data). The sequential
algorithm of this chapter corresponds directly to the distributed algorithm ex-
ecuting a single thread on a single processor.

∆1 = (TE , VE1]VE2, DE1, CE1]CE2)

CON (E) ⊆ Dom CE1

VAR(E) ⊆ Dom VE1

∆2 = (TE , VE1, DE1, CE1)

〈〈∆1, x
k, E〉〉 ⇒gc 〈〈∆2, x

k, E〉〉

(6.22)

Figure 6.4: Closure Garbage Collection.

The use of type information within the garbage collector enables a number of
extensions to the collection algorithm. For brevity, the model presented in this
chapter deals only with heap garbage collection. However, space leaks in the heap
may also result from stack and environment garbage. Stack garbage results from
recursive tail-calls, and environment garbage results from unused bindings. As
an example, Figure 6.4 illustrates the removal of unused bindings from closure
environments. CON returns the set of constructors which appear in E, and

121

VAR returns the set of variables which appear in E. This rule could readily
be combined with Rule 6.18 to improve the efficiency of the garbage collection
algorithm. The collection of stack garbage is a more complex problem, but could
be tackled with a similar approach.

It is also worth noting that an alternative to garbage collection, called re-
gion based memory management, has recently been developed [TT97]. In this
scheme, the memory is modelled using multiple stacks each containing values of
a single type. A sophisticated region inference algorithm is used to determine
the memory requirements of the program at compile-time, thereby avoiding the
need for runtime garbage collection. Although this technique appears to be very
promising, we will not make use of it here for a number of reasons. When using
regions, the programmer must have a very good intuition about region inference
to be able to construct programs without space leaks. This often requires the
use of a complex profiling operation. Furthermore, the first-in last-out pattern of
memory usage, arising from the use of multiple stacks, is often an inappropriate
model of the life-time of dynamic data in a program. Thus, it may in fact be
impossible to eliminate space-leaks in certain situations. It has been suggested
that these problems can be overcome by combining region inference with garbage
collection. However, this is outside the scope of this thesis. Our main reasons for
rejecting the region based technique are more pragmatic. The definition of region
inference contains a great number of rules, exceeding the definition of Stand-
ard ML in complexity. Thus, a great deal of effort would be needed to modify
these rules for code replacement. In addition, region-based memory management
is a very uncommon implementation technique in practice. Finally, the region
inference technique is designed for sequential operation and contains no obvious
method of integration into a distributed environment.

122

Chapter 7

Code Replacement

In this chapter we define a model of sequential code-replacement. We have laid
the foundations for our code-replacement technique in the preceding chapters.
However, before proceeding, we must first establish the association between code
replacement and the Standard ML module system. The complete module system
of [MTHM97] is somewhat daunting as it contains many complex though power-
ful features. To define code-replacement, it is necessary to make a number of
changes to the published definition. The most important of these is the removal
of transparent signature matching. The rationale behind this was discussed in
detail in Chapter 1. To summarise, we cannot allow the internal types of the
modules to be visible, since these types will change during replacement. While
this restriction does reduce the power of the language, it encourages a good pro-
gramming style making full use of abstraction. A similar restriction was made in
the definition of the CAML Special Light dialect [Ler95].

Our treatment of the module system has been strongly influenced by [Els99].
In keeping with this thesis, we consider the module system purely as a compile-
time framework. No runtime code for the module system is generated. This
framework also permits the separate compilation of modules using standard com-
piler linking mechanisms. In the remainder of this chapter, we will briefly define
the elaboration of the modules language in such a way as to ensure the correctness
of code replacement. We will then show how the module-level constructs of the
language may be removed. This operation results in a pure MΛ program which
can be evaluated by the abstract machine of Chapter 5. Finally, we will define
modular code-replacement as an extension of the garbage collection algorithm of
Chapter 6. The central idea is to use the fact that the garbage collector already
visits all of the live data of a program. With a number of relatively straightfor-
ward changes, the algorithm can perform an update of the program data to a new
representation.

123

7.1 Dynamic ML Modules

The syntax for our Dynamic ML modules language is shown in Figure 7.1. This
language introduces the identifiers strid, sigid , and funid for structures, signa-
tures, and functors respectively. It also refers to a number of syntactic categories
defined in Chapter 4. When compared with the modules grammar of Stand-
ard ML [MTHM97], the main omission is transparent signature matching, and
the associated sharing type constraint. The only connection between the mod-
ules language and the core language is the declaration dec inside a structure
strdec. We do not include other connections, such as open declarations, and
local structures.

As we saw in Chapter 1, the all-or-nothing nature of opaque signature match-
ing is undesirable in a number of code-replacement scenarios. Therefore, in ad-
dition to the Standard ML where type qualification, we include an additional
where datatype qualification which allows the details of certain hidden data-
type declarations to be constrained for replacement purposes.

program ::= topdec Modules Program
topdec ::= strdec Structure Declaration

| functor funid (strid : sigexp) = strexp Functor Declaration
| topdec1 〈;〉 topdec2 Sequence

strdec ::= structure strid = strexp Module Declaration
| dec Core Declaration
| strdec1 〈;〉 strdec2 Sequence

strexp ::= struct strdec end Structure Body
| strid Structure Identifier
| strexp :> sigexp Opaque Match
| funid (strexp) Functor Application

sigexp ::= sig spec end Signature
| sigexp where

type (tyvar1, · · ·, tyvarn) tycon = ty Type Qualification
| sigexp where datatype datbind Datatype Qualification

spec ::= val vid : ty
| type (tyvar1, · · ·, tyvarn) tycon
| datatype datbind
| exception vid 〈of ty〉
| structure strid : sigexp
| spec1 〈;〉 spec2

Figure 7.1: Dynamic ML Modules Grammar.

124

7.1.1 Elaboration of Modules

We will now define the elaboration of the modules language as an extension of the
elaboration of the core language presented in Chapter 4. The inference of types
for functions and values in the core language is complemented by the inference of
signatures for structures, but not functors, in the modules language. For brevity,
we only present the type system for the modules language. We do not define the
actual type checking algorithm in detail as we did for the core language.

Modules Environment E ::= (SE , Γ)
Structures SE ::= strid 7→ E
Signature Σ ::= (tn)(E)
Functor Signature Φ ::= (tn)(E , Σ)
Functors FE ::= funid 7→ Φ
Basis B ::= (FE , E)

Figure 7.2: Modules Typing Environments.

The typing environments (also called semantic objects) for the modules lan-
guage are illustrated in Figure 7.2. ML modules, called structures, are identified
by unique names strid. A structure may contain core-level declarations and/or
other structures, but not functors. To represent the structures in a program,
we introduce a modules environment E containing a core-environment Γ paired
with a structure environment SE . The structure environment SE maps structure
identifiers to module environments. Hence, a top-level module environment ref-
erences a hierarchy of structures and their corresponding module-environments.
It is worth noting that this is not a hierarchy in the object-oriented sense. Struc-
tures are just a packaging mechanism, and the structure hierarchy controls the
package visibility. There is no notion of inheritance between structures.

Signatures assume the role of type-schemes in the modules system. However,
while type schemes bind type variables, signatures bind type names. We write
a signature Σ as (tn)(E) to indicate that the type names tn are bound in the
modules environment E. When matching a signature against a structure, the
bound type names are instantiated while the free type names must match exactly.
Analogously to the notion of most general type, called the principal type, in the
core language there is a notion of most general signature in the modules language.
The principal signature for a structure is the most permissive one, allowing all
of the definitions in the structure body to be seen outside. We define signature
matching in more detail later in this chapter.

125

Functors are parameterised modules. The functor signature Φ is composed
from an argument signature (tn)(E), and a result signature Σ. The functor en-
vironment FE maps functor identifiers funid to functor signatures.

All of the phrases in the modules language are elaborated in a static basis B.
The basis performs the same role as the typing environment Γ in Chapters 3 and 4.
For simplicity, we write Γ ∈ B to refer to the top-level typing environment Γ in
B. This avoids the need to decompose the basis. We also apply the usual set-
theoretic operations to the basis as we did for the environment Γ in Chapter 4,
e.g. B ∪ E.

The typing judgements for the modules language are shown in Figure 7.3. We
have adopted the style of [Els99], rather than [MTHM97] in that all of the modules
judgements elaborate to signatures. This style makes the elaboration somewhat
more consistent between the Dynamic ML core and modules languages; phrases
in the core language elaborate toMΛ types and phrases in the modules language
elaborate to MΛ signatures. However, it is worth noting that the meaning of
the rules is preserved from [MTHM97] where appropriate. Before presenting
the modules type system, we discuss what it means for a module to match a
signature. This is only a brief outline. A detailed definition, together with a
proof of principality, can be found in [MT91].

B ` program : (tn)(B′) (program)

B ` topdec : (tn)(B′) (top-level declaration)

B ` strdec : Σ (structure declaration)

B ` strexp : Σ (structure expression)

B ` sigexp : Σ (signature expression)

B ` spec : Σ (specification)

Figure 7.3: Modules Typing Judgements.

A structure (module) S matches a signature Σ if, for some S′, S enriches S ′,
and S ′ is an instance of Σ. We write this using the notation Σ ≥ S′ ≺ S, where
≥ is an instantiation, and ≺ is an enrichment relation. This leaves us with the
task of defining these relations. Note that we have already met instantiation and
enrichment at the core language level. What we are defining here is an extension
of these concepts to the modules language.

Instantiation is a mechanism for hiding the implementation details of the type
components of a module. In order to be able to instantiate type names, we must
first define the notion of a realisation. A type realisation is a finite map from

126

type names to type schemes ϕ = tn map7→ σ, such that tn and ϕ(tn) have the
same arity. The support Supp ϕ of a realisation is defined as the set of type
names tn ∈ tn, for which ϕ(tn) 6= tn . The yield Yield ϕ of a realisation is the set
of type names which occur in some ϕ(tn) for which tn ∈ Supp ϕ. For example,
let tn1 be a type name with arity 1, and tn2 be a type name with arity 0. Then
applying the realisation ϕ = {tn1 7→ ∀α. α→ tn2} to the type τ = tn1(tn2) will
result in the type ϕ(τ) = tn2 → tn2, where Supp ϕ = {tn1}, and Yield ϕ = {tn2}.
Realisations are extended to apply to all semantic objects; their effect is to replace
each type name tn by ϕ(tn). In applying ϕ to to an object with bound names,
such as a signature (tn)(E), the bound names must first be changed, so that for
each binding prefix (tn), tn ∩ (Supp ϕ ∪ Yield ϕ) = ∅.

We can now define instantiation formally as follows: a modules environment
E ′ is an instance of a signature Σ = (tn)(E), written Σ ≥ E ′, if there exists a
realisation ϕ such that ϕ(E) = E ′, and Supp ϕ ⊆ tn . Instantiation also extends
to functor signatures; given a functor signature Φ = (tn)(E1, Σ1), a functor
instance (E2, Σ2) is an instance of Φ, written φ ≥ (E2, Σ2), if there exists a
realisation ϕ such that ϕ(E1, Σ1) = (E2, Σ2), and Supp ϕ ⊆ tn.

If S enriches S ′ then S is permitted to have more components and more
polymorphism than S ′, though S and S ′ must agree on the names of structure and
type components. Formally, an modules environment E1 = (SE 1, Γ1) enriches
another modules environment E2 = (SE 2, Γ2), written E1 ≺ E2, if all of the
following conditions hold:

1. Dom SE1 ⊆ Dom SE2 and SE1(strid) ≺ SE2(strid) for all strid ∈ Dom SE2.

2. Dom (VE1 ∈ Γ1) ⊆ Dom (VE2 ∈ Γ2) and VE1(x) ≺ VE2(x) for all x ∈
Dom VE2.

3. Dom (CE1 ∈ Γ1) ⊆ Dom (CE2 ∈ Γ2) and CE1(con) ≺ CE2(con) for all con ∈
Dom CE2.

4. Dom (DE1 ∈ Γ1) ⊆ Dom (DE2 ∈ Γ2) and DE1(tn) ≺ DE 2(tn) for all tn ∈
Dom DE2, where (n1, con1) ≺ (n2, con2) if:

(a) n1 = n2

(b) Either con1 = con2, or con2 = ∅

Signature matching is therefore a combination of instantiation and enrichment.
A module, represented by a module environment E matches a signature Σ iff there
is another module environment E ′ such that Σ ≥ E ′ ≺ E. For the purpose of
defining the type system, this definition is enough. However, what this definition
does not define is how the environment E ′ is actually obtained. For this, we need
to use a variant of algorithm W, although we will not present the details.

127

Modules Program B ` program : (tn)(B′)
B ` topdec : (tn)(B′)
B ` topdec : (tn)(B′)

(7.1)

Top-level Declaration B ` topdec : (tn)(B′)
B ` strdec : (tn)(E)

B ` strdec : (tn)(∅, E)
(7.2)

B ` sigexp : (tn)(E) tn ∩ tnames(B) = ∅
B[strid 7→ E] ` strexp : Σ FE = {funid 7→ (tn)(E , Σ)}
B ` functor funid (strid : sigexp) = strexp : (∅)(FE, ∅)

(7.3)

Comment: (Rule 7.3) The tnames function returns the set of all type names in
B. The condition tn ∩ tnames(B) = ∅ ensures that there is no accidental sharing
between E and B. The functor signature in FE is constructed using the elaborated
sigexp as argument signature and the elaborated strexp as the result signature.
The resulting set of bound type names is empty as it is functor application, not
declaration, which generates new type names.

B1 ` topdec1 : (tn1)(B2) B1 ∪ B2 ` topdec2 : (tn2)(B3)

(tn1 ∪ tn2) ∩ tnames(B1) = ∅ tn2 ∩ (tn1 ∪ tnames(B2)) = ∅
B1 ` topdec1 〈;〉 topdec2 : (tn1 ∪ tn2)(B2 ∪ B3)

(7.4)

Comment: (Rule 7.4) The conditions on the type names in this rule ensure that
type generativity is enforced i.e. no overlap between type names.

Structure Declaration B ` strdec : Σ
B ` strexp : (tn)(E)

B ` structure strid = strexp : (tn)({strid 7→ E}, ∅)
(7.5)

Γ ∈ B ` dec : Γ′ Γ′ = (TE , VE , DE , CE)

B ` dec : (Dom DE)(∅, Γ′)
(7.6)

Comment: (Rule 7.6) Elaborating a core declaration dec results in an environment
Γ′ containing all of the declarations in Γ together with the declarations of dec.
The environment Γ ∈ B refers to the top-level environment in B. The bound type
variables are those which occur in the datatype environment DE of Γ′.

128

B ` strdec1 : (tn1)(E1) B ∪ E1 ` strdec2 : (tn2)(E2)

(tn1 ∪ tn2) ∩ tnames(B) = ∅ tn2 ∩ (tn1 ∪ tnames(E1)) = ∅
B ` strdec1 〈;〉 strdec2 : (tn1 ∪ tn2)(E1 ∪ E2)

(7.7)

Comment: (Rule 7.7) As in Rule 7.4, generativity is enforced by the conditions
on the type names.

Structure Expression B ` strexp : Σ

B ` strdec : Σ

B ` struct strdec end : Σ
(7.8)

B(strid) = E
B ` strid : (∅)(E)

(7.9)

Comment: (Rule 7.9) When referring to a structure by name, a signature is
constructed from the modules environment of the structure in the basis. The set
of bound type names is empty since we have not applied any signature constraints.

B ` strexp : (tn1)(E1) B ` sigexp : (tn2)(E2)

(tn2)(E2) ≥ E3 ≺ E1 tn2 ∩ tnames(B) = ∅
B ` strexp :> sigexp : (tn2)(E2)

(7.10)

Comment: (Rule 7.10) This rule checks that the structure, represented by the
module environment E1, matches the signature (tn2)(E2). This signature is also
the overall result of the rule, due to opaque signature matching. If we were using
transparent signature matching, then the result would be the signature (tn1)(E1).
The condition tn2 ∩ tnames(B) = ∅ ensures that there is no sharing between the
signature and the basis.

B ` strexp : (tn1)(E1) B(funid) ≥ (E3, (tn2)(E2))

E1 � E3 (tn1 ∪ tn2) ∩ tnames(B) = ∅
B ` funid (strexp) : (tn1 ∪ tn2)(E2)

(7.11)

Comment: (Rule 7.11) This rule is very similar to Rule 7.10; the structure strexp
represented by the module environment E1 must match the argument part of the
functor signature. However, the type names of the functor argument propagate
to the result signature.

129

Signature Expression B ` sigexp : Σ

B ` spec : Σ

B ` sig spec end : Σ
(7.12)

B ` sigexp : (tn1)(E) tn1 ∩ tnames(B) = ∅ Γ ∈ B ` ty : τ

tycon ; tn2 tn2 ∈ tn1 E(tn2) = (0, con) ϕ = {tn2 7→ τ}
B ` sigexp where type () tycon = ty : (tn1)(ϕ(E))

(7.13)

Comment: (Rule 7.13) A where type qualification is used to make an internal
type of a module visible through an opaque signature, e.g. structure intgraph

:> GRAPH where type vertex = int. This is achieved by applying a realisation
ϕ, which exposes the type ty, over the opaque signature sigexp. To construct the
realisation, the signature expression and types are converted intoMΛ represent-
ations. We also check that the signature does not overlap with the basis, and
that the signature type tycon is actually present in the signature and has arity 0.

B ` sigexp : (tn1)(E) tn1 ∩ tnames(B) = ∅ Γ ∈ B ` ty : τ

tycon ; tn2 tn2 ∈ tn1 E(tn2) = (n, con)

tyvar1 ; α1 · · · tyvarn ; αn ϕ = {tn2 7→ ∀α n. τ}
B ` sigexp where type (tyvar1, · · ·, tyvarn) tycon = ty : (tn1)(ϕ(E))

(7.14)

Comment: (Rule 7.14) The where type qualification can be used with poly-
morphism types. The type variables are supplied as arguments and checked
against the arity of the signature type.

B ` sigexp : (tn1)(E) tn1 ∩ tnames(B) = ∅
Γ ∈ B, (tn1)(E) ` datbind : Σ

B ` sigexp where datatype datbind : Σ

(7.15)

Comment: (Rule 7.15) The where datatype qualification is required for code-
replacement in Dynamic ML. In addition to exposing the internal types of a
module, it also exposes the internal value constructors. A separate set of rules,
which we define below, are required. These rules have the form Γ, Σ1 ` datbind :
Σ2, where Σ1 is the opaque signature, datbind is the definition of the datatypes
which are to be made visible, and Σ2 is the resulting signature.

130

Datatype Binding Γ, Σ1 ` datbind : Σ2

tycon ; tn2 tn2 ∈ tn1 E1(tn2) = (0, ∅) Γ, tn2 ` conbind : CE

Γ, (tn1)(E1) ` () tycon = conbind : (tn1)(E1[tn2 7→ (0, Dom CE)] ∪ CE)
(7.16)

tycon ; tn2 tn2 ∈ tn1 E1(tn2) = (0, ∅) Γ, tn2 ` conbind : CE

Γ, (tn1)(E1[tn2 7→ (0, Dom CE)] ∪CE) ` datbind : (tn1)(E2)

Γ, (tn1)(E1) ` () tycon = conbind and datbind : (tn1)(E2)

(7.17)

Comment: (Rules 7.16 and 7.16) These rules expose the constructors of a non-
polymorphic datatype datbind in the signature (tn1)(E1). The type constructor
tycon is translated into aMΛ type name tn2. Checks are then performed on the
signature to ensure that the type name is bound, has arity 0, and initially has no
constructors. The constructors conbind which we want to expose are translated
into a constructor environment CE . This translation was defined in Chapter 4.
The constructor environment is appended to the signature environment E1 to
make the constructors visible. The entry for tn2 in the datatype environment of
E1 is also updated with the constructor names in CE . Finally, if there are any
more datatypes (Rule 7.17) they are processed by a recursive invocation of the
translation rule.

tycon ; tn2 tn2 ∈ tn1 E(tn2) = (n, ∅)
tyvar1 ; α1 · · · tyvarn ; αn ϕ = {tn2 7→ ∀αn. tn2(αn)}
Γ, tn2, α

n ` conbind : CE

Γ, (tn1)(E1) ` (tyvar1, · · ·, tyvarn) tycon = conbind :

(tn1)(ϕ(E1)[tn2 7→ (n, Dom CE)] ∪CE)

(7.18)

tycon ; tn2 tn2 ∈ tn1 E(tn2) = (n, ∅)
tyvar1 ; α1 · · · tyvarn ; αn ϕ = {tn2 7→ ∀αn. tn2(αn)}
Γ, tn2, α

n ` conbind : CE

Γ, (tn1)(ϕ(E1)[tn2 7→ (n, Dom CE)] ∪CE) ` datbind : (tn1)(E2)

Γ, (tn1)(E1) ` (tyvar1, · · ·, tyvarn) tycon = conbind and datbind : (tn1)(E2)

(7.19)

Comment: (Rules 7.18 and 7.19) Polymorphic datatypes are manipulated in a
similar manner. However, after the translation of the type variables tyvar toMΛ
type variables α, a check is performed to ensure that the arity of the type name
n is equal to the number of type variables. A realisation ϕ is also constructed to
expose the polymorphism of tn2 in the signature.

131

Specification B ` spec : Σ

vid ; x Γ ∈ B ` ty : τ ftvs(τ) = ∅
B ` val vid : ty : (∅)({x 7→ τ})

(7.20)

vid ; x Γ ∈ B ` ty : τ ftvs(τ) 6= ∅
B ` val vid : ty : (∅)({x 7→ ∀ftvs(τ). τ})

(7.21)

Comment: (Rules 7.20 and 7.21) A value declaration in a signature specification
is translated into an entry in the variable environment VE of the signature. A
totally closed type scheme is created for polymorphic declarations (Rule 7.21).

tycon ; tn

B ` type () tycon : ({tn})({tn 7→ (0, ∅)})
(7.22)

tyvar1 ; α1 · · · tyvarn ; αn tycon ; tn

B ` type (tyvar1, · · ·, tyvarn) tycon : ({tn})({tn 7→ (n, ∅)})
(7.23)

Comment: (Rules 7.22 and 7.23) A signature type is translated into a bound
type name in the signature. The arity of a polymorphic type is also recorded
(Rule 7.23).

Γ ∈ B ` datbind : (DE , CE)

B ` datatype datbind : (Dom DE)(∅, (∅, ∅, DE , CE))
(7.24)

Comment: (Rule 7.24) A datatype declaration is translated into a datatype en-
vironment and constructor environment by the translation rules of Chapter 4. All
of the type names in DE are bound in the signature.

vid ; con 〈Γ ∈ B ` ty : τ tvars(τ) = ∅〉
B ` exception vid 〈of ty〉 : (∅), ({con 7→ 〈τ →〉 t exn})

(7.25)

Comment: (Rule 7.25) An exception is treated as a constructor of a special
datatype t exn.

B ` sigexp : (tn)(E)

B ` structure strid : sigexp : (tn)({strid 7→ E})
(7.26)

B ` spec1 : (tn1)(E1) B ∪ E1 ` spec2 : (tn2)(E2) Dom E1 ∩Dom E1 = ∅
(tn1 ∪ tn2) ∩ tnames(B) = ∅ tn2 ∩ (tn1 ∪ tnames(E1)) = ∅
B ` spec1 〈;〉 spec2 : (tn1 ∪ tn2)(E1 ∪ E2)

(7.27)

132

7.2 Signature Replacement

There are two kinds of code replacement in Dynamic ML which are discussed
in Chapter 1, namely signature replacement, and module replacement. Signature
replacement allows more permissive signatures to replace more restrictive ones,
e.g. extending a signature with an extra function specification. Module replace-
ment allows the code of a module to be completely replaced by another. The only
restriction being that the replacement module must match the same signature.
Module replacement also requires all of the values which depend on the old mod-
ule to be updated to the new representation. Consequently, module replacement
is a significantly more complex operation than signature replacement.

In the following section we will define a translation from Dynamic ML toMΛ
which removes all of the module-level details. This produces a program that is
suitable for module replacement. However, this technique relies on the elaboration
to ensure that modules correctly implement their signatures. Therefore, signature
replacement must be performed at the elaboration stage. The name signature
replacement is somewhat misleading as the replacement must not change any
of the type information about visible types and values, except to make them
more permissive i.e. polymorphic. Signature replacement is essentially a one-way
operation and cannot be undone once applied. As noted in Chapter 1, the name
signature extension is possibly more appropriate. In fact, the kinds of extensions
that we wish to permit on signatures are precisely those provided by enrichment
which we have already defined. Figure 7.4 defines the enrichment of signatures
Σ1 ≺ Σ2 in terms of environment enrichment.

tn1 ⊆ tn2 E1 ≺ E2

(tn1)(E1) ≺ (tn2)(E2)
(7.28)

Figure 7.4: Signature Enrichment (replacement).

Signature replacement will typically be performed after a module replacement:
we replace a module with another one matching the same signature, and then at
some later stage replace the signature with a more permissive one to expose
additional functions which are present in the new module. When performing
signature replacement it is necessary to recompile all affected modules against
the new signature. In this thesis, we do not actually define the machinery by
which signature replacement and module replacement are implemented, although
we do discuss this issue briefly at the end of the chapter.

133

7.3 Translating Dynamic ML Modules to MΛ

What follows is a sketch of the translation of a Dynamic ML program with
module-level constructs into MΛ. We assume that the program has been elab-
orated successfully. Hence, the type information present in the signatures is no
longer required, just as type annotations in the core language were not used during
the translation in Chapter 4. The translation presented here is only an outline.
For simplicity we do not deal with a number of renaming issues as these would
require a tedious, though straightforward modification of all of the translation
rules in Chapter 4. We discuss these issues in more detail below. A comprehens-
ive definition of the modules translation technique, called static interpretation,
can be found in [Els99].

There are two basic steps performed in the translation of the module system:
specialisation of functors, and flattening of structures. Functors are specialised
into distinct structures at each application. Although this will yield a larger
program, functors are not allowed to be recursive, and so the specialisation process
will terminate. All of the resulting structures, together with those present in the
program, are then flattened and collated into a singleMΛ program. The result is
a program with no module-level constructs. The modules language is essentially
being treated as a compile-time linking language.

The translation described above produces an MΛ program suitable for eval-
uation by the abstract machine. However, an additional step must be performed
for code-replacement. Recall from Chapter 1 that code-replacement is achieved
by using special Install structures. These structures contain functions which
are used to translate between the old and new data representations. Clearly,
flattening these structures into the main program will not have the desired ef-
fect. Therefore, the translation step generates two programs: a MΛ program
containing a flattened representation of the Install structures, and a mainMΛ
program containing a flattened representation of the remaining functors and struc-
tures. Evaluation will begin by applying the Install program to perform the
code-replacement, followed by an evaluation of the main program.

The translation is defined by the rules given shown in Figure 7.5. The main
MΛ program is denoted by P , and the program containing the Install structures
is denoted by R. To express the functor specialisation operation, we use a functor
translation environment F ::= funid 7→ strexp, which maps functor identifiers
to functor bodies. The MΛ program is constructed cumulatively as the rules
are applied; in each rule R1 and P1 are the MΛ programs before performing the
translation, and R2 and P2 are the resultingMΛ programs after the translation.

134

B, S ` program; (P, R) (program)

S, (F1, P1, R1) ` topdec ; (F2, P2, R2) (top-level declarations)

S, (F1, P1, R1) ` strdec ; (F2, P2, R2) (structure declarations)

S, (F1, P1) ` strexp ; (F2, P2) (structure expressions)

Figure 7.5: Module Translation Rules.

Before defining the actual translation rules, we must deal with the issue of
identifier renaming. In Chapters 2 and 4, we insisted on unique identifier names
in MΛ and Dynamic ML programs. This allowed us to sidestep a number of
complicated scoping issues. However, with the addition of the module system, we
are forced to revisit the issue. The structure flattening technique described above
will fold the identifiers of a program into a single name-space. Hence, identifiers
belonging to different structures may potentially collide. It may appear that
we can fix this problem by extending the restriction that all the identifiers of a
program are unique, even those which reside in different structures. However, with
a bit of thought it is clear that this will not work with functors. When functor
specialisation is applied we will have multiple copies of the same structure and
hence multiple declarations of the same identifier. A better solution is the use
of fully-qualified identifiers. In Standard ML there is a class of long identifiers,
defined syntactically as:

longx ::= x
| strid1. · · · .stridn.x (n ≥ 1)

A long identifier may contain a list of structure identifiers which denote a hier-
archy. This hierarchy can be used to distinguish between identifiers of the same
name. A fully qualified identifier is a long identifier which contains the full hier-
archy of structures from the top-level. Although we do not have long identifiers
in MΛ, we can avoid name space collisions by using a string representation of
the equivalent fully quantified identifier. To illustrate this technique, we define a
function which will return a set of all the visible variable identifiers in a program.
This set contains string representations of the fully qualified variable names.

The function visibles(B) defined below takes a basis as an argument and
returns a pair of sets (x, x′). The first set contains the variables which are
defined outside Install structures, and the second set contains variables defined
inside Install structures. The function is defined recursively, beginning with
Rule 7.29. We assume that variables x are represented by strings, and we use
dot-notation to indicate string concatenation. The longid parameter is used to
accumulate the hierarchy of structure (and functor) identifiers.

135

FE = {funid1 7→ Φ1, . . . , funidn 7→ Φn}
` v isibles(funid1, Φ1) = (xn, xn

′) · · ·
` v isibles(funidn, Φn) = (xn, xn

′)

` v isibles(E) = (xn+1, xn+1
′)

` v isibles(FE , E) = (x1 ∪ · · · ∪ xn+1, x1
′ ∪ · · · ∪ xn+1

′)

(7.29)

Comment: (Rule 7.29) All of the functor signatures Φ are examined for visible de-
clarations, and the result is combined with the visible declarations in the modules
environment E.

` v isibles(longid, Σ) = (x, x′)

` v isibles(longid, (tn)(E , Σ)) = (x, x′)
(7.30)

Comment: (Rule 7.30) The visible declarations of a functor signature are only
those which are present in the result signature Σ.

` v isibles(longid, E) = (x, x′)

` v isibles(longid, (tn)(E)) = (x, x′)
(7.31)

SE = {strid1 7→ E1, . . . , stridn 7→ En}
` v isibles(longid, strid1, E1) = (x1, x1

′) · · ·
` v isibles(longid, stridn, En) = (xn, xn

′)

` v isibles(longid, Γ) = (xn+1, xn+1
′)

` v isibles(longid, (SE , Γ)) = (x1 ∪ · · · ∪ xn+1, x1
′ ∪ · · · ∪ xn+1

′)

(7.32)

Comment: (Rule 7.32) A modules environment will contain visible declarations
in both the structure environment SE and the core environment Γ.

strid = Install ` v isibles(longid.strid, Γ) = (x)

` v isibles(longid, strid, E) = (∅, x)
(7.33)

strid 6= Install ` v isibles(longid.strid, Γ) = (x)

` v isibles(longid, strid, E) = (x, ∅)
(7.34)

Comment: (Rules 7.33 and 7.34) The visible declarations are added to one of the
sets depending on whether the declaration is in an Install structure or not.

VE ∈ Γ = {x1 7→ σ1, . . . , xk 7→ σk}
` v isibles(longid, Γ) = {longid.x1, . . . , longid.xk}

(7.35)

Comment: (Rules 7.35) A set of variables is constructed from the variable envir-
onment VE .

136

Modules Program B, S ` program ; (P, R)

We present the modules translation technique below. Note that Rule 7.43 for
translating core-level declarations is only an outline; it does not perform any
renaming of the identifiers. Nonetheless, these rules provide a reasonable overview
of modules translation.

` v isibles(B) = (x, x′) P1 = (∅, ∅, tuple (var x1, . . . , var xk))

R1 = (∅, ∅, tuple (var x′1, . . . , var x′k))

S, (∅, P1, R1) ` topdec ; (F , P2, R2)

B, S ` topdec ; (P2, R2)

(7.36)

Comment: (Rule 7.36) The basis B, and substitution S are the results of elabor-
ation. Evaluating either P or R will result in a tuple containing all of the visible
variable declarations.

` v isibles(B) = (x, ∅) P1 = (∅, ∅, tuple (var x1, . . . , var xk))

R1 = (∅, ∅, scon unit) S, (∅, P1, R1) ` topdec ; (F , P2, R2)

B, S ` topdec ; P2

(7.37)

Comment: (Rule 7.37) We may have a program which does not contain any
Install structures. In this case, the visibles function will return an empty set
of replacement variables. We use a dummyMΛ program scon unit to avoid the
need to define non-replacement variants of the remaining rules.

Top-level Declaration S, (F1, P1, R1) ` topdec ; (F2, P2, R2)

S, (F1, P1, R1) ` strdec ; (F2, P2, R2)

S, (F1, P1, R1) ` strdec ; (F2, P2, R2)
(7.38)

S, (F , P, R) ` functor funid (strid : sigexp) = strexp ;

(F ∪ {funid 7→ strexp}, P, R)
(7.39)

Comment: (Rule 7.39) Translating a functor declaration results in a new entry in
the functor translation environment. No actual code for the functor is generated
here.

S, (F1, P1, R1) ` topdec1 ; (F2, P2, R2)

S, (F2, P2, R2) ` topdec2 ; (F3, P3, R3)

S, (F1, P1, R1) ` topdec1 〈;〉 topdec2 ; (F3, P3, R3)

(7.40)

137

Structure Declaration S, (F1, P1, R1) ` strdec ; (F2, P2, R2)

strid 6= Install

S, (F1, P1, R) ` strexp ; (F2, P2, R)

S, (F1, P1, R) ` structure strid = strexp ; (F2, P2, R)

(7.41)

strid = Install

S, (F1, R1, P) ` strexp ; (F2, R2, P)

S, (F1, P, R1) ` structure strid = strexp ; (F2, P, R2)

(7.42)

Comment: (Rule 7.41 and 7.42) A structure declaration is flattened. The struc-
ture identifier is used to determine whether P or R will contain the declaration.

P1 = (D1, X1, E1) S, E1 ` dec ; (D2, X2, E2)

S, (F , P1, R) ` dec ; (F , (D1 ∪D2, X1 ∪X2, E2), R)
(7.43)

Comment: (Rule 7.43) A core-level declaration is translated into a program by
the rules in Chapter 4. The identifiers in dec should be renamed to fully-qualified
form, though we do not give the details here.

S, (F1, P1, R1) ` strdec1 ; (F2, P2, R2)

S, (F2, P2, R2) ` strdec2 ; (F3, P3, R3)

S, (F1, P1, R1) ` strdec1 〈;〉 strdec2 ; (F3, P3, R3)

(7.44)

Structure Expression S, (F1, P1, R1) ` strexp ; (F2, P2, R2)

S, (F1, P1, R1) ` strdec ; (F2, P2, R2)

S, (F1, P1) ` struct strdec end ; (F2, P2)
(7.45)

S, (F , P, R) ` strid ; (F , P, R) (7.46)

S, (F1, P1, R1) ` strexp ; (F2, P2, R2)

S, (F1, P1, R1) ` strexp :> sigexp ; (F2, P2, R2)
(7.47)

Comment: (Rule 7.47) We do not generate any actual code for signature match-
ing. The validity of the match is ensured by the elaboration step.

S, (F1, P1, R1) ` strexp1 ; (F2, P2, R2)

F2(funid) = strexp2 S, (F2, P2, R2) ` strexp2 ; (F3, P3, R3)

S, (F1, P1, R1) ` funid (strexp1) ; (F3, P3, R3)

(7.48)

Comment: (Rule 7.48) A fresh copy of the functor is generated at each applica-
tion. We assume a renaming in Rule 7.43 to prevent collisions between identifiers.

138

7.4 Runtime Module Replacement

In the remainder of this chapter, we extend the garbage collection algorithm from
Chapter 6 with code-replacement. This is a refinement of the code-replacement
operation which we have previously presented in [WKG98] and [WKG00]. The
technique hinges on a semantic object which we call a replacement map, defined
as follows:

Replacement Map RM ::= pold
map7→ (lrep, prep)

The domain of the replacement map is the set of the pointers to the types that
are to be dynamically replaced. Each element pold of the domain is mapped to
a location and type-pointer pair (lrep, prep). The location contains the closure of
the function which is to execute the replacement operation, and the type-pointer
references the type which is to replace the old type.

Code-replacement is a straightforward extension of copying garbage collec-
tion. Any pointers or locations which are encountered during the collection are
compared with those in the replacement map. If a match is found, then the
replacement from the map is substituted during the copying operation. Since
the garbage collection algorithm will visit all live data in a program, we can be
assured that all old copies of the data will be replaced.

(H1, ∆1, XS 1, RS 1, R)⇒ (H2, ∆2, XS2, (l1, p1) · RS 1)

H2(p1) = p2
k H2(l1) = l2

k H2(p1
2) = p1

3 → p1
4 · · · H2(pk2) = pk3 → pk4

RM = {p1
3 7→ (l12, p

1
4), . . . , pk3 7→ (lk2, p

k
4)}

(H2, ∅, RM , ∅, ∅, ∅, ∆2)⇒gc (Hf 1, Ht1, RM , PF1, LF1, TE , ∆3)

(Hf 1, Ht1, RM , PF1, LF1, TE , XS 2)⇒gc

(Hf 2, Ht2, RM , PF 2, LF 2, TE , XS 3)

(Hf 2, Ht2, RM , PF2, LF2, TE , RS 2)⇒gc

(Hf 3, Ht3, RM , PF 3, LF 3, TE , RS 3)

(Ht3, ∆3, XS 3, RS 3, P)⇒ (H4, ∆4, XS4, (l3, p5) · RS 4)

(Ht4, ∆4, XS 4, RS 4, E)⇒ (Ht5, ∆5, XS5, RS 5)

(H1, ∆1, XS 1, RS 1, E)⇒rep (H5, ∆5, XS 5, RS 5)

(7.49)

Figure 7.6: Code Replacement with Garbage Collection.

The code-replacement technique is defined in Figure 7.6. We assume that
the abstract machine has been interrupted at a suitable point, i.e. while it is
not evaluating any code which is to be replaced, though we do not give the

139

details of how this is determined. The program P contains the code that will
replace parts of the current program, and the program R contains the installation
code which is used to convert from the old data representation to the new. We
showed how P and R were obtained in the previous section. The replacement
map is constructed by evaluating the replacement program R. A modified garbage
collection is then performed from the roots to update the types and values to the
new representations. The program P , containing the new code is then evaluated,
and evaluation of the expression E is resumed.

There is a distinct advantage to using a copying garbage collection algorithm
with code-replacement, as opposed to an in-place algorithm. In a copying collec-
tion, the from heap is preserved until the end, when it is discarded. Therefore,
when performing code-replacement, we can abort the operation if an error oc-
curs and roll-back to the previous state. An error is signalled by the raising of
an uncaught exception within the code performing the replacement. The roll-
back technique is illustrated in Figure 7.7. When an exception is raised, the GC
abstract machine will halt. Note that the uncaught exception is referenced by
(l3, p5) and may be used to generate an error message. The to heap is then
discarded to rollback the replacement, and evaluation resumes normally.

(H1, ∆1, XS 1, RS 1, R)⇒ (H2, ∆2, XS 2, (l1, p1) · RS 1)

H2(p1) = p2
k H2(l1) = l2

k H2(p1
2) = p1

3 → p1
4 · · · H2(pk2) = pk3 → pk4

RM = {p1
3 7→ (l12, p

1
4), . . . , pk3 7→ (lk2 , p

k
4)}

(H2, ∅, RM , ∅, ∅, ∅, ∆2)⇒gc halt (Hf , Ht , RM , PF1, LF1, TE1, (l3, p5))

(Hf , ∆1, XS 1, RS 1, E)⇒ (H3, ∆3, XS 3, RS 3)

(H1, ∆1, XS 1, RS 1, E)⇒rep (H3, ∆3, XS 2, RS 3)

(7.50)

Figure 7.7: Rollback.

The domain of the replacement map contains pointers to the types which are to
be replaced. Ideally, the type heap would contain a unique allocation of each type,
and therefore we could simply compare each pointer encountered during garbage
collection against the replacement map. This was the assumption of the algorithm
previously presented in [WKG00]. Unfortunately, the allocation functions τ alloc,
α alloc, and σ alloc of Chapter 5 performs a unique allocation of type names
and type variables only. All other types, e.g. function types and polymorphic
types, are freshly allocated on each invocation. This was done for simplicity
since we have as yet been unable to construct an efficient algorithm for uniquely
allocating types. Consequently, for replacement, we require an additional function

140

to determine whether two different pointers refer to a representation of the same
type. This is achieved by the predicate H, M ` pmatch(p1, p2) defined below.
The function checks for structural equivalence of types, corresponding to the
equivalence of the static types defined in Chapter 3 (Figure 3.5). However, we
allow any type variables to match any other. This allows us to compare type
schemes without an expensive substitution operation. This is valid in the context
of code-replacement as we will never be replacing a type variable which is not
part of a type scheme. The set M stores pointers that have already been checked
for equality, to prevent non-termination on recursive types. For convenience, we
also define a wrapper function H ` rmatch(p1, RM) = p2 which searches for a
match (using pmatch) for the type pointer p1 in the replacement map RM , and
returns the corresponding pointer p2 from RM if a match is found.

H, ∅ ` pmatch(p1, p2) p2 ∈ Dom RM

H ` rmatch(p1, RM) = p2
(7.51)

p1 ∈M
H, M ` pmatch(p1, p2)

(7.52)

p1 /∈M H(p1) = tn H(p2) = tn

H, M ` pmatch(p1, p2)
(7.53)

p1 /∈M H(p1) = tn(p3) H(p2) = tn(p4)

H, M ∪ {p1} ` pmatch(p4, p4)

H, M ` pmatch(p1, p2)

(7.54)

p1 /∈M H(p1) = p3
k H(p2) = p4

k

H, M ∪ {p1} ` pmatch(p1
3, p

1
4) · · ·H, M ∪ {p1} ` pmatch(pk3, p

k
4)

H, M ` pmatch(p1, p2)

(7.55)

p1 /∈M H(p1) = p3 → p4 H(p2) = p5 → p6

H, M ∪ {p1} ` pmatch(p3, p5) H, M ∪ {p1} ` pmatch(p4, p6)

H, M ` pmatch(p1, p2)

(7.56)

p1 /∈M H(p1) = α1 H(p2) = α2

H, M ` pmatch(p1, p2)
(7.57)

p1 /∈M H(p1) = 〈〈TE1, p3〉〉 H(p2) = 〈〈TE2, p4〉〉
TE1 = {α1

1 7→ p1
5, . . . , α

k
1 7→ pk5} TE2 = {α1

2 7→ p1
6, . . . , α

k
2 7→ pk6}

H, M ∪ {p1} ` pmatch(p1
5, p

1
6) · · ·H, M ∪ {p1} ` pmatch(pk5, p

k
6)

H, M ` pmatch(p1, p2)

(7.58)

141

We will now define the code-replacement modifications to the garbage collec-
tion algorithm presented in Chapter 6. These alterations are remarkably straight-
forward, and essentially consist of just the three additional rules shown in Fig-
ure 7.8.

p1 /∈ Dom PF Hf 1 ` rmatch(p1, RM) = p2 RM (p2) = (l1, p3)

(Hf 1, Ht1, RM , PF 1, LF 1, TE1, p3)⇒gc

(Hf 2, Ht2, RM , PF2, LF2, TE2, p4)

(Hf 1, Ht1, RM , PF 1, LF 1, TE1, p1)⇒rep

(Hf 2, Ht2, RM , PF2[p1 7→ p4], LF 2, TE2, p4)

(7.59)

p1 /∈ Dom PF Hf 1 ` rmatch(p1, RM) = p2

RM (p2) = (l2, p3) Hf 1(l2) = 〈〈∆1, {x}, E〉〉
(Hf 1, ∆1[x 7→ (l1, p1)], (), (), E)⇒ (Hf 2, ∆2, XS , (l3, p4) · RS)

(Hf 2, Ht1, PF 1, LF 1, TE1, (l3, p4))⇒gc

(Hf 3, Ht2, PF2, LF2, TE2, (l4, p5))

(Hf 1, Ht1, RM , PF 1, LF 1, TE1, (l1, p1))⇒rep

(Hf 3, Ht2, RM , PF2, LF2[l1 7→ l4], TE2, (l4, p5))

(7.60)

p1 /∈ Dom PF Hf 1 ` rmatch(p1, RM) = p2

RM (p2) = (l2, p3) Hf 1(l2) = 〈〈∆1, {x}, E〉〉
(Hf 1, ∆1[x 7→ (l1, p1)], (), (), E)⇒ halt (Hf 2, ∆2, (), (l3, p4) · RS)

(Hf 1, Ht1, RM , PF 1, LF 1, TE1, (l1, p1))⇒rep

halt (Hf 3, Ht1, RM , PF1, LF1, TE1, (l3, p4))

(7.61)

Figure 7.8: Replacement of Types and Values.

Rule 7.59 defines the replacement of type information. The pointer p1 is com-
pared with the replacement map using the rmatch function which we previously
defined. If a match is not found, then the regular garbage collection rules will be
applied, otherwise the remainder of the rule will be evaluated. The replacement
type p3 is obtained from the replacement map RM . The closure referenced by l1
is not required at this stage. Note that the replacement type is still in the from
heap Hf . The garbage collector is then invoked on the replacement type to copy
it into the to heap, and the resulting pointer p4 is returned as the final result.
The forwarding table PF is updated to reflect the replacement of p1 with p4. The
effect of the rule is the substitution of the old type with the new type. The old
type remains in the from heap and will be removed upon completion of collection.

142

Replacing values requires more effort, as a function must be evaluated to con-
vert between old and new data representations. Rules 7.60 and 7.61 define the re-
placement of a value referenced by (l1, p1). In both rules, a closure 〈〈∆1, {x}, E〉〉
is obtained from the replacement map to perform the conversion. This closure is
evaluated by theMΛ abstract machine defined in Chapter 5, by binding (l1, p1)
to the argument variable x in the closure environment ∆1. If the evaluation is
successful, as defined in Rule 7.60, then the replacement value (l3, p4) is returned,
and garbage collected as before. However, if an uncaught exception is raised dur-
ing the evaluation of Rule 7.61, the replacement will be halted immediately, and
a rollback will occur in Rule 7.50.

There are two minor changes to the GC abstract machine that must be made
in order to support code-replacement. We will not define these changes in detail as
they are largely trivial. However, for completeness we will discuss them here. The
state of the GC abstract machine must be modified in each of the garbage collec-
tion rules to include the replacement map. This is a very straightforward change
as the replacement map is not modified in any of the rules and can therefore
be simply passed around. The other change involves the from heap. Previously,
this heap remained completely unchanged by garbage collection. However, with
code replacement, the from heap may be extended when evaluating the closure in
Rules 7.60 and 7.61. The garbage collection rules must therefore be updated to
reflect the fact that the from heap may change when collecting values. This only
requires a minor change of numbering in the rules. Note that no part of the from
heap will be overwritten by the evaluation of the closure, and thus the rollback
operation is valid. Any values which are placed into the from heap before rollback
are simply treated as garbage and will be removed at the next collection.

The replacement model that we have now defined is very powerful. Any value
whose type can be uniquely matched by a type in the domain of the replacement
map RM can be replaced, and anything that can be expressed as a Dynamic ML
function can be used in this replacement. In particular, data structures can be
completely reworked, with both the addition and removal of constructors permit-
ted. However, it is important to note that only type safety is guaranteed. The
program is guaranteed to execute after replacement, but it is perfectly possible
that the resulting program could be incorrect, i.e. there is no attempt made to
preserve the semantic correctness of the program. Similarly, if a replacement is
made to correct a flaw in a program, then the programmer must be aware that
data generated by this flawed code may still be in the program, e.g. it has been
used in a calculation, and must take this into account.

143

7.5 An Example Replacement

We will now present an example which illustrate our modules replacement tech-
nique in practice using the definitions which we have presented in this chapter.
This example is based on the table replacement example which we previously
presented in Chapter 1. In this introductory chapter we showed at a purely
syntactic level how to replace the implementation of a abstract datatype for rep-
resenting tables with another more efficient implementation. Initially, the table
was represented as a simple unsorted list. In the replacement, the table was
represented as an ordered binary tree.

As we have previously discussed in this chapter, there are a number of stages
involved in performing code-replacement. We begin by constructing a module
which contains the new implementation, together with a number of functions for
converting values of the old representation into values of the new representation.
The module must then pass through three phases, each of which will either result
in the module being rejected, or the module continuing to the next phase. The
successful completion of the final phase corresponds to the completion of the
code-replacement.

The first phase of code-replacement is the elaboration phase. At this stage,
a type checking operation is performed on the module to guarantee type safety.
By ensuring that the module matches the same signature as the module which it
replaces, we show that the module is indeed a valid candidate for replacement.
Once the module has been successfully elaborated, a translation is performed to
remove all of the module-level constructs. We have argued that these are merely
packaging constraints and are not required for evaluation. At the same time we
also construct a replacement map which we will use in the replacement of val-
ues. This code will be discarded upon conclusion of the replacement. Finally,
we perform the actual code replacement. This is achieved by initiating a copying
garbage collection. The actual replacement is performed on-the-fly during the
copying operation. The result is that all the values and types of the old repres-
entation are replaced with the new representation. The old functions are then
overwritten with their replacements and evaluation resumes.

We will now present a sequence of three small examples to illustrate each of
these three phases in turn. We do not present the entire replacement in detail as
it involves the complex interaction between elaboration, translation, evaluation,
and garbage collection. However, the details shown should give the reader a good
flavour of the complex processes involved.

144

Our first example illustrates the elaboration of a signature, as required for valid
code replacement. In our example, any module which is to be considered a valid
replacement for the table abstract data type must match the TABLE signature.
This signature is shown as Dynamic ML code in Figure 7.9.

signature TABLE =
sig

type () table
val empty : () table
val insert : {1 = string, 2 = () table} -> () table
val member : {1 = string, 2 = () table} -> bool

end

Figure 7.9: The TABLE signature in Dynamic ML.

The elaboration process for the TABLE signature is shown in detail in Figure 7.11.
The rules invoked at each stage are shown in parenthesis. Note that some rules
from Chapter 4 are used. The result is the signature Σ shown in Figure 7.10.
As we would expect, this signature contains a single bound type table, an empty
value of type table, and a pair of functions insert and member.

Σ = ({table}) ({table 7→ (0, ∅), empty 7→ table,
insert 7→ (t string, table)→ table,
member 7→ (t string, table)→ t bool})

Figure 7.10: Elaborated signature Σ.

Our second example illustrates the translation of a module-level program into
one containing only core-level declarations. We translate the InstallTable func-
tor from Chapter 1 into core-level programs P and R, where P contains the new
table code, and R contains code to perform the update of the old table values.
The InstallTable functor is shown as Dynamic ML code in Figure 7.12. In prin-
ciple, the effect of evaluating this code will be the replacement of the OldTable

module with NewTable, under the condition that both match the TABLE signa-
ture given above. For brevity we have replaced the core-level declarations in the
functor with comments as we are only interested in the modules system here.
The core-level translation was the subject of Chapter 4. Though we note that
in an implementation, the translation mechanisms at these two-levels would be
combined.

145

s
t
r
i
n
g

;
t

st
ri

n
g (4

.5
)

t
a
b
l
e

;
t

ta
b
le

(4
.5

)

s
t
r
i
n
g

;
t

st
ri

n
g (4

.5
)

t
a
b
l
e

;
t

ta
b
le

(4
.5

)

Γ
′
`

s
t
r
i
n
g

:
t

st
ri

n
g

Γ
′
`

(
)

t
a
b
l
e

:
ta
b
le

(4
.4

)

Γ
′′
`

s
t
r
i
n
g

:
t

st
ri

n
g

Γ
′′
`

(
)

t
a
b
l
e

:
ta
b
le

(4
.4

)

Γ
′
`

{
1
=

s
t
r
i
n
g
,

2
=

(
)
t
a
b
l
e
}

:
(t

st
ri

n
g,
ta
b
le

)
Γ
′
`

(
)

t
a
b
l
e

:
ta
b
le

(4
.7

)

Γ
′′
`

{
1

=
s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

:
(t

st
ri

n
g,
ta
b
le

)
Γ
′′
`

b
o
o
l

:
t

b
o
ol

(4
.7

)

t
a
b
l
e

;
ta
b
le

(4
.5

)

i
n
s
e
r
t

;
in
s
e
r
t

Γ
′
∈
B
′′
`

{
1

=
s
t
r
i
n
g
,

2
=

(
)
t
a
b
l
e
}

-
>

(
)
t
a
b
l
e

:

(t
st

ri
n
g,
ta
b
le

)
→
ta
b
le

(7
.2

0
)

m
e
m
b
e
r

;
m
e
m
b
e
r

Γ
′′
∈
B
′′
′
`

{
1

=
s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

-
>
b
o
o
l

:

(t
st

ri
n
g,
ta
b
le

)
→

t
b

o
ol

(7
.2

0
)

e
m
p
t
y

;
e
m
p
ty

Γ
∈
B
′
`

(
)

t
a
b
l
e

:
ta
b
le

(7
.2

0
)

B
′′
`

v
a
l

i
n
s
e
r
t

:
{
1
=

s
t
r
i
n
g
,

2
=

(
)
t
a
b
l
e
}

-
>

(
)
t
a
b
l
e

:
B
′′

[{
in
s
e
r
t
7→

(t
st

ri
n
g,
ta
b
le

)
→
ta
b
le
}]
`

(∅
)(
{i
n
s
e
r
t
7→

(t
st

ri
n
g,
ta
b
le

)
→
ta
b
le
})

v
a
l
m
e
m
b
e
r

:
{
1
=

s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

-
>
b
o
o
l

:

(∅
)(
{m

e
m
b
e
r
7→

(t
st

ri
n
g,
ta
b
le

)
→

t
b

o
ol
})

(7
.2

7
)

t
a
b
l
e

;
ta
b
le

(7
.2

2
)

B
′
`

v
a
l

e
m
p
t
y

:
(
)

t
a
b
l
e

:
B
′ [
{e
m
p
ty
7→

ta
b
le
}]
`

v
a
l

i
n
s
e
r
t

:
{
1

=
s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

-
>
(
)

t
a
b
l
e

v
a
l

m
e
m
b
e
r

:
{
1

=
s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

-
>
b
o
o
l

:

(∅
)(
{e
m
p
ty
7→

ta
b
le
})

({
∅}

)(
{i
n
s
e
r
t
7→

(t
st

ri
n
g,
ta
b
le

)
→
ta
b
le
,
m
e
m
b
e
r
7→

(t
st

ri
n
g,
ta
b
le

)
→

t
b

o
ol
})

(7
.2

7
)

B
`

t
y
p
e

(
)

t
a
b
l
e

:
B

[{
ta
b
le
7→

(0
,
∅)
}]
`

v
a
l

e
m
p
t
y

:
(
)

t
a
b
l
e

v
a
l

i
n
s
e
r
t

:
{
1

=
s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

-
>
(
)

t
a
b
l
e

v
a
l
m
e
m
b
e
r

:
{
1
=

s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

-
>
b
o
o
l

:

({
ta
b
le
})

({
ta
b
le
7→

(0
,
∅)
})

({
∅}

)(
{e
m
p
ty
7→

ta
b
le
,
in
s
e
r
t
7→

(t
st

ri
n
g,
ta
b
le

)
→
ta
b
le
,
m
e
m
b
e
r
7→

(t
st

ri
n
g,
ta
b
le

)
→

t
b

o
ol
})

(7
.2

7
)

B
`

t
y
p
e

(
)

t
a
b
l
e

v
a
l

e
m
p
t
y

:
(
)
t
a
b
l
e

v
a
l

i
n
s
e
r
t

:
{
1

=
s
t
r
i
n
g
,

2
=

(
)
t
a
b
l
e
}

-
>

(
)
t
a
b
l
e

v
a
l

m
e
m
b
e
r

:
{
1

=
s
t
r
i
n
g
,

2
=

(
)

t
a
b
l
e
}

-
>

b
o
o
l

:

({
ta
b
le
})

({
ta
b
le
7→

(0
,
∅)
,
e
m
p
ty
7→

ta
b
le
,
in
s
e
r
t
7→

(t
st

ri
n
g,
ta
b
le

)
→
ta
b
le
,
m
e
m
b
e
r
7→

(t
st

ri
n
g,
ta
b
le

)
→

t
b

o
ol
})

(7
.1

2
)

B
`

s
i
g

t
y
p
e

(
)

t
a
b
l
e

v
a
l

e
m
p
t
y

:
(
)

t
a
b
l
e

v
a
l

i
n
s
e
r
t

:
{
1

=
s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

-
>

(
)

t
a
b
l
e

v
a
l

m
e
m
b
e
r

:
{
1

=
s
t
r
i
n
g
,

2
=
(
)

t
a
b
l
e
}

-
>

b
o
o
l

e
n
d

:

({
ta
b
le
})

({
ta
b
le
7→

(0
,
∅)
,
e
m
p
ty
7→

ta
b
le
,
in
s
e
r
t
7→

(t
st

ri
n
g,
ta
b
le

)
→
ta
b
le
,
m
e
m
b
e
r
7→

(t
st

ri
n
g,
ta
b
le

)
→

t
b

o
ol
})

Figure 7.11: Signature Inference.

146

functor InstallTable(structure Table : TABLE where
type () table = (string) list) =

struct
(* decs1 *)
structure Install =
struct
(* decs2 *)

end
end
structure NewTable = InstallTable(OldTable) :> TABLE;

Figure 7.12: Replacement Module.

The translation (specialisation) of the table functor into core-level declara-
tions is shown in Figure 7.15. We assume that the modules program has already
elaborated correctly, we also assume the existence of a translation rule of the form
P ` (* decs *) ; let decs in P for translating core-level declarations. The res-
ulting programs P and R are shown as the tuple in Figure 7.13. Again, as we
would expect, all module-level declarations have been removed in the translation
and we are left with four functions. The functions insert and member in P are
the new functions for table insertion and membership. The functions name and
table in R will be used to translate the module types between representations.

(P, R) = (let decs1 in tuple (var insert, var member),
let decs2 in tuple (var name, var table))

Figure 7.13: Translated programs P and R.

In our final example, we illustrate the effect of code replacement on the pro-
gram heap. At this stage, we have elaborated and specialised the modules in our
example and we are only concerned with the actual data representations. The
representations involved in the replacement are shown as MΛ datatypes in Fig-
ure 7.14. Clearly, the first representation is a list of names, while the second is a
binary tree.

datatype (t table) of {c nil, (c cons, (t name, t table))}
datatype (t table) of {c empty, (c node, (t table, t name, t table))}

Figure 7.14: Table Data Representations.

147

(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
R

1
,
P

2
)
`

(
*
d
e
c
s
2

*
)

;
(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,

le
t
d
e
c
s
2

in
R

1
,
P

2
)

(7
.4

5
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
R

1
,
P

2
)
`

s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

;
(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
R

2
,
P

2
)

(7
.4

2
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

1
,
R

1
)
`

(
*

d
e
c
s
1

*
)

;
(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,

le
t
d
e
c
s
1

in
P

1
,
R

1
)
`

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*
d
e
c
s
2

*
)
e
n
d

;

(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,

le
t
d
e
c
s
1

in
P

1
,
R

1
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

2
,
R

2
)

(7
.4

4
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

1
,
R

1
)
`

(
*
d
e
c
s
1

*
)
s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*
d
e
c
s
2

*
)

e
n
d

;
(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

2
,
R

2
)

(7
.4

5
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

1
,
R

1
)
`

s
t
r
u
c
t

(
*

d
e
c
s
1

*
)

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

e
n
d

;
(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

2
,
R

2
)

(7
.4

8
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

s
t
r
u
c
t

(
*

d
e
c
s
1

*
)

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

e
n
d
,
P

1
,
R

1
)
`

I
n
s
t
a
l
l
T
a
b
l
e
(
O
l
d
T
a
b
l
e
)

;
(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

2
,
R

2
)

(7
.4

7
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

s
t
r
u
c
t

(
*

d
e
c
s
1

*
)

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

e
n
d
,
P

1
,
R

1
)
`

I
n
s
t
a
l
l
T
a
b
l
e
(
O
l
d
T
a
b
l
e
)

:
>

T
A
B
L
E

;
(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

2
,
R

2
)

(7
.4

1
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

s
t
r
u
c
t

(
*
d
e
c
s
1

*
)
s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*
d
e
c
s
2

*
)
e
n
d

e
n
d
,
P

1
,
R

1
)
`

s
t
r
u
c
t
u
r
e

N
e
w
T
a
b
l
e

=
I
n
s
t
a
l
l
T
a
b
l
e
(
O
l
d
T
a
b
l
e
)

:
>
T
A
B
L
E

;
(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

2
,
R

2
)

(∅
,
P

1
,
R

1
)
`

f
u
n
c
t
o
r

I
n
s
t
a
l
l
T
a
b
l
e
(
s
t
r
u
c
t
u
r
e

T
a
b
l
e

:
T
A
B
L
E

w
h
e
r
e

t
y
p
e

(
)

t
a
b
l
e

=
(
s
t
r
i
n
g
)

l
i
s
t
)

=

s
t
r
u
c
t

(
*

d
e
c
s
1

*
)

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

e
n
d

;
(7
.3

9
)

(I
n
s
t
a
l
l
T
a
b
l
e
7→

s
t
r
u
c
t

(
*

d
e
c
s
1

*
)

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

e
n
d
,
P

1
,
R

1
)

(7
.4

0
)

(∅
,

tu
p
le

(v
a
r
in
s
e
r
t,

v
a
r
m
e
m
b
e
r
),

tu
p
le

(v
a
r
n
a
m
e
,

v
a
r
ta
b
le

))
`

f
u
n
c
t
o
r

I
n
s
t
a
l
l
T
a
b
l
e
(
s
t
r
u
c
t
u
r
e

T
a
b
l
e

:
T
A
B
L
E

w
h
e
r
e

t
y
p
e

(
)
t
a
b
l
e

=
(
s
t
r
i
n
g
)

l
i
s
t
)

=
s
t
r
u
c
t

(
*

d
e
c
s
1

*
)

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

e
n
d

s
t
r
u
c
t
u
r
e

N
e
w
T
a
b
l
e

=
I
n
s
t
a
l
l
T
a
b
l
e
(
O
l
d
T
a
b
l
e
)

:
>

T
A
B
L
E
;

;

(I
n
s
t
a
l
l
T
a
b
l
e
7→

..
.,
P

2
,
R

2
)

(7
.3

6
)

B
`

f
u
n
c
t
o
r

I
n
s
t
a
l
l
T
a
b
l
e
(
s
t
r
u
c
t
u
r
e

T
a
b
l
e

:
T
A
B
L
E

w
h
e
r
e

t
y
p
e

(
)

t
a
b
l
e

=
(
s
t
r
i
n
g
)

l
i
s
t
)

=
s
t
r
u
c
t

(
*

d
e
c
s
1

*
)

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

e
n
d

s
t
r
u
c
t
u
r
e

N
e
w
T
a
b
l
e

=
I
n
s
t
a
l
l
T
a
b
l
e
(
O
l
d
T
a
b
l
e
)

:
>

T
A
B
L
E
;

;

(I
n
s
t
a
l
l
T
a
b
l
e
7→

s
t
r
u
c
t

(
*

d
e
c
s
1

*
)

s
t
r
u
c
t
u
r
e

I
n
s
t
a
l
l

=
s
t
r
u
c
t

(
*

d
e
c
s
2

*
)

e
n
d

e
n
d
,

le
t
d
e
c
s
1

in
tu

p
le

(v
a
r
in
s
e
r
t,

v
a
r
m
e
m
b
e
r
),

le
t
d
e
c
s
2

in
tu

p
le

(v
a
r
n
a
m
e
,

v
a
r
ta
b
le

))

Figure 7.15: Functor Specialisation.

148

We will illustrate the effect of code replacement on an example heap shown in
Figure 7.16. For now, we are only interested in the left side of this diagram, which
shows the contents of the type heap and value heap prior to code replacement.
At this point, the value heap contains a list of names of colours and the type heap
contains types for all the different kinds of values. The colour names (l0 to l6)
correspond to the type p0, the c nil constructor corresponds to type p1, the pairs
(l9, l11, . . .) correspond to the type p3, and the c cons constructor corresponds
to the type p4.

Before Replacement After Replacement
Type Heap TH Value Heap VH Type Heap TH Value Heap VH
p0 t name l0 ”red” p0 t name l0 ”red”
p1 t table l1 ”orange” p1 t table l1 ”orange”
p2 (p0, p1) l2 ”yellow” p2 (p1, p0, p1) l2 ”yellow”
p3 t table(p2) l3 ”green” p3 t table(p2) l3 ”green”
p4 p3 → p1 l4 ”blue” p4 p3 → p1 l4 ”blue”
p5 t name l5 ”indigo” l5 ”indigo”
p6 t table l6 ”violet” l6 ”violet”
p7 (p6, p5, p6) l7 c nil l7 c empty
p8 t table(p7) l8 c cons(l9) l8 c node(l9)
p9 p8 → p6 l9 (l0, l7) l9 (l10, l0, l12)

l10 c cons(l11) l10 c node(l11)
l11 (l1, l8) l11 (l14, l1, l18)
l12 c cons(l13) l12 c node(l13)
l13 (l2, l10) l13 (l20, l2, l7)
l14 c cons(l15) l14 c node(l15)
l15 (l3, l12) l15 (l16, l3, l7)
l16 c cons(l17) l16 c node(l17)
l17 (l4, l14) l17 (l7, l4, l7)
l18 c cons(l19) l18 c node(l19)
l19 (l5, l16) l19 (l7, l5, l7)
l20 c cons(l21) l20 c node(l21)
l21 (l6, l18) l21 (l7, l6, l7)
l22 〈〈fn x => x〉〉
l23 〈〈List.foldr

insert empty〉〉

Figure 7.16: Heap Transformation.

The first stage in the replacement of data values is the evaluation of the re-
placement program R and the construction of the replacement map RM . This
evaluation occurs inside the original heap, before the garbage collection is initi-
ated. The effect of this evaluation is shown in our example heap by the types p5

through p9 representing the tree data structure, and the values l22 and l23 which
contain the closures for code replacement.

149

The replacement map for our example heap is built as follows:

RM = {p0 → (l22, p5), p1 → (l23, p6)}

The first component of this map will be used for converting the type t name,
while the second component will be used for converting the type t table. The
closures l22 and l23 correspond to the name and table functions in Figure 7.13
respectively.

Code replacement proceeds by performing a garbage collection on the heap
and replacing all of the values whose types match those in the replacement map.
The layout of our example heap after this operation is illustrated on the right
side of Figure 7.16. A pictorial representation of the replacement process is also
shown in Figure 7.17.

violet indigo blue green

yellowred

After:

Before:

orange yellow

indigogreen

blue

violet

orange

red

Figure 7.17: Conversion of Data Representations.

The important points to note about the heap after replacement are that all
the old types, old data representations, and the functions used in the replacement
operation are absent from the new heap. Therefore, there is no danger of any
interference from the previous representations upon completion of replacement.
It is also worth observing that the contents of the old heap is preserved until
replacement completes. This allows for a roll-back operation, should any problems
arise during replacement. Although the new types and replacement functions are
placed in the old heap, they would be eliminated by a regular garbage collection
operation should a roll-back occur.

150

7.6 Further Work

In this chapter we have presented a detailed definition of code-replacement in
Dynamic ML. However, there are two areas of replacement that we have left
undefined. The reason for these exclusions is primarily because they are imple-
mentation dependent. We will now describe these areas and outline potential
solutions.

Closure Replacement

Our code-replacement technique defined in this chapter contains only a partial
definition of the replacement of function closures. At present, the closure gener-
ated by the new function declaration simply overwrites the old function closure
in the heap. However, this is inappropriate when the closure in the heap is the
result of a partial function application. The requirement for correct replacement
in this instance is for the closure to be updated with the new function code and
variable bindings, i.e. a replacement of the following form:

〈〈∆old, xold k, Eold〉〉 ⇒rep 〈〈∆new, xnew k, Enew〉〉

Unfortunately, this is a particularly difficult problem as the replacement can-
not be uniquely determined using type information alone. In particular, the
closure does not contain any information about the function from which it ori-
ginated. We cannot simply pattern match between function expressions, since
there may be many functions which match a particular expression, e.g. a par-
tially applied map. Furthermore, the closure expression Eold is typically a piece
of compiled machine code in an actual implementation. Therefore, we presently
make the restriction that partially applicable functions cannot be replaced with
our algorithm. Though, this is more restrictive than we would like.

In order to replace partially-applied functions, we need to resort to a tag (or
pointer) in each closure to its parent function. We can then define a replacement
map between function names and expressions. We note that the tagging operation
is very similar to that required for symbolic debugging of functional programs,
where one typically needs to examine the contents of closures at runtime. A
scheme for tagging and opening closures in this manner is described in [App88].
This scheme is also applicable when the closure has been compiled into machine-
code. However, we have not provided a definition here as this scheme is largely
implementation-dependent and would considerably complicate our model.

151

Meta-Level Replacement

The other omission from our model concerns the initiation of replacement. We
have left undefined the actual process by which modules are compiled and intro-
duced into a running system. For example, in Figure 7.6, the programs P and
R are used without stating how they came to be available. The underlying as-
sumption in this chapter is that there is a meta-level which performs the following
tasks:

1. Separate compilation of modules.

2. Interruption of the evaluation at appropriate points for replacement.

3. Initiation of garbage collection and replacement when necessary.

Separate compilation is the process of type checking and compiling individual
modules in isolation. A good summary of modularisation and the issues involved
in separate compilation can be found in [Ler94]. There have been many different
schemes for performing separate compilation in Standard ML. Two of the most
recent and relevant schemes can be found in [Rus98], and [Els99]. However,
we note that most of the complexity in these schemes is related to transparent
signature matching which we have removed from Dynamic ML. In Dynamic ML
a scheme similar to a typical linker in an imperative language can be used, since
all of the necessary information is contained directly in the signatures. We do not
go into further detail on the composition of the meta-level as the issues involved
are again largely implementation dependent and therefore tangential to our main
task of providing a formal definition of code replacement.

152

Chapter 8

Distributed Evaluation

The definition of code-replacement in the preceding chapter assumes a sequential
model of evaluation. In this chapter we lay the foundations for a distributed
implementation of code-replacement. In this setting, the utility of the code-
replacement technique becomes significantly more apparent. In the sequential
setting, code replacement is primarily useful as a debugging tool. However, in
the distributed setting, where large programs can be constructed spanning many
machines, it becomes significantly more important. The provision of distributed
code-replacement is considerably more challenging than in the sequential case.
We must first develop a substantially expanded model for the dynamic semantics
of the language which takes into account communication and concurrency, before
we can begin to define code-replacement. A suitable abstract-machine model of
the distributed language is the subject of this chapter.

E ∈ Expression ::= fork E (local thread)
| rfork (E1, E2) (remote thread)
| send (E1, E2) (send value)
| receive E (receive value)

Figure 8.1: MΛ Thread Expressions.

In Chapter 2 we met all of the primitives in the MΛ language which are
necessary for distributed evaluation. For convenience, these operations are sum-
marised in Figure 8.1. The fork and rfork expressions give us the ability to
launch threads, which are functions of type t unit→ t unit, on local and remote
processors respectively. The send and receive expressions give us the ability to
communicate between these threads. These deceptively simple primitives enable
the creation of powerful distributed systems on multiple processors with complex
communication behaviours.

153

8.1 The LEMMA Interface

Before proceeding with a definition of distributed evaluation it is necessary to con-
sider the structure and representation of the memory of the distributed system.
We will make use the LEMMA (Laas and Edinburgh ML Memory Architecture)
interface [MS95b], a general-purpose memory platform for distributed program-
ming languages. The LEMMA interface has been designed to be independent of
the details of the language implemented on it, and also as independent as possible
of the system on which it is implemented. Nonetheless, the LEMMA interface
contains a number of extensions which are specifically designed for the efficient
support of the ML family of languages.

The LEMMA interface identifies two main memory services that are required
in distributed systems: sharing of distributed data, and distributed garbage col-
lection. The first of these is of primary importance in this chapter since it de-
termines the structure of the memory. We define the garbage collection aspects of
the LEMMA interface in Chapter 9 along with code-replacement. The LEMMA
interface definition is simply a function-level specification, the actual implement-
ation is left open. Different implementations of the interface have been created
for parallel computers [WM97] and local-area networks of workstations [MS95a].
The first steps toward a wide-area network implementation have also been made.
In each case, the assumptions regarding the speed and reliability of the underlying
network require a different approach. Here the focus is on providing an abstract
machine definition of the LEMMA interface suitable for a reliable local-area net-
work. However, the resulting definition can readily be extended to cover a range
of networking scenarios.

The LEMMA interface is based on the Distributed Shared Memory (DSM)
model [NL91]. In this model, the memory of the distributed system is treated
as a single globally-addressable object. LEMMA statically partitions the address
space into a sequence of contiguous semi-spaces, where each semi-space is man-
aged by a different machine (Figure 8.2). Each machine is responsible for the
allocation and garbage-collection of the memory in its semi-space.

Machine 1 Machine 2 Machine 3 Machine 4

Virtual Address Space

0

Figure 8.2: Distributed Shared Memory.

154

In a closely-coupled, e.g. parallel or Symmetric Multi-Processing (SMP) im-
plementation, where communication costs are low, memory accesses in the global
address space are performed directly. However, in a loosely-coupled, e.g. worksta-
tion or Non-Uniform Memory Architecture (NUMA) implementation, the over-
heads associated with distributed memory access necessitate a form of caching
mechanism. The solution adopted by the workstation implementation of LEMMA
uses the fact that a typical workstation has a very large virtual address space, but
only uses a fraction of it for its real memory. Thus, the virtual address space on
each machine is used to represent the entire distributed address space. When a
machine wishes to access some external data, it simply addresses its own virtual
address space at the required location. The page-faulting mechanism of the oper-
ating system is extended to fetch the data from the remote machine, as illustrated
in Figure 8.3. Further accesses to the data will simply use the local copy. This
operation can be implemented very efficiently on a typical UNIX workstation.

Address Space

For Machine 1

Address Space

Address Space

For Machine 2

For Machine 3

Data Copied From Machine 2

Figure 8.3: Distributed Memory Access with Caching.

It is clear that some form of coherency protocol is also required. The original
data may be updated, invalidating any copies on other machines. A number of
schemes for ensuring coherency are detailed in [SM94]. One significant property
of typical functional programs is that most of the data values are immutable.
Consequently, LEMMA distinguishes between mutables and immutables and only
performs coherency checks on the mutables. For brevity, only the caching of
immutables is formalised here. Mutables are simply accessed directly, bypassing
the caching mechanism. We consider this acceptable for well-constructed ML
programs, which typically avoid using mutable reference values.

155

8.2 Distributed Abstract Machine

Ideally, we would like our model of distributed evaluation to be an extension of
the abstract machine presented in Chapter 5. In order that we may proceed in
this direction, we must solve a number of interesting problems. The full language
includes primitives for providing communication and concurrency. However, it
is far from obvious how these should be expressed in the abstract machine se-
mantics. An examination of the literature on concurrency in structured opera-
tional semantics reveals that a ‘single-step’ (atomic action) approach is typically
used to express the computation. Concurrency is then introduced by interleaving
the atomic actions of the processes. Unfortunately, this approach is directly in
contrast with our relational abstract machine style, where the intermediate steps
are hidden and only the final state of the computation is of interest.

At first glance, it appears that the semantics must be rewritten in the single-
step style before the concurrent extensions can be expressed. This is undesirable
for a number of reasons. The abstract machine model provides an ideal setting
for expressing memory management behaviour in a manner that approximates an
actual implementation. Furthermore, the single-step approach requires a large
number of rules for even the simplest of operations. A further problem can occur
when some of the intermediate states do not correspond directly to programs in
the language. Techniques exist for automatically performing this transformation
in a number of cases [Ber91]. However, the transformed semantics is invariably
less clear than the original, and this makes reasoning about the extended language
more arduous.

Fortunately, there is an alternative technique inspired by the relational-style
semantics of concurrency presented in [Ler92] and [Mit94]. Consider a transition
of the form: (H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, XS 2, RS 2), expressing the
evaluation of an expression E with machine state (H1, ∆1, XS 1, RS 1), and
resulting in the final machine state (H2, ∆2, XS 2, RS 2). In the full language,
this treatment is no longer acceptable as the evaluation of E may require some
external interaction before it can yield the result. Rather than expressing all
of the intermediate computations, which are of little interest, we simply present
the interactions in the form of an event trace. The trace describes all of the
interactions, and the order in which they occur. This leads us to an definition of
the form: (H1, ∆1, XS 1, RS1, E) t⇒ (H2, ∆2, XS 2, RS 2), where t is a trace
which records the external interactions required to produce the final result.

156

Trace t ::= ε | t1 ; t2 | t1 ‖ t2 | cn ! m | cn ? m

Figure 8.4: Computation and Communication Traces.

For the MΛ language, the definition of traces in Figure 8.4 is sufficient. A
trace may be empty ε if no external interactions occur. The sequential evaluation
of two expressions leads to a trace of the form t1 ; t2. Similarly, two expressions
evaluated in parallel produce a trace of the form t1 ‖ t2. A message m sent over
a channel cn yields a trace of the form cn ! m, and a message received on the
channel gives the trace cn ? m. Figure 8.5 contains the reduction rules for traces.
It should always be the case that the communication traces reduce to ε for a
complete program, or an error (e.g. deadlock) will have occurred.

ε ; t = t t ; ε = t (8.1)

ε ‖ t = t (8.2)

t1 ‖ t2 = t2 ‖ t1 (8.3)

(cn ! m) ‖ (cn ? m) = ε (8.4)

(cn ! m ; t1) ‖ (cn ? m ; t2) = t1 ‖ t2 (8.5)

Figure 8.5: Trace Reduction Rules.

The syntax of the distributed abstract machine is defined in Figure 8.6. In
order to remain consistent with the LEMMA interface definition, the machine
contains two levels of abstraction: processes and threads. The sequential abstract
machine defined in Chapter 5 effectively corresponds to the evaluation of a single
thread on a machine containing a single process. In a distributed system there
are a fixed number k of concurrently executing processes Π each containing a
local heap H, a cache Hc, and a multi-set of threads T . It is assumed that
these processes are physically distributed, for example, across a network of k
machines. The multi-set of threads associated with each process also execute
concurrently. However, unlike processes, the multi-set of threads may dynamically
grow or shrink. The multi-set may also be empty. Each thread contains a local
environment ∆, an exception stack XS , and a result stack RS . The threads
share the heap and cache of the parent process. The remainder of the machine is

157

identical to the sequential abstract machine, except that we now allow types and
values to be stored directly on the result stack.

Machine State M ::= Π k

Process Π ::= (H, Hc, T)
Thread T ::= (∆, XS , RS)

Trace t ::= ε | t1 ; t2 | t1 ‖ t2 | cn ! m | cn ? m
Message m ::= (p) | (l, p) | (∆)

Heap H ::= (TH , VH)
Cache Hc ::= H
Pointer p

Type Heap TH ::= p
map7→ ty

Heap Types ty ::= tn
| tn(p2)
| p k

| p1 → p2
| α
| 〈〈TE , p〉〉

Location l

Value Heap VH ::= l
map7→ val

Heap Values val ::= scon
| con
| con(l)
| l k

| 〈〈∆, xk, E〉〉
| Ω

Environment ∆ ::= (TE , VE , DE , CE)
Type Variables TE ::= α

map7→ p

Lambda Variables VE ::= x
map7→ (l, p)

Datatype Names DE ::= tn
map7→ p

Constructors CE ::= con
map7→ p

Exception Stack XS ::= ()
| (l, p) · XS

Result Stack RS ::= ()
| p · RS
| (l, p) · RS
| ∆ · RS
| ty · RS
| (val, ty) · RS

Figure 8.6: Distributed Abstract Machine Syntax.

158

8.2.1 Machine Evaluation

Given the syntax of the distributed abstract machine, we are left with the task of
defining the evaluation of the machine. In the sequential case, we defined relations
between successive machine states. However, we are now in the situation where
the machine state is defined by processes which, in an actual implementation, will
be physically distributed across a number of machines. If we define a sequence
of relations over the entire distributed state, we require each process, and hence
each machine, to execute synchronously in lock-step. This approach has been used
successfully in the definition and implementation of concurrent systems on closely-
coupled machines. However, it is entirely inappropriate for an implementation on
a loosely-coupled network, where each process will execute at a different rate, and
communications may be subject to delays. Imposing synchronisation between
processes in this environment would almost certainly lead to an unacceptable
performance penalty.

In essence, we require processes and threads to be evaluated asynchronously
with respect to one another. The only point at which synchronisation is required
is during communication, which is achieved through the use of blocking channels.
This leads to an approach whereby each thread is defined in isolation. However,
as we have a distributed shared memory model, we require each thread to have
direct access to the heap of any other process. We therefore define relations
of the form: (Π1

1, . . . , (Hi
1, Hci1, {(∆n

1 , XSn
1 , RSn

1 , E)}] T1
i), . . . , Πk

1) t⇒
(Π1

2, . . . , (Hi
2, Hci2, {(∆n

2 , XS n
2 , RSn

2)}] T2
i), . . . , Πk

2). Each such relation
describes the evaluation of a single thread on a single process of the abstract
machine. However, the thread has full access to its parent process and all the
other processes in the machine. The evaluation trace t contains the interactions
for this thread only.

The evaluation of a thread may occur in parallel with the evaluation of any
other thread in the machine. The evaluation of the processes and the threads
in the system are expressed by the rules in Figure 8.7. These rules establish the
fact that processes are evaluated in parallel (Rule 8.6) and that threads are also
executed in parallel (Rule 8.7). Note the parallel composition of the traces gen-
erated by each process. The execution of the threads is defined inductively; the
base case, an empty multi-set of threads, is defined by Rule 8.8. The actual order-
ing of the evaluation of the threads and processes is left to the non-determinism
inherent in these rules. In an actual implementation it would be necessary to
implement some manner of scheduling to prevent starvation. However, for our
purposes this definition is sufficient.

159

Π1
1

t1=⇒ Π1
2 · · · Πk

1
tk=⇒ Πk

2

(Π1
1, . . . , Πk

1)
t1‖···‖tk===⇒ (Π1

2, . . . , Πk
2)

(8.6)

T1
t1=⇒ T3 T2

t2=⇒ T4

{T1}] T2
t1‖t2=⇒ {T3}] T4

(8.7)

∅ ε=⇒ ∅ (8.8)

Figure 8.7: Concurrent Evaluation of Processes and Threads.

The initial state of the distributed abstract machine is illustrated in Figure 8.8.
The initial heap H1 and environment ∆1 are defined in terms of components of
the sequential abstract machine, indicated with a subscript e.g. VH s. The only
addition to the heap and environment of the distributed abstract machine is the
channel datatype t chan, used for inter-thread communication. The polymorphic
constructor c chan, which is used to create new channels, has the type ∀α. α →
t chan(α). The type variable α is referenced by the pointer p13.

M = (Π1, (∅, ∅, ∅)2, . . . , (∅, ∅, ∅)k)

Π1 = (H1, ∅, T 1)

T 1 = {(∆1, (), (), P)}

H1 = (TH 1, VH s)

TH 1 = TH s ∪
{
p22 7→ t chan(p13), p23 7→ p13→ p22,
p24 7→ 〈〈{α 7→ p13}, p23〉〉

}

∆1 = (∅, VE s, DE s, CE1)
CE1 = CE s ∪ {c chan 7→ p24}

Figure 8.8: Initial Machine State.

Evaluation of the distributed abstract machine begins with a single process Π1,
containing the initial heap H1, and a single thread (∆1, (), (), P). This thread
contains the initial environment ∆1 and the program P . The remaining processes
Π2 · · · Πk remain idle, with an empty heap and multi-set of threads, until a
remote thread is created by the program. The evaluation of a program is defined
in Figure 8.9. Evaluation terminates when the evaluation of the initial thread

160

has completed. The final result is returned on the result stack of the thread
RS 2. The programmer must ensure that the initial thread does not terminate
before all of the other threads have terminated. However, this is easily achieved
through the use of blocking communication channels. As before, we also have the
possibility of non-termination of the abstract machine, or early termination due
to an uncaught exception by any thread.

((H1, Hc1, {(∆1, XS1, RS 1, D)}), Π2
1, . . . , Πk

1) t1⇒
((H2, Hc1, {(∆2, XS 1, RS 1)}), Π2

1, . . . , Πk
1)

((H2, Hc1, {(∆2, XS1, RS 1, X)}), Π2
1, . . . , Πk

1) t2⇒
((H3, Hc1, {(∆3, XS 1, RS 1)}), Π2

1, . . . , Πk
1)

((H3, Hc1, {(∆3, XS1, RS 1, E)}), Π2
1, . . . , Πk

1) t3⇒
((H4, Hc2, {(∆4, XS 2, RS 2)}), Π2

2, . . . , Πk
2)

((H1, Hc1, {(∆1, XS1, RS 1, (D, X, E))}), Π2
1, . . . , Πk

1)
t1 ; t2 ; t3===⇒

((H4, Hc2, {(∆4, XS 2, RS 2)}), Π2
2, . . . , Πk

2)

(8.9)

Figure 8.9: Program Evaluation.

There are fundamentally two phases to the evaluation of a program. The first
phase is the evaluation of the datatypes D and exceptionsX, and the second phase
is the evaluation of the expression E. The first phase is performed sequentially,
while the second phase is performed in a distributed manner. This is ensured
by the trace t1 ; t2 ; t3 in the conclusion of the rule. Note that the processes
Π2

1, · · · , Πk
1 remain unchanged until the expression is evaluated. The datatypes

and exceptions are entered into the environment of the initial thread, and the heap
of process Π1. Additional threads are created by constructing closures. Thus, the
initial environment ∆1, together with the datatype and exception declarations are
propagated between threads in the environment of these closures. For this reason,
the datatype and exception declarations must be evaluated before any threads can
be created. Hence, the sequential nature of the first phase of evaluation.

The relations for the datatypes and exceptions are defined below. The rules
are very similar to their equivalents in the sequential abstract machine. The
datatypes and exceptions are processed sequentially within the initial thread.
Although it may appear that they could be processed in parallel, the only way
which we can do this is by creating a separate thread for each datatype. This
would result in the unacceptable situation where each datatype is contained in a
different environment.

161

((H1, Hc1, {(∆, XS , RS , ∅)}), . . . , Πk
1) ε⇒

((H1, Hc1, {(∆, XS , RS)}), . . . , Πk
1)

(8.10)

Comment: (Rule 8.10) An empty set of datatypes or exceptions results in no
change to the abstract machine state, hence the ε trace.

((H1
1 , Hc1, {(∆1, XS , RS , {D1})}), . . . , Πk

1) t1⇒
((H1

2 , Hc1, {(∆2, XS , RS)}), . . . , Πk
1) · · ·

((H1
k, Hc1, {(∆k, XS , RS , {Dk})}), . . . , Πk

1) tk⇒
((H1

k+1, Hc1, {(∆k+1, XS , RS)}), . . . , Πk
1)

((H1
1 , Hc1, {(∆1, XS , RS , {D1, . . . , Dk})}), . . . , Πk

1)
t1 ; ··· ; tk
===⇒

((H1
k1
, Hc1, {(∆k+1, XS , RS)}), . . . , Πk

1)

(8.11)

Comment: (Rule 8.11) A set of datatype declarations are processed sequentially
by the abstract machine, as shown by the resulting trace.

H1
1 ↑ p1

((H1
1 [p1 7→ tn], Hc1, {(∆1[tn 7→ p1], XS , RS 1,

τ alloc(ctype(C1, tn)))}), . . . , Πk
1) t1⇒

((H1
2 , Hc1, {(∆2, XS , RS 2)}), . . . , Πk

1) · · ·
((H1

k , Hc1, {(∆k, XS , RS k, τ alloc(ctype(Ck, tn)))}), . . . , Πk
1) tk⇒

((H1
k+1, Hc1, {(∆k+1, XS , pk2 · · ·p1

2 · RS 1)}), . . . , Πk
1)

((H1
1 , Hc1, {(∆1, XS , RS 1, datatype tn of {C1, . . . , Ck})}), . . . , Πk

1)
t1 ; ··· ; tk
===⇒

((H1
k+1, Hc1, {(∆k+1[cname(C1) 7→ p1

2, . . . , cname(C
k) 7→ pk2],

XS , RS 1)}), . . . , Πk
1)

(8.12)

Comment: (Rule 8.12) The constructors of a datatype are also processed sequen-
tially. Note that the heap of the parent process of the thread is accessed directly.
The τ alloc function allocates a type on the heap and will be defined later in this
chapter. The ctype and cname functions have exactly the same definition as in
Chapter 5, and are repeated below for convenience:

ctype(con, tn) = tn cname(con) = con

ctype((con, τ), tn) = τ → tn cname((con, τ)) = con

ctype(con, (αk, tn)) = ∀ α k. tn(α k)

ctype((con, τ), (α k, tn)) = ∀ α k. τ → tn(α k)

162

H1
1 ↑ p1

((H1
1 [p1 7→ tn], Hc1, {(∆1[tn 7→ p1], XS , RS 1,

σ alloc(ctype(C1, (α k, tn))))}), . . . , Πk
1) t1⇒

((H1
2 , Hc1, {(∆2, XS , RS 2)}), . . . , Πk

1) · · ·
((H1

k, Hc1, {(∆k, XS , RSk,

σ alloc(ctype(Ck, (α k, tn))))}), . . . , Πk
1) tk⇒

((H1
k+1, Hc1, {(∆k+1, XS , pk1 · · ·p1

1 · RS 1)}), . . . , Πk
1)

((H1
1 , Hc1, {(∆1, XS , RS 1, datatype (α k, tn) of {C1, . . . , Ck})}), . . . , Πk

1)
t1 ; ··· ; tk
===⇒

((H1
k+1, Hc1, {(∆k+1[cname(C1) 7→ p1

1, . . . , cname(C
k) 7→ pk1],

XS , RS 1)}), . . . , Πk
1)

(8.13)

Comment: (Rule 8.13) The rule for polymorphic datatypes is essentially the
same as for monomorphic datatypes. The rule proceeds by allocating the data-
type name tn on the heap, and entering the corresponding pointer p1 into the
environment. The type schemes for the constructors are then allocated sequen-
tially on the heap using the σ alloc function, which will also be defined later
in this chapter. Finally, the environment is updated with a mapping from each
constructor name to its heap allocated type.

((H1
1 , Hc1, {(∆1, XS , RS 1, τ alloc(ctype(C1, t exn)))}), . . . , Πk

1) t1⇒
((H1

2 , Hc1, {(∆2, XS , RS 2)}), . . . , Πk
1) · · ·

((H1
k, Hc1, {(∆k, XS , RSk, τ alloc(ctype(Ck, t exn)))}), . . . , Πk

1) tk⇒
((H1

k+1, Hc1, {(∆k+1, XS , pk · · ·p1 · RS 1)}), . . . , Πk
1)

((H1
1 , Hc1, {(∆1, XS , RS 1, {exception C1, . . . , exception Ck})}), . . . , Πk

1)
t1 ; ··· ; tk
===⇒

((H1
k+1, Hc1, {(∆k+1[cname(C1) 7→ p1, . . . , cname(Ck) 7→ pk],

XS , RS 1)}), . . . , Πk
1)

(8.14)

Comment: (Rule 8.14) Recall that exceptions are treated as constructors of a
reserved datatype t exn, and polymorphic exceptions are forbidden. Therefore,
this rule is essentially a specialised variant of Rule 8.12 for a datatype named
t exn.

163

8.2.2 Memory Access and Caching

The distributed abstract machine uses the LEMMA model of distributed shared
memory. This means that any thread can directly access the data contained on
the heap of any other process, e.g. Hi(p) = ty, where 0 < i ≤ k. However, it
was argued in Section 8.1 that direct memory access is impractical in a loosely-
coupled system owing to communication overheads. In this section we model the
caching of remote memory within the abstract machine. In order for this to be
effective, all memory accesses in the abstract machine must be performed via a
fetch function, which we define below. The result of this function is a type ty or
pair (val, ty) on the result stack.

Each process in the abstract machine has a heap H and a cache Hc. With
reference to Figures 8.2 and 8.3, the area of the virtual address space which
corresponds to the semi-space managed by a particular machine is represented
by the heap. The remainder of the virtual address space is represented by the
cache. Clearly, the heap will be tightly populated, while the cache will be sparsely
populated. The cache is cleared during garbage collection. The abstract machine
does not model virtual memory directly as there is no notion of memory addresses,
and the virtual memory system is inherently platform dependent. However, it is
worth noting that in an actual implementation, the heap and cache would be
mapped onto a virtual address space. This differs from the sequential abstract
machine, where it was assumed that the heap was a direct model of the physical
memory.

The fetch function retrieves only a single type or value at a time. This
granularity will typically be too fine for an actual implementation due to commu-
nication overheads. In the LEMMA interface, a whole page of data is fetched on
each remote memory access. This is based on the principle of locality: the next
location of memory that is required will usually be close to the previous location.
Unfortunately we cannot model this here as we have no way of determining if one
pointer or location is close to another in the heap. Also, the heap is not divided
into pages, as the size of a page is fundamentally a machine-dependent property
and is therefore inappropriate for our model.

Fetching and caching of types is defined in Rules 8.15 through 8.18. The
fetch(p) function returns the type referenced by the type-pointer p on the res-
ult stack RS . The rules utilise a function num(p) which return the number of
the process whose heap contains the type-pointer p. There are four rules corres-
ponding to local pointers, cached pointers, remote mutable pointers and remote
immutable pointers.

164

num(p) = i

(Π1, . . . , (H i, Hci, {(∆n, XSn, RSn, fetch(p))}] T i), . . . , Πk) ε⇒
(Π1, . . . , (H i, Hci, {(∆n, XSn, H i(p) · RSn)}] T i), . . . , Πk)

(8.15)

Comment: (Rule 8.15) If the pointer p is contained in the heap of the parent
process Hi, then the type is obtained directly from the heap and returned on the
result stack.

num(p) 6= i p ∈ Dom Hci

(Π1, . . . , (H i, Hci, {(∆n, XSn, RSn, fetch(p))}] T i), . . . , Πk) ε⇒
(Π1, . . . , (H i, Hci, {(∆n, XSn, Hci(p) · RSn)}] T i), . . . , Πk)

(8.16)

Comment: (Rule 8.15) If the pointer p is non-local num(p) 6= i, but is present in
the local cache p ∈ Dom Hci, then the type is obtained directly from the cache
and returned on the result stack.

num(p1) = j j 6= i p1 6= Dom Hci Hj(p1) = t ref(p2)

(Π1, . . . , (H i, Hci, {(∆n, XSn, RSn, fetch(p1))}] T i), . . .
(Hj, Hcj , T j), . . . , Πk) ε⇒

(Π1, . . . , (H i, Hci, {(∆n, XSn, t ref(p2) · RSn)}] T i), . . .
(Hj, Hcj , T j), . . . , Πk)

(8.17)

Comment: (Rule 8.15) If the pointer p1 is non-local and is not in the cache, then
the remote type is retrieved Hj(p1). If this type is a reference (i.e. mutable) then
the type is simply returned on the result stack.

num(p1) = j j 6= i p1 6= Dom Hci Hj(p1) = ty ty 6= t ref(p2)

(Π1, . . . , (H i, Hci, {(∆n, XSn, RSn, fetch(p1))}] T i), . . .
(Hj, Hcj , T j), . . . , Πk) ε⇒

(Π1, . . . , (H i, Hci[p1 7→ ty], {(∆n, XSn, ty · RSn)}] T i), . . .
(Hj, Hcj , T j), . . . , Πk)

(8.18)

Comment: (Rule 8.18) If the pointer p1 is non-local, is not in the cache, and
does not reference a mutable type, then the type is stored in the local cache
Hci[p1 7→ ty] and returned on the result stack.

165

The retrieval and caching of values is defined by Rule 8.19 through 8.22.
The fetch(l, p) function returns a pair of a type and a value (val, ty) on the
result stack. As with the types, there four rules corresponding to local, cached,
mutable, and immutable values. The rules are slightly more complex as the type
must first be obtained via a call to fetch(p) before the value is retrieved. We
cannot guarantee that a value will be in the same heap as its corresponding type.
Note that the type is used to determine if value is mutable or immutable.

num(l) = i

(Π1
1, . . . , (H i

1, Hci1, {(∆n, XSn, RSn, fetch(p))}] T i1), . . . , Πk
1) t⇒

(Π1
2, . . . , (H i

2, Hci2, {(∆n, XSn, ty · RSn)}] T i2), . . . , Πk
2)

(Π1
1, . . . , (H i

1, Hci1, {(∆n, XSn, RSn, fetch(l, p))}] T i1), . . . , Πk
1) t⇒

(Π1
2, . . . , (H i

2, Hci2, {(∆n, XSn, (H i
2(l), ty) · RSn)}] T i2), . . . , Πk

2)

(8.19)

num(l) 6= i l ∈ Dom Hci1
(Π1

1, . . . , (H i
1, Hci1, {(∆n, XSn, RSn, fetch(p))}] T i1), . . . , Πk

1) t⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n, XSn, ty · RSn)}] T i2), . . . , Πk

2)

(Π1
1, . . . , (H i

1, Hci1, {(∆n, XSn, RSn, fetch(l, p))}] T i1), . . . , Πk
1) t⇒

(Π1
2, . . . , (H i

2, Hci2, {(∆n, XSn, (Hci2(l), ty) · RSn)}] T i2), . . . , Πk
2)

(8.20)

num(l) = j j 6= i l /∈ Dom Hci1
(Π1

1, . . . , (H i
1, Hci1, {(∆n, XSn, RSn, fetch(p1))}] T i1), . . . , Πk

1) t⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n, XSn, ty · RSn)}] T i2), . . .

(Hj
2, Hcj2, T

j
2), . . . , Πk

2)

ty = t ref(p2)

(Π1
1, . . . , (H i

1, Hci1, {(∆n, XSn, RSn, fetch(l, p1))}] T i1), . . . , Πk
1) t⇒

(Π1
2, . . . , (H i

2, Hci2, {(∆n, XSn, (Hj
2(l), ty) · RSn)}] T i2), . . .

(Hj
2, Hcj2, T

j
2), . . . , Πk

2)

(8.21)

num(l) = j j 6= i l /∈ Dom Hci1
(Π1

1, . . . , (H i
1, Hci1, {(∆n, XSn, RSn, fetch(p1))}] T i1), . . . , Πk

1) t⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n, XSn, ty · RSn)}] T i2), . . .

(Hj
2, Hcj2, T

j
2), . . . , Πk

2)

ty 6= t ref(p2) Hj
2(l) = val

(Π1
1, . . . , (H i

1, Hci1, {(∆n, XSn, RSn, fetch(l, p))}] T i1), . . . , Πk
1) t⇒

(Π1
2, . . . , (H i

2, Hci2[l 7→ val], {(∆n, XSn, (val, ty) · RSn)}] T i2), . . .

(Hj
2, Hcj2, T

j
2), . . . , Πk

2)

(8.22)

166

8.2.3 Memory Allocation

Memory allocation in the distributed abstract machine is more straightforward
than memory access. Although a thread can access any heap in the distributed
shared memory, it can only perform allocation locally within the heap of the
parent process. Therefore, the allocation of a type or value is performed dir-
ectly as before, e.g. Hi ↑ p Hi[p 7→ ty], where Hi is the local heap. However,
we still require distributed versions of the functions τ alloc, α alloc and σ alloc

for converting static types into dynamic types, and the instance function for
instantiating type schemes.

A large number of the transitions in the distributed abstract machine are
essentially the same as their sequential counterparts. Therefore, rather than
presenting all of the relations in full, we will simply specify translations between
equivalent sequential and distributed relations in the form of templates. The first
two such templates are shown in Figure 8.10. The first template (8.23) converts
a sequential relation into a distributed one, where fn is the name of a function,
and p is the resulting type pointer. Note that the heap H is translated into the
heap of the parent process Hi, while the environment and stacks are translated
into those of the thread ∆n, etc.

The second template (8.24) is used to convert a direct memory access into one
which uses the fetch function. These templates are enough to convert all of the
type functions τ alloc, α alloc, σ alloc, and instance. Note that the templates
cannot be applied blindly; some renumbering of the tuples is necessary, and an
evaluation trace must be constructed. As an example, the translated α alloc

function is shown in Figure 8.11.

Sequential : (H1, ∆1, XS , RS , fn)⇒ (H2, ∆2, XS , p · RS)

Distributed :

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn, RSn, fn)}] T i1), . . . , Πk

1) t⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn, p · RSn)}] T i2), . . . , Πk
2)

(8.23)

Sequential : H1(p) = ty

Distributed :

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , fetch(p))}] T i1), . . . , Πk

1) t⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , ty · RSn2)}] T i2), . . . , Πk
2)

(8.24)

Figure 8.10: Type Function Templates.

167

(Π1, . . . , (H i, Hci, {(∆n, XSn, RSn, α alloc(τ))}] T i1), . . . , Πk) ε⇒
(Π1, . . . , (H i, Hci, {(∆n, XSn, RSn)}] T i1), . . . , Πk)

(8.25)

H i ↑ (p1, . . . , pk)

(Π1, . . . , (H i, Hci, {(∆n, XSn, RSn, α alloc(∀ α k. τ))}] T i1), . . . , Πk) ε⇒
(Π1, . . . , (H i[p1 7→ α1, . . . , pk 7→ αk], Hci,

{(∆n[α1 7→ p1, . . . , αk 7→ pk], XSn, RSn)}] T i1), . . . , Πk)

(8.26)

Figure 8.11: Distributed α alloc Function.

The translated instance function is given in Figure 8.12. This rule neatly
illustrates the composition of the evaluation traces in the distributed abstract
machine. If there are no transitions in the premise of the rule, as in the α alloc

function, then the evaluation trace is empty ε. If there is one transition in the
premise of the rule, as in the fetch function (Rule 8.22), then the evaluation
trace t of the premise and conclusion are the same. However, if there is more
than one transition in the premise of the rule, as in the instance function, then
the traces are sequentially composed in the conclusion of the rule t1 ; t2. It is
necessary to compose the traces in this manner when performing the template-
based translations.

(Π1
1, . . . , (H i

1, Hci1, {(∆n, XSn, RSn, fetch(pσ))}] T i1)), . . . , Πk
1) t1⇒

(Π1
1, . . . , (H i

2, Hci2,

{(∆n, XSn, 〈〈{α1 7→ p1
1, . . . , α

k 7→ pk1}, p2〉〉 · RSn)}] T i1)), . . . , Πk
1)

(Π1
1, . . . , (H i

2, Hci2, {(∆n, XSn, RSn, fetch(pτ))}), . . . , Πk
1) t2⇒

(Π1
1, . . . , (H i

3, Hci3, {(∆n, XSn, p3
k · RSn)}] T i1)), . . . , Πk

1)

(Π1
1, . . . , (H i

1, Hci1, {(∆n, XSn, RSn, instance(pσ, pτ))}] T i1), . . . , Πk
1)

t1 ; t2==⇒
(Π1

1, . . . , (H i
3[p4 7→ 〈〈{α1 7→ p1

3, . . . , α
k 7→ pk3}, p2〉〉], Hci3,

{(∆n, XSn, p4 · RSn)}] T i1), . . . , Πk
1)

(8.27)

Figure 8.12: Distributed Type Scheme Instantiation.

168

8.2.4 Thread Creation and Communication

We can now define operations for thread creation and communication. Our ab-
stract machine definition has been designed to allow these operations to be per-
formed with relative ease. InMΛ, a thread is represented by a functions of type
t unit → t unit. A thread is created by evaluating this function with a fork or
rfork expression. The fork expression evaluates a thread on the same process as
the thread performing the fork, while the rfork expression evaluates a thread on
a remote process, supplied as an integer argument.

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , E)}] T i1), . . . , Πk

1) t1⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , (l1, p1) · RSn2)}] T i2), . . . , Πk
2)

(Π1
2, . . . , (H i

2, Hci2, {(∆n
2 , XSn2 , RSn2 , fetch(l1, p1))}] T i2), . . . , Πk

2) t2⇒
(Π1

3, . . . , (H i
3, Hci3, {(∆n

3 , XSn3 ,

(〈〈∆c, (x), Ec〉〉, ty) · RSn
3)}] T i3), . . . , Πk

3)

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , fork E)}] T i1), . . . , Πk

1)
t1 ; t2==⇒

(Π1
3, . . . , (H i

3, Hci3, {(∆n
3 , XSn3 , ∆n

3(UNIT) · RSn3)}]
{(∆c, ∅, ∅, Ec)}] T i3), . . . , Πk

3)

(8.28)

Comment: (Rule 8.28) The argument expression E is evaluated to obtain a closure
〈〈∆c, (x), Ec〉〉. This closure is evaluated by creating a thread (∆c, ∅, ∅, Ec)
which is appended to the local multi-set of threads.

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , E1)}] T i1), . . . , Πk

1) t1⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , (l1, p1) · RSn2)}] T i2), . . . , Πk
2)

(Π1
2, . . . , (H i

2, Hci2, {(∆n
2 , XSn2 , RSn2 , fetch(l1, p1))}] T i2), . . . , Πk

2) t2⇒
(Π1

3, . . . , (H i
3, Hci3, {(∆n

3 , XSn3 , RSn3)}] T i3), . . . , Πk
3)

(Π1
3, . . . , (H i

3, Hci3, {(∆n
3 , XSn3 , RSn3 , E2)}] T i3), . . . , Πk

3) t3⇒
(Π1

4, . . . , (H i
4, Hci4, {(∆n

4 , XSn4 , (l2, p2) · (j, ty1) · RSn4)}] T i4), . . . , Πk
4)

(Π1
4, . . . , (H i

4, Hci4, {(∆n
4 , XSn4 , RSn4 , fetch(l2, p2))}] T i4), . . . , Πk

4) t4⇒
(Π1

5, . . . , (H i
5, Hci5, {(∆n

5 , XSn5 , (〈〈∆c, (x), Ec〉〉, ty2) · RSn5)}] T i5), . . .

(H(j mod k), Hc(j mod k), T (j mod k)), . . . , Πk
5)

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , rfork (E1, E2))}] T i1), . . . , Πk

1)
t1 ; t2 ; t3 ; t4=======⇒

(Π1
5, . . . , (H i

5, Hci5, {(∆n
5 , XSn5 , ∆n

5(UNIT) · RSn5)}] T i5), . . .

(H(j mod k), Hc(j mod k), {(∆c, ∅, ∅, Ec)}] T (j mod k)), . . . , Πk
5)

(8.29)

Comment: (Rule 8.29) The expression E1 is first evaluated to determine the
remote process number j. E2 is then evaluated to provide a closure, which is
converted to a thread and appended to the multi-set of threads on process Πj.

169

Communication between threads is performed across blocking bi-directional
channels; both the sending and receiving threads are blocked until communication
is complete. Recall from Chapter 2 that channels are represented by instances
of the c chan(α) constructor. Thus, at the abstract machine level, channels are
represented by nullary constructor values con. For clarity, we will write channel
constructor values as cn. Messages are communicated by the send and receive
expressions. The messages communicated by these expressions are always pairs
(l, p) (the message types p and ∆ will be used in Chapter 9). The notation for
sending and receiving across channels is the same as the communication traces.
For example, sending the pair (l, p) across channel cn is written cn ! (l, p).

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , E1)}] T i1), . . . , Πk

1) t1⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , (l1, p1) · RSn
2)}] T i2), . . . , Πk

2)

(Π1
2, . . . , (H i

2, Hci2, {(∆n
2 , XSn2 , RSn2 , fetch(l1, p1))}] T i2), . . . , Πk

2) t2⇒
(Π1

3, . . . , (H i
3, Hci3, {(∆n

3 , XSn3 , RSn3)}] T i3), . . . , Πk
3)

(Π1
3, . . . , (H i

3, Hci3, {(∆n
3 , XSn3 , RSn3 , E2)}] T i3), . . . , Πk

3) t3⇒
(Π1

4, . . . , (H i
4, Hci4, {(∆n

4 , XSn4 , (l2, p2) · (cn, ty) · RSn4)}] T i4), . . . , Πk
4)

cn ! (l2, p2)

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , send (E1, E2))}] T i1), . . . , Πk

1)
t1 ; t2 ; t3 ; cn ! (l2, p2)

============⇒
(Π1

4, . . . , (H i
4, Hci4, {(∆n

4 , XSn4 , ∆n
4(UNIT) · RSn

4)}] T i4), . . . , Πk
4)

(8.30)

Comment: (Rule 8.30) The expression E1 is evaluated to obtain the channel
(cn, ty). The expression E2 is evaluated to form the message (l2, p2) which is
sent along the channel.

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , E)}] T i1), . . . , Πk

1) t1⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , (l1, p1) · RSn
2)}] T i2), . . . , Πk

2)

(Π1
2, . . . , (H i

2, Hci2, {(∆n
2 , XSn2 , RSn2 , fetch(l1, p1))}] T i2), . . . , Πk

2) t2⇒
(Π1

3, . . . , (H i
3, Hci3, {(∆n

3 , XSn3 , (cn, ty) · RSn3)}] T i3), . . . , Πk
3)

cn ? (l2, p2)

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , receiveE)}] T i1), . . . , Πk

1)
t1 ; t2 ; cn ? (l2, p2)
==========⇒

(Π1
3, . . . , (H i

3, Hci3, {(∆n
3 , XSn3 , (l2, p2) · RSn3)}] T i3), . . . , Πk

3)

(8.31)

Comment: (Rule 8.31) The expression E is evaluated to provide the channel for
the receive operation. The message (l2, p2) is returned on the result stack.

170

8.2.5 Distributed Expression Evaluation

The relations for the remainder of theMΛ expressions are outlined below. These
relations are essentially the same as their sequential counterparts. Therefore, as
with the type allocation functions, we will define templates which can be used to
perform a translation. The templates are shown in Figure 8.13.

The first template (8.32) is used to translate a relation for evaluating an
expression or sub-expression. As before, the heap of the sequential relation is
mapped onto the heap of the process, while the environment and stacks are
mapped onto the thread. The second (8.33) and third (8.34) templates are used to
translate direct heap accesses into applications of the fetch function. Note that
the final template returns both a value and a type on the result stack. Therefore,
if the sequential abstract machine retrieves a type, followed by its corresponding
value (as is usually the case), they can be combined into a single fetch application.

With a little work, these templates can be used to convert all of the relations
for the expressions E in Chapter 5. For brevity, the results are omitted here. As
with the type functions, it may be necessary to renumber the heaps and envir-
onments in some places. A sequential evaluation trace must also be constructed
where the premise of the rule contains more than one relation.

Sequential :

(H1, ∆1, XS 1, RS 1, E)⇒ (H2, ∆2, XS 2, (l, p) · RS 2)

Distributed :

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , E)}] T i1), . . . , Πk

1) t=⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , (l, p) · RSn
2)}] T i2), . . . , Πk

2)

(8.32)

Sequential : H1(p) = ty

Distributed :

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , fetch(p))}] T i1), . . . , Πk

1) t=⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , (ty) · RSn2)}] T i2), . . . , Πk
2)

(8.33)

Sequential : H1(l) = val

Distributed :

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , fetch(l, p))}] T i1), . . . , Πk

1) t⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , (val, ty) · RSn2)}] T i2), . . . , Πk
2)

(8.34)

Figure 8.13: Conversion Templates from MΛ to DMΛ.

171

As an example, the MΛ app expression is translated into distributed form
in Figure 8.14. Note the sequential composition of the evaluation traces for the
subexpressions: t1 ; t2 ; t3 ; t4.

Sequential :

(H1, ∆1, XS 1, RS 1, E1)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

(H2, ∆2, XS 2, (l1, p1) · RS ′1, E2)⇒ (H3, ∆3, XS 3, (l2, p2) · (l′1, p′1) · RS ′′1)

H3(l′1) = 〈〈∆c, (x), Ec〉〉
(H3, ∆c[x 7→ (l2, p2)], XS 3, ∆3 · RS ′′1, Ec)⇒

(H4, ∆4, XS 4, (l3, p3) · ∆′3 · RS ′′′1)

(H1, ∆1, XS 1, RS 1, app (E1, E2))⇒ (H4, ∆′3, XS 4, (l3, p3) · RS ′′′1)

(8.35)

Distributed :

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , E1)}] T i1), . . . , Πk

1) t1⇒
(Π1

2, . . . , (H i
2, Hci2, {(∆n

2 , XSn2 , (l1, p1) · RS
′n
1)}] T i2), . . . , Πk

2)

(Π1
2, . . . , (H i

2, Hci2, {(∆n
2 , XSn2 , (l1, p1) · RS

′n
1 , E2)}] T i2), . . . , Πk

2) t2⇒
(Π1

3, . . . , (H i
3, Hci3, {(∆n

3 , XSn3 , (l2, p2) · (l′1, p′1) · RS
′′n
1)}] T i3), . . . , Πk

3)

(Π1
3, . . . , (H i

3, Hci3, {(∆n
3 , XSn3 , RS

′′n
1 , fetch(l′1, p

′
1))}] T i3), . . . , Πk

3)
t3⇒ (Π1

4, . . . , (H i
4, Hci4, {(∆n

4 , XSn4 ,

(〈〈∆c, (x), Ec〉〉, ty) · (l2, p2) · RS
′′n
1)}] T i4), . . . , Πk

4)

(Π1
4, . . . , (H i

4, Hci4, {(∆c[x 7→ (l2, p2)], XSn4 ,

∆n
4 · RS

′′n
1 , Ec)}] T i4), . . . , Πk

4) t4⇒
(Π1

5, . . . , (H i
5, Hci5, {(∆n

5 , XSn5 , (l3, p3) · ∆′n4 · RS
′′′n
1)}] T i5), . . . , Πk

5)

(Π1
1, . . . , (H i

1, Hci1, {(∆n
1 , XSn1 , RSn1 , app (E1, E2))}] T i1), . . . , Πk

1)
t1 ; t2 ; t3 ; t4======⇒

(Π1
5, . . . , (H i

5, Hci5, {(∆
′n
4 , XSn5 , (l3, p3) · RS

′′′n
1)}] T i5), . . . , Πk

5)

(8.36)

Figure 8.14: Function Application in DMΛ.

Earlier in this chapter (Section 8.2) it was stated that the communication
traces for a correct program should always reduce to ε. Figure 8.15 shows that
this is the case for the thread example given in Chapter 2. In this example, a
thread is created on processor 2 that simply waits for an integer value on channel
c, then returns the value, incremented by 3, on the same channel. The example
concludes by sending the value 7 to the thread, and returns the response (which
will be 10).

172

For clarity, the traces have been simplified by removing all the ε traces res-
ulting from the intermediate steps in the evaluation. The first pair that is trans-
mitted across the channel c, corresponding to the special constant 7, is denoted
(l1, p1). The second pair, corresponding to the special constant 10 (i.i. 7+3), is
denoted (l2, p2).

Concurrent ML:

let val c = channel()
val = rfork(2,

fn => send(c, receive(c) + 3))
val = send(c, 7)

in
receive(c)

end

MΛ Syntax:

(∅, ∅, let (c, t chan(α)) = con c chan (i)
in let (, t unit) = rfork (scon 2,

fn (, t unit→ t unit) =
send (var (c, t int),

app (ADDi, tuple (receive (var (c, t int)), scon 3)))) (ii)
in let (, t unit) = send (var (c, t int), scon 7) (iii)

in receive (var c)) (iv)

Simplified Evaluation Trace:

(i) ε
(ii) ε ‖ (c ? (l1, p1) ; c ! (l2, p2))
(iii) (ε ; c ! (l1, p1)) ‖ (c ? (l1, p1) ; c ! (l2, p2))
(iv) (ε ; c ! (l1, p1) ; c ? (l2, p2)) ‖ (c ? (l1, p1) ; c ! (l2, p2))

Trace Reduction:

(ε ; c ! (l1, p1) ; c ? (l2, p2)) ‖ (c ? (l1, p1) ; c ! (l2, p2))
= (c ! (l1, p1) ; c ? (l2, p2)) ‖ (c ? (l1, p1) ; c ! (l2, p2)) by Rule 8.1
= c ? (l2, p2) ‖ c ! (l2, p2) by Rule 8.5
= c ! (l2, p2) ‖ c ? (l2, p2) by Rule 8.3
= ε by Rule 8.4

Figure 8.15: Trace Reduction Example.

173

8.3 Implicit Concurrency

The kind of concurrency which we have defined in this chapter may be character-
ised as explicit concurrency; the programmer is required to use fork and rfork
to obtain concurrent evaluation. There is another kind of concurrency that is
possible in a functional setting called implicit or automatic concurrency. In some
ways this technique is more desirable because it does not require a change to the
source program. Nonetheless, implicit concurrency is entirely dependent on the
opportunities for concurrency present within the program. It is perfectly pos-
sible to construct a program which has no implicit concurrency at all. Explicit
concurrency allows the evaluation of the program to be tailored for the hardware
on which it is to be run, while implicit concurrency does not. Implicit concur-
rency assumes a closely-coupled system, where the cost of creating and destroying
threads, and the cost of inter-thread communication is cheap. Implicit and expli-
cit concurrency are not mutually exclusive. It is possible to include both kinds
of concurrency in a programming language. This would be appropriate for a net-
work of multiprocessor machines. In this section we briefly outline a technique
for implicit concurrency in the MΛ language.

Implicit concurrency is particularly suited to lazy functional languages, e.g.
Haskell [JH93] and UFO [SKA94]. However, it can also be applied to strict
functional languages such as Standard ML. Our approach to implicit concurrency
is similar to that of Parallel SML [Ham91], though our semantic model is entirely
different. By definition, a function is considered strict in an argument if the
result of the function is ⊥ (non-termination) when only that argument is ⊥. It
follows that every strict argument must be evaluated in order to obtain the result
of the function. For example, an arithmetic addition function is strict in both
its arguments, since both are necessary to compute the result, and the result is
⊥ if either argument is ⊥. It is therefore possible to evaluate the arguments in
parallel without introducing non-termination. In Standard ML, every function is
strict in its arguments. Thus, we can introduce implicit concurrency into MΛ by
way of function application.

Unfortunately there is a significant caveat to implicit concurrency. We can
only evaluate function arguments in parallel if they do not involve any side-
effects, i.e. referential transparency is preserved. This means that we must make
two simplifications to the MΛ language, namely the removal of references and
exceptions. It may appear that we do not need to remove side-effects from the
language if their evaluation can be isolated. We may then enforce sequential
evaluation on these areas. Unfortunately, these areas cannot be identified purely

174

by their definition. Side-effects can readily ‘pollute’ the purely functional parts
of the program, for example, applying a pure higher-order function (e.g. map) to
a function with side-effects (e.g. inc). Determining all the side-effecting areas of
a program should be possible using static analysis techniques, e.g. a type system
with annotations such as in [Kı99] which presents a technique for detecting mobile
functions. However, this is beyond the scope of the thesis. For brevity, we have
chosen to eliminate references from the language for the purpose of illustrating
implicit concurrency.

The problem with exceptions occurs when two expressions which are eval-
uated in parallel can raise an exception. The result is entirely dependent on
which expression terminates first. Clearly, this will destroy referential transpar-
ency and introduce an undesirable element of non-determinism into the language.
Exceptions are a very powerful technique in ML, and their removal is undesir-
able. Fortunately, the removal of exceptions from the language is not entirely
necessary. It is possible to retain exceptions in the language, if we change the
semantics of exception handling. The new semantics are essentially the same as
those required for an implementation of exceptions in a lazy functional language.
The first change is to treat exceptions as values, as opposed to a change in control
flow. The second change is to define a set of exceptions which can be raised, rather
than a single exception. The final stage is to determine which exception in the set
has actually been raised. There are a number of possibilities which may be used
here: we can make a non-deterministic choice between the exceptions [MLP99],
alternatively we can impose a prioritisation on the exceptions [Ham91], or we can
simply handle all of the exceptions as the same. For brevity, we have eliminated
exceptions from MΛ as we merely wish to outline implicit concurrency in MΛ.
However, in an actual implementation, it would be desirable to implement one of
the schemes above.

We now sketch an abstract machine model which can perform implicitly con-
current evaluation of MΛ expressions. We do not include the explicit concur-
rency (threading) operations in our model. The static semantics of the language
remain the same as in Chapter 3, with the exclusion of references, exceptions, and
threads. The abstract machine syntax is illustrated in Figure 8.16. The definition
of the heap H, environment ∆ and result stack RS are identical to the sequential
abstract machine and have been omitted.

The state of the abstract machine is defined by a single heap H and a multi-
set of micro-threads µ. The micro-threads are more lightweight than the threads
T defined earlier in this chapter. In a model with both explicit and implicit

175

parallelism, each thread T would consist of a set of micro-threads µ. A separate
micro-thread is used for the evaluation of every expression and sub-expression, in
a program. There is no direct communication (i.e. via channels) between micro-
threads, rather the result of each micro-thread is available to the thread which
created it.

Machine State M ::= (H, µ)
Micro Thread µ ::= (∆, RS)
Trace t ::= ε | t1 ; t2 | t1 ‖ t2

Figure 8.16: Implicitly Concurrent Abstract Machine.

The abstract machine is defined by relations of the form: (H1, (∆1, RS 1, E)]
µ1) t⇒ (H2, (∆2, (l, p) · RS2)]µ2). As in the distributed abstract machine, each
micro-thread has access to a shared heap, and a trace t is maintained to indicate
the evaluation order of the micro-threads. The concurrent evaluation of threads
is defined in Figure 8.17.

µ1
t1=⇒ µ3 µ2

t2=⇒ µ4

{µ1}] µ2
t1‖t2=⇒ {µ3}] µ4

(8.37)

Figure 8.17: Concurrent Evaluation of Micro Threads.

For brevity we simply define relations for the single and multiple argument
app expressions, which are responsible for introducing implicit concurrency. The
most significant part of each rule is the trace at the conclusion of the rule. The
trace for a function of a single argument (Rule 8.38) states that the evaluation of
the function expression E1 with trace t1 may occur in parallel with the evaluation
of the argument expression E2. However, the evaluation of these expressions must
be complete before the function Ec with trace t3 is evaluated. This ordering is
enforced by the sequential composition.

(H1, (∆1, RS 1, E1)] µ1) t1⇒ (H2, (∆2, (l1, p1) · RS 1)] µ2)

(H2, (∆2, (l1, p1) · RS 1, E2)] µ2) t2⇒
(H3, (∆3, (l2, p2) · (l1, p1) · RS 1)] µ3)

H3(l′1) = 〈〈∆c, (x), Ec〉〉
(H3, (∆c[x 7→ (l2, p2)], ∆3 · RS 1, Ec)] µ3) t3⇒

(H4, (∆4, (l3, p3) · ∆3 · RS 1)] µ4)

(H1, (∆1, RS 1, app (E1, E2))] µ1)
(t1‖t2) ; t3====⇒

(H4, (∆3, XS 4, (l3, p3) · RS 1)] µ4)

(8.38)

176

(H1, (∆1, RS 1, E1)] µ1) t1⇒ (H2, (∆2, (l1, p1) · RS 1)] µ2)

(H2, (∆2, (l1, p1) · RS 1, E
1
2)] µ2)

t12⇒ (H3, (∆3, RS 2)] µ3) · · ·

(Hk+1, (∆k+1, RS k, E
k
2)] µk+1)

tk2⇒
(Hk+2, (∆k+2, (lk2, p

k
2) · (l12, p1

2) · (l1, p1) · RS 1)] µk+2)

Hk+2(l1) = 〈〈∆c, x
k, Ec〉〉

(Hk+2, (∆c[x1 7→ (l12, p
1
2), . . . , xk 7→ (lk2, p

k
2)], ∆k+2 · RS 1, Ec)] µk+2) t3⇒

(Hk+3, (∆k+3, (l3, p3) · ∆′k+2 · RS 1)] µk+3)

(H1, (∆1, RS 1, app (E1, E2
k))] µ1)

(t1‖t12‖···‖tk2) ; t3=======⇒
(Hk+3, (∆k+2, RS 1)] µk+3)

(8.39)

The remaining MΛ expressions are simply evaluated in a sequential manner
as before. We have yet to consider the relationship between implicit parallelism
and code-replacement. However, there are unlikely to be many conflicts as code-
replacement is primarily a heap transformation, and the definition of the heap
remains unchanged.

177

Chapter 9

Distributed Code-Replacement

In this chapter we complete our definition of distributed code-replacement. The
chapter is divided into two parts: in the first part we define a distributed garbage
collection algorithm, and in the second part we extend this algorithm with code-
replacement. Distributed garbage collection and distributed code-replacement
may be considered as generalisations of the sequential definitions presented earlier.
In general, distributed garbage collection algorithms are notoriously difficult to
define correctly. Thus, in Chapter 10 we perform a mechanical verification of our
definition.

In the previous chapter we described the LEMMA interface [MS95b] as a
Distributed Shared Memory (DSM) platform with distributed garbage collection.
Therefore, this chapter may be considered as a completion of the LEMMA defin-
ition. Recall that the LEMMA interface is simply a function-level specification
and does not impose any constraints on the implementation. Consequently, the
choice of distributed garbage collection algorithm is left open.

The provision of efficient algorithms for distributed garbage collection has
been, and continues to be, a very active area of research. There are many differing
techniques, ranging from the very simple, e.g. where one process garbage collects
while another executes, up to complex multi-generational schemes. A good survey
of distributed garbage collection techniques is presented in [AR98].

We have chosen to use an extension of the copying collection algorithm of
Chapter 6. The technique presented here is not the most efficient distributed
algorithm. Nonetheless, it appears to be an appropriate choice as it extends
naturally from the sequential case, and has a number of desirable properties for
code-replacement, e.g. rollback. Furthermore, we have retained the tag-free style
which may potentially increase the efficiency of the algorithm. A number of other
improvements to the basic algorithm are discussed at the end of the chapter.

178

9.1 Distributed Garbage Collection

We begin by presenting an informal description of the distributed garbage collec-
tion algorithm. We then proceed to define the algorithm formally by exhibiting an
abstract machine with the same behaviour. The high-level view of the algorithm
is illustrated in Figure 9.1.

Address Space

For Machine 1

Address Space

For Machine 2

For Machine 3

FROM

Local Collections

FROM

FROM

Global FROM Space Global TO Space

TO

TO

TO

Address Space

Figure 9.1: Distributed Garbage Collection.

The collection is performed over the distributed shared memory, which we will
call the global address space. Each semi-space of the global address space man-
aged by each machine is divided in two to constitute local from and to spaces.
The global from and to spaces for the collection are considered to be the concat-
enation of these local spaces. However, each machine only garbage collects in its
own local space.

Garbage collection begins with a global synchronisation; all of the machines
perform garbage collection in parallel, but asynchronously. The task of each
machine is to ensure that all of the objects in the global from space that are
reachable from its own roots have been copied into the global to space. Once all
of the machines have finished, the garbage collection is complete and each machine
resumes executing in its local to space. The garbage collection algorithm executed
by each machine is the same as the sequential variant with the following additions:

1. When machine A encounters a pointer to an object managed by machine
B, it sends a message containing the pointer to machine B.

179

2. If the object has already been copied, machine B returns the updated
pointer, so machine A can update the object that it was scanning.

3. If the object has not been copied, machine B proceeds with the copy and
returns the updated pointer to machine A. During the copy, machine B
may encounter further remote pointers, in which case the above steps are
repeated.

The protocol has the property that an object is always copied by the machine
that first created it, even if that machine no longer has a reference to it. It must
also be noted that the garbage collection invalidates all of the cached copies of
objects on other machines.

9.1.1 Abstract Machine Definition

We will now present an abstract machine definition which describes the Distrib-
uted Garbage Collection (DGC) algorithm. The syntax of this abstract machine
is shown in Figure 9.2.

Machine State DGC ::= π k

DGC Process π ::= (Hf , Ht , GT , T)
DGC Tables GT ::= (RM , PF , LF , TE)
DGC Threads T ::= V | K | L | P

| WK(S1, S2) | WL(l1, p1, l2, p2) | WP (p1, p2)

Trace t ::= ε | t1 ; t2 | t1 ‖ t2 | cn ! m | cn ? m
Message m ::= (p) | (l, p) | (∆) | (RM)

Figure 9.2: Abstract Machine Syntax.

The organisation of our abstract machine for garbage collection is very similar
to the abstract machine for distributed evaluation defined in Chapter 8. This
similarity is intentional as there is a one-to-one correspondence between evaluation
processes Π and garbage collection processes π. In an actual implementation
the two machines would be combined. The combined machine would alternate
between the evaluation and garbage collection processes during cycles of program
execution and garbage collection. Figure 9.3 defines the parallel execution of
garbage collection processes and threads.

Each garbage collection process π is a separate copy of the sequential al-
gorithm. Therefore, each process contains a garbage collection state as defined

180

π1
1

t1=⇒gc π
1
2 · · · πk1

tk=⇒gc π
k
2

(π1
1, . . . , π

k
1)

t1‖···‖tk===⇒gc (π1
2, . . . , π

k
2)

(9.1)

T1
t1=⇒gc T3 T2

t2=⇒gc T4

{T1}] T2
t1‖t2=⇒gc {T3}] T4

(9.2)

Figure 9.3: Execution of DGC Processes and Threads.

in Chapter 6 (Section 6.2), i.e. each process has a from heap Hf i, a to heap Ht i,
and its own copy of the garbage collection tables GT i. In order to implement
the sequential algorithm in a multi-threaded manner, there are separate threads
for garbage collecting environments V , stacks K, values L, and types P respect-
ively. Messages can consist of pointers, locations, and environments as defined in
Chapter 5, and replacement maps as defined in Chapter 7.

9.1.2 Collecting Types and Values

The threads for collecting values and types are named Li and P i, where 0 < i ≤ k,
i.e. each garbage collection process π has a single L and P thread associated with
it. Each garbage collection process is only responsible for the collection of data
that is contained within its own heap. For data that is contained within the
heap of another process, it is necessary to send the pointer across a channel to
this process for collection. Hence, each thread Li, and P i and has a pair of
channels associated with it; one for sending pointers to the thread for collection,
and one along which the reply, containing the updated pointer, is received. In
Chapter 10 we show why a single channel for both sending and receiving will not
work. We use underlining to distinguish between sending and receiving channels.
The channels for sending pointers to the Li and P i threads are named cniL and
cniP , and the channels for receiving pointers from these threads are named cniL

and cniP . When an external pointer is encountered during garbage collection,
it is simply sent along a channel to the appropriate thread which returns an
updated pointer along the other channel. The thread is determined using the num
operation defined in Chapter 8. For example, a type referenced by the pointer
p1 is garbage collected by sending it to the correct L thread cniL ! (p1), where
i = num(p1). The collected pointer p2 is subsequently retrieved from the same
thread cniL ? (p2). For convenience, we will use the shorthand Li ! (p1) ? (p2)
to denote a send, followed by a receive to thread Li. In order to simplify the

181

garbage collection rules, a distinction is not made between local and remote data.
All type-pointers and value-locations are sent along channels, even if the data is
contained within the heap of the same process, i.e. when i is the local process. In
an actual implementation it would be desirable to optimise the local case.

It may be the case that two (or more) threads attempt to communicate with
another thread at the same time. In this case, a non-deterministic choice is
made between the communicating threads. Only one thread is permitted to
communicate along a channel at once. The remaining threads are blocked until
the communication is finished. Communication with a thread in our collector is
always done by performing a send operation followed by a receive. By maintaining
this strict ordering, we ensure that the correct thread always receives the reply.

A copying operation may require the cooperation of a number of threads. This
could easily lead to a deadlock owing to the blocking nature of the communication,
e.g. two threads may become blocked waiting for each other to finish. One solution
would be to fork a new thread every time. However, each of these threads would
require a separate pair of communication channels, and this would considerably
complicate the collection algorithm. The solution we adopt involves the use of
two different kinds of threads, namely server and worker threads.

The threads Li and P i which we discussed previously are the server threads
for the values and types respectively. These threads are primarily responsible
for maintaining the communication channels. When a pointer is received on a
communication channel, the server simply reserves and returns another pointer on
the other channel while a separate worker thread is forked to perform the actual
copying of the data. Server threads do not communicate directly with each other,
a request to a server is always made from a worker thread. By removing blocking
from the server threads in this manner, we avoid the possibility of deadlocks, as
we will demonstrate in Chapter 10.

The worker threads are denoted WL and WP . Unlike the server threads, which
are static until the end of the collection, worker threads are created and destroyed
dynamically throughout. A worker thread is passed a list of arguments when it is
created. The worker thread for copying a type is created as follows: WP (p1, p2).
This thread performs the collection of the type referenced by p1 in the local from
heap into the to heap referenced by p2. Similarly, the worker thread for copying
a value is created as WL(l1, p1, l2, p2). This thread performs the collection of
the value referenced by (l1, p1) into the location referenced by (l2, p2). Worker
threads may block when communicating with server threads. We will prove in
Chapter 10 that all the worker threads will eventually terminate.

182

p1

p4

p4p2

p1

p3

TO Space

TO Space

π

π

t_int

t_int

t_list(p4)

2

1

t_list(p2)

FROM Space

1

2

p2

P

P

Wp(p1, p3)

Wp(p2, p4)

START END

p3

FROM Space

KEY

Server

Message

Copy

Worker

Figure 9.4: Distributed Garbage Collection Example.

An example distributed garbage collection with two processes is illustrated in
Figure 9.4. In the example, an integer-list type is garbage collected. Initially, the
list type t list is referenced by the type-pointer p1 and is contained within the
from heap of process π1. The list type contains a pointer p2 to the integer type
t int contained within the from heap of process π2. This type will be copied into
the to heap on π1 and π2. The figure should be read in sequence from top to
bottom. Garbage collection is initiated by sending the pointer p1 to the server
thread P 1 on process π1. The server thread reserves and returns pointer p3 on
the to heap of process π1. A worker thread WP (p1, p3) is created to perform the
copy of the list type. During the copy operation, the worker thread encounters
the pointer p2 to the integer type. This pointer is sent to the server thread P 2

on process π2. The server thread subsequently reserves a pointer p4 on the to
heap of process π2 and returns this to the worker thread. Now a new worker
thread WP (p2, p4) is created on process π2 to perform the copy of the integer
type. Meanwhile, the worker thread on process π1 completes the copy of the list
type with the updated pointer p4. Once the worker thread on process π2 has
completed the copy of the integer type, the garbage collection is complete. The
type-pointer p3 references the garbage collected type in the to heap of process π1.

183

We will now formally define the server and worker threads for types and values.
As in Chapter 8, this is achieved by presenting a series of relations which define
the behaviour of a single thread on process i, where 0 < i ≤ k. A computational
trace t is also constructed for recording any external interactions.

The server thread for types P i is defined in Rules 9.3 and 9.4. The thread will
wait until it receives a type pointer cniP ? (p1). In Rule 9.3, the type referenced by
p1 has already been collected. The corresponding entry in the forwarding table is
therefore returned cniP ! (PF i(p1)). In Rule 9.4 the type has not been collected.
A pointer p2 is reserved in Ht , to hold the collected type, and returned cniP ! (p2).
At the same time, a worker thread WP (p1, p2) is created to copy the type, and
a mapping p1 7→ p2 is added to the forwarding table to prevent the type being
collected again. Note that the server is still present in the set of threads at the
end of the rule. This has the effect of restarting the type server.

GT i = (RM i, PF i, LF i, TE i)

t1 = cniP ? (p1) p1 ∈ Dom PF i t2 = cniP ! (PF i(p1))

(π1, . . . , (Hf i, Ht i, GT i, P i] T i), . . . , πk) t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Ht i, GT i, P i] T i), . . . , πk)

(9.3)

GT i
1 = (RM i, PF i, LF i, TE i)

t1 = cniP ? (p1) p1 /∈ Dom PF i Ht i ↑ p2 t2 = cniP ! (p2)

GT i
2 = (RM i, PF i[p1 7→ p2], LF i, TE i)

(π1, . . . , (Hf i, Ht i, GT i
1, P

i] T i), . . . , πk) t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Ht i, GT i
2, P

i]WP (p1, p2)] T i), . . . , πk)

(9.4)

The value server Li is defined in Rules 9.5 and 9.6. The value server is essen-
tially the same as the type server. In an actual implementation it may be prudent
to combine these into a single server which acts according to the type of message
received. However, separating the servers here makes the definition clearer.

GT i = (RM i, PF i, LF i, TE i)

t1 = cniL ? (l1, p1) l1 ∈ Dom LF i t2 = cniL ! (LF i(l1), PF i(p1))

(π1, . . . , (Hf i, Ht i, GT i, Li] T i), . . . , πk) t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Ht i, GT i, Li] T i), . . . , πk)

(9.5)

GT i
1 = (RM i, PF i, LF i, TE i)

t1 = cniL ? (l1, p1) l1 /∈ Dom LF i Ht i ↑ l2 t2 = cniL ! (l2, PF i(p1))

GT i
2 = (RM i, PF i, LF i[l1 7→ l2], TE i)

(π1, . . . , (Hf i, Ht i, GT i
1, L

i] T i), . . . , πk) t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Ht i, GT i
2, L

i]WL(l1, p1, l2, PF i(p1))] T i), . . . , πk)

(9.6)

184

The worker thread for types WP (p1, p2) is defined below. There are separate
rules for each of the types in the MΛ language. Any type pointers that are
encountered inside a type are collected by sending them to the appropriate type
server P . The heap is accessed directly, instead of going via the f etch operation
as was done in Chapter 8. This is possible because the types will always be
contained within the local heap.

The rules defined below are essentially identical to those presented in Chap-
ter 6; where the sequential algorithm performs the collection of a type pointer
(Hf , Ht1, PF 1, LF , p1)⇒gc (Hf , Ht2, PF 2, LF , p2), the distributed algorithm
communicates with a server P i ! (p1) ? (p2). Note that if there is more than one
type pointer, e.g. Rule 9.9, we collect them in parallel. This allows us to overcome
the sequential bottleneck discussed at the end of Chapter 6.

Hf i(p1) = tn

(π1, . . . , (Hf i, Ht i, GT i, WP (p1, p2)] T i), . . . , πk) ε⇒gc

(π1, . . . , (Hf i, Ht i[p2 7→ tn], GT i, T i), . . . , πk)

(9.7)

Hf i(p1) = tn(p3) t = Pnum(p3) ! (p3) ? (p4)

(π1, . . . , (Hf i, Ht i, GT i, WP (p1, p2)] T i), . . . , πk) t=⇒gc

(π1, . . . , (Hf i, Ht i[p2 7→ tn(p4)], GT i, T i), . . . , πk)

(9.8)

Hf i(p1) = p3
k t = Pnum(p1

3) ! (p1
3) ? (p1

4) ‖ · · · ‖ Pnum(pk3) ! (pk3) ? (pk4)

(π1, . . . , (Hf i, Ht i, GT i, WP (p1, p2)] T i), . . . , πk) t=⇒gc

(π1, . . . , (Hf i, Ht i[p2 7→ p4
k], GT i, T i), . . . , πk)

(9.9)

Hf i(p1) = p3 → p4 t = Pnum(p3) ! (p3) ? (p5) ‖ Pnum(p4) ! (p4) ? (p6)

(π1, . . . , (Hf i, Ht i, GT i, WP (p1, p2)] T i), . . . , πk) t=⇒gc

(π1, . . . , (Hf i, Ht i[p2 7→ p5 → p6], GT i, T i), . . . , πk)

(9.10)

Hf i(p1) = α

(π1, . . . , (Hf i, Ht i, GT i, WP (p1, p2)] T i), . . . , πk) ε⇒gc

(π1, . . . , (Hf i, Ht i[p2 7→ α], GT i, T i), . . . , πk)

(9.11)

Hf i(p1) = 〈〈TE1, p3〉〉 TE1 = {α1 7→ p1
4, . . . , α

k 7→ pk4}
t1 = Pnum(p1

4) ! (p1
4) ? (p1

5) ‖ · · · ‖ Pnum(pk4) ! (pk4) ? (pk5)

TE2 = {α1 7→ p1
5, . . . , α

k 7→ pk5} t2 = Pnum(p3) ! (p3) ? (p6)

(π1, . . . , (Hf i, Ht i, GT i, WP (p1, p2)] T i), . . . , πk) t1‖t2=⇒gc

(π1, . . . , (Hf i, Ht i[p1 7→ 〈〈TE2, p6〉〉], GT i, T i), . . . , πk)

(9.12)

185

We define the value worker thread WL(l1, p1, l2, p2) below. There are separ-
ate rules for each of the values in the language. The type information referenced
by p1 is used to guide the collection, i.e. a tag-free collection. Any locations that
are encountered during collection are sent to the appropriate value server L as
before.

Hf i(p1) = tn

(π1, . . . , (Hf i, Ht i, GT i, WL(l1, p1, l2, p2)] T i), . . . , πk) ε⇒gc

(π1, . . . , (Hf i, Ht i[l2 7→ Hf i(l1)], GT i, T i), . . . , πk)

(9.13)

Hf i(p1) = tn(p2) Hf i(l1) = con(l3) t = Lnum(l3) ! (l3, p2) ? (l4, p2)

(π1, . . . , (Hf i, Ht i, GT i, WL(l1, p1, l2, p2)] T i), . . . , πk) t⇒gc

(π1, . . . , (Hf i, Ht i[l2 7→ con(l4)], GT i, T i), . . . , πk)

(9.14)

Hf i(p1) = p2
k Hf i(l1) = l3

k

t = Lnum(l13) ! (l13, p
1
2) ? (l14, p

1
2) ‖ · · · ‖ Lnum(lk3) ! (lk3 , p

k
2) ? (lk4 , p

k
2)

(π1, . . . , (Hf i, Ht i, GT i, WL(l1, p1, l2, p2)] T i), . . . , πk) t⇒gc

(π1, . . . , (Hf i, Ht i[l2 7→ (l14, . . . , l
k
4)], GT i, T i), . . . , πk)

(9.15)

Hf i(p1) = p2 → p3 Hf i(l1) = 〈〈∆1, x
k, E〉〉 t = V i ! ∆1 ? ∆2

(π1
1, . . . , (Hf i1, Ht i1, GT i

1, WL(l1, p1, l2, p2)] T i1), . . . , πk1) t⇒gc

(π1
2, . . . , (Hf i2, Ht i2[l2 7→ 〈〈∆2, x

k, E〉〉], GT i
2, T

i
2), . . . , πk2)

(9.16)

Hf i(p1) = p2 → p3 Hf i(l1) = Ω

(π1, . . . , (Hf i, Ht i, GT i, WL(l1, p1, l2, p2)] T i), . . . , πk) ε⇒gc

(π1, . . . , (Hf i, Ht i[l2 7→ Ω], GT i, T i), . . . , πk)

(9.17)

Hf i(p1) = α GT i
1 = (RM i, PF i, LF i, TE i)

(π1
1, . . . , (Hf i1, Ht i1, GT i

1, WL(l1, TE i(α), l2, p2)] T i1), . . . , πk1) t⇒gc

(π1
2, . . . , (Hf i2, Ht i2, GT i

2, T
i
2), . . . , πk2)

(π1
1, . . . , (Hf i1, Ht i1, GT i

1, WL(l1, p1, l2, p2)] T i1), . . . , πk1) t⇒gc

(π1
2, . . . , (Hf i2, Ht i2, GT i

2, T
i
2), . . . , πk2)

(9.18)

Hf i(p1) = 〈〈TE3, p3〉〉 GT i
1 = (RM i

1, PF i
1, LF i

1, TE3 ∪TE i
1)

(π1
1, . . . , (Hf i1, Ht i1, GT i

1, WL(l1, p3, l2, p2)] T i1), . . . , πk1) t⇒gc

(π1
2, . . . , (Hf i2, Ht i2, (RM i

2, PF i
2, LF i

2, TE i
2), T i2), . . . , πk2)

(π1
1, . . . , (Hf i1, Ht i1, (RM i

1, PF i
1, LF i

1, TE i
1),

WL(l1, p1, l2, p2)] T i1), . . . , πk1) t⇒gc

(π1
2, . . . , (Hf i2, Ht i2, (RM i

2, PF i
2, LF i

2, TE i
2 − TE3), T i2), . . . , πk2)

(9.19)

186

9.1.3 Collecting Environments and Stacks

The threads for collecting types and values perform the majority of the work of
distributed garbage collection. However, before these threads can be used we
need a means of decomposing the roots, that is the environments and stacks, and
a means of reassembling them again afterwards. To achieve this, we introduce
environment V and stack K threads. As before, each garbage collection process
π will have a single associated V i and Ki thread. We also define pairs of channels
cniV , cn

i
V and cniK , cn

i
K for communicating with these threads. The difference

from Li and P i is that communication will always take place locally. This is
because environments and stacks are not heap-allocated. Hence, it makes sense
to always collect them within the local process.

The environment thread V i is a server thread. However, it does not require a
corresponding worker thread. At first it may appear that this is a mistake, since
the environment will reference closures that will themselves contain environments.
Thus, it would appear that a single environment thread is insufficient and will
cause a deadlock when a closure is encountered. However, with some thought,
once can become convinced that this will not be a problem. The environment
will contain a reference (l, p) to a closure, not the actual closure itself. We will
therefore involve the Li and P i server threads in the collection. These server
threads will return an immediate result and fork off a worker to perform the
copy. For a closure, this worker thread will simply block until the collection of
the environment has been completed. However, this will not in any way hinder
the collection. In essence, the worker threads for types and values are already
acting as worker threads for the environment. Defining additional worker threads
for the environment may improve the efficiency of the collection, but they will not
affect the correctness of the algorithm. We will prove that a single environment
thread is sufficient in Chapter 10.

The server thread V i for collecting environments is defined in Rule 9.20. The
thread is activated when it receives an environment cniV ? (∆1) along its local
channel. The environment is decomposed into sub-environments which are in
turn decomposed into pointers and locations. These pointers and locations are
collected by sending them to the appropriate P and L servers. A new environment
∆2 is constructed from the results of the collections, and returned cniV ! (∆2) as
the final result. We note that the sub-environments are collected in parallel, again
removing an unnecessary bottleneck from the sequential algorithm. We will now
define the collection of the stacks XS and RS .

187

t1 = cniV ? (∆1) ∆1 = (TE1, VE1, DE 1, CE1)

TE1 = {α1 7→ p1
1, . . . , α

k 7→ pk1}
t2 = Pnum(p1

1) ! (p1
1) ? (p1

2) ‖ · · · ‖ Pnum(pk1) ! (pk1) ? (pk2)

TE2 = {α1 7→ p1
2, . . . , α

k 7→ pk2}
VE1 = {x1 7→ (l11, p

1
3), . . . , xl 7→ (ll1, p

l
3)}

t3 = Pnum(p1
3) ! (p1

3) ? (p1
4) ‖ · · · ‖ Pnum(pl3) ! (pl3) ? (pl4)

t4 = Lnum(l11) ! (l11, p
1
3) ? (l12, p

1
4) ‖ · · · ‖ Lnum(ll1) ! (ll1, p

l
4) ? (ll2, p

l
4)

VE2 = {x1 7→ (l12, p
1
4), . . . , xl 7→ (ll2, p

l
4)}

DE1 = {tn1 7→ p1
5, . . . , tnm 7→ pm5 }

t5 = Pnum(p1
5) ! (p1

5) ? (p1
6) ‖ · · · ‖ Pnum(pk5) ! (pk5) ? (pk6)

DE2 = {tn1 7→ p1
6, . . . , tnm 7→ pm6 }

CE1 = {con1 7→ p1
7, . . . , con

n 7→ pn7}
t6 = Pnum(p1

7) ! (p1
7) ? (p1

8) ‖ · · · ‖ Pnum(pk7) ! (pk7) ? (pk8)

CE2 = {con1 7→ p1
8, . . . , con

n 7→ pn8}
∆2 = (TE2, VE2, DE2, CE2) t7 = cniV ! (∆2)

(π1, . . . , (Hf i, Ht i, GT i, V] T i), . . . , πk) t1‖t2‖t3‖t4‖t5‖t6‖t7==========⇒gc

(π1, . . . , (Hf i, Ht i, GT i, V] T i), . . . , πk)

(9.20)

A stack is similar to an environment in that it contains only references to data,
rather than actual data items. In principle, a stack worker thread is not required
for the same reasons that a worker thread is not required when collecting an
environment. However, a stack may contain pointers (p), value/type pairs (l, p)
and environments (∆) in any combination. Thus, it is natural to use a recursive
definition for garbage collecting the stack, as we did in Chapter 6. However, the
style of server thread which we have previously defined does not lend itself easily
to recursive definitions.

In order to overcome this problem we use an approach which roughly approx-
imates combination of both server and worker threads. We define a thread of the
form WK(S1, S2), with three cases; one for each of the different kinds of stack
item. In each case, we attempt to garbage collect the item at the top of the stack
S1 and place the result in S2. These rules will cooperate to garbage collect the
stack S1, and will terminate when S1 is empty and S2 contains the collected stack.
This solves the problem of how to collect the stack recursively using threads, but
it does not solve the problem of how to fetch and return the stack over the com-
munication channels. Therefore, we define a server thread Ki which fetches the
stack and initialises the WK threads with S2 being empty. However, we now note
that this server thread cannot simply restart once WK has been initialised, since
it is required to return a result on the communication channel, but this result

188

will not be available until WK has finished. Consequently, we suspend the server
Ki when WK is created and define an additional case for WK which matches an
empty stack S1. In this final case, we send the result S2 along the return chan-
nel and restart the server Ki. We define the server Ki and worker WK(S1, S2)
threads for the stacks below:

t = cniK ? (S1)

(π1, . . . , (Hf i, Ht i, GT i, Ki] T i), . . . , πk) t⇒gc

(π1, . . . , (Hf i, Ht i, GT i, WK(S1, ())] T i), . . . , πk)
(9.21)

Comment: (Rule 9.21) The stack server thread Ki is activated when it receives a
stack cniK ? (S1) along its local channel. A worker thread WK(S1, ()) is created
to copy the stack and the server is suspended.

t = Pnum(p1) ! p1 ? p2

(π1, . . . , (Hf i, Ht i, GT i, WK(p1 · S1, S2, i)] T i), . . . , πk) t⇒gc

(π1, . . . , (Hf i, Ht i, GT i, WK(S1, S2 · p2)] T i), . . . , πk)
(9.22)

t1 = Pnum(p1) ! p1 ? p2 t2 = Lnum(l1) ! (l1, p1) ? (l2, p2)

(π1, . . . , (Hf i, Ht i, GT i, WK((l1, p1) · S1, S2)] T i), . . . , πk) t1 ; t2==⇒gc

(π1, . . . , (Hf i, Ht i, GT i, WK(S1, S2 · (l2, p2))] T i), . . . , πk)
(9.23)

t = V i ! ∆1 ? ∆2

(π1, . . . , (Hf i, Ht i, GT i, WK(∆1 · S1, S2)] T i), . . . , πk) t⇒gc

(π1, . . . , (Hf i, Ht i, GT i, WK(S1, S2 · ∆2)] T i), . . . , πk)
(9.24)

(π1, . . . , (Hf i, Ht i, GT i, WK(ty · S1, S2)] T i), . . . , πk) ε⇒gc

(π1, . . . , (Hf i, Ht i, GT i, WK(S1, S2 · ty)] T i), . . . , πk)
(9.25)

(π1, . . . , (Hf i, Ht i, GT i, WK((ty, val) · S1, S2)] T i), . . . , πk) ε⇒gc

(π1, . . . , (Hf i, Ht i, GT i, WK(S1, S2 · (ty, val))] T i), . . . , πk)
(9.26)

Comment: (Rules 9.22, 9.23, 9.24, 9.25, and 9.26) These rules are the stack worker
threads WK(S1, S2). Each attempts to copy the item at the top of S1 onto S2

before restarting. Note that the item is placed at the bottom of S2.

t = cniK ! (S2)

(π1, . . . , (Hf i, Ht i, GT i, WK((), S2)] T i), . . . , πk) t⇒gc

(π1, . . . , (Hf i, Ht i, GT i, Ki] T i), . . . , πk)
(9.27)

Comment: (Rules 9.27) This final worker thread matches an empty stack S1. The
stack S2 is returned along the channel cniK ! (S2) and the server Ki is restarted.

189

9.1.4 Evaluation with Garbage Collection

We have now defined all of the threads required for distributed garbage collection.
It therefore remains for us to address the initiation and termination of the col-
lection. As stated, earlier, our distributed garbage collection algorithm requires
a global synchronisation of all of the evaluation processes Π. Rule 9.28 defines
the initialisation of a garbage collection process π from an evaluation process Π.
This operation should be applied to every Πi

1, where 0 < i ≤ k.
The set of threads T i1 contains the state of the evaluation at the point which

the garbage collection is initiated. This state provides the roots for the garbage
collection. These roots are all collected in parallel, as defined by the trace t1.
Garbage collection begins with an empty to heap Ht i, an empty list of tables
GT i, and a multi-set of server threads {V i

1]Ki
1]Li1]P i

1}. The trace t2 describes
all the interactions which occur during the collection.

At the conclusion of the garbage collection, we reconstruct the evaluation
process Πi

2 from threads T i2 from the collected versions of all the roots. These
roots will now contain only references to the to heap Hi

2. Finally, the from heap
Hi

1 is discarded and normal evaluation is resumed. Note that the contents of the
cache Hci1 is cleared by garbage collection, since the placement of the data in the
heap will have changed.

T i1 = {(∆1
1, XS1

1, RS 1
1), . . . , (∆j

1, XS j1, RS j1)}
t1 = V i ! ∆1

1 ? ∆1
2 ‖ · · · ‖ V i ! ∆j

1 ? ∆j
2 ‖

Ki ! XS 1
1 ? XS 1

2 ‖ · · · ‖ Ki ! XS j1 ? XS j2 ‖
Ki ! RS 1

1 ? RS 1
2 ‖ · · · ‖ Ki ! RS j1 ? RS j2

(π1
1, . . . , (H i

1, ∅, (∅, ∅, ∅, ∅), {V i
1]Ki

1] Li1] P i1}), . . . , πk1) t2⇒gc

(π1
2, . . . , (H i

1, H
i
2, GT i, {V i

2]Ki
2] Li2] P i2}), . . . , πk2)

T i2 = {(∆1
2, XS1

2, RS 1
2), . . . , (∆j

2, XS j2, RS j2)}

(Π1
1, . . . , (H i

1, Hci1, T i1), . . . , Πk
1)

t1‖t2=⇒ (Π1
2, . . . , (H i

2, ∅, T i2), . . . , Πk
2)

(9.28)

Rule 9.29 is applied when the set of threads in process Πi
1 is empty. There may

still be data in the local heap that is referenced by threads on other processes, so
the Li and P i servers must be initialised to perform the collection.

(π1
1, . . . , (H i

1, ∅, (∅, ∅, ∅, ∅), {Li1] P i1}), . . . , πk1) t⇒gc

(π1
2, . . . , (H i

1, H
i
2, GT i, {Li2] P i2}), . . . , πk2)

(Π1
1, . . . , (H i

1, Hci1, ∅), . . . , Πk
1) t⇒ (Π1

2, . . . , (H i
2, ∅, ∅), . . . , Πk

2)

(9.29)

190

9.2 Code Replacement

The threading and communication extensions for distributed evaluation in Dy-
namic ML were defined in Chapter 8. As we saw, all of these extensions were
defined at the core-language level. Consequently, there are no changes required
to the Dynamic ML modules system for distributed evaluation. Therefore, the
modules interpretation scheme from Chapter 7 can be used unchanged for dis-
tributed code-replacement. The definition of distributed code-replacement which
follows, is purely an extension of the distributed garbage collection algorithm.

As in Chapter 7, we do not provide a definition of the meta-level at which
separate-compilation is performed, and code-replacement is introduced. Instead,
we take as our starting point the pair (P, R) of a program P which contains the
new definitions for use after replacement, and the program R which contains the
functions to perform the code-replacement, i.e. the Install structures.

We begin by defining the initialisation of code-replacement. The main activity
occurs within the first thread on the first process Π1. Recall from Chapter 8
that this is also where the evaluation process begins, and where all the threads
originate. The algorithm begins with Rule 9.30 by evaluating the program R

to obtain the replacement map RM , exactly as in Chapter 7. However, in the
distributed case, all of the other processes in the garbage collection now also need
a copy of this replacement map. Consequently, we define a new channel cnR for
each process in the system, which we use to broadcast the replacement map.

T 1
1 = {(∆1

1, XS 1
1, RS 1

1), . . . , (∆j
1, XS j1, RS j

1)}
((H1

1 , Hc1
1, {(∆1

1, XS 1
1, RS 1

1, R)}), . . . , Πk) t1⇒
((H1

2 , Hc1
2, {(∆1

2, XS 1
2, (l1, p1) · RS 1

2)), . . . , Πk)

H1
2 (l1) = l2

n H1
2 (p1

2) = p1
3 → p1

4 · · · H1
2 (pn2) = pn3 → pn4

RM = {p1
3 7→ (l12, p

1
4), . . . , pn3 7→ (ln2 , p

n
4)}

t2 = (cn2
R ! RM ‖ · · · ‖ cniR ! RM) ;

V i ! ∆1
2 ? ∆1

3 ‖ V i ! ∆2
1 ? ∆2

2 · · · ‖ V i ! ∆j
1 ? ∆j

2 ‖
Ki ! XS 1

2 ? XS1
3 ‖ Ki ! XS 2

1 ? XS 2
2 ‖ · · · ‖ Ki ! XS j1 ? XS j2 ‖

Ki ! RS 1
2 ? RS 1

3 ‖ Ki ! RS 2
1 ? RS 2

2 ‖ · · · ‖ Ki ! RS j1 ? RS j
2

((H1
2 , ∅, (RM , ∅, ∅, ∅), {V 1

1]K1
1] L1

1] P 1
1 }), . . . , πk1) t3⇒gc

((H1
2 , H

1
3 , GT 1, {V 1

2]K1
2] L1

2] P 1
2 }), . . . , πk2)

((H1
3 , ∅, {(∆1

3, XS 1
3, RS 1

3, P)}), . . . , Πk) t4⇒
((H1

4 , Hc1
3, {(∆1

4, XS 1
4, (l3, p5) · RS 1

4)), . . . , Πk)

T 1
2 = {(∆1

4, XS 1
4, RS 1

4), (∆2
2, XS2

2, RS 2
2), . . . , (∆j

2, XS j2, RS j2)}

((H1
1 , Hc1

1, T 1
1), . . . , Πk)

t1 ; t2‖t3 ; t4=====⇒ rep ((H1
4 , Hc1

3, T 1
2), . . . , Πk)

(9.30)

191

The initialisation of code-replacement for the remaining processes Π2, . . . , Πk

is defined in Rule 9.31, or Rule 9.32 when the process has an empty set of threads.
The processes are initially blocked until they receive the replacement map on
their local channel cniR ? RM . Once all of the processes have received a copy of
the replacement map, a distributed garbage collection, extended with the code-
replacement operations which we shortly define, is performed. As before, the
effect will be to update all of the live data to the new representations, and discard
any unreachable data. Upon successful completion, the program P is evaluated
on process Π1 and evaluation resumes on every process.

T i1 = {(∆1
1, XS1

1, RS 1
1), . . . , (∆j

1, XS j1, RS j1)}
t1 = cniR ? RM ; V i ! ∆1

1 ? ∆1
2 ‖ · · · ‖ V i ! ∆j

1 ? ∆j
2 ‖

Ki ! XS 1
1 ? XS 1

2 ‖ · · · ‖ Ki ! XS j1 ? XS j2 ‖
Ki ! RS 1

1 ? RS 1
2 ‖ · · · ‖ Ki ! RS j1 ? RS j2

(π1
1, . . . , (H i

1, ∅, (RM , ∅, ∅, ∅), {V i1]Ki
1] Li1] P i1}), . . . , πk1) t2⇒gc

(π1
2, . . . , (H i

1, H
i
2, GT i, {V i

2]Ki
2] Li2] P i2}), . . . , πk2)

T i2 = {(∆1
2, XS1

2, RS 1
2), . . . , (∆j

2, XS j2, RS j2)}

(Π2, . . . , (H i
1, Hci1, T i1), . . . , Πk)

t1‖t2=⇒rep (Π2, . . . , (H i
2, ∅, T i2), . . . , Πk)

(9.31)

t1 = cniR ? RM

(π1
1, . . . , (H i

1, ∅, (RM , ∅, ∅, ∅), {Li1] P i1}), . . . , πk1) t2⇒gc

(π1
2, . . . , (H i

1, H
i
2, GT i, {Li2] P i2}), . . . , πk2)

(Π2, . . . , (H i
1, Hci1, ∅), . . . , Πk)

t1 ; t2=⇒ rep (Π2, . . . , (H i
2, ∅, ∅), . . . , Πk)

(9.32)

The distributed code-replacement algorithm can also be rolled-back if an ex-
ception is thrown during the operation. In this case, all of the processes in the
collection are suspended and evaluation resumes with the previous machine state.
This is possible as the from heaps, containing the old data, are preserved until the
end of replacement. Rule 9.33 is a modified version of Rule 9.31 which illustrates
the roll-back of a single process in the system. The remaining roll-back rules, for
the process Π1 and for a process with an empty set of threads, are very similar
and are not explicitly defined here.

T i1 = {(∆1
1, XS1

1, RS 1
1), . . . , (∆j

1, XS j1, RS j1)}
t1 = cniR ? RM ; V i ! ∆1

1 ? ∆1
2 ‖ · · · ‖ V i ! ∆j

1 ? ∆j
2 ‖

Ki ! XS 1
1 ? XS 1

2 ‖ · · · ‖ Ki ! XS j1 ? XS j2 ‖
Ki ! RS 1

1 ? RS 1
2 ‖ · · · ‖ Ki ! RS j1 ? RS j2

(π1
1, . . . , (H i

1, ∅, (RM , ∅, ∅, ∅), {V i1]Ki
1] Li1] P i1}), . . . , πk1) t2⇒gc

(π1
2, . . . , (H i

1, H
i
2, GT i, halt {V i

2]Ki
2] Li2] P i2}), . . . , πk2)

(Π2, . . . , (H i
1, Hci1, T i1), . . . , Πk)

t1‖t2=⇒rep (Π2, . . . , (H i
1, Hci1, T i1), . . . , Πk)

(9.33)

192

9.2.1 Replacement of Types and Values

To complete the definition of distributed code-replacement, we must make a num-
ber of minor additions to the server threads in the distributed garbage collector.
There are just three additional rules required, which we will now present.

Rule 9.34 extends the type server thread P i with code-replacement. An in-
coming pointer p1 is compared with the replacement map, using the rmatch
function defined in Chapter 7. Provided that the type referenced by the pointer
has not already been collected, and that a suitable match p2 is found in RM i, a
replacement is performed. This is achieved by garbage collecting collecting the
replacement type p3, in place of the old type p1. A pointer p4 is reserved in
the to heap to hold the result, and a worker thread WP (p3, p4) is generated to
perform the copy. The forwarding table is updated to reflect the replacement
PF i[p1 7→ p4], and the result p4 is returned along the server channel.

t1 = cniP ? (p1)

GT i
1 = (RM i, PF i, LF i, TE i) p1 /∈ Dom PF i

Hf 1 ` rmatch(p1, RM i) = p2 RM (p2) = (l1, p3)

Ht i ↑ p4 GT i
2 = (RM i, PF i[p1 7→ p4], LF i, TE i)

t2 = cniP ! (p4)

(π1, . . . , (Hf i, Ht i, GT i
1, P

i] T i), . . . , πk) t1 ; t2=⇒ rep

(π1, . . . , (Hf i, Ht i, GT i
2, P

i]WP (p3, p4)] T i), . . . , πk)

(9.34)

The value server Li extended with code-replacement is defined by Rule 9.35.
The rule begins when an incoming value (l1, p1) is received. Assuming that the
value has not been collected, and that a match is found in the replacement map,
a closure must also be evaluated to update the value. This closure is obtained
from the replacement map, and the result if its evaluation (l3, p4) is substituted
for the old value by garbage collection.

t1 = cniL ? (l1, p1)

GT i
1 = (RM i, PF i, LF i, TE i) l1 /∈ Dom LF 1

Hf 1 ` rmatch(p1, RM i) = p2 RM (p2) = (l2, p3)

Hf 1(l2) = 〈〈∆1, {x}, E〉〉
(Π1

1, . . . , (Hf i1, Hci1, {(∆1[x 7→ (l1, p1)], (), (), E)}, . . . , Πk
1) t2⇒

(Π1
2, . . . , (Hf i2, Hci2, {(∆2, XS , (l3, p4) · RS)}), . . . , Πk

2)

Ht i ↑ l4 GT i
2 = (RM i, PF i, LF i[l1 7→ l4], TE i)

t3 = cniL ! (l4, PF i(p1))

(π1, . . . , (Hf i, Ht i, GT i
1, L

i] T i), . . . , πk) t1 ; t2 ; t3====⇒rep

(π1, . . . , (Hf i, Ht i, GT i
2, L

i]WL(l3, p4, l4, p5)] T i), . . . , πk)

(9.35)

193

Finally, the evaluation of the replacement closure in Li may generate an un-
caught exception. This should result in the code-replacement being aborted and
the machine state rolled-back to the configuration prior to the start of replace-
ment. This is initiated by performing a halt within the abstract machine, as
shown in Rule 9.36.

t1 = cniL ? (l1, p1)

GT i
1 = (RM i, PF i, LF i, TE i) l1 /∈ Dom LF1

Hf 1 ` rmatch(p1, RM i) = p2 RM (p2) = (l2, p3)

Hf 1(l2) = 〈〈∆1, {x}, E〉〉
(Π1

1, . . . , (Hf i1, Hci1, {(∆1[x 7→ (l1, p1)], (), (), E)}, . . . , Πk
1) t2⇒

(Π1
2, . . . , (Hf i2, Hci2, halt {(∆2, XS , RS)}), . . . , Πk

2)

(π1, . . . , (Hf i, Ht i, GT i
1, L

i] T i), . . . , πk) t1 ; t2===⇒rep

(π1, . . . , (Hf i, Ht i, GT i
2, halt Li] T i), . . . , πk)

(9.36)

9.3 Optimisation

In this chapter we have defined the basic algorithms for distributed garbage col-
lection and replacement. The abstract machine model has also provided a formal
definition for the mechanisms of the LEMMA memory interface. However, it is
important to note that many improvements to these algorithms can be made,
which may prove to be highly beneficial in an implementation.

A clear optimisation to the algorithm would be the preservation of the con-
tents of the heap cache Hc across garbage collections. At present, our algorithm
entirely clears the cache at each collection, as the items in the cache will have
changed locations. In an implementation, this will result in a significant drop
in performance while the cache is re-populated. We note that it is possible to
partially preserve the contents of the cache, if we know the new locations of the
data. This information is present in the forwarding tables PF and LF , and may
therefore be used to reorder the cache. Nonetheless, this strategy would require
careful definition to avoid interference with code-replacement.

Another cache optimisation concerns mutable data items. Recall from Chap-
ter 8, that only immutable data is cached in our definition, since this kind of
data does not change and does not require a coherency algorithm. We note that
this approach will produce poor performance if a program contains more than a
few mutable values. A number of algorithms which perform coherency checks on
mutables are detailed in [SM94]. A further optimisation which allows data items
to migrate between processes in the LEMMA interface is described in [MS95a].

194

Chapter 10

Verification

In this chapter we will use the SPIN [Hol97b] model checker to perform a mechan-
ical verification of our distributed garbage collection algorithm. The devastating
effects of an incorrect garbage collection algorithm on program execution make it
a prime candidate for mechanical verification techniques. Such techniques provide
a degree of safety that is unattainable by testing. Mechanical verification is par-
ticularly relevant in concurrent and distributed systems where errors are hard to
trigger, for example, an error caused by a particular interleaving of processes.
The properties of our algorithm that we are seeking to validate are:

• Progress - absence of deadlock (or live-lock) in the algorithm.

• Correctness - no corruption of data during collection.

• Preservation - no dangling pointers after collection.

SPIN is a generic verification system which is designed for proving the correct-
ness of process interactions in concurrent systems. It accepts design specifications
in its own language PROMELA (PROcess MEta-LAnguage), and verifies correct-
ness claims specified as a Linear Temporal Logic (LTL) formula. SPIN has been
in development for several years and includes a large number of techniques for im-
proving the efficiency of the model checking, for example, partial-order reduction,
state-compression, and on-the-fly verification [Hol97a].

In this chapter we present a brief overview of the model checking technique,
with particular reference to the SPIN model checker. We then present a detailed
specification of our garbage collection algorithm in PROMELA. Finally, we define
a test-bed for verifying the properties shown above, and present our results and
conclusions.

195

10.1 Model Checking

Model checking is a technique for automatically verifying properties of finite-
state concurrent systems. A model checker normally performs an exhaustive
search of the state space of a system to determine if a particular property holds.
Given sufficient resources, the procedure will always terminate with a yes/no
answer. This makes the model checking technique of significant practical value
as a verification tool. The restriction to finite-state systems may appear to be
a major disadvantage. However, there exist techniques for restricting infinite-
state systems to specific finite instances, e.g. [McM99]. There have also been
attempts to combine theorem proving with model checking, e.g. [DF95, RSS95].
However, both of these techniques are unnecessary here, since our distributed
garbage collection algorithm is a finite-state system.

A model checker operates on an abstract model of a system. Clearly, the
definition of this model requires some thought in order to ensure that the correct
level of detail is provided. For the majority of systems it is not sufficient simply to
consider the input and output behaviour. The model must capture the states of
the system, and the acceptable transitions between these states. This is precisely
the kind of description which our abstract machine formalism already provides.
Thus, in principle, we could define a model checking system directly for our
abstract machine definition. However, this would clearly not be a particularly
profitable activity, as we would have to construct the model checker from scratch.
Rather, we will adopt the representation of an existing model checker, and perform
a straightforward translation from our model.

The underlying representation used in the SPIN model checker, among others,
is a state-transition graph called a Kripke structure. This graph may be defined
formally as a four tuple M = (S, S0, R, L), where:

1. S is a finite set of states, and S0 ⊆ S is a set of initial states.

2. R ⊆ S × S is a reachability relation. Note that R must be total, i.e. for
every state s ∈ S, these is a state s′ ∈ S such that R(s, s′) is defined.

3. L : S → A is a function that labels each state with the set of atomic
propositions A which are true in that state.

Different restrictions can be imposed on R for defining models which have
properties such as asynchronous or synchronous evaluation [CGP99].

196

Figure 10.1 defines an example Kripke structure for a very simple system.
We will use this structure as a running example in our explanation of the model
checking process.

1. S = {s0, s1, s2} S0 = {s0}

2. R = {(s0, s1), (s0, s2), (s1, s0), (s1, s2), (s2, s2)}

3. L = (s0 7→ {a, b}, s1 7→ {b, c}, s2 7→ {c})

Figure 10.1: Example Kripke Structure.

Given a system defined as a Kripke structure, we want to specify correctness
properties of the system for the model checker to verify. The common choices of
representation are temporal logic formulae and the µ-calculus. The one that is of
importance here is the temporal formulae representation as this approach is used
in the SPIN model checker. We will not discuss the µ-calculus further except to
say that it is another formalism, based on fixed-points, which can encode many
temporal logics.

Conceptually, temporal formulae define properties of computational trees. The
tree is formed by designating a state in the Kripke structure as the initial state,
which will form the root, and then unrolling the remaining structure into an
infinite tree. Figure 10.2 shows a graphical representation of our example Kripke
structure, and its corresponding computation tree.

2

s2

s0

s

s2s

1

2s

ab

bc c

ccab

Computation
Tree

ab

bc

c

Kripke
Structure

x y z

s

s1

s0

0

Figure 10.2: Unrolling to a Computation Tree.

We can think of each branch of this computation tree as a path in a Kripke
structure, where each path corresponds to a different simulation of the system.
Formally, a path is defined as an infinite sequence of states σ = s0 s1 s2 · · ·, such
that for every i ≥ 0, (si, si+1) ∈ R.

197

The view of a Kripke structure as a computation tree exposes two different
kinds of temporal formulae: linear-time and branching-time. In a linear-time
logic we express properties over all possible paths of the tree, and in a branching-
time logic we express properties over a single path of the tree. There are many
different logics which fall into these categories. However, from a model-checking
perspective, the commonly used logics are the linear temporal logic (LTL) and
computation tree logic (CTL) respectively. Both of these logics share the same
basic syntactic operators: always 2, eventually 3, and until U . However, the
semantics of the operators differs depending on the logic in question. Figure 10.3
illustrates the difference between LTL and CTL with reference to a computation
tree. The operators 2 and 3 can be thought of as temporal variants of ∀ and ∃
respectively. The (strong) until property p U q states that p remains true until
at least q becomes true. In LTL we must satisfy the property along every path
in the tree, while in CTL is is sufficient that the property is satisfied along one
particular path.

p

p p

p p

p

p p

p

q p

q q

LTL:

p

p

p p

p

p

q

CTL:

pp pUq

Figure 10.3: Linear and Branching Temporal Logics.

LTL and CTL are both used in real model checking systems. The SPIN model
checker uses the former, while the SMV model checker [McM93] uses the latter. It
is worth noting that LTL and CTL are not equivalent, e.g. the LTL property 32p

cannot be expressed in CTL. The differences between these logics are discussed
in detail in [Var01]. We will limit the remainder of our discussion to LTL as we
will be using the SPIN model checker.

198

The formal syntax of the propositional linear temporal logic (LTL) is defined
in Figure 10.4. LTL is powerful enough to express a wide range of properties.
For example, the formula 2(s → 3r) is a representation of the property that
every message sent s is eventually received r. Note that we generally verify the
negation of the property in question as this yields a more efficient search.

Formula f ::= > | ⊥ (boolean true and false)
| p (proposition)
| ¬f (negation)
| 2f (always)
| 3f (eventually)
| f1 ∧ f2 (conjunction)
| f1 ∨ f2 (disjunction)
| f1 → f2 (implication)
| f1 ↔ f2 (equivalence)
| f1 U f2 (strong until)

Figure 10.4: LTL Abstract Syntax.

To summarise, we have now defined an appropriate representation for the
system model (Kripke structures) and a language for expressing properties (LTL
formulae). We have seen how LTL formulae relate to Kripke structures through
the use of computation trees. It therefore remains to complete the picture by
formally stating the model checking problem. Given a Kripke structure M and
an LTL formula f , we find the set of all states that satisfy f . We say that the
system satisfies the specification if all the initial states are in this set:

S0 ⊆ {s ∈ S | M, s |= f}

Model checking is therefore a very straightforward technique utilising known
results from temporal logic. The difficulty in performing model-checking, and
the focus of a great deal of research in model checking is the provision of ef-
ficient algorithms. At the core of most modern model checking systems is a
representation of the computation tree as an Ordered Binary Decision Diagram
(OBDD) [CGP99]. Model checking is then performed by a depth-first (or similar)
traversal of this structure. Advanced techniques have been developed for reducing
the state space of the search and for generating the OBDD structures on-the-fly,
though in general it is not necessary to understand the underlying optimisations
in order to use a particular model checking system.

199

10.2 System Model

The SPIN model checker performs the same kind of LTL model checking as defined
in the previous section, though SPIN contains a large number of refinements
and optimisations over the basic algorithm. However, we will not discuss the
mechanics of model checking in further detail. In the remainder of this chapter
we will concentrate on using model checking to verify our distributed garbage
collector.

The first step in the verification is the construction of an appropriate system
model. The underlying framework for modelling in SPIN is the Kripke structure,
though this is well hidden underneath its own process meta-language PROMELA,
a CCS-like language containing processes and channels, similar to the primitives
in Dynamic ML (which are also CCS-based). SPIN translates the PROMELA

language into Kripke structures, through a (loose) mapping of processes to states
and channels to transitions.

The syntax of the PROMELA resembles C, as it is designed to appeal to engin-
eers, though this similarity is rather misleading as many of the C constructs are
missing or have a different semantics. In the remainder of this section, we define
a specification of the distributed garbage collection algorithm in PROMELA. A
basic knowledge of the C language is assumed in the following explanation. The
differences between PROMELA and C will be explained as they are encountered.

Before proceeding, we must first resolve a number of issues concerning the
modelling of a distributed system in PROMELA. In Chapter 9 we define the state
as a set of processes π, where each process π refers to an individual processor
with a local memory, e.g. a workstation or a supercomputer node. Each process
evaluates a set of threads T in parallel. The number of processes in the system
is fixed, while the number of threads can vary dynamically. Since we are us-
ing a distributed shared memory model, each thread T may directly access the
memory of any process πi. By contrast, PROMELA is not a distributed system:
it only provides one level of abstraction: threads. Note that a thread is named a
proctype in PROMELA. All of the threads in PROMELA are executed together
and cannot be nested. Thus, in order to model our system, we make the following
simplification. We remove the distinction between processes and execute all of
the threads together. The threads are suitably renamed to prevent name-space
collisions. The memory of the distributed system is modelled by a global array
which is directly accessible by all of the threads. Since we are not concerned with
communication delays or failures here, this model is adequate for our purposes.

200

10.2.1 Shared Memory

An important aspect of the model is the memory upon which the garbage collec-
tion operations will be performed. Our PROMELA specification of the memory,
and other data structures that will be used in our model, is given in Figure 10.6.
For clarity, we divide the address space into four arrays of equal size, for types
t and values v: tfrom, vfrom, tto, and vto. The first two arrays represent the
global from space, and the remaining two arrays represent the global to space.
These arrays will be partitioned into local from and to spaces. There are two ar-
rays for each space as we require a separate type heap and value heap for tag-free
collection. The size of these arrays are calculated from the equivalent number of
processes in our distributed system. We define the total number of such processes
by the constant PROCESSES. For simplicity, we fix the size of every heap on each
process to be the constant HEAPSIZE. Thus, the size of each array, TOTAL, is
obtained by multiplying the heap size by the number of processes. For practical
reasons the HEAPSIZE and PROCESSES will typically range between 1 and 4 in
our model. The rationale behind these values will be explained in more detail
in Section 10.2.3. A diagram of our model of the address space is presented in
Figure 10.5.

spacefrom spaceto

tfrom vfrom tto vto

PROCESSES

TOTAL

HEAPSIZE 0

Figure 10.5: Address Space Model.

We define pointers into the type-heap as variables prefixed with p, e.g. p1,
p2, and locations in the value-heap as variables prefixed with l. We have defined
an additional type Pair to express a pairing of a value-location l and a type-
pointer p. As in C, types in PROMELA are declared using the typedef construct.
However, PROMELA does not have explicit pointers and so l and p are simply
indices into the respective arrays. In order to conserve memory, we use byte

for representing the pointers as the range of heap indices should be bounded by
TOTAL, which will be far less than the maximum value of 255.

201

#define HEAPSIZE 3 /* Size of Each Heap */
#define PROCESSES 3 /* Number of Processes */
#define TOTAL 9 /* Total Memory Size (HEAPSIZE * PROCESSES) */

/* Environment */
typedef Env{ byte l[TOTAL], p[TOTAL], size };

/* Stack */
typedef Stak{ byte l[TOTAL], p[TOTAL], size };

/* Type */
typedef Type { byte p[TOTAL], size };

/* Value */
typedef Value { byte l[TOTAL], val ;

Env e };

/* Type/Value Pointer */
typedef Pair { byte l, p };

/* Heaps */
Type tfrom[TOTAL], tto[TOTAL];
Value vfrom[TOTAL], vto[TOTAL];

/* Program Environment and Stacks */
Env efrom[PROCESSES], eto[PROCESSES];
Stak sfrom[PROCESSES], sto[PROCESSES];

/* Forwarding Tables */
byte pforward[TOTAL], lforward[TOTAL];
#define NULL 255 /* Special NULL Value */

/* Allocation Pointers in the to-space */
byte pto[PROCESSES], lto[PROCESSES];

/* Communication Channels */
chan pschan[PROCESSES] = [0] of {byte}; /* Type Server Channels */
chan prchan[PROCESSES] = [0] of {byte};
chan lschan[PROCESSES] = [0] of {Pair}; /* Value Server Channels */
chan lrchan[PROCESSES] = [0] of {Pair};
chan eschan[PROCESSES] = [0] of {Env}; /* Environment Channels */
chan erchan[PROCESSES] = [0] of {Env};
chan sschan[PROCESSES] = [0] of {Stak}; /* Stack Channels */
chan srchan[PROCESSES] = [0] of {Stak};

Figure 10.6: Data Structures for Verification.

202

The environment Env is defined as a pair of arrays: one for type-pointers,
and one for value-locations. In the worst-case, this environment could contain a
pointer to everything in the address space, hence the size of the arrays is TOTAL.
An additional variable size tracks the actual number of entries in the environ-
ment. PROMELA does not permit recursive definitions as these would lead to
infinite state models. Hence, the stack Stak is defined in exactly the same way
as the environment.

The garbage collection algorithm is defined for a range of different types and
values. We could provide a separate PROMELA type definition for each different
type and value. However, for the purpose of modelling the algorithm, we are
only concerned with the pointers they contain. Thus, a Type is simply defined
as an array of pointers p. In the worst case, the memory is occupied by a single
tuple which fills the entire address space. Therefore, the size of the pointer array
is TOTAL. Once again, the variable size tracks the actual number of pointers.
Values are represented in a similar manner. We define a Value as an array of
locations l of size TOTAL. The number of entries in the array is determined by
the variable size in the associated type. In order to allow the representation of
closures, each value also contains an environment e.

Before defining the threads which we will use in garbage collection, it is neces-
sary to define a number of structures upon which they rely. These structures are
also given in Figure 10.6. The garbage collection algorithm performs compaction
of the data objects. Thus, objects in the from space will reside at different loc-
ations from those in the to space. Arrays of forwarding pointers pforward and
lforward are maintained to track the copying of objects, corresponding to the
finite maps PF and LF in Chapter 9. Each array index corresponds to an address
in the from space, and the array value contains a pointer to the corresponding
address in the to space, or a special NULL value if there is none. During copy-
ing, the next free location in the to space is determined linearly using the arrays
pto and lto. There is a separate entry in these arrays for each process. Each
server has two associated communication channels: one for sending and one for
receiving. The arrays pschannel and prchannel contain the channels for sending
and receiving pointers to/from the type-servers respectively. Similar arrays are
defined for the value servers, environment servers, and stack servers. Communic-
ation channels are defined as variables of type chan. They are initialised by an
expression of the form [N] of {type}, where N is the size of the buffer and type

is the type of data that can be passed along the channel. For our purposes the
buffer size is always 0, which corresponds to an unbuffered blocking channel.

203

10.2.2 Garbage Collection Threads

Having defined an appropriate model of the memory, we proceed with a model
of the actual garbage collection algorithm. We begin with a definition of the
threads for collecting types and values. There is a one-to-one mapping between
the garbage collection threads T of Chapter 9 and PROMELA threads (proctype).
It is clear that the number of server threads for types and values will each be equal
to the constant PROCESSES defined earlier, i.e. one server for every process. Note
that although we are not explicitly modelling garbage collection processes π in
PROMELA, we still use the equivalent number of processes in the construction of
the model.

Each server thread will operate on a separate area of the heap in the range
i ∗ HEAPSIZE to (i+ 1) ∗ HEAPSIZE, where i is the number of the server, 0 ≤ i <

PROCESSES. Given a pointer p or location l as an index in the range 0 to TOTAL,
the appropriate server i may be calculated by dividing the value of the pointer by
HEAPSIZE. This is equivalent to the num function defined in Chapter 8. Before
presenting the thread definitions, we will briefly describe the basics of PROMELA

statements and threads.
In PROMELA there is no difference between conditionals and statements. The

execution of each statement is conditional on its executability; statements are
either executable or blocked. For example, the statement (a == b) can only be
executed when it holds. If it does not, then the thread containing the statement
is blocked until a later time when the condition does hold. The do loop is the
only kind of iterative statement in PROMELA:

do
:: guard1 -> sequence1
:: guard2 -> sequence2
:: ...
:: else -> sequence

od

The body of a loop contains a sequence of execution statements, each preceded
by a double colon. The first statement in the sequence is called a guard, as the
remainder of the sequence can only be executed if the guard is executable. Only
one of the sequences may be executed on each iteration of the loop. In the case
where more than one guard is executable, a non-deterministic choice is made
between the executable sequences. If none of the guards are executable, then the
thread containing the loop is blocked until at least one of the guards becomes
executable. The special guard else is selected if all of the other guards are
blocked. A loop can only be exited by a break statement.

204

The semicolon in PROMELA is a statement separator, not a statement termin-
ator as in C. It separates the sequential execution of statements, and is equivalent
to sequential composition in Dynamic ML. Consequently, there is no semicolon
after the final statement in a block of code. An arrow -> is also a statement
separator and is identical in meaning to the semicolon. However, the arrow is
generally used to indicate a causal relation between two statements.

The only unit of execution in PROMELA is the thread. There are no language
constructs for declaring functions, predicates or procedures, although these can
be simulated by threads. PROMELA threads are declared using proctype expres-
sions and executed using run statements. All of the threads run concurrently and
asynchronously with respect to one another. Threads can take argument values
when they are created, analogous to call-by-value parameter passing of arguments
to functions. Values can be returned from threads through shared global variables
or messages passed along channels. Initialisation of a program, analogous to the
main function in C, is performed via a special init thread which is automatically
evaluated at the start.

The server threads for types and values are defined in Figure 10.7. The
TypeServer thread immediately enters a do loop where it is blocked until a
pointer p1 is received on channel pschannel[process]. Note that the nota-
tion for sending ! and receiving ? along channels is identical to the equivalent
operations in Dynamic ML. The if statement is used in the body of the type
server to distinguish between types that have already been copied and types that
have not. An if statement performs identically to a single iteration of a do loop.
The first guard corresponds to a type that has not been copied. In this case, a new
pointer p2 is obtained from the array pto[process]. Allocations are performed
linearly in the to heap, and so the value of pto[process] is subsequently incre-
mented by one. The forwarding table pforward is updated to provide a mapping
from p1 to p2, and a TypeWorker(p1, p2) thread is generated to perform the
copy. The else guard corresponds to a type that has already been copied. In this
case, the pointer p2 is simply obtained from the forwarding table pforward[p1].
After the evaluation of the if statement, the pointer p2 is returned along the
channel prchannel[process] and the server enters a new iteration. The end:

statement is an end-state label; it indicates to the model checker that the start of
the loop is a valid termination point. The atomic statement is an optimisation
which reduces the number of states. The definition of the ValueServer thread is
very similar to the type-server. However, as the copying of values is done in the
tag-free style, pairs of value-locations and type-pointers are used instead.

205

proctype TypeServer(byte process) /* Type Server Thread */
{

byte p1, p2;
end: do

:: pschan[process] ? p1 -> /* Obtain Next Pointer */
atomic
{
if

:: (pforward[p1] == NULL) ->
p2 = pto[process]; /* Reserve New Pointer */
pto[process] =

pto[process] + 1;
pforward[p1] = p2; /* Update Forward Table */
run TypeWorker(p1, p2) /* Create Worker Thread */

:: else ->
p2 = pforward[p1] /* Pointer Already Copied */

fi
};
prchan[process] ! p2 /* Return Copied Pointer */

od /* Restart Server */
}

proctype ValueServer(byte process) /* Value Server Thread */
{

Pair lp1, lp2;
end: do

:: lschan[process] ? lp1 -> /* Obtain Next Pair */
atomic
{
if

:: (lforward[lp1.l] == NULL) ->
lp2.l = lto[process];
lto[process] =

lto[process] + 1;
lforward[lp1.l] = lp2.l;
run ValueWorker(lp1, lp2)

:: else ->
lp2.l = lforward[lp1.l]

fi;
lp2.p = lp1.p;

};
lrchan[process] ! lp2 /* Return Copied Pair */

od
}

Figure 10.7: Type and Value Server Threads.

206

The worker threads for types and values are defined in Figure 10.8. As we
have defined both type and values as arrays of pointers, these threads closely
correspond to the collection of tuples in Chapter 9. We can effectively simulate
a special constant as a tuple with no pointers, a constructor type as a tuple with
one pointer, and a function type as a tuple with two pointers. The TypeWorker

thread is passed the pointers p1 and p2 as arguments. The thread creates a new
type in the to space referenced by p2 by setting the size of the tuple. The type
referenced by p1 is then recursively copied into p2 by garbage collecting all of
the pointers it contains. A single do loop iterates through these pointers. Each
pointer p3 is sent to the appropriate server, and the result p4 is entered into
the type at p2. As stated earlier, the appropriate server thread is calculated by
dividing the pointer value by HEAPSIZE. The worker terminates when all of the
pointers have been collected. The ValueWorker thread is again very similar. A
single do loop is used to iterate through all of the locations for garbage collection.
However, note that the associated type tfrom[lp1.p] is used to determine the
length of the value vfrom[lp1.l], effectively simulating the process of tag-free
collection. A value may contain a closure environment. When there are entries
in this environment, it is collected by sending it to the local environment server.

We will now model the threads for collecting environments and stacks. As
we have seen, the lack of recursion in PROMELA means that both environments
and stacks share the same definition. However, we define rather different, though
broadly equivalent, threads for their collection. The reason for this relates to
the differences between the corresponding threads in Chapter 9. The EnvServer

thread is defined in Figure 10.9. The thread is blocked until an environment
is sent to the thread along the channel eschan[process]. The environment e2

will hold the result of the collection. Note that passing an environment across
a channel creates a new copy of the environment, i.e. message passing is done
by-value rather than by-reference. Hence, we can reuse the environment e2 on
each iteration of the server. The size of e2 is determined by the size of the
environment e1 received on the input channel. The body of the thread is simply
a do loop which iterates through each entry in the environment e1 in turn. For
each entry, the type pointer is collected first, by sending it to the appropriate
TypeServer. The value location is then collected by constructing a pair lp1

and sending it to the corresponding ValueServer. The results are stored the
environment e2, which is returned along the channel erchan[process] at the
end.

207

proctype TypeWorker(byte p1, p2) /* Type Worker Thread */
{

byte p3, p4, count, process;

tto[p2].size = tfrom[p1].size; /* Create New Type */
count = 0;
do

:: (count < tfrom[p1].size) -> /* Step Through Every Pointer */
p3 = tfrom[p1].p[count];
process = p3 / HEAPSIZE; /* Calculate Server Number */
pschan[process] ! p3; /* Send Pointer To Type Server */
prchan[process] ? p4; /* Wait For Reply From Server */
tto[p2].p[count] = p4; /* Update New Type */
count ++

:: else -> break
od

}

proctype ValueWorker(Pair lp1; Pair lp2) /* Value Worker Thread */
{

Pair lp3, lp4;
byte count, process, local;

vto[lp2.l].val = vfrom[lp1.l].val; /* Create New Value */
count = 0;
do

:: (count < tfrom[lp1.p].size) -> /* Collect All Pointers */
lp3.p = tfrom[lp1.p].p[count];
lp3.l = vfrom[lp1.l].l[count];
process = lp3.l / HEAPSIZE;
lschan[process] ! lp3;
lrchan[process] ? lp4;
vto[lp2.l].l[count] = lp4.l;
count ++

:: else -> break
od;
if

:: (vfrom[lp1.l].e.size > 0) -> /* Collect Environment */
loc = lp1.l / HEAPSIZE;
eschan[loc] ! vfrom[lp1.l].e; /* Send To Env Server */
erchan[loc] ? vto[lp2.l].e /* Reply From Env Server */

:: else -> vto[lp2.l].e.size = 0 /* Empty Environment */
fi

}

Figure 10.8: Type and Value Worker Threads.

208

proctype EnvServer(byte process) /* Environment Server Thread */
{
Pair lp1, lp2;
Env e1, e2;
byte count;
byte process2;

end:
do

:: eschan[process] ? e1 -> /* Obtain Environment */
e2.size = e1.size;
count = 0;
do /* Collect All Pointers */

:: (count < e1.size) ->
process2 = e1.p[count] / HEAPSIZE;
pschan[process2] ! e1.p[count];
prchan[process2] ? e2.p[count];
lp1.p = e1.p[count];
lp1.l = e1.l[count];
process2 = e1.l[count] / HEAPSIZE;
lschan[process2] ! lp1;
lrchan[process2] ? lp2;
e2.l[count] = lp2.l;
count ++

:: else -> break
od;
erchan[process] ! e2 /* Return New Environment */

od
}

Figure 10.9: Environment Thread.

The StackServer is defined in Figure 10.10. We have attempted to remain as
close as possible to the definition in Chapter 9. The collection begins when the
StackServer thread receives stack s1 on its input channel sschan[process]. A
new stack s2 is initialised to hold the result, and a StackWorker thread is created
to start the copy. Note that arrays cannot be passed as arguments to processes
in PROMELA. Hence, a temporary channel temp is used to pass the stacks to the
worker. Once the worker thread has received the stacks, the server terminates.
Each item in the stack is collected in turn by a separate StackWorker thread.
The if statement in the thread is used to determine if the end of the stack has
been reached. The first guard corresponds to the case when there are still items
on the stack s1. The top item is collected, and a new StackWorker thread is

209

created for the remainder of the stack (by passing an incremented count). Stacks
s1 and s2 are passed across the channel temp2 to the new thread and the old
thread terminates. The else guard holds when the end of the stack is reached.
The collected stack s2 is returned along the channel srchan[process] and the
StackServer thread is restarted.

proctype StackServer(byte process) /* Stack Server Thread */
{

Stak s1, s2;
chan temp = [0] of {Stak}; /* Temporary Unbuffered Channel */

end:
sschan[process] ? s1 ->
run StackWorker(process, 0, temp); /* Create Worker Thread */
temp ! s1; temp ! s2 /* Pass Stacks To Worker */

} /* Terminate Server */

proctype StackWorker(byte process1; byte count; chan temp1)
{

Pair lp1, lp2;
byte process2;
Stak s1, s2;
chan temp2 = [0] of {Stak};

temp1 ? s1; temp1 ? s2; /* Receive Stacks From Server/Worker */
if

:: (count < s1.size) ->
process2 = s1.p[count] / HEAPSIZE;
pschan[process2] ! s1.p[count]; /* Collect Type */
prchan[process2] ? s2.p[count];
lp1.p = s1.p[count];
lp1.l = s1.l[count];
process2 = s1.l[count] / HEAPSIZE;
lschan[process2] ! lp1; /* Collect Value */
lrchan[process2] ? lp2;
s2.l[count] = lp2.l;
run StackWorker(process1, count + 1, temp2);
temp2 ! s1; temp2 ! s2

:: else ->
s2.size = s1.size; /* End Of Stack */
srchan[process1] ! s2; /* Return Collected Stack */
run StackServer(process1) /* Restart Server */

fi
}

Figure 10.10: Stack Threads.

210

10.2.3 User Program

We have now provided a specification in PROMELA for the garbage collection
threads of Chapter 9. However, these threads cannot simply be verified in isol-
ation. Rather, our verification strategy is based on observing the behaviour of
the collector on a range of different complex data structures. Consequently, we
require an additional model, corresponding to a user program evaluated prior to
the collection, to generate this data.

One possible approach would be a model implementation, or partial imple-
mentation, of the evaluation semantics for Dynamic ML defined in Chapter 8.
Heap data for verifying the collector could then be generated by the evaluation of
a number of programs within this model. However, this approach would require
a significant programming effort. Furthermore, it would only show that the col-
lector was correct for the supplied examples, and would not show correctness in
the general case.

In order to provide a sufficient level of confidence in the verification, we will
adopt an approach promoted by [Hav99] and [Bru97]. We restrict the size of the
heap to a reasonably small value, and then entirely fill the heap with tuples of
random length containing random pointers. We arrange the state space of the
model such that the model checker will explore all possible heap configurations
for the given heap size. Figure 10.11 illustrates all of the possible acyclic tuples
for a heap size of 3. In our model, we will also permit cyclic structures, which
yields approximately 100 different configurations. Due to the exponential increase
in configurations with heap size, we use a heap size no larger than 4 to perform
our verification. While it may be argued that the collector may contain errors
which only become apparent with larger heap sizes, we believe that this is not
the case. We have found that accidental errors in our specification were rapidly
exposed with a heap size of just 2 (and 2 processes). It is not possible to obtain
absolute confidence in the general case without resorting to a theorem proving
approach, e.g. [Jac98]. However, this would require a significantly more complex
specification, and we would lose the fully-automated property of model-checking.

Figure 10.11: Acyclic Tuple Allocation (length 3)

211

One of the main problems with the model checking technique is that even
moderately sized systems, such as the one here, rapidly lead to a very large state-
space that precludes exhaustive verification. This problem occurs in our model
even when we restrict the size of the heap and the number of garbage collection
processes to the range of 1 to 4. However, the situation is far from hopeless.
The SPIN model checker addresses this problem with a facility called bit-state
hashing [Hol98]. This technique uses complex hashing functions to map the state
space of the model onto the available memory. The effect of this facility is to
provide a high coverage approximation of the results of an exhaustive verifica-
tion using considerably less memory. The coverage can be further improved by
performing multiple runs with statistically independent hashing functions. The
SPIN model checker provides a percentage estimate of the coverage of the search
space at the end of each run. We quote these figures in our results presented later
in the chapter.

The PROMELA specification of the user program is given in Figure 10.12 as
a new thread called Mutator. The construction of this thread is very straight-
forward. The thread essentially behaves like a greedy program and completely
fills the memory with random data. A heap pointer hp references the next avail-
able heap location. This pointer is used to track the allocation of tuples in the
heap. Every iteration of the outermost do loop allocates a new tuple on the heap.
The loop (and the thread) terminates when the heap space has been entirely
exhausted. There are three stages involved in the allocation of every tuple.

The first step is the determination of the length of the tuple, given by the
variable count1. Zero length tuples are also permitted, corresponding to special
constants. These tuples consume one heap location and contain no additional
pointers. The tuple length is obtained by non-determinism: the second do loop
contains two guards; the first guard increments the length of the tuple by one,
and the second guard :: break terminates the loop. Since both of these guards
will hold (unless the heap is full), a non-deterministic choice will be made between
them, producing a random tuple length. The maximum tuple length is bounded
by the remaining space in the heap, i.e. hp + 1 + count1 < TOTAL. Once the
length of the tuple has been set, the size field is set to the value of count1, and
the val field is updated with the tuple number.

The second step is the population of the tuples with pointers. This step is
performed in concert with the allocation of the tuple. Each position in the tuple
is allocated a pointer, given by the variable count2. Non-determinism is used
again in the selection of random locations within the heap.

212

proctype Mutator() /* User Program Thread */
{
byte hp, val, process, count1, count2;
atomic
{

hp = 0; val = 0;
do

:: (hp < TOTAL) -> /* Check If Heap Full */
count1 = 0;
do /* Choose Tuple Length */

:: (hp + 1 + count1 < TOTAL) ->
count2 = 0; /* Choose Random Pointer */
do

:: (count2 < TOTAL - 1) -> count2 ++
:: break

od;
tfrom[hp].p[count1] = count2; /* Populate Tuple */
vfrom[hp].l[count1] = count2;
count1 ++

:: break
od;
tfrom[hp].size = count1; /* Set Final Tuple Size */
vfrom[hp].val = val;
val ++;
process = 0; /* Enter Into Environment or Stack */
do

:: (process < PROCESSES) ->
if

:: efrom[process].p[efrom[process].size] = hp;
efrom[process].l[efrom[process].size] = hp;
efrom[process].size ++

:: sfrom[process].p[efrom[process].size] = hp;
sfrom[process].l[efrom[process].size] = hp;
sfrom[process].size ++

:: skip
fi;

process ++
:: else -> break

od;
hp = hp + 1 + count1 /* Increment Heap Pointer */

:: else -> break
od

}
}

Figure 10.12: User Program Model.

213

In the final step we iterate through all of the processes in the system. For
each process, the tuple is placed in either the environment or stack of the process,
or simply ignored. These three cases are handled by the non-deterministic if

statement (note the absence of guards). A tuple may be ignored by every process,
in which case it becomes garbage to be removed by the collector.

It is worth noting that the model checker does not operate directly on the
non-deterministic model that we have defined. Instead, a deterministic tree is
constructed by the unrolling process described earlier in this chapter. For the
Mutator thread, a tree will be constructed with a separate path for every possible
heap configuration.

10.2.4 Initialisation

The initial thread init is defined in Figure 10.13. This thread initiates the three
sequential phases of the model: the Mutator thread is evaluated to generate the
initial data, a garbage collection is then performed, and lastly a Validator thread
is evaluated to compare the initial and collected data. These phases are synchron-
ised by the loop do :: timeout -> break od; as we do not want collection to
begin before the data has been generated, or validation to be performed before
collection is complete. The timeout guard succeeds only when there are no ex-
ecutable threads remaining. We could use message passing for synchronisation,
but we would need to track all of the worker threads, resulting in a considerably
more complex solution.

The garbage collection phase begins by an initialisation of the forwarding
arrays pforward and lforward to NULL and the allocation arrays lto and pto

to the beginning of the local to spaces. A type server, value server, environment
server, and stack server are also generated for each process. We pass each thread
the process number process to distinguish between them. As we saw earlier, this
number is used by each thread to reference its local communication channels and
heaps.

The initialisation stage is done atomically as we do not want collection to begin
until all the server threads are in place. Collection then begins by sending all the
environments and stacks to their respective servers. This results in a cascade
of communication between the servers, which in turn results in the generation of
worker threads and so on. Eventually, new environments and stacks are generated
and returned as messages. The collection is finished when all the threads have
terminated, or all the threads are blocked if an error has occurred.

214

init /* Initialisation Thread */
{
byte process, heap;
run Mutator(); do :: timeout -> break od; /* Fill Heaps */
atomic
{

process = 0;
do

:: (process < PROCESSES) ->
heap = 0;
do /* Forwarding Tables */

:: (heap < HEAPSIZE) ->
pforward[heap + (process * HEAPSIZE)] = NULL;
lforward[heap + (process * HEAPSIZE)] = NULL;
heap ++

:: else -> break
od;
lto[process] = process * HEAPSIZE; /* Allocation Tables */
pto[process] = process * HEAPSIZE;
run TypeServer(process); /* Start Servers */
run ValueServer(process);
run EnvServer(process);
run StackServer(process);
process ++

:: else -> break
od

};
process = 0;
do

:: (process < PROCESSES) ->
eschan[process] ! efrom[process]; /* Collect Environments */
sschan[process] ! sfrom[process]; /* Collect Stacks */
process ++

:: else -> break;
od;
process = 0;
do

:: (process < PROCESSES) ->
erchan[process] ? eto[process]; /* New Environments */
srchan[process] ? sto[process]; /* New Stacks */
process ++

:: else -> break;
od; do :: timeout -> break od; run Validator() /* Validation */

}

Figure 10.13: Garbage Collection Introduction.

215

10.3 Validation

The properties of the garbage collection algorithm that we wish to validate were
stated at the beginning of the chapter, namely: progress, preservation, and cor-
rectness. We will now consider each of these properties in turn, and identify an
appropriate validation technique.

The progress condition is the most straightforward to validate. Given that
progress is a requirement in almost every concurrent system, the SPIN model
checker automatically ensures this property by default. Every thread has one
or more associated end states, which denote the valid termination points. The
final state of a thread is implicitly an end state. Additional end states may be
explicitly defined through the insertion of end: labels, as in the type and value
server threads of Figure 10.7. The progress condition states that every thread
eventually reaches a valid end state. This can be expressed as the following LTL
formula, where end1 is the end state for the first thread, and end2 is the end
state for the second thread, etc:

2(3(end1 ∧ end2 ∧ end3 ∧ · · ·))

Progress is violated if a thread fails to reach an end state, e.g. a worker thread
fails to receive a reply from a server and remains blocked. The model checker
will iterate through every possible evaluation for a given heap size. Hence, this
property will ensure that progress is always preserved.

As we saw earlier in the chapter, the underlying Kripke structures in SPIN
are concealed by the PROMELA language. Similarly, while it is possible to state
explicit LTL formulae for SPIN to verify, it is considerably more convenient to
state properties using PROMELA assertions and never-claims. Assertions are
statements that a particular property is always true at a particular point. Never
claims state that a particular property will never be true at a particular point,
for example:

assert(even % 2 == 0);
never(odd % 2 == 0);

An assertion of the form assert(cond) is equivalent to an LTL formula of
the form 2(s ∧ cond), where s is the state in which the condition cond should
hold. A never-claim is equivalent to the negation 2(s ∧ ¬ cond). The advantage
of placing these statements directly inside the PROMELA program, instead of
defining separate formula, is that we do not have to explicitly define the state s,
and we can embed assertions inside loops and other constructs.

216

The validation of the correctness and preservation properties requires a sig-
nificantly more complex approach than the progress condition. We define an
additional Validator thread for this purpose, shown in Figure 10.14. Correct-
ness and preservation are validated together in this thread, since these properties
are closely related.

The high-level view of our validation strategy is a direct comparison of the
graphs of the data items in the from heap, with their corresponding graphs in the
to heap. This is achieved in our thread by a depth-first graph-search algorithm
which operates on each item in the from heap in-turn. The search begins with the
root pointer of the item in the environment (or stack). At each step of the search,
a comparison is performed with the counterpart in the to heap, obtained from
the forwarding tables. The search terminates when all of the pointers have been
followed. The behaviour of this algorithm is essentially the same as the sequential
garbage collection algorithm of Chapter 6. Each item has an associated type and
value, which are validated as follows.

• The correctness property is enforced by comparing the size fields of the
types, and the val fields of the values. Recall that the val field of each
thread was tagged with a different tuple number during allocation in Fig-
ure 10.12. Hence, only values which are identical will be matched. This
check ensures that the data has not been corrupted during collection.

• The preservation property is validated by a comparison of each pointer in
each type, and each location in each value. The entry in the forwarding
table for the pointer or location in the from heap should be identical to
the corresponding pointer or location in the to heap. If the entry in the
forwarding table is NULL, or the resulting pointers are not equal, then an
error will have occurred in the collection and there may be dangling pointers.

We will now outline the construction of our validation strategy in PROMELA.
As stated above, we use a thread called Validate to perform this step. The
appropriate point for the creation of this thread was shown in Figure 10.13. The
absence of true recursion in the language led us to adopt a stack-based depth-
first algorithm, using the array stack. This should not be confused with the Stak
upon which garbage collection is performed.

The stack will contain Pair pointers to items which we have not yet validated.
At each step, we pop a pair off the stack and examine the item it references. Any
pointers contained within this item are subsequently pushed onto the stack. The
algorithm terminates when the stack is empty. As we are dealing with data which

217

has the form of an undirected graph, there may be cyclic structures. Therefore,
we maintain a set of pointers which we have already validated, represented by
the boolean array pseen. This array contains an entry for each pointer in the
heap, where each entry is initially set to false. On encountering a pointer, the
corresponding entry in pseen is set to true. Items which are set to true in the
array are not pushed onto the stack. The algorithm is entirely deterministic,
indicated by the statement d step at the beginning of the thread. This allows
SPIN to perform a number of optimisations on the model.

We validate each process in turn. A number of sanity checks are performed
before the depth-first traversal is initiated. We check that the environment and
stack for the process are the same size before and after collection. We also check
that the number of types is equal to the number of values after collection, and that
the size of the local heap is smaller than the maximum permitted heap size, i.e. we
have not introduced any extra data during collection. These simple tests proved
to be surprisingly effective at trapping accidental errors in our specification.

The main depth-first algorithm validates each entry in the environment in
turn. The pointer ep references the current environment entry, i.e. root. We do
not show the validation of the roots of the program stack in Figure 10.14, as the
algorithm is identical to the validation of the environment. Another pointer sp

contains the index of the top of the stack. The core of the algorithm is a do

loop with two guards. The first guard (sp == 0) holds when the stack is empty;
the next item in the environment is selected and validated, or the algorithm
terminates if there are none. The second guard (sp > 0) holds when there are
pointers on the stack; in this case, the stack is popped and the corresponding
item validated. The validation process is essentially the same in both cases. We
check correctness by a pair of assertions which compare the val and size fields:

assert(tfrom[loc1].size == tto[loc2].size);
assert(vfrom[loc3].val == vto[loc4].val);

The remaining assertions on the forwarding tables pforward and lforward

check that pointers in the from heaps were actually copied to the correct positions
in the to heaps. This effectively ensures the preservation property that there are
no dangling pointers:

loc5 = tfrom[loc1].p[count1];
loc6 = vfrom[loc3].l[count1];
loc7 = tto[loc2].p[count1];
loc8 = vto[loc4].l[count1];
assert(pforward[loc5] == loc7);
assert(lforward[loc6] == loc8);

218

proctype Validator() /* Validator Thread */
{
byte ep, sp, process, count1, count2;
byte loc1, loc2, loc3, loc4, loc5, loc6, loc7, loc8;
Pair stack[TOTAL];
bool pseen[TOTAL];
d_step
{

count1 = 0;
do

:: (count1 < TOTAL) ->
pseen[count1] = false; /* Initially All Pointers Unseen */
count1 ++

:: else -> break
od;
process = 0;
do

:: (process < PROCESSES) ->
assert(efrom[process].size == eto[process].size);
assert(sfrom[process].size == sto[process].size);
assert(lto[process] == pto[process]);
assert(pto[process] <= (process +1) * HEAPSIZE);
ep = 0;
sp = 0;
do

:: (sp == 0) -> /* Empty Stack - Next Root */
if

:: (ep < efrom[process].size) ->
loc1 = efrom[process].p[ep];
loc2 = eto[process].p[ep];
loc3 = efrom[process].l[ep];
loc4 = eto[process].l[ep];
assert(pforward[loc1] == loc2);
assert(lforward[loc3] == loc4);
assert(tfrom[loc1].size == tto[loc2].size);
assert(vfrom[loc3].val == vto[loc4].val);
pseen[loc1] = loc2;
count1 = 0;
do

:: (count1 < tfrom[loc1].size) ->
loc5 = tfrom[loc1].p[count1];
loc6 = vfrom[loc3].l[count1];
loc7 = tto[loc2].p[count1];
loc8 = vto[loc4].l[count1];
assert(pforward[loc5] == loc7);
assert(lforward[loc6] == loc8);

219

if
:: (pseen[loc5] == false) ->

pseen[loc5] = true;
stack[sp].l = loc6;
stack[sp].p = loc5;
sp ++; count1 ++

:: else -> count1 ++
fi

:: else -> break
od;
ep ++

:: else -> break
fi

:: (sp > 0) -> /* Non Empty Stack - Pop Item */
sp --;
loc1 = stack[sp].p;
loc2 = stack[sp].l;
assert(pforward[loc1] != NULL);
assert(lforward[loc2] != NULL);
assert(tfrom[loc1].size == tto[pforward[loc1]].size);
assert(vfrom[loc2].val == vto[lforward[loc2]].val);
count1 = 0;
do
:: (count1 < tfrom[loc1].size) ->

loc3 = tfrom[loc1].p[count1];
loc4 = vfrom[loc2].l[count1];
loc5 = tto[pforward[loc1]].p[count1];
loc6 = vto[lforward[loc2]].l[count1];
assert(pforward[loc3] == loc5);
assert(lforward[loc4] == loc6);
if
:: (pseen[loc3] == false) ->

pseen[loc3] = true;
stack[sp].l = loc4;
stack[sp].p = loc3;
sp ++; count1 ++

:: else -> count1 ++
fi

:: else -> break
od

od; process ++
:: else -> break

od
}

}

Figure 10.14: Consistency Checks.

220

10.4 Results and Conclusions

We performed a model checking operation on our specification for the range of
process numbers and heap sizes shown in Figure 10.15. The bit-state hashing
technique was used throughout as none of these models were small enough for
exhaustive verification, given the 512MB of memory that we had available. An
estimate of the coverage of the search space is shown as the final column of the
table. The case where only one process is used corresponds to the sequential
algorithm. Although the numbers in the table appear to be rather small, we
believe that they are adequate to demonstrate the correctness of the algorithm.
As we showed earlier, a total heap size of just 3 results in over 100 different
configurations. Furthermore, a system with just 3 processes will lead to a similarly
large number of inter-leavings of evaluation. Consequently, it is almost certainly
the case that any errors in the specification would become readily apparent in this
situation. It was our experience that minor accidental errors in our specification
led to an immediate violation of the assertions.

GC Processes Local Heap Size Total Heap Size Estimated Coverage
1 3 3 100%
2 1 2 98%
2 2 4 74%
3 1 3 61%
4 1 4 42%

Figure 10.15: Model Configurations.

The original formalisation of the LEMMA distributed garbage collection al-
gorithm appeared in [Wal99]. The model was carefully constructed, with reference
to the actual LEMMA implementation, to avoid deadlocks in the algorithm. It
was this formalisation that we chose as the starting point for our model check-
ing process. This model is very similar to the one presented in Chapter 9, but
only a single channel was used for communication between the server and worker
threads. The model checking process immediately uncovered a problem with this
approach, illustrated in Figure 10.16.

The problem occurs when two (or more) worker threads W1 and W2 attempt
to communicate with a single server thread S along a single channel (step 1). It
will always be the case that one thread will succeed and the other one will be
blocked. In this case (step 2), thread W1 succeeds and thread W2 is blocked.
However, we are now in a situation where thread W1 is attempting to receive
a reply from S on the channel and W2 is still attempting to send a message on

221

S

W1 W2 W1 W1W2 W2

S S1 2 3

Figure 10.16: Communication Error.

the same channel. Thus, W1 actually receives the message from W2 instead of
the reply from S, and the reply from S is incorrectly received by W2 (step 3).
While this problem is obvious in retrospect, it is the kind of problem that is very
difficult to detect with simple testing. The problem will only occurs infrequently
in practice, due to timing issues. Furthermore, this problem does not generally
cause a deadlock to occur, since all the communication operations are successful.
Nonetheless, the mistake was readily uncovered by model checking. The solution
to the problem is to use pairs of channels in the communication. The corrected
specification is the one presented in Chapter 9. With this revised specification,
no other errors were detected in the algorithm.

10.5 Limitations of Model Checking

It should be noted that the model checking technique, as with all verification
strategies, has a number of inherent limitations. We have already discussed the
restrictions on our model arising from the finite nature of model checking, in
particular the need to consider heaps of fixed sizes. We note that this limitation
can be overcome by theorem proving, though this would likely come at the expense
of an automated verification. Other limitations of our verification relate to the
properties that we have chosen to validate. There is considerable difficulty in
ensuring that the chosen properties are sufficient to validate all of the necessary
behaviours of the model. For example, in our current model we check that the
structure of the heap is preserved but we do not explicitly check that the garbage
is discarded. The model checker cannot assist in this respect since the required
properties are largely dependent on the domain in question.

The most serious limitation of the model checking technique arguably relates
to its shortcomings regarding the expression of certain real-world conditions. For
example, the eventually 3 temporal operator does not say anything about the
time interval involved. As a result, we cannot say anything about the time require-
ments of our algorithm, which may take a very long time to complete. Another

222

such condition relates to our communication channels. We currently assume that
there are no communication delays or lost messages, and that messages are passed
instantaneously. If we allow delays in communication, with the result that mes-
sages can be delivered out-of-order, then the message passing technique described
in this chapter breaks down and it becomes necessary to introduce ordering tags
on messages. Such considerations mean that model checking can only comple-
ment, and cannot replace conventional system testing. Nonetheless, if one is
aware of these limitations, then model checking can be applied to good effect, as
it has in this chapter, to the verification of complex concurrent systems.

223

Chapter 11

Conclusions and Further Work

The ML family of languages has been both the source and the subject of much
recent research in the area of types in compilation. This area concerns the cross-
fertilisation of the theory of type systems with the practical concerns of compiler
writers. A great deal of discussion has taken place in the functional program-
ming community over the advantages and disadvantages of the retention of type
information throughout the compilation process, and then into the runtime sys-
tem. Nonetheless, there appears to be an emerging consensus that the advantages
afforded by type-based approaches outweigh any performance penalties incurred
through the maintenance of type information. Much of the research and discus-
sion has been directed at improving existing compilation technology. However,
in this thesis we advance the argument with the claim that types in compilation
also permit a number of language extensions that would otherwise be difficult or
impossible to express. Type information is used throughout this thesis for a wide
variety of purposes. However, the three novel extensions for which we have used
type information are summarised below:

1. An efficient tag-free garbage collection operation.

2. An effective platform for distributed evaluation and garbage collection.

3. A powerful model of sequential and distributed code-replacement.

Other researches are also beginning to explore the potential of type informa-
tion in other application areas, for example, type-based security models [LR98],
type-directed partial evaluation [BD98], and a typed assembly language gener-
ation [MCG+99]. In the remainder of this final chapter we will summarise the
contributions and results of the thesis in detail, concluding with an outline of a
number of possible extensions and areas for further research.

224

11.1 Thesis Summary

In this thesis we have defined a new language called Dynamic ML, a variant of the
Standard ML language with extensions for code-replacement. The visible changes
to the Standard ML language are minimal, while the underlying compilation and
evaluation frameworks have been radically altered. The foundation for all of
the definitions in the thesis is our MΛ language, presented in Chapter 2. MΛ
is a clean, typed, λ-calculus-based intermediate language, similar in style to a
number of other intermediate languages used in the compilation of Standard ML.
The MΛ language is a good compromise between the theoretical simplicity of
System F2, and the practical complexity of Dynamic ML. The main advantage
of using such an intermediate language is that it allows a style of definition which
is closely related to the complete Dynamic ML language, while avoiding a great
deal of unnecessary complexity. Furthermore, theMΛ language avoids the over-
simplicity of System F2, where it is difficult to relate to the dominant issues of a
real implementation.

We have made continual reference to types and type systems throughout the
thesis. Indeed, the use of types, and the type system of MΛ is central to the
correctness of our definitions. Thus, in Chapter 3 we have defined the MΛ type
system, called the static semantics, in intricate detail. In this chapter we also
illustrated the relationship between System F2 andMΛ through a comparison of
their type systems.

In order to facilitate an implementation of the code-replacement technique,
and to firmly establish the connection between Dynamic ML and MΛ, we have
defined a detailed translation between the core of these languages in Chapter 4.
A central part of this translation is the conversion of the implicit types of Dy-
namic ML into explicit MΛ types through the process of type inference. Type
inference in Standard ML is performed using Milner’s Algorithm W [Mil78].
However, while variants of this algorithm are used in all of the current Stand-
ard ML compilers, there are no actual papers which describe all of the necessary
details for the full language. Therefore, this chapter will also serve as a useful
reference for the Standard ML compiler writer.

In Chapter 5 we observed that the dynamic semantics of Standard ML, as
presented in the language definition [MTHM97], is at too high a level of ab-
straction for code-replacement. In particular, all of the details of memory man-
agement are omitted. Consequently, we have defined an alternative dynamic
semantics in this chapter which exposes the crucial details of the memory, the
heap and the stack, without placing any unnecessary restrictions on the layout

225

or addressing of the memory. The dynamic semantics were presented through
a novel type-preserving abstract machine. The advantages of this approach are
twofold: our abstract machine definition provides both a sound theoretical basis
for our garbage collection and code-replacement operations, and a practical basis
for an implementation in the same way that the Java Virtual Machine (JVM)
provides a platform for the Java language. In order to address concerns regard-
ing the performance overheads of maintaining runtime type information, we also
presented a novel deferred type-instantiation scheme for efficiently representing
the polymorphic types.

Modern programming languages often perform a garbage collection operation
on the memory to discard any redundant data. In Chapter 6 we illustrated how
the presence of runtime types enables an efficient tag-free style of collection. We
presented an abstract machine description of the well known two-space copy-
ing garbage collection algorithm for the MΛ language. This abstract machine
operates in tandem with our earlier evaluation abstract machine, periodically
freeing-up memory when required.

The Standard ML programming language contains a very powerful modules
system, designed to support the construction of large programs. An adaptation
of this modules system to facilitate code-replacement in Dynamic ML was presen-
ted in Chapter 7. The main alterations being the removal of transparent signa-
tures, which are incompatible with code-replacement, and the addition of a where

datatype construct to lessen the restrictions imposed by opaque signatures. We
presented an innovative translation from the Dynamic ML modules language into
MΛ. The main feature of this system being that no extra code is generated
for the module, rather the modules system acts only as a compile-time linking
language. There are two kinds of replacement which we admit in Dynamic ML.
The first kind is the replacement of one module with another, provided that both
modules are matched by the same signature. The second kind of replacement per-
mits the substitution of a signature with a more permissive one. The combination
of these enables a very flexible, yet completely type-safe, replacement operation.
In the second-half of the chapter we presented our code-replacement algorithm
which performs the runtime replacement of types and values as an extension of
the tag-free garbage collection technique.

In Chapter 8 we move from a sequential view of evaluation to a distributed con-
figuration. In the sequential case, our assumption was that operations occurred in
sequence, on a single processor of a single machine. In the distributed model we
relax these constraints and permit processes containing multiple threads evaluat-

226

ing on a single machine, and multiple processes evaluating on multiple machines.
This model can represent a range of different architectures, including symmetrical
multiprocessing (SMP) machines, networks of workstations, and multiprocessing
parallel (MPP) computers. The underlying assumption in our distributed model
is that the interconnecting network is reasonably reliable and responsive. The
MΛ language defined in Chapter 2 contains operations for creating threads of
execution both locally and remotely, and for communicating between threads
across bi-directional typed channels. In this chapter we build upon our earlier
work on the LEMMA shared-memory interface, a platform for distributed evalu-
ation in the Poly/ML compiler. We provide a definition of the LEMMA interface
as a distributed abstract machine for MΛ. The key innovation in this chapter is
the use of traces, which allow a big-step style of semantics as opposed to the usual
small-step models for expressing concurrency. In order to improve the efficiency
of an implementation, we outline a technique for the caching of immutable data
in the distributed system. This is an optimisation which is not possible for non-
functional languages. Once again, the runtime type information plays a crucial
role in determining the immutable data items.

We turn our attention to providing distributed definitions of garbage collection
and code replacement in Chapter 9. Both of these algorithms can be viewed as
generalisations of the sequential case into a distributed setting. This was not
by accident, since one of our main reasons for selecting the two-space collection
algorithm was the existence of a natural distributed extension. The distributed
garbage collection algorithm defined using an abstract machine, similar to the
distributed evaluation. As before, distributed code-replacement is a relatively
straightforward extension of garbage collection. No changes to the Dynamic ML
module system are necessary when moving to a distributed setting.

The issues of verification and validation of our definitions are addressed in
Chapter 10. This is particularly important as we do not currently have a complete
implementation. We chose to focus the verification on the distributed garbage
collection algorithm, since this is central to the code-replacement technique. Fur-
thermore, the sequential algorithm is captured as a special case of the distributed
algorithm. Owing to the complexity of the definition, we have adopted an auto-
mated approach to the verification process, using the SPIN model checker. In this
chapter we reformulated the garbage collection algorithm as a state-transition
model in the PROMELA language. A significant number of correctness properties
were subsequently verified against the model, and no significant problems were
uncovered.

227

11.2 Thesis Achievements

In the conclusion of Chapter 1 the main aims of the thesis were outlined. We will
now briefly discuss the extent to which these aims have been achieved and the
limitations of the work as presented.

The main aim of the thesis was the definition of a powerful code replacement
strategy for Standard ML. The intention was to surpass existing code-replacement
facilities with the ability to update program data in addition to program code.
It was also considered highly desirable to provide a guarantee of correctness of
replacement. We believe that this aim has been largely accomplished, and we
consider this accomplishment to be the main contribution of this thesis. Our
code replacement strategy utilises an unorthodox technique which performs code
replacement in conjunction with a type-based garbage collection operation. This
is based on the observation that garbage collection already interacts with all of
the program data relevant to replacement. By founding our technique on strong
static typing we achieve the necessary correctness guarantees.

The second aim of the thesis was a detailed definition for all of the stages of
code replacement, from the source language (Dynamic ML) through to the point
at which replacement is actually performed. This was intended to mirror the
stages of a real compiler for the language. We believe that this aim has also been
accomplished and that there is significant novelty in this work. This includes the
abstract machine semantics, the modules translation technique, and the tag-free
garbage collection operation.

The final aim that we outlined involved the definition and validation of a
distributed extension of our code replacement technique. The intention here being
a demonstration of the applicability of our work to future computing demands.
We believe that this aim has also been largely met by the provision of an abstract-
machine semantics for the LEMMA interface, a distributed implementation of our
algorithm, and the subsequent model-checking verification.

The limitations of our work currently lie in the areas of validation and im-
plementation. Although the model checking verification goes some way towards
establishing the correctness of our algorithms, it would nonetheless be desirable
to apply a range of other validation techniques, such as formal proof (e.g. type
soundness) and traditional testing strategies. However, these are largely depend-
ent on the provision of an implementation, which has not yet been performed.
The issues associated with implementation are detailed in the following section.
It should be noted that these limitations do not undermine the accomplishments
of the thesis and it is intended that they will be rectified as future work.

228

11.3 Implementation Issues

Throughout this thesis, the use of type-information has been our guideline. As
we have seen, this has allowed us to produce clean, safe, and effective definitions.
In some cases, these definitions have been a reformulation of existing algorithms,
and in other cases, type information has enabled a completely novel approach.
However, pragmatic considerations have also played a very important role in
our definitions. We will now turn our attention to the issues associated with
the provision of an implementation of Dynamic ML. Although we have yet to
implement Dynamic ML, we nonetheless have a high degree of confidence that
a practical and efficient implementation is possible. This is primarily a result of
our restriction to operational models throughout, in particular our heavy reliance
on abstract machine formalisms.

The ML-Kit compiler [TBE+98] is a direct implementation of the semantics of
the Definition of Standard ML [MTHM97]. Each semantic rule in the definition
has a function counterpart in the compiler. This compiler effectively demon-
strates the practicality of a direct implementation based on the semantics of the
language. The advantage of this approach is that it ensures that the language
definition is faithfully reproduced in the implementation. It is our intention that
the semantics of Dynamic ML should also be directly implemented in this manner.
The translation of the semantics in the ML-Kit compiler was done manually. It is
worth noting that there has been some recent research into automating the trans-
lation from the semantics, e.g. [Pet99], in a similar manner to the way in which
tools such as Lex and Yacc currently automate the translation of the syntax.
However, this work has not yet reached a level where we can use it to automate
the translation of the Dynamic ML semantics.

In the introductory chapter we discussed the advantages of the abstract ma-
chine style of dynamic semantics over the natural-semantics style used in the
Definition of Standard ML. It is interesting to note that the initial revision of
the ML-Kit compiler contained a direct interpreter for the dynamic semantics.
However, later revisions have performed a translation into an abstract machine
semantics, and have experienced a considerable improvement in performance as
a result. We have stressed the advantages of the abstract machine approach
throughout the thesis, namely that is establishes the correct level of detail for
our models, and that it enables an efficient implementation owing to the finite
deterministic behaviour of abstract machines. Indeed, abstract machine models
have long been at the foundation of implementations of functional languages,
though they have not traditionally been associated with high performance.

229

Research into the efficient implementation of abstract machine models has
recently been rekindled by the Java language. Java uses a form of abstract ma-
chine (the JVM) to enable portability of programs across architectures without
re-compilation. Owing to the popularity of the Java platform, much effort has
been devoted to optimising the performance of the JVM. The favoured approach
is a just-in-time translation between the virtual machine instructions, called byte-
codes, into native machine code at runtime. The current state-of-the-art is the
Hotspot virtual machine [Gri98] which uses a range of analyses to ensure that
the overheads of the translation do not outweigh the performance advantages.
Benchmarks have shown that the performance of the Hotspot virtual machine
can approach that of native C under certain conditions.

The effectiveness of such runtime code generation techniques when applied
to functional languages has been demonstrated in the construction of the Fabius
compiler for ML [LL96]. Using this technology it is possible for us to eliminate the
runtime penalties incurred by the use of abstract types in module specifications by
exploiting the underlying representation of an abstract type and re-compiling at
runtime when the replacement module is available. Further, many other benefits
come from the use of runtime code generation including those associated with
partial evaluation [JGS93], since it is possible to take advantage of values which
are not known until runtime.

The majority of ML compilers are constructed in some variant of the ML lan-
guage itself. It is our intention to implement the Dynamic ML language using ex-
isting Standard ML compilers. This follows the accepted compiler boot-strapping
tradition. It may be surprising that Standard ML is suitable for compiler con-
struction given the very high-level nature of the language. However, the richness
of the language makes a very clean and straightforward implementation possible.
To illustrate this point we have defined the syntax of the MΛ language from
Chapter 2 as a signature in Figure 11.1, and the syntax of the sequential abstract
machine from Chapter 5 in Figure 11.2. Note the very clear resemblance between
the abstract syntax and the datatype definitions. It will not be possible to define
Dynamic ML in its entirety using only Standard ML, since we require a number
of lower-level facilities that are not available in the language. These include dir-
ect memory access for garbage collection and code-replacement, and inter-process
communication for distributed execution. Therefore, in common with other ML
compilers, we must augment the Standard ML definition with a runtime system
defined in a language such as C. This will likely be only a minimal set of C
functions available through a foreign-language interface facility.

230

signature MLAMBDA =
sig
type ’a seq
type ’a set
type (’a, ’b) fmap
type con
type alpha
type x
type tn

datatype scon = Unit | Int of int | Word of word | Real of real
| Char of char | String of string

datatype tau = Tname of tn
| Tcons of tn * (tau seq)
| Ttuple of tau seq
| Tfunc of tau * tau
| Tvar of alpha

datatype sigma = Mono of tau | Poly of (alpha seq) * tau
datatype P = Program of (D set) * (X set) * E
and D = Datatype1 of tn * C set

| Datatype2 of alpha seq * tn * C set
and X = Exception of C set
and C = Nullary of con | Unary of con * tau
and E = Scon of scon

| Var1 of x
| Var2 of x * tau seq
| Fn1 of x * tau * tau * E
| Fn2 of x seq * tau seq * tau * E
| Con1 of con
| Con2 of con * E
| Con3 of con * tau seq
| Con4 of con * tau seq * E
| Decon1 of con * E
| Decon2 of con * (tau seq) * E
| Tuple of E seq
| Select of int * E
| Let of x * sigma * E * E
| Let2 of (x * sigma) seq * E * E
| Switch of E * ((con, E) fmap) * E
| Fix of (x * sigma * E) seq * E
| App1 of E * E
| App2 of E * (E seq)
| Assign of E * E
| Raise of E * tau
| Handle of E * E

end;

Figure 11.1: MΛ Represented in Standard ML.

231

signature MACHINE =
sig

type ’a seq
type (’a, ’b) fmap
type l
type p
type tn
type alpha
type scon
type con
type x
type E
type P

datatype M = Machine of H * Delta * XS * RS
and H = Heap of TH * VH
and TH = THeap of (p, ty) fmap
and ty = RTname of tn

| RTcons of tn * p
| RTtuple of p seq
| RTfunc of p * p
| RTvar of alpha
| RTclosure of TE * p

and VH = VHeap of (l, va) fmap
and va = RVscon of scon

| RVncon of con
| RVucon of con * l
| RVtuple of l seq
| RVclosure of Delta * x seq * E
| RVomega

and Delta = Env of TE * VE * DE * CE
and TE = TEnv of (alpha, p) fmap
and VE = VEnv of (x, (l * p)) fmap
and DE = DEnv of (tn, p) fmap
and CE = CEnv of con * p
and XS = XSEmpty

| XSva of (l * p) * XS
and RS = RSEmpty

| RSty of p * RS
| RSva of (l * p) * RS
| RSenv of Delta * RS

val lpointer : int ref
val ppointer : int ref
val eval : M * P -> M

end;

Figure 11.2: Abstract Machine Description in Standard ML.

232

11.4 Performance Modelling

One of the motivating factors behind the code-replacement technique is that im-
provements to the performance of programs can be introduced. However, without
assistance, it is often difficult to establish where there is a performance bottleneck
in a program, or what the impact of an improvement will be. The solution to
these problems lies in the area of performance modelling techniques. The aim of
these techniques is to establish the time and space requirements for a given frag-
ment of code. Performance modelling techniques are generally divided into static
and dynamic analyses. Static analysis is an attempt to determine the behaviour
based purely on the source code of the program, i.e. at compile time, while a dy-
namic analysis determines the behaviour during evaluation, i.e. at runtime. We
will only discuss dynamic techniques here, as static techniques tend to be very
complex and specialised, owing to the fact that execution time of a program in
the general case is undecidable. Furthermore, dynamic techniques appear to be
a better fit for code-replacement, which is itself a runtime operation.

Dynamic performance modelling is usually achieved by profiling techniques;
information is recorded during the evaluation of the program for subsequent ana-
lysis. There are two principal approaches to the collection of profiling information.
In a sample-based approach, the program is interrupted at regular intervals, and
the position of the program counter is recorded with reference to a timer. By
using a number of different timers, execution time can be attributed to different
parts of a program. A profiler for Standard ML using the sample-based approach,
with a different timer for each function, is defined in [ADM88]. The alternative
is a counter-based approach, where frequency counters are placed directly inside
the program. This can be done implicitly, i.e. a counter is automatically placed
at the beginning of each function, or explicitly, i.e. in a manner similar to set-
ting breakpoints in debugging. The frequency counters are incremented by the
path of execution. A counter-based profiler for the Lazy ML language is outlined
in [RW93].

A novel counter-based profiling technique, which appears particularly relevant
to Dynamic ML, is outlined in [Bra94] and later refined in [SP97]. In this strategy,
profiling costs are related to the dynamic semantics of the language, rather than
to a particular implementation. While this may not always yield the best results,
when the implementation diverges considerably from the semantics, we intend an
implementation of Dynamic ML to closely follow our abstract machine definitions.
The technique is most easily illustrated with the aid of an example. Consider the
rule from Chapter 5 for the application of a function, shown in Figure 11.3. The

233

cost of a function application can be seen to comprise four separate costs: the
cost of evaluating the function expression E1, the cost of evaluating the argument
expression E2, the cost of dereferencing the heap H3(l′1) to obtain the closure,
and the cost of evaluating the closure expression Ec.

(H1, ∆1, XS 1, RS 1, E1)⇒ (H2, ∆2, XS 2, (l1, p1) · RS ′1)

(H2, ∆2, XS 2, (l1, p1) · RS ′1, E2)⇒ (H3, ∆3, XS 3, (l2, p2) · (l′1, p′1) · RS ′′1)

H3(l′1) = 〈〈∆c, (x), Ec〉〉
(H3, ∆c[x 7→ (l2, p2)], XS3, ∆3 · RS ′′1, Ec)⇒

(H4, ∆4, XS 4, (l3, p3) · ∆′3 · RS ′′′1)

(H1, ∆1, XS 1, RS 1, app (E1, E2))⇒ (H4, ∆′3, XS 4, (l3, p3) · RS ′′′1)

Figure 11.3: Function Application

A simple measure of the performance for the entire program can be obtained
by counting the number of auxiliary rules invoked at each step of the evaluation. A
measure of the performance for each function can also be obtained by maintaining
a separate count for every function expression. However, this is really just a
coverage analysis, indicating which parts of the program are evaluated with the
highest frequency. A measure of the time taken for the program can be obtained
by scaling the result with a time constant, but this will bear little relation to the
cost of a real implementation of the code.

A more subtle approach is needed to obtain a time value that is closer to the
actual cost of an implementation. The problem arises from the fact that simple
step-counting ignores a number of costs, such as the dereferencing of the heap
in the above example. Also, step-counting does not take into account the fact
that different operations will take different times to complete. A significant im-
provement can be made by associating a weight with each rule. Basis operations,
such as the arithmetic and boolean operations, will also have associated weights.
Ideally, these weights are obtained from actual empirical measurements of an im-
plementation of each rule. This model will yield a much closer reflection of the
cost of a real implementation. Consequently, this will enable performance bot-
tlenecks to be easily identified, and improvements to the code can be compared
with a reasonable degree of accuracy.

Although the use of weights will yield a reasonable estimate of performance in
many cases, the results will be distorted by any optimisations which are performed
on the code. For example, tail-calls are often optimised using loops. Hence, the
cost of the top-level invocation of a function will be different from the cost of

234

a recursive call. Furthermore, techniques such as just-in-time compilation will
result in a significant skewing on any time measurements. These problems clearly
need some careful consideration. However, it is likely that they can be overcome,
e.g. by using multiple weightings and averages. Although it may not be possible
to obtain entirely accurate time prediction in every case using the semantic-based
approach, the technique does appear to hold considerable promise, particularly
in the identification of hot-spots and redundant areas of programs.

The profiling techniques that we have discussed so far have been designed
to analyse the time requirements of a program. However, there are also many
profiling techniques whose purpose is to analyse space requirements. At the most
basic level, this simply amounts to determining the heap usage for a program, or
the individual functions within a program. As with time profiling, both sample-
based and counter-based approaches can be used. Clearly, there will be some
interaction between space profiling and garbage collection. Indeed, one of the
main goals of space profiling is to minimise the space usage of a program, and
therefore reduce the number of garbage collections that are required.

From a code-replacement perspective, a more interesting form of space profil-
ing is to determine the frequency with which certain data structures are used, i.e.
data profiling. For example, if a certain queue data structure is used repeatedly
in a program, then it would make a good candidate for an improved implement-
ation, e.g. using a fixed array instead of a list. The profiling of data structures in
Dynamic ML can also be achieved using the dynamic semantics of the language,
since all data accesses are visible as references using pairs (l, p). The presence
of runtime type information makes this approach ideal, where in other languages
explicit tags must be used. Given the type information associated with each data
item, it is trivial to record the frequency of occurrence of certain data structures
within an executing program.

One final area of interest concerning the interaction between code replace-
ment and profiling is the appealing prospect of semi-automating the replacement
operation. With a little effort, the profiling of a Dynamic ML program could
be arranged to automatically identify candidate functions and data structures
for optimisation, without requiring user interaction. A code optimisation process
can then examine these candidates and perform a number of safe optimisations
on the program, which will be introduced through garbage collection and code-
replacement, as illustrated in Figure 11.4. A more sophisticated approach may
introduce a variety of small changes into a running program and observe their
effects by profiling, similar to genetic or evolutionary programming techniques.

235

Machine

GC and Code
Replacement

Code
Optimisation

Profiling

Abstract

Abstract Machine Code

Figure 11.4: Automated Code-Replacement.

The design of an automated code optimisation process is clearly non-trivial
and would require a significant research effort. Nonetheless, there are a number
of simpler optimisations which can be applied at runtime and may result in a sub-
stantial increase in performance. We can improve the performance of frequently
accessed data structures and functions by a technique called cache-conscious data
placement [CHL99]. The objective of this optimisation is to improve data-locality
and thereby reduce the cache-miss rate. There are a number of methods for im-
proving locality, such as grouping functions together with their data, or grouping
frequently accessed and related data items together. More aggressive optimisa-
tion can be performed with a knowledge of the actual cache size and structure of
the executing platform. A number of researchers have experimented with a vari-
ety of layouts and have reported runtime improvements as much as 24% [Kis99].
This technique can be applied as a garbage collection operation, or by rewriting
the code to improve the locality behaviour. It is likely that runtime knowledge
of the type of the data could be used to improve the technique further. In a dis-
tributed setting, a locality analysis can be performed on communication between
machines, e.g. [Kı99, Mor00]. Threads which communicate frequently can poten-
tially be migrated together to improve performance. Finally, although we cannot
arbitrarily rewrite functions at runtime, we can selectively improve their perform-
ance through a range of automatic parallelisation techniques, for example, using
the implicit multi-threading operation described at the end of Chapter 8, or re-
lated techniques including parallel algorithmic skeletons [HM99]. It is clear that
the area of automated profiling using explicit runtime type information is ripe for
further research.

236

11.5 Code-Replacement in Java

In this thesis we have defined code-replacement exclusively in the context of
the ML family of languages. Nonetheless, it has become apparent that the un-
derlying techniques can be applied to a range of different programming plat-
forms. In principle, our model of replacement may be applied to any statically
typed language that is amenable to garbage-collection. It would be relatively
straightforward to modify the technique for other functional languages, includ-
ing lazily evaluated languages such as Haskell. However, we have recently begun
to consider the application of code-replacement to the object-oriented language
Java [GJS96]. Code-replacement in Java is intuitively appealing because use-
ful, soundly-engineered products such as Java can be deployed in contexts where
it is presently difficult to apply Standard ML. These would include embedded
systems, wide-area mobile platforms such as the Internet, and also application
domains where inter-operability is an important consideration.

As noted in the introductory chapter, the Java language already contains
a restricted form of code-replacement called binary-compatibility. This allows
the runtime replacement of class definitions which match certain (flawed) con-
ditions [DEW99], though the instances of the class are not replaced. Another
kind of code-replacement which enables Java objects to mutate, that is to change
their class-membership, is defined in [DDDG99]. However, what we are propos-
ing essentially combines both of these techniques. We wish to define a form of
code-replacement, where one Java class is replaced with another, and all of the
object instances of the class are replaced with the new representation. Owing to
the object-oriented nature of classes, this will also require the replacement of any
object instances of any sub-classes.

The kind of replacement which we are proposing is clearly a significantly
more complex operation that the replacement of modules in Dynamic ML. We
cannot resort to the specialisation of classes as we did for ML functors, and we
must take into account the class hierarchy. Nonetheless, we believe that the
underlying principles are similar enough to make such a replacement feasible.
Indeed, this kind of replacement is the goal of the Java Distributed Run-time
Update Management System JDRUMS [RA00]. However, the implementation of
replacement in this system is somewhat different from ours. In JDRUMS, the
replacement of objects of the outdated class is performed lazily as the objects
are accessed, meaning that both versions of the class are active at the same time.
Objects are garbage-collected and replaced as they are accessed during evaluation.
When all of the objects of the old version of the class have been replaced, the

237

class object will have no more references and it can then be removed by the
garbage-collector. It is interesting to note that the JDRUMS system suffers from
the same limitation as ours in that active code cannot be replaced. The lazy
approach to replacement is in fact more suitable than the all-at-once replacement
in Dynamic ML when dealing with the Java language, given that there are likely
to be a large number of instances of each class. Moreover, this technique is also
more suitable for wide-area implementations, given that communication delays
tend to make a global garbage collection operation impractical. However, where
the JDRUMS system falls short is that type information is not used to ensure the
safety of the replacement. Consequently, it is this area that we wish to target
with our own Java replacement technique.

There are a number of hurdles which must be overcome if we are to define
a type-safe code-replacement operation in Java. These primarily concern typing
aspects of the language. The Java language is both statically and dynamically
typed. For example, method invocations and field accesses are statically typed,
while array accesses and casts are dynamically typed. This in itself is not ne-
cessarily a problem, as we have shown in the introductory chapter that dynamic
types can be safely incorporated into a statically typed language. The problem
is that the type system of Java is only informally defined in [GJS96]. This type
system is ambiguous in a number of areas, and indeed several aspects of the Java
language have been shown to violate type-safety [Sar97]. In order to define a
type-safe code-replacement operation, we require a formal type system that is
known to be type safe.

The definition of a formal type system for the complete Java language is a
somewhat daunting prospect, as the language contains many complex features
including sophisticated concurrency, security, and dynamic-linking mechanisms.
The complete type system must include aspects of both static and dynamic typ-
ing, sub-typing, and polymorphic types. Nonetheless, there have already been
a number of successful attempts to formalise subsets of the Java language, two
of which are Javalight [NvO98] and JavaS [DEK99]. We have also defined our
own formal subset of Java for use in an earlier prototype ML to Java translation
system [Wal98], the syntax of which is shown in Figure 11.5. Our subset has been
renamed DJ, an abbreviation for Dynamic Java, in this thesis. The subset covers
the majority of basic Java definitions for classes, interfaces, methods, fields, and
arrays. The meta-variables cn, in, m, v, c, and gt are used for class names, inter-
face names, method names, variables, constants, and ground-types (int, float,
boolean, etc.) respectively.

238

ty ∈ Type ::= null (null type)
| gt (ground type)
| cn (class type)
| cn[] (array type)
| in (interface)

mt ∈ MType ::= at→ ty (method type)
at ∈ AType ::= ty k (argument type)

PR ∈ Program ::= (CD, IF)

CD ∈ Class ::= class (cn1, cn2, in) = (CX, F, M)
CX ∈ Constructor ::= constructor (v i, at) = (E j, S k)
F ∈ Field ::= field (v, ty)
M ∈ Method ::= method (m, v j , mt) = (S k, E)

IF ∈ Interface ::= interface (in1, in2) = IM
IM ∈ IMethod ::= method (m, v j , mt)

S ∈ Statement ::= E (expression)
| local (v, ty) = E in S k (declaration)
| if E then S1

j else S2
k (conditional)

| throw E (throw exception)
| try S1

j catch (cn, v, S2
k) (catch exception)

E ∈ Expression ::= V (variable)
| c (literal)
| null (null object)
| this (current object)
| cn[E k] (array)
| V := E (assignment)
| apply (E1, m, E2

k) (invocation)
| instance (cn, E k) (class instance)

V ∈ Variable ::= v (local variable)
| E1[E2] (array variable)
| E . v (field)

Figure 11.5: Abstract Syntax of DJ

The abstract syntax of DJ will not look particularly familiar to the Java pro-
grammer. This is because we believe that a great deal of the complexity of the
Java language can be eliminated at compile-time, just as we did for Dynamic ML
in Chapter 4. Hence, DJ is defined in the minimalistic style of an intermedi-
ate language, similar to the MΛ language. For example, a class declaration
class (cn1, cn2, in) = (CX, F, M), defines a new class named cn1 which ex-
tends an existing class cn2 and implements the set of (possibly empty) interfaces
in. Every class contains a set of constructors CX, a set of fields F , and a set

239

of methods M . The remaining language constructs should be reasonably self-
explanatory. The DJ subset is designed to be entirely statically typed as we have
removed such features as dynamic arrays and casts. This will further reduce the
complexity of the code-replacement.

The other main issue that must be addressed is the definition of an ab-
stract machine model for evaluating Java programs. The current definition of
the JVM [LY96] is inadequate as it does not retain enough runtime typing in-
formation. It is interesting to note that alternative definitions to the JVM were
also required in [NvO98] and [DEK99] for a proof of type soundness. We have
taken the first steps toward the definition of an abstract machine for evaluating
our DJ subset. The abstract syntax is presented in Figure 11.6.

Machine State M ::= (H, ∆, XS , RS)

Heap H ::= (TH , VH)
Pointer p

Type Heap TH ::= p
map7→ ty

Heap Types ty ::= gt (ground type)
| cn (class type)
| p[] (array type)
| p k (argument type)
| p1

k → p2 (method type)
| null (null type)

Location l

Value Heap VH ::= l
map7→ obj

Heap Objects obj ::= c (constant)
| [l k] (array)
| 〈v map7→ l, m

map7→ (l, p)〉 (class object)
| 〈〈v j, S k〉〉 (method closure)
| null (null value)

Environment ∆ ::= (TE , CE , IE , VE)
This TE ::= this 7→ (l, p)
Class Env. CE ::= cn

map7→ (cn′, in, FE , ME)
Interface Env. IE ::= in

map7→ (in′, ME)
Field Env. FE ::= v

map7→ p

Method Env. ME ::= m
map7→ (l, p)

Variable Env. VE ::= v
map7→ (l, p)

Exception Stack XS ::= () | (l, p) · XS
Result Stack RS ::= () | (l, p) · RS

Figure 11.6: An Abstract Machine Model for DJ.

240

The top-level organisation of the machine is identical to the MΛ abstract
machine, but the contents of the heap and the environment have been adapted for
the Java language. In principle, this should make it easier to adapt our garbage
collection and code-replacement operations to DJ. As before, the heap types
correspond directly to types in DJ, and the heap objects belong to the heap types.
We also use p for type pointers and v for value locations. The heap types ty are
ground types gt, class instance types cn, array types p[], method types p1

k → p2,
and the null type null. The corresponding heap objects obj are constants c, class
objects 〈v map7→ l, m

map7→ (l, p)〉, array objects [l k], method closures 〈〈v j, S k〉〉,
and the null object. The environment ∆ maps the field, method, and variable
identifiers to their corresponding objects on the heap. When evaluating inside
a class body, this is mapped to the current class object. The class hierarchy is
described by the class environment CE which maps each class name cn to its
superclass cn′. The top of the hierarchy is assumed to be a special class named
Object which has itself as superclass. The interface hierarchies are defined in
a similar manner by the interface environment IE . The top of each interface
hierarchy will be an interface which extends itself, since there is no equivalent of
Object for interfaces.

There still remain a significant number of challenges to be solved before we
can provide a type-safe model of code-replacement in Java. However, we believe
that the definition of the DJ intermediate language shown here will significantly
reduce the complexity of the task. We also believe that further research into
the use of type information in Java will result in significant improvements in
the performance and security of the Java platform, as they have done for the
Standard ML language.

241

Bibliography

[ACPP91] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin.
Dynamic Typing in a Statically Typed Language. ACM Transactions
on Programming Languages and Systems, 13(2):237–268, April 1991.

[ACPR95] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Didier Rémy.
Dynamic Typing in Polymorphic Languages. Journal of Functional
Programming, 5(1):111–130, January 1995.

[ADM88] Andrew W. Appel, Bruce Duba, and David B. MacQueen. Profiling
in the Presence of Optimisation and Garbage Collection. Technical
Report CS-TR-197-88, Princeton University, Department of Com-
puter Science, Princeton, New Jersey, November 1988.

[App87] Andrew W. Appel. Garbage collection can be faster than stack al-
location. Information Processing Letters, 25(4):275–279, June 1987.

[App88] Andrew W. Appel. Re-opening Closures. Unpublished manuscript
available at http://www.cs.princeton.edu/˜appel/papers/,
January 1988.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, 1992.

[App94] Andrew W. Appel. Hot-sliding in ML. Unpublished manuscript avail-
able at http://www.cs.princeton.edu/˜appel/papers/, Decem-
ber 1994.

[AR98] Saleh E. Abdullahi and Graem A. Ringwood. Garbage Collecting
the Internet: A Survey of Distributed Garbage Collection. ACM
Computing Surveys, 30(3):330–373, September 1998.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Willi-
ams. Concurrent Programming in ERLANG. Prentice Hall, second
edition, 1996.

[BD98] Vincent Balat and Olivier Danvy. Strong Normalisation by Type-
Directed Partial Evaluation and Run-Time Code Generation. In Pro-
ceedings of the 1998 Workshop on Types in Compilation (TIC’98),
number 1473 in Lecture Notes in Computer Science, pages 240–252,
Kyoto, Japan, March 1998. Springer-Verlag.

242

[Ber91] Dave Berry. Generating Program Animators from Programming Lan-
guage Semantics. PhD thesis, LFCS, Division of Informatics, Uni-
versity of Edinburgh, June 1991. Thesis Number CST-79-91.

[BKR98] Nick Benton, Andrew Kennedy, and George Russell. Compiling
Standard ML to Java Byte-codes. In Proceedings of the 1998
ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’98), pages 129–140, Baltimore, Maryland, September
1998. ACM Press.

[Bra94] Tore A. Bratvold. Skeleton-Based Parallelisation of Functional Pro-
grams. PhD thesis, Department of Computing and Electrical Engin-
eering, Herriot-Watt University, November 1994.

[Bru97] Glenn Bruns. Distributed Systems Analysis with CCS. Prentice Hall
Europe, 1997.

[Car83] Luca Cardelli. The Functional Abstract Machine (FAM). Technical
Report TR-107, AT&T Bell Laboratories, May 1983.

[Car86] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien,
and Bernard Robinet, editors, Combinators and Functional Program-
ming Languages, number 242 in Lecture Notes in Computer Science.
Springer-Verlag, 1986.

[Car87] Luca Cardelli. Basic Polymorphic Type-checking. Science of Com-
puter Programming, 8(2):147–172, 1987.

[Car88] Luca Cardelli. Phase Distinctions in Type Theory. Unpublished
manuscript available at http://www.luca.demon.co.uk, January
1988.

[Car97] Luca Cardelli. Type Systems, chapter 140, pages 2208–2236. The
Computer Science and Engineering Handbook. CRC Press, 1997.

[CGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[CHL99] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-
conscious Structure Layout. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’99), pages 1–12, Atlanta, Georgia, May 1999. ACM Press.

[DDDG99] Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini, Ferruc-
cio Damiani, and Paola Giannini. Objects Dynamically
Changing Class. Work in progress - manuscript available
at http://www.di.unito.it/˜dezani/papers/odcc.html, August
1999.

243

[DEK99] Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khurshid. Is
the Java Type System Sound?, volume 5 of Theory and Prac-
tice of Object Systems, chapter 1, pages 3–24. John Wiley
and Son, 1999. A later revision of this paper is available at
http://www-dse.doc.ic.ac.uk/projects/slurp/pubs.html.

[DEW99] Sophia Drossopoulou, Susan Eisenbach, and David Wragg. A Frag-
ment Calculus - towards a model of Separate Compilation, Linking
and Binary Compatibility. In Proceedings of the 1999 IEEE Sym-
posium on Logic in Computer Science (LICS’99), Trento, Italy, April
1999.

[DF95] Jürgen Dingel and Thomas Filkorn. Model Checking for Infin-
ite State Systems using Data Abstraction, Assumption-commitment
style Reasoning and Theorem Proving. In Proceedings of the Seventh
International Conference on Computer Aided Verification (CAV’95),
number 939 in Lecture Notes in Computer Science, pages 54–69,
Liége, Belgium, July 1995. Springer-Verlag.

[Die96] Stephan Diehl. Semantics-Directed Generation of Compilers and Ab-
stract Machines. PhD thesis, Fachbereich Informatik, Universität des
Saarlandes, 1996.

[Dor98] Christopher Dornan. Type-Secure Meta-Programming. PhD thesis,
Department of Computer Science, University of Bristol, July 1998.

[Dug96] Dominic Duggan. A Type-Based Implementation of a Language with
Distributed Scope. In Jan Vitek and Christian Tschudin, editors,
Mobile Object Systems: Towards the Programmable Internet, number
1222 in Lecture Notes in Computer Science, pages 277–293. Springer-
Verlag, 1996.

[Els98] Martin Elsman. Polymorphic Equality - No Tags Required. In Pro-
ceedings of the 1998 Workshop on Types in Compilation (TIC’98),
number 1473 in Lecture Notes in Computer Science, pages 136–155,
Kyoto, Japan, March 1998. Springer-Verlag.

[Els99] Martin Elsman. Program Modules, Separate Compilation, and Inter-
module Optimisation. PhD thesis, Department of Computer Science,
University of Copenhagen, January 1999.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The JavaTM Language Spe-
cification. Addison-Wesley, 1996.

[Gri98] David Griswold. The Java Hotspot Virtual Machine Architecture.
SUN Microsystems White Paper, March 1998.

[Ham91] Kevin Hammond. Parallel SML: a Functional Language and its Im-
plementation in Dactl. Research Monographs in Parallel and Dis-
tributed Computing. Pitman Publishing, 1991.

244

[Hav99] Klaus Havelund. Mechanical Verification of a Garbage Collector. In
Proceedings of the 1999 International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’99), Workshop on Formal Methods for
Parallel Programming: Theory and Applications, San Juan, Puerto
Rico, April 1999.

[Hen80] P. Henderson. Functional Programming: Application and Implement-
ation. Prentice-Hall International, 1980.

[HM99] Kevin Hammond and Greg Michaelson, editors. Research Direc-
tions in Parallel Functional Programming. Springer-Verlag, Novem-
ber 1999.

[Hol97a] Gerard J. Holzmann. State Compression in SPIN: Recursive In-
dexing and Compression Training Runs. In Proceedings of the 3rd
SPIN Workshop (SPIN’97), Twente University, Enschede, The Neth-
erlands, April 1997.

[Hol97b] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions
on Software Engineering, 23(5):1–17, May 1997.

[Hol98] Gerard J. Holzmann. An Analysis of Bit-state Hashing. Formal
Methods in System Design, 13(3):289–307, November 1998.

[HS97] Robert Harper and Chris Stone. An Interpretation of Standard ML
in Type Theory. Technical Report CMU-CS-97-147, School of Com-
puter Science, Carnegie Mellon University, June 1997. Also published
as Fox Memorandum CMU-CS-FOX-97-01.

[Jac98] Paul B. Jackson. Verifying a Garbage Collection Algorithm. In
Proceedings of 11th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’98), number 1479 in Lecture Notes in
Computer Science, pages 225–244, Canberra, Australia, September
1998. Springer-Verlag.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalu-
ation and Automatic Program Generation. Prentice-Hall, September
1993.

[JH93] Mark P. Jones and Paul Hudak. Implicit and explicit paral-
lel programming in Haskell. Technical Report Research Report
YALEU/DCS/RR-982, Yale University, August 1993.

[JL96] Richard Jones and Rafael D Lins. Garbage Collection : Algorithms
for Automatic Dynamic Memory Management. John Wiley and Son,
August 1996.

[Kah87] Gilles Kahn. Natural Semantics. In Proceedings of the 4th
Annual Symposium on Theoretical Aspects of Computer Science
(STACS’87), number 247 in Lecture Notes in Computer Science,
pages 22–39, Passau, Germany, February 1987. Springer-Verlag.

245

[Kah93] Stefan Kahrs. Mistakes and Ambiguities in the Definition of Stand-
ard ML. Technical Report ECS-LFCS-93-257, LFCS, Division of
Informatics, University of Edinburgh, April 1993.

[Kı99] Dilsun Kırlı. A polymorphic type and effect system for detecting mo-
bile functions. Technical Report ECS-LFCS-99-413, LFCS, Division
of Informatics, University of Edinburgh, October 1999.

[Kis99] Thomas Kistler. Continuous Program Optimisation. PhD thesis, De-
partment of Information and Computer Science, University of Cali-
fornia, November 1999.

[KMM97] Graham Kirby, Ron Morrison, and David Munro. Evolving Persistent
Applications on Commercial Platforms. In Proceedings of the First
East-European Symposium on Advances in Databases and Informa-
tion Systems (ADBIS’97), volume 1, pages 170–179, St. Petersburg,
Russia, September 1997. Nevsky Dialect.

[Kra96] Douglas Kramer. The Java Platform, A White Paper. Sun Microsys-
tems Inc., May 1996.

[Lan64] P. J. Landin. The Mechanical Evaluation of Expressions. Computer
Journal, 6(4):308–320, 1964.

[Ler92] Xavier Leroy. Polymorphic Typing of an Algorithmic Language.
PhD thesis, Institut National de Recherche en Informatique et Auto-
matique (INRIA), 1992. Thesis No. 1778.

[Ler94] Xavier Leroy. Manifest Types, Modules, and Separate Compilation.
In Proceedings of the 21st ACM Symposium on Principles of Pro-
gramming Languages (POPL’94), pages 109–122, Portland, Oregon,
January 1994. ACM Press.

[Ler95] Xavier Leroy. The CAML Special Light System, Documentation
and User’s Guide. Institut National de Recherche en Informatique
et Automatique (INRIA), release 1.12 edition, 1995. Available at
http://www.labomath.univ-orleans.fr/docs/csl/.

[Ler98] Xavier Leroy. An Overview of Types in Compilation. In Proceedings
of the 1998 Workshop on Types in Compilation (TIC’98), number
1473 in Lecture Notes in Computer Science, pages 1–8, Kyoto, Japan,
March 1998. Springer-Verlag.

[Lil97] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order
Module Systems. PhD thesis, School of Computer Science, Carnegie
Mellon University, May 1997. Thesis No. CMU-CS-97-122.

[LL96] Peter Lee and Mark Leone. Optimising ML with run-time code gen-
eration. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’96), pages
137–148, Philadelphia, Pennsylvania, May 1996. ACM Press.

246

[LM93] Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Func-
tional Programming, 3(4):431–463, October 1993.

[LR98] Xavier Leroy and François Rouaix. Security Properties of Typed
Applets. In Proceedings of the 25th ACM Symposium on Principles
of Programming Languages (POPL’98), pages 391–403, San Diego,
California, January 1998. ACM Press.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine. Addison-
Wesley, September 1996.

[Mat91] David C.J. Matthews. A Distributed Concurrent Implementation
of Standard ML. In Proceedings of EurOpen Autumn 1991 Confer-
ence, Budapest, Hungary, September 1991. Also published as LFCS
Technical Report ECS-LFCS-91-17.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich, and
Steve Zdancewic. TALx86: A Realistic Typed Assembly Language.
In Proceedings of the ACM SIGPLAN’99 Workshop on Compiler
Support for System Software (WCSSS’99), pages 25–35, Atlanta,
Georgia, May 1999. ACM Press.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[McM99] Kenneth L. McMillan. Verification of Infin-
ite State Systems by Compositional Model Check-
ing. Technical report, Cadence Berkeley Labs, 1999.
http://www-cad.eecs.berkeley.edu/˜kenmcmil/papers/.

[MH96] Greg Morrisett and Robert Harper. Semantics of Memory Man-
agement for Polymorphic Languages. Technical Report CMU-CS-
96-176, School of Computer Science, Carnegie Mellon University,
September 1996. Also published as Fox Memorandum CMU-CS-
FOX-96-04.

[Mil78] Robin Milner. A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences, 17:348–375, April 1978.

[Mit94] Kevin Mitchell. Concurrency in a Natural Semantics. Technical
Report ECS-LFCS-94-311, LFCS, Division of Informatics, University
of Edinburgh, December 1994.

[MLP99] Andrew Moran, Sren B. Lassen, and Simon Peyton Jones. Impre-
cise Exceptions, Co-Inductively. In Andrew Gordon and Andrew
Pitts, editors, Proceedings of the Third International Workshop on
Higher Order Operational Techniques in Semantics (HOOTS’99),
volume 26 of Electronic Notes in Theoretical Computer Science,
Paris, France, October 1999. Elsevier Science. Available at
http://www.elseview.nl/locate/entcs/.

247

[MMH96] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed
Closure Conversion. In Proceedings of the 23rd ACM Symposium on
Principles of Programming Languages (POPL’96), pages 271–283,
St. Petersburg Beach, Florida, January 1996. ACM Press.

[Mor00] Álvaro Moreira. A Type-Based Locality Analysis for a Functional
Distributed Language. PhD thesis, LFCS, Division of Informatics,
University of Edinburgh, April 2000. Thesis Number CST-156-00.

[MS95a] David C.J. Matthews and Thierry Le Sergent. LEMMA: A Dis-
tributed Shared Memory with Global and Local Garbage Collection.
Technical Report ECS-LFCS-95-325, LFCS, Division of Informatics,
University of Edinburgh, June 1995.

[MS95b] David C.J. Matthews and Thierry Le Sergent. LEMMA Interface
Definition. Technical Report ECS-LFCS-95-316, LFCS, Division of
Informatics, University of Edinburgh, January 1995.

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. The
MIT Press, 1991.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML: Revised 1997. The MIT Press, 1997.

[NL91] Bill Nitzberg and Virginia Lo. Distributed Shared Memory: A Sur-
vey of Issues and Algorithms. IEEE Computer, pages 52–60, August
1991.

[NvO98] Tobias Nipkow and David von Oheimb. Javalight is Type-Safe - Def-
initely. In Proceedings of the 25th ACM Symposium on Principles
of Programming Languages (POPL’98), pages 161–170, San Diego,
California, January 1998. ACM Press.

[Obj98] Object Management Group. The Common Object Request Broker:
Architecture and Specification, 2.2 edition, February 1998. Available
at http://www.omg.org/.

[PDM89] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming
in Higher-Order Typed Lambda-Calculus. Technical Report CMU-
CS-89-111, School of Computer Science, Carnegie Mellon University,
March 1989.

[Pet99] Mikael Pettersson. Compiling Natural Semantics. Number 1549 in
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice Hall, 1987.

[Pey92] Simon L. Peyton Jones. Implementing Lazy Functional Languages
on Stock Hardware: The Spineless Tagless G-Machine. Journal of
Functional Programming, 2(2):127–202, April 1992.

248

[RA00] Tobias Ritzau and Jesper Andersson. Dynamic Deployment of Java
Applications. In Proceedings of the 2000 Embedded Systems Show
(ESS2000), London, England, May 2000.

[Red97] Frank E. Redmond, editor. DCOM: Microsoft Distributed Compon-
ent Object Model. IDG Books Worldwide Inc., September 1997.

[Rey74] John C. Reynolds. Towards a Theory of Type Structure. In Col-
loq. sur la Programmation, volume 19 of Lecture Notes in Computer
Science, pages 408–423. Springer-Verlag, 1974.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

[RSS95] Sreeranga P. Rajan, Natarajan Shankar, and Mandayam K. Srivas.
An Integration of Model Checking with Automated Proof Checking.
In Proceedings of the Seventh International Conference on Computer-
Aided Verification (CAV ’95), number 939 in Lecture Notes in Com-
puter Science, pages 84–97, Liège, Belgium, July 1995. Springer-
Verlag.

[Rus98] Claudio V. Russo. Types for Modules. PhD thesis, LFCS, Division
of Informatics, University of Edinburgh, June 1998. Thesis Number
CST-143-98.

[RW93] C. Runciman and D. Wakeling. Heap Profiling of Lazy Functional
Programs. Journal of Functional Programming, 3(2):217–245, April
1993.

[Sar97] Vijay Saraswat. Java is not type-safe. Unpublished report avail-
able at http://www.loria.fr/˜lliquori/JAVA/bug.html, August
1997.

[Ses96] Peter Sestoft. ML Pattern Match Compilation and Partial Evalu-
ation. In Seminar on Partial Evaluation, volume 1110 of Lecture
Notes in Computer Science, pages 446–464. Springer-Verlag, 1996.

[SF93] Mark E. Segal and Ophir Frieder. On-the-Fly Program Modifica-
tion: Systems for a Dynamic Updating. IEEE Software, 10(2):53–65,
March 1993.

[Sha97] Zhong Shao. An Overview of the FLINT/ML Compiler. In Pro-
ceedings of the 1997 Workshop on Types in Compilation (TIC’97),
Amsterdam, The Netherlands, June 1997.

[SKA94] John Sargeant, Chris Kirkham, and Steve Anderson. The Uflow
Computational Model and Intermediate Format. Technical Report
UMCS Technical Report 94-5-1, Department of Computer Science,
University of Manchester, 1994.

249

[SM94] Thierry Le Sergent and David C J Matthews. Adaptive selection of
protocols for strict coherency in distributed shared memory. Tech-
nical Report ECS-LFCS-94-306, LFCS, Division of Informatics, Uni-
versity of Edinburgh, September 1994.

[SP97] Patrick M. Sansom and Simon L. Peyton Jones. Formally-based
profiling for higher-order functional languages. ACM Transactions
on Programming Languages and Systems, 19(1):334–385, January
1997.

[SSP98] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic Typ-
ing as Staged Type Inference. In Proceeding of the 25th ACM Sym-
posium on Principles of Programming Languages (POPL’98), pages
49–61, San Diego, California, January 1998. ACM Press.

[TBE+98] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy
Olesen, Peter Sestoft, and Peter Bertelsen. Programming with Re-
gions in the ML Kit (for Version 3). Technical Report DIKU-TR-
98/25, Department of Computer Science, University of Copenhagen,
December 1998.

[TMC+96] David Tarditi, J. Gregory Morrisett, P. Cheng, C. Stone, Robert
Harper, and Peter Lee. TIL: A Type-Directed Optimising Compiler
for ML. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’96), pages
181–192, Philadephia, Pennsylvania, May 1996.

[Tof88] Mads Tofte. Operational Semantics and Polymorphic Type Inference.
PhD thesis, LFCS, Division of Informatics, University of Edinburgh,
May 1988. Thesis Number CST-52-88.

[Tol94] Andrew Tolmach. Tag-free Garbage Collection using Explicit Type
Parameters. In Proceedings of the 1994 ACM Conference on LISP
and Functional Programming, pages 1–11, Orlando, Florida, June
1994. ACM.

[TS97] Walid Taha and Tim Sheard. Multi-stage Programming with Explicit
Annotations. In Partial Evaluation and Semantics-Based Program
Manipulation, pages 203–217, Amsterdam, The Netherlands, June
1997.

[TT97] Mads Tofte and Jean-Pierre Talpin. Region-Based Memory Manage-
ment. Information and Computation, 132(2):109–176, 1997.

[Var01] Moshe Y. Vardi. Branching vs. Linear Time: Final Showdown. In
Tiziana Margaria and Wang Yi, editors, Proceedings of the 2001 Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2001), number 2031 in Lecture Notes in Computer
Science, pages 1–22, Genova, Italy, April 2001. Springer-Verlag.

250

[Wal98] Chris Walton. A Type-directed Translation from Stand-
ard ML into Java. Work in progress - manuscript available at
http://www.dcs.ed.ac.uk/home/cdw/papers/, November 1998.

[Wal99] Chris Walton. Abstract Machines for Memory Management. Tech-
nical Report ECS-LFCS-99-410, LFCS, Division of Informatics, Uni-
versity of Edinburgh, June 1999.

[Wal00] Chris Walton. An Abstract Machine for Memory Management,
chapter 10, pages 88–96. Trends in Functional Programming. In-
tellect, November 2000.

[WF94] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach
to Type Soundness. Information and Computation, 115(1):38–94,
November 1994.

[Wil92] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In
Yves Bekkers and Jacques Cohen, editors, Proceedings of the Inter-
national Workshop on Memory Management, number 637 in Lecture
Notes in Computer Science, pages 1–42, St. Malo, France, September
1992. Springer-Verlag.

[WKG98] Chris Walton, Dilsun Kırlı, and Stephen Gilmore. An Abstract Ma-
chine for Module Replacement. In Stephan Diehl and Peter Sestoft,
editors, Proceedings of the Workshop on Principles of Abstract Ma-
chines, pages 73–87, Pisa, Italy, September 1998. Also published as
Technical Report A02/98 Universität des Saarlandes.

[WKG00] Chris Walton, Dilsun Kırlı, and Stephen Gilmore. An Abstract Ma-
chine Model of Dynamic Module Replacement. Future Generation
Computer Systems, 16(7):793–808, May 2000.

[WM97] Chris Walton and Bruce McAdam. The C-LEMMA Memory Inter-
face on the Cray T3D. Technical Report ECS-LFCS-97-362, LFCS,
Division of Informatics, University of Edinburgh, July 1997.

251

