

Detecting Local Channels in Distributed
Poly/ML

Paul Steckler∗

Keywords: static analysis, escape analysis, concurrency, communication,
locality, ML

Abstract

Distributed Poly/ML is a variation on Standard ML that includes prim-
itives for creating threads and for inter-thread communication. Threads
may be spawned on remote machines. Values are sent from one thread to
another over dynamically-created channels. A channel is considered local iff
all its uses take place on the processor on which it was created. We present a
constraint-based static analysis that detects local channels. Using a tree re-
placement technique, we show that constraint solutions may be maintained
as invariants at each transition step in a concurrent operational semantics.
Relying on such invariants, we prove the soundness of the analysis with
respect to the operational semantics.

1 Introduction

Distributed Poly/ML (DP/ML) is an implementation of a variation on Stand-
ard ML [8] that provides primitives for creating threads and for communications
between threads. An overview of the implementation is described in [5]. A child
thread may run on the same processor as its parent thread, or on a different
processor. Values are sent between threads over dynamically-created channels.
Channels are themselves values and so may be passed from one thread to another.
Channels may also be contained within data structures passed between threads.
Therefore, a channel may be used in a thread running on a processor different
than the one where it was created.

If it can be determined statically that a channel will be used only for communic-
ations on the processor on which it was created, the compiler run-time system may
∗LFCS, Department of Computer Science, The King’s Buildings, University of Edinburgh,

Edinburgh EH9 3JZ, Scotland, steck@dcs.ed.ac.uk.

1

be able to make useful assumptions about the channel’s memory usage. DP/ML’s
run-time system includes a shared distributed memory manager that is respons-
ible for maintaining coherence among the possibly several memory spaces used by
a program [6]. Creating a channel allocates a memory block on a machine. If it
can be determined that a channel will only be used for communications on the
same processor on which the channel was created, the run-time system can treat
the channel’s memory as purely local. Another possibly beneficial consequence of
locality is that all communications on a local channel are between thread pairs on
a single processor. Such communications do not involve a network, so the run-time
sytem may be able to use a superior protocol.

One goal of this work was to see if constraint-based static analysis methods
could be adapted to the concurrent setting. In [19], [16], and [15], for instance, we
used constraint-based analyses to support provably-correct code transformations
for closure conversion and thunk creation. In those analyses, our proofs were of
partial correctness: if untransformed programs terminated, then so did their trans-
forms, with comparable results. Also, the reduction behavior of the languages used
in thoses analyses was specified by big-step, “natural”-style operational semantics.
By contrast, for DP/ML, we are interested in non-terminating computations: Ima-
gine a thread that acts as a server for other, client threads. A big-step operational
semantics is too inaccurate a specification of concurrency. Therefore, we specify
the behavior of programs using an interleaving small-step operational semantics.
As much as the analysis itself, we regard our proof method to show the soundness
of the analysis as the contribution here. The proof method essentially consists of
showing that once we have a solution to the specified constraints, we can easily
produce solutions at each transition step.

2 Detecting locality

A channel is local iff it is used only on the processor on which it is created. Like
many static analysis problems, it is undecidable whether a given channel is local.
So our approach is to determine which channels may be non-local; the remaining
channels are certain to be local. In this section, we consider the situations which
require us to consider channels non-local. These considerations will be reflected
in the constraints.

Channels are created using the channel() primitive. A thread sends a value to
another thread using the send() primitive, which takes two arguments, a channel
and a value. A receiving thread uses the receive() primitive, which takes a
channel argument. Threads are created using either the fork() primitive, which
runs the child thread on the same processor as its parent, or the rfork() primitive,
which runs the child thread on a specified processor. Both fork() and rfork()
take a function argument, whose body becomes the child thread. rfork() takes

2

an additional processor argument that specifies where the child thread is to run.

Our analysis answers two questions about channels:

1. can channels escape from the processors where they are created?

2. for channels that may escape, can they reach a send() or receive() after
escaping?

The analysis considers a channel as non-local if it may escape from the processor
where it is created and subsequently reach a send() or receive().

In the language we consider, there are three ways in which a channel may
escape from one processor to another. One way is if the channel is a subterm of
an rfork()’d function:

let x = channel()
in rfork(ρ, fn y. ... x ...)

where the let is sugared function application. Since the rfork()’d function may
run on a different processor than its parent, we conclude that the channel x may
escape.

A channel is a value that may be sent over channels. Therefore, another way in
which a channel may escape is if the channel itself is sent between threads running
on different processors. Suppose on processor ρ, we have just:

send(k′,k)

and on processor ρ′ we again have

receive(k′)

where k and k′ are channel constants. Since k may be sent over k′, we conclude
that k may escape from one processor to another.

A third way in which a channel may escape is if it is a proper subterm of a
value sent between threads running on different processors. Suppose on processor
ρ, we have the thread:

send(k′,fnx. ...k ...)

and on processor ρ′, we have:

receive(k′)

3

where again k and k′ are channel constants. Since k is contained in a function
that may be transmitted over the channel k′, k may escape.

These examples show how our analysis deals with question (1) above. Why do
we require the additional information asked by question (2)? Simply determining
whether a channel may escape from one processor to another would not capture the
locality of a channel that escapes from the processor where it is created, but does
not reach any communications primitive after escaping. Also, since our escape
analysis is necessarily approximate, we may judge that a channel may escape,
when in fact it does not. Adding the reaching information may give better results
than an escape analysis alone. It may be possible to increase accuracy further by
other techniques, such as folding of conditionals with known test results.

Since channels are created dynamically, our actual interest is not in which
channels are local, but which occurrences of the channel() primitive produce
only local channels. With that information, we can change such occurrences of
channel() to occurrences of a different primitive local-channel() in DP/ML
intermediate code.

3 The Language

Taking a similar tack to [4] for a partial evaluator, our analysis is performed on
the untyped intermediate language of the DP/ML compiler. A simplified and
idealized version of terms in that language is given by the grammar:

M ::= x | true | false | c | ρ | k | unit | fn` x.M | MM |
if M then M else M | channel`() | fork(M) | rfork(M,M) |
send(M,M) | receive(M)

where

• c ranges over an infinite set of constants,

• ρ ranges over a finite set of processors,

• k ranges over an infinite set of channels, and

• unit is a constant corresponding to the ML type of the same name.

Let ΛDP/ML be the set of terms described by this grammar.

We will refer to terms of the form fn` x.M as functions. Each function occur-
rence and each occurrence of channel() has an associated label drawn from some
alphabet, which we need not specify. We use `, `′, and so on as metavariables
which range over the set of labels. Initially, each label in a ΛDP/ML term should
be distinct. Transitions in the operational semantics produce new ΛDP/ML terms
whose labels need not be distinct.

4

4 Operational Semantics

In describing the operational semantics for ΛDP/ML, we use the following definitions:

Definitions 1

1. A thread is a ΛDP/ML term.

2. Let TI be an infinite set of thread identifiers. We use p and q as typical
elements of TI .

3. A thread map Π is a finite map from thread identifiers to pairs of processors
and threads.

For a thread map Π, we may write procΠ(p) for the processor associated with the
thread identifier p in Π. Likewise, we may write threadΠ(p) for the ΛDP/ML term
associated with p in Π. If a thread map is indicated by the context, we may drop
the subscripts and write just proc(p) and thread(p).

Our semantics is divided into a two-level execution hierarchy. We give trans-
ition relations for each level. The first level describes sequential evaluation; the
corresponding one-step transition relation is −→

seq
. The second level describes

transitions within a thread map; the one-step transition relation for this level is
−→
con

.

Following [14] and [10], sequential evaluation consists of reduction within a
context. Our evaluation contexts are given by the grammar:

C ::= | C M | M C |
if C then M else M | fork(C) |
rfork(C,M) | rfork(M,C) |
send(C,M) | send(M,C) | receive(C)

where M ranges over ΛDP/ML terms. We write C[M] to indicate that the hole in
the context C is filled by M . Note that a context hole cannot occur in the body
of a function. Our evaluation contexts do not require a definite evaluation order.
Of course, DP/ML uses a specific evaluation order, but that is not significant for
our analysis.

In the sequential semantics in Figure 1, the metavariable M ranges over ar-
bitrary ΛDP/ML terms. The metavariable V is used to indicate values, which are
functions and all constants.

In Figure 2, we give the rules for thread map evaluation. Within each rule, K
is a set of channels.

Let −→+
con

be the transitive closure, and let −→∗
con

be the reflexive and trans-
itive closure of −→

con
. Also, Π −→n

con
Π′′ iff Π −→∗

con
Π′ in n steps.

5

β:

C[(fn` x.M) V] −→
seq

C[M [V/x]]

cond-true:

C[if true then M else N] −→
seq

C[M]

cond-false:

C[if false then M else N] −→
seq

C[N]

Figure 1: Sequential evaluation within contexts

seq:
C[M] −→

seq
C[M ′]

K,Π[p : ρ, C[M]] −→
con

K,Π[p : ρ, C[M ′]]

channel:
k 6∈ K

K,Π[p : ρ, C[channel`()]] −→
con

K ∪ {k},Π[p : ρ, C[k]]

fork:
q 6∈ Dom(Π) ∪ {p}

K,Π[p : ρ, C[fork(fn` x.M)]] −→
con

K,Π[p : ρ, C[unit]][q : ρ,M [unit/x]]

rfork:
q 6∈ Dom(Π) ∪ {p}

K,Π[p : ρ, C[rfork(ρ′,fn` x.M)]] −→
con

K,Π[p : ρ, C[unit]][q : ρ′,M [unit/x]]

comm:
k ∈ K

K,Π[p : ρ, C[send(k,V)]][q : ρ′, C ′[receive(k)]] −→
con

K,Π[p : ρ, C[unit]][q : ρ′, C ′[V]]

Figure 2: Thread map evaluation

6

5 Occurrences indices; labels

Each source program occurrence has an associated string called an occurrence
index. Occurrence indices are finite strings over the alphabet:{

bv, body, rator, rand, test, then, else,
ffun, rfpor, rffun, schan, sbody, rchan

}

For an occurrence of a subterm within a term M , an occurrence index describes
the path from the root of the parse tree for M , to the occurrence of the subterm.
We may wish to refer to the occurrence indices of distinct terms in a thread map.
To distinguish indices from distinct threads, we may qualify the indices by thread
identifiers. For instance, we may write p : i for the occurrence i from the term
with thread identifier p.

We may think of an occurrence index as a pointer into a parse tree. A derefer-
encing operator [[−]] may be applied to recover the underlying term: if M is a term
with occurrence index i, then [[i]] = M .

For an occurrence of a function or channel() with index i, we write lab(i) to
indicate the label associated with the occurrence.

The grammar of ΛDP/ML terms specifies several kinds of expressions. We may
use predicates such as Var , Fun, Fork , and so on to test which production in the
grammar produced an occurrence of a term. The predicate Const is true given
an argument that is an ordinary constant, boolean constant, processor constant,
channel constant, or the unit constant.

Note that [[−]], lab(−), and the predicates just mentioned implicitly depend
on particular thread maps. It should be clear from context which thread map is
meant when we use these constructs.

6 Propositions

Here we describe the annotations that are associated with program occurrences:

• A flow φ is a finite set of function labels. For a given occurrence, its flow is
a conservative estimate of the labels of functions to which that occurrence
might evaluate. Our flow annotations give us what is usually referred to as
a closure analysis.

• A channel set κ is a finite set of channel() labels. For an occurrence i, its
channel set is a conservative estimate of the labels of channel() occurrences
that produce the channels to which i may evaluate.

7

• An escape flag θ is an element of the set {escape−, escape±}, with the
ordering escape− ≤ escape±. escape± suggests that an occurrence may
escape from one processor to another, while escape− indicates that an oc-
currence certainly does not go from one processor to another.

• A reachability flag, σ, is an element of the set {reach−, reach±}, with the
ordering reach− ≤ reach±. reach± suggests that a value may reach the
channel-part of a send() or receive() primitive, while reach− suggests
that a value does not reach such a channel-part.

• A linearity flag ν is an element of the set {1,∞}, ordered 1 ≤ ∞. A linearity
flag of ∞ suggests that an occurrence may be duplicated by a function
application; 1 indicates that an occurrence is not duplicated.

• A locality flag ω is an element of the set {local+, local±}, with the or-
dering local+ ≤ local±. local+, when associated with an occurrence of
channel(), suggests that it produces only local channels. local± suggests
that the primitive may produce non-local channels.

These descriptions are meant to guide the reader’s intuition. An exact semantics
of the annotations will be given later, in section 11.

In a source program, each occurrence i will be annotated with a pair (
→
P i,

←
P i),

which we may indicate as Pi. We call such a pair a proposition.

The
→
P i component of a proposition is a forwards proposition, and consists of

a pair (φi, κi). The set of forwards propositions is partially-ordered. Say that
(φ, κ) ≤ (φ′, κ′) iff φ ⊆ φ′ and κ ⊆ κ′. We define a join operation on forwards
propositions: Let (φ, κ) t (φ′, κ′) = (φ ∪ φ′, κ ∪ κ′).

The
←
Pi component of a proposition is a backwards proposition, and consists of a

4-tuple (θi, σi, νi, ωi). The set of backwards propositions is partially-ordered. Say
that (θ, σ, ν, ω) ≤ (θ′, σ′, ν′, ω′) iff θ ≤ θ′, σ ≤ σ′, ν ≤ ν′, and ω ≤ ω′. We can also
define a join operation on backwards propositions. Let (θ, σ, ν, ω)t(θ′, σ′, ν′, ω′) =
(max(θ, θ′),max(σ, σ′),max(ν, ν′),max(ω, ω′)).

By referring to the partial orders on forwards and backwards propositions, we
can partially order the set of propositions. Let P = (

→
P ,

←
P) and P ′ = (

→
P ′,

←
P ′). Say

that P ≤ P ′ iff
→
P ≤

→
P ′ and

←
P ≤

←
P ′. This partial order allows us to identify a

least element in the set of propositions.

We also want another order relation on propositions. Again let P = (
→
P ,

←
P)

and P ′ = (
→
P ′,

←
P ′). Say that P

→
≤ P ′ iff

→
P ≤

→
P ′ and

←
P ′ ≤

←
P. Intuitively, this

relation reflects the notion that the forwards propositions, which consist of φ’s and
κ’s, track the forward flow of function and channel labels, while the backwards
propositions, consisting of θ, σ, ν, and ω annotations, track information which

8

gets propagated from program points back to occurrences which may reach those
points.

7 Annotation maps

An annotation map Γ associates occurrence indices with propositions. Such a map
associates each node i in the parse tree of a thread with a proposition Pi. The
domain of an annotation map is prefix-closed, since each occurrence in a parse tree
has an annotation. Hence, we may consider an annotation map itself as a tree.

When needed, we may write PΓ
i for Γ(i) to indicate that it is a particular

annotation map Γ that associates the occurrence i with the proposition Pi. We
may also write Pp:i for the proposition for the occurrence i in the thread with
thread identifier p. Similarly, we may write φp:i for the flow component of Pp:i,
and so on for the other components of propositions.

For an occurrence index i, the tree Γ/i is the subtree of Γ rooted at i with
domain {j | i.j ∈ Dom(Γ)}, so that for all j in the domain of the subtree,
(Γ/i)(j) = Γ(i.j).

7.1 Local consistency

In Figure 3, we give constraints on the annotations in annotation maps. These
constraints are presented as local conditions for each occurrence in a ΛDP/ML term.
We refer to certain constraints on the annotations of functions as “escape con-
straints”; those are presented in Figure 4.

Let us define some terminology used in the constraints. We say that an an-
notation map for a term M is remote-expectant at an occurrence j in M iff

∀k,m such that Send (k) ∧ Receive(m),
κk.schan ∩ κm.rchan 6= ∅, and
exactly one of k and m is a subterm of j,{

θk.sbody = escape±,
σm = reach± ⇒ ωm = local±

where the quantifier ranges over occurrences in M . We require remote-expectancy
for functions that may be rfork()’d or may otherwise escape from one processor
to another. The idea is that the value sent from a send() to a receive(), where
one of the communications partners is a subterm of a possibly escaping function,
may be sent from one processor to another. Therefore, we tag the body of the
send() with a θ-annotation of escape±, which gets propagated back to any value
that may be sent by that send(). Since a sent value may be a channel, in case

9

the sent value may reach a send() or receive(), we tag the receive() partner
as non-local, which gets propagated back to such a sent channel.

Similarly, an annotation map for a term M is nonlinear-expectant at an occur-
rence j in M iff

νj =∞⇒

∀k,m such that Send (k) ∧ Receive(m),
κk.schan ∩ κm.rchan 6= ∅, and
both k and m are subterms of j,{

θk.sbody = escape±,
σm = reach± ⇒ ωm = local±

where the quantifier ranges over occurrences in M . We also require nonlinear-
expectancy of functions that may be rfork()’d or may otherwise escape. If we
have possibly-communicating send() and receive() subterms of a function that
may escape, and that function may be duplicated, values may sent between duplic-
ates running on different processors. Therefore, we tag the send() and receive()
in anticipation of that possibility.

The constraints may be solved by iteration. We may start off by annotat-
ing each occurrence with a proposition that is ≤-minimal. Suppose we have a
constraint P

→
≤ P ′ that is not satisfied. Since our analysis mixes forwards and

backwards components, we may need to adjust both P and P ′ by propagating for-
wards information from P to P ′ and backwards information from P ′ to P . More
specifically, suppose P = (

→
P ,

←
P), P ′ = (

→
P
′
,
←
P
′
). If P 6

→
≤ P ′, then we may enforce

the constraint by setting P = (
→
P ,

←
Pt

←
P
′
) and setting P ′ = (

→
Pt

→
P
′
,
←
P
′
). Propagat-

ing information in this way moves both P and P ′ up the ≤ order, not the
→
≤ order.

Termination is assured because the height of any chain is finite.

An annotation map gives the annotations of a particular term. An annotation
map is locally consistent for a term M iff the constraints in Figure 3 are satisfied
at all the occurrence indices of M . The universal quantified indices specified in
the constraints range over the indices in M . Explicitly, an annotation map may
have extra elements in its domain that are not indices in a given term; those extra
elements are irrelevant when considering the local consistency of the annotation
map for that term.

Since channels in DP/ML programs are created dynamically, they do not occur
in source programs. Therefore, the DP/ML compiler does not have to solve the
constraint on annotations of channel subterms of functions given in Figure 3.

A useful result about local consistency is:

Lemma 1 Let Γ be a locally consistent annotation for a term M . Then for any
i that is the index of a subterm of M , Γ/i is locally consistent for the subterm
rooted at i.

10

Var(i)⇒ if j is the binding occurrence for i, then Pj
→
≤ Pi

Channel(i)⇒ lab(i) ∈ κi

Fun(i)⇒ lab(i) ∈ φi,
no. of free occurrences of [[i.bv]] in [[i.body]] > 1⇒ νi.bv =∞,
θi = escape± ⇒

escape constraints hold at i
νi =∞⇒

for all free variable and function occurrences i.q, νi.q =∞

App(i)⇒ ∀j such that lab(j) ∈ φi.rator,Pi.rand
→
≤ Pj.bv,

Pj.body
→
≤ Pi

Cond(i)⇒ Pi.then,Pi.else
→
≤ Pi

RFork(i)⇒ ∀j such that lab(j) ∈ φi.rffun,
escape constraints hold at j

Send (i)⇒ σi.schan = reach±

Receive(i)⇒ σi.rchan = reach±,
∀j such that Send (j) ∧ κj.schan ∩ κi.rchan 6= ∅,
Pj.sbody

→
≤ Pi

Figure 3: Local consistency constraints

∀j such that i.j is a free variable occurrence in i,
θi.j = escape±

σi.j = reach± ⇒ ωi.j = local±

∀m such that ChanConst(i.m),
σi.m = reach± ⇒ ωi.m = local±

Γ is remote-expectant at i,
Γ is nonlinear-expectant at i

Figure 4: Escape constraints for a function i

11

Proof. By the local consistency of Γ/i at each node of the subtree.

The preceding lemma is slightly less obvious than it sounds. The essential
observation is that there are possibly fewer constraints on the annotations for the
subterm of M than for M itself. For instance, suppose that in the subtree rooted
at i contains an application with index j. By the local consistency conditions, we
have constraints involving all k such that lab(k) ∈ φj.rator. The same application
appears in M , with index, say, m. The comparable constraint involves all k′ such
that lab(k′) ∈ φm.rator. Note that the sets of k’s and k′’s are not necessarily the
same, because the term and its subterm may be different. But any function occur-
rence with a given label in the subterm is also in M . Therefore, if the constraints
at m were satisfied in Γ for M , the constraints at j are also satisfied in Γ/i for the
subterm. Similar considerations arise when considering the other constraints in-
volving a universal quantifier, such as those for rfork()’s and receive()’s. Also,
taking a subtree may take a variable out of the lexical scope of its binder. That
has the effect of removing the constraint on the variable’s annotation.

Similarly:

Lemma 2 Let Γ be a locally consistent annotation map for a term M . Suppose
we substitute a constant, other than a channel constant (an ordinary constant,
boolean constant, processor constant, or the unit constant) for a subterm N of M .
Then Γ is locally consistent for the substituted term.

Proof. By considering the constraints for each occurrence in the substituted term.

Observe that there are no constraints on the kinds of constants we have in-
dicated, so that a substitution does not introduce any new constraints. Any
constraints that applied to occurrences in the replaced subterm no longer apply
in the substituted term.

Corollary Suppose Γ is a locally consistent annotation map for a term M with
zero or more free occurrences of a variable x. Let c be any constant other than a
channel constant. Then Γ is locally consistent for M [c/x].

We can handle channel constants, too, by making a slight restriction:

Lemma 3 Let Γ be a locally consistent annotation map for a term M . Suppose
we substitute a channel constant for a subterm N of M , where N is not a subterm
of any function body. Then Γ is locally consistent for the substituted term.

Proof. By considering the constraints for each occurrence in the substituted term.

Observe that the only possible constraints on constants are for channel con-
stants in function bodies, so that a substitution as we have indicated does not
introduce any new constraints.

12

A thread map associates thread identifiers with threads, that is, with ΛDP/ML

terms. Therefore, for a given thread map, we have a family of annotation maps
indexed by the domain of the thread map. We write Γp to indicate the annotation
map for the thread associated with thread identifier p. We say that such a family
of annotation maps is locally consistent for a thread map Π iff for each thread
identifier p in the domain of Π, the annotation map Γp is locally consistent for
threadΠ(p).

7.2 Communicative consistency

Local consistency imposes constraints on the annotations of a particular term.
Since data may be sent between threads, we use the additional notion of com-
municative consistency to account for those data flows. The communicative con-
sistency constraints for annotations of occurrences in thread maps are given in
Figure 5.

Most of the communicative consistency constraints are essentially the same as
local consistency constraints, except that they hold between occurrences from dif-
ferent threads. As an example, we need the “communicative analogue” of remote-
expectancy. Say that a family of annotation maps G is distributed remote-expectant
at an occurrence p : j iff

∀k,m such that Send (k) ∧ Receive(m),
κk.schan ∩ κm.rchan 6= ∅ and
exactly one of k and m is a subterm of p : j,{

θk.sbody = escape±,
σm = reach± ⇒ ωm = local±

This definition is essentially the same as that for remote-expectancy. The differ-
ence is that while remote-expectancy constrains the annotations on send()’s and
receive()’s in a particular thread, distributed remote-expectancy constrains the
annotations on send()’s and receive()’s in possibly different threads.

Observe:

Lemma 4 Any family of annotation maps that is locally consistent for the empty
thread map, or for a thread map with exactly one element in its domain, is com-
municative consistent for that thread map.

Proof. True trivially.

The significance of Lemma 4 is that the DP/ML compiler, which optimizes
code for just an initial thread, only has to solve the local consistency constraints.

13

Fun(p : i)⇒
θp:i = escape± ⇒
G is distributed remote-expectant at p : i

App(p : i)⇒
∀q 6= p,
∀j such that lab(q : j) ∈ φp:i.rator,Pp:i.rand

→
≤ Pq:j.bv,

Pq:j.body
→
≤ Pp:i

RFork(p : i)⇒
∀q, j such that lab(q : j) ∈ φp:i.rffun,
G is distributed remote-expectant at q : j,
∀q 6= p,
∀k such that lab(q : k) ∈ φp:i.rffun,

escape constraints hold at q : k

Receive(p : i)⇒
∀q 6= p,
∀j such that Send (q : j) ∧ κp:i.rchan ∩ κq:j.schan 6= ∅,
Pq:j.sbody

→
≤ Pp:i, and

proc(p) 6= proc(q)⇒{
θq:j.sbody = escape±,
σp:i = reach± ⇒ ωp:i = local±

Figure 5: Communicative consistency constraints

8 A coherence condition

The κ component of a proposition is a set of labels of channel() occurrences,
and intended to indicate which occurrences of channel() may have produced a
channel constant. Since channels are fresh when created, we would expect that if
we saw two occurrences of the same channel constant in a program, at least one
channel() label would be common to the κ annotations for those occurrences.

To enforce this property, we impose an additional condition on families of
annotation maps:

Definition 1 A family of annotation maps for a thread map is κ-coherent iff for
all pairs of distinct occurrences p : i, q : j of channel constants, where p may be
the same as q, such that [[p : i]] = [[q : j]], κp:i ∩ κq:j 6= ∅.

14

In an actual DP/ML program, there are no channel constants when the pro-
gram is started, so the family of annotation maps for the thread map containing
just an initial thread is necessarily κ-coherent.

A send() and receive() can only communicate if they share a channel. There-
fore, we expect that the channel-parts of a send() and receive()which may com-
municate will have κ-annotations whose intersection is non-empty. This related
notion is captured by:

Definition 2 An occurrence i of send() and an occurrence j of receive() are
possible communications partners iff κi.schan ∩ κj.rchan 6= ∅.

9 Transitions and annotation map updates

Given a family of annotation maps for the thread map on the left-hand side of a
−→
con

-transition, we would like to produce another family of annotation maps for
the thread map on the right-hand side that preserves the consistency and coherence
conditions we have stated. Such preservation may be likened to familiar subject
reduction properties for typed languages.

9.1 Tree replacement and merger

How may annotation maps be updated? We first present the usual notion of tree
replacement.

For two annotation maps Γ, Γ′, and an index i, Γ[i ← Γ′] indicates the tree
obtained by replacing the subtree of Γ rooted at i with Γ′. The updated tree is a
function defined by:

Γ[i← Γ′](j) =

Γ′(k) if j = i.k

Γ(j) otherwise

Note that Γ′ may itself be a subtree of Γ.

For updating annotation maps, we will also want to perform a variation of tree
replacement in which the updated tree retains its annotation at the replacement
node. In this variation, the updated tree is a function defined by:

Γ[i←↩ Γ′](j) =

Γ′(k) if j = i.k, k 6= ε

Γ(j) otherwise

We call this operation tree merger. We can simultaneously merge several subtrees
Γ/i1, . . . ,Γ/in of Γ with a single subtree Γ′. The updated tree has the expected

15

definition:

Γ[i1, . . . , in ←↩ Γ′](j) =

Γ′(k) if j = is.k, 1 ≤ s ≤ n, k 6= ε

Γ(j) otherwise

10 Specifying the updates

Given a family of annotation maps for a thread map on the left-hand side of a
−→
con

transition, we can obtain a family of annotation maps for the thread map
on the right-hand side. How to obtain the new family depends on the particular
transition taken. In Figures 6 through 12, we present rules for annotation map
updates for each kind of −→

con
transition. In these figures, the unprimed Γ’s are

the left-hand side annotation maps, and the Γ′’s are the updated, right-hand side
maps. Also in these figures, we define the notion of occurrence predecessor for
right-hand side occurrences.

The occurrence predecessor of an occurrence on the right-hand side of a trans-
ition is some occurrence on the left-hand side. We may think of the occurrence
predecessor of a right-hand side occurrence as the “same” occurrence on the left-
hand side. Most, but not all all right-hand side occurrences have an occurrence
predecessor. The exceptions are the fresh unit constants on the right-hands sides
of fork, rfork, and comm transitions, and the fresh channel constant on the
right-hand side of a channel transition. If a right-hand side occurrence has an
occurrence predecessor, it is unique. We write opred(i) for the occurrence prede-
cessor of an occurrence i.

If we have a reduction sequence, rather than a single transition, we can compose
opred maps. Define opred0 to be the identity on occurrence indices, and for
n > 0, opredn = opred ◦ opredn−1. When we write, say, opred(p : i), we
contemplate an underlying transition step; so when we write, say, opredn(p : i),
we contemplate an underlying reduction sequence. In later discussion, we may
also refer to opredn(p : i), for n > 1, as an occurrence predecessor of p : i, as well
as in the case for n = 1.

We have used tree merger in only two places in the update specifications.
Notice which right-hand side annotations affected by that choice:

Definition 3 Let i be the index of the left-hand side context hole in a −→
con

-
transition. Say that an occurrence j from the left-hand side is a value substitution
iff the transition is a

• seq/β transition, and j = i.rand, or a

• comm transition, and j = i.sbody

16

Transition:
Π[p : ρ, C[(fn` x.M) V]] −→

con
Π[p : ρ, C[M [V/x]]]

Let i be the occurrence index of the context hole,
i.rator.body.m1, . . . , i.rator.body.mj be the free occurrences

of [[i.rator.bv]] in i.rator.body

For thread p :

Γ′p = Γp[i← Γp/i.rator.body [m1, . . . ,mj ←↩ Γp/i.rand]]

for any RHS occurrence n,

opred(n) =

i.rand.k if n = i.m.k, m ∈ {m1, . . . ,mj}
i.rator.body.k if n = i.k
n otherwise

For any thread q ∈ Dom(Π), other than p :
Γ′q = Γq ,
for any RHS occurrence n, opred(n) = n

Figure 6: Updates for seq/β transition

Because we use tree merger at these points, a right-hand side occurrence whose
occurrence predecessor is a value substitution retains the annotation of the the
left-hand side occurrence where the value was substituted.

We are also interested in where substitutions occur:

Definition 4 In a −→
con

-transition, a left-hand side occurrence i is a substitution
site iff any of the following is true:

1. i is the index of a context hole

2. in the case of a seq/β transition, i is the index of a free occurrence of the
operator binder in the operator body

3. in the case of a fork or an rfork transition, i is the index of a free occurrence
of the spawned function’s binder in the function body

Observe:

17

Transition:
Π[p : ρ, C[if true then M else N]] −→

con
Π[p : ρ, C[M]]

Let i be the occurrence index of the context hole

For thread p :

Γ′p = Γp[i← Γp/i.then]

for any RHS occurrence n,

opred(n) =

i.then .k if n = i.k

n otherwise

For any thread q ∈ Dom(Π), other than p :
Γ′q = Γq,
for any RHS occurrence n, opred(n) = n

Figure 7: Updates for seq/cond-true transition

Lemma 5 Let Π and Π′ be thread maps, and suppose Π −→
con

Π′. Let s be a
symbol in Σ and let i be an occurrence index such that i.s is an occurrence in Π′.
In Π, opred(i).s is a substitution site iff opred(i.s) is undefined or opred(i.s) 6=
opred(i).s.

Proof.

Note that at substitution sites, either (1) a left-hand side occurrence is substi-
tuted, so that on the right-hand side, the substituted occurrence has an occurrence
predecessor, or (2) some fresh occurrence is substituted (a unit constant or a fresh
channel constant), which has no occurrence predecessor.

=⇒
Suppose opred(i).s is a substitution site. Then i.s may be a fresh unit con-

stant or a fresh channel constant, so that opred(i.s) is undefined. But sup-
pose opred(i.s) is defined. Then opred(k.s) must be the substituted term, so
opred(k).s 6= opred(k.s).

⇐=

Suppose opred(k.s) is undefined. By the definitions of opred for the various
−→
con

transition rules, the only occurrences k.s without occurrence predecessors

18

Transition:
Π[p : ρ, C[if true then M else N]] −→

con
Π[p : ρ, C[N]]

Let i be the occurrence index of the context hole

For thread p :

Γ′p = Γp[i← Γp/i.else]

for any RHS occurrence n,

opred(n) =

i.else .k if n = i.k

n otherwise

For any thread q ∈ Dom(Π), other than p :
Γ′q = Γq ,
for any RHS occurrence n, opred(n) = n

Figure 8: Updates for seq/cond-false transition

Transition:
Π[p : ρ, C[channel`()]] −→

con
Π[p : ρ, C[k]]

where k is a fresh channel constant

Let i be the occurrence index of the context hole

For thread p:

Γ′p = Γp

for any RHS occurrence n, other than n = i,

opred(n) = n

For any thread q ∈ Dom(Π), other than p :
Γ′q = Γq,
for any RHS occurrence n, opred(n) = n

Figure 9: Updates for channel transition

19

Transition:
Π[p : ρ, C[fork(fn` x.M)]] −→

con
Π[p : ρ, C[unit]][q : ρ,M [unit/x]]

where q is a fresh process identifier

Let i be the occurrence index of the context hole in thread p

For thread p:

Γ′p = Γp

for any RHS occurrence p : n, other than n = i,

opred(p : n) = p : n

For thread q:

Γ′q = Γp/i.ffun.body

for any occurrence q : n,

opred(q : n) = p : i.ffun.body.n, unless that is a free occurrence
of [[p : i.ffun.bv]]

For any thread r ∈ Dom(Π), other than p or q:
Γ′r = Γr,
for any RHS occurrence r : n, opred(r : n) = r : n

Figure 10: Updates for fork transition

are unit constants and fresh channel constants. By the −→
con

transition rules
and the definitions of opred, opred(k).s must be the substitution site for such
occurrences.

On the other hand, suppose opred(k).s 6= opred(k.s). Then some occurrence
must have been substituted at opred(k).s. The definition of substitution site
covers all the possibilities.

By our specifications of annotation map updates, we have:

Lemma 6 Let Π be a thread map with a locally consistent, communicative con-
sistent, and κ-coherent family of annotation maps G. Suppose that Π −→

con
Π′, and

let G ′ be the updated family of annotation maps for Π′ for the particular transition

20

Transition:
Π[p : ρ, C[rfork(ρ′,fn` x.M)]] −→

con
Π[p : ρ, C[unit]][q : ρ′,M [unit/x]]

where q is a fresh process identifier

Let i be the occurrence index of the context hole

For process p:

Γ′p = Γp

for any RHS occurrence p : n, other than n = i,

opred(p : n) = p : n

For process q:

Γ′q = Γp/i.rffun.body

for any occurrence q : n,

opred(q : n) = p : i.rffun.body .n, unless that is a free occurrence
of [[p : i.rffun.bv]]

For any process r ∈ Dom(Π), other than p or q:
Γ′r = Γr,
for any RHS occurrence r : n, opred(r : n) = r : n

Figure 11: Updates for rfork transition

involved. Let p : j be an occurrence in Π′, so that Γ′p is the annotation map for the
thread in which p : j occurs. If opred(p : j) is defined, let Γq be the annotation
map for the thread in Π in which opred(p : j) occurs.

1. if opred(j) is defined, then [[opred(j)]] is generated by the same production
in the DP/ML grammar as [[j]].

2. if p : j is the index of a function occurrence or an occurrence of channel(),
then opred(p : j) is defined and lab(p : j) = lab(opred(p : j)).

3. if p : j is the index of a constant other than the unit constant, then
opred(p : j) is defined and [[p : j]] = [[opred(p : j)]], unless the −→

con
-

transition is a channel transition and p : j is a fresh channel constant.

21

Transition:
Π[p : ρ, C[send(k,V)]][q : ρ′, C ′[receive(k)]] −→

con

Π[p : ρ, C[unit]][q : ρ′, C ′[V]]

Let i, i′ be the occurrence indices of the holes in the contexts C[], C ′[]

For process p, Γ′p = Γp, and

for any RHS occurrence p : n, other than n = i,

opred(p : n) = p : n

For process q, Γ′q = Γq[i′ ←↩ Γp/p : i.sbody], and

for any RHS occurrence q : n,

opred(q : n) =
{
p : j.sbody if n = i′.j
q : n otherwise

For any process r ∈ Dom(Π), other than p or q:
Γ′r = Γr,
for any RHS occurrence r : n, opred(r : n) = r : n

Figure 12: Updates for comm transition

4. if opred(p : j) is defined, then PΓq
opred(p : j)

→
≤ PΓ′p

p:j.

5. if opred(p : j) is defined and opred(p : j) is not a a value substitution in
the transition, then PΓq

opred(p : j) = PΓ′p
p:j.

Proof. By the definition of opred for each −→
con

-transition rule, the annotation
map updates for each such rule, and the definitions of local consistency, commu-
nicative consistency, and κ-coherence.

Lemma 6 is the key lemma in our proofs of invariance properties. The following
two lemmas will also be useful.

Lemma 7 Let Π be a thread map with a locally consistent, communicative consist-
ent, and κ-coherent family of annotation maps G. Suppose that Π −→

con
Π′ and there

is an updated family of annotation maps for Π′. For any occurrence i from Π′, and
for any symbol s ∈ Σ such that i.s is also an occurrence in Π′, Pi.s

→
≤ Popred(i).s.

22

Proof. By Lemma 6, local consistency, and the specifications of annotation map
updates.

First assume that opred(i).s is not a substitution site. By Lemma 5,
opred(i).s = opred(i.s), so also Popred(i).s = Popred(i.s). Suppose opred(i.s)
is not a value substitution, then by Lemma 6(5), Popred(i.s) = Pi.s, so Pi.s =
Popred(i).s, hence Pi.s

→
≤ Popred(i).s. Assume instead opred(i.s) = opred(i).s is

a value substitution. We shall show that this assumption leads to a contradic-
tion. Then either (1) the transition is a seq/β transition, and opred(i) is the
reduced application, or (2) the transition is a comm transition, and opred(i)
is the communicating send(). But by the definitions of opred for seq/β and
comm transitions, there is no right-hand side occurrence i such that opred(i) is
the reduced application (in the case of (1)) or the communicating send() (in the
case of (2)).

Now suppose opred(i).s is the site of a substitution. At the substitution
site, either (1) the annotation map is unchanged, or tree merger is used, so that
the annotation at the substitution site is unchanged, or (2) tree replacement is
used, so that the annotation at the substitution site is the annotation of the
substituted occurrence. In case (1) we have Pi.s = Popred(i).s; in case (2) we
have Pi.s

→
≤ Popred(i).s, by the local consistency of G. To verify the second of

these, the reader may check that in all cases where the update is specified using
tree replacement, there is a constraint that the proposition at the root of the
substituted tree is

→
≤ the proposition at the substitution site.

Lemma 8 Let Π be a thread map with a locally consistent, communicative con-
sistent, and κ-coherent family of annotation maps G. Suppose that Π −→

con
Π′ and

there is an updated family of annotation maps for Π′. For any occurrence k from
Π′, and for any symbol s ∈ Σ such that k.s is also an occurrence in Π′, if either
(1) opred(k.s) is a value substitution, or (2) opred(k).s is not the site of a
substitution, then Pk.s = Popred(k).s.

Proof. By the specifications of annotation map updates.

(1): In the specifications of annotation map updates for seq/β and comm
transitions, the use of tree merger preserves the annotation at the site opred(k).s
where opred(k.s) is substituted.

(2): By Lemma 5, opred(k).s = opred(k.s), hence Popred(k).s = Popred(k.s).
Since opred(k).s is not the site of a substitution, opred(k.s) must not be a value
substitution. By Lemma 6(5), Pk.s = Popred(k.s). Hence, Pk.s = Popred(k).s.

Another useful result is:

Lemma 9 Let G be a locally consistent, communicative consistent, and κ-coherent
family of annotation maps for a thread map Π, and suppose Π −→

con
Π′. Let G ′

23

be the updated family of annotation maps for Π′. Suppose also that p : i is an
occurrence of a send() and q : j is an occurrence of a receive() in Π′ that
are possible communications partners. Then in Π, opred(p : i) and opred(q : j)
were occurrences of a send() and a receive() that were possible communications
partners.

Proof. By Definition 2 and Lemma 6.

Suppose p : i and q : j are possible communications partners. Then in G ′,
by Definition 2, κp:i.schan ∩ κq:j.rchan 6= ∅. By Lemma 6(1), opred(p : i) is also an
occurrence of a send(), and opred(q : j) is also an occurrence of a receive().
By Lemma 7, Pp:i.schan

→
≤ Popred(p : i).schan and Pq:j.rchan

→
≤ Popred(q : j).rchan. There-

fore, κopred(p : i).schan ∩ κopred(q : j).rchan 6= ∅. By Definition 2, opred(p : i) and
opred(q : j) were possible communications partners.

11 Semantics of propositions

Recall, the goal of our analysis is to determine which occcurrences of channel()
produce channels that are used only locally, meaning that those channels particip-
ate in communications only on the processor on which they are created. Therefore,
the meaning we give to propositions has an operational basis.

We need the following:

Definition 5 Suppose for some n ≥ 0, Π −→n
con

Π′. An occurrence q : j in Π′ is
traceable to an occurrence p : i in Π, iff opredn(q : j) = p : i.

Also:

Definition 6 Suppose Π −→+
con

Π′. Let p : i be an occurrence of channel() in Π.
An occurrence q : j of a channel constant k in Π′ is produced by p : i iff for some
Π′′ intermediate in the evaluation

• there exists a channel() occurrence r : m in Π′′ that is traceable to p : i in
Π,

• in one channel step involving r : m, Π′′ −→
con

Π′′′, so that r : m is also the
occurrence index of k in Π′′′, and

• q : j in Π′ is traceable to r : m in Π′′′.

We say that q : j in Π′ is directly produced by r : m in Π′′.

24

The picture is:
Π −→∗

con
Π′′ −→

con︸ ︷︷ ︸
channel

Π′′′ −→∗
con

Π′

Now we give our notion of satisfaction:

Definition 7 Let Π be a thread map, and let G be a family of annotation maps,
with one family member for each thread identifier in the domain of Π. Say that
an evaluation Π −→∗

con
Π′ satisfies G, written

Π −→∗
con

Π′ |= G

iff for any channel() occurrence p : i in Π, if ωp:i = local+, then for any inter-
mediate Π′′ in the evaluation, including Π′, for any occurrence s : n of a channel
constant in Π′′ produced by p : i in Π, such that s : n is a channel-part subterm of
either a send() or a receive() in Π′′, and such that s : n was directly produced
by an occurrence r : m in a thread map Π′′′ preceding Π′′ in the evaluation, we
have

procΠ′′(s) = procΠ′′′(r)

We will use this notion of satisfaction as the criterion of the soundness of our
analysis. Note that this semantics ignores all but the ω component of propositions.
While we could have mentioned the other components in our semantics, since they
do provide useful information about annotated programs, we do not need to do so
for our local channel analysis.

12 Invariance results

If we use the annotation map updates specified, then local consistency, commu-
nicative consistency, κ-coherence, and ω-coherence are maintained across −→

con
-

transitions.

The invariance of κ-coherence is the easiest of these results:

Theorem 1 Let Π be a thread map with a locally consistent, communicative con-
sistent, and κ-coherent family of annotation maps G. Suppose Π −→

con
Π′, and let

G ′ be the updated family of annotation maps for Π′. Then G ′ is κ-coherent.

Proof. By Lemma 6.

Suppose i and j are distinct occurrences of the same channel constant on the
right-hand side.

25

We note that opred(i) and opred(j) are both defined. Assume that, say,
opred(i) is undefined, but opred(j) is defined. The reverse case is similar. Then
i must be an occurrence of a fresh channel constant. By Lemma 6(1), opred(j)
is also a channel constant. By Lemma 6(3), [[opred(j)]] = [[j]]. Since we assumed
[[i]] = [[j]], i is not fresh, a contradiction. Assume now that both opred(i) and
opred(j) are undefined. Then i and j are both occurrences of a fresh channel
constant. But we assumed [[i]] = [[j]], and the −→

con
rules provide no way to create

more than one occurrence of a fresh channel constant.

By Lemma 6(1), opred(i) and opred(j) are both channel constants. By
Lemma 6(3), [[opred(i)]] = [[i]] and [[opred(j)]] = [[j]], so [[opred(i)]] = [[opred(j)]].
Therefore, by the κ-coherence of G, κopred(i)∩ κopred(j) 6= ∅. But by Lemma 6(4),
κopred(i) ⊆ κi and κopred(j) ⊆ κj, so κi ∩ κj 6= ∅.

Now we give our more significant invariance results.

Theorem 2 Let Π be a thread map with a family of annotation maps G that is
locally consistent, communicative consistent, and κ-coherent. Suppose Π −→

con
Π′.

Then the updated family of annotation maps G ′ is locally consistent for Π′.

Proof. By considering each possible −→
con

-transition and G ′, the updated family
of annotation maps.

For each possible −→
con

-transition, we check the local consistency of the an-
notation map or maps at each occurrence j on the right-hand side from those
threads which change from the left-hand side. Assume each transition is as in
Figures 6 to 12.

case seq/β

Let Γ be the left-hand side annotation map for the thread p; let Γ′ be the
updated right-hand side annotation map for the same thread.

Suppose Var (j).

The only constraint is that if k is the binding occurrence for j, then PΓ′
k

→
≤ PΓ′

j .
If j has no binding occurrence, we are done. Otherwise, assume k is the binding oc-
currence for j. By Lemma 6(1), Var (opred(j)). Since substitution does not cause
variable capture, opred(k) must have been the binding occurrence for opred(j).
By the local consistency of Γ, PΓ

opred(k)

→
≤ PΓ

opred(j). Now, neither opred(k)
nor opred(j) is a value, so neither was a value substitution. By Lemma 6(5),
PΓ′
k = PΓ

opred(k) and PΓ
opred(j) = PΓ′

j . Hence, PΓ′
k

→
≤ PΓ′

j .

Suppose Channel (j).

By Lemma 6(1), also Channel (opred(j)). Therefore, by the local consistency
of Γ, lab(opred(j)) ∈ κΓ

opred(j). By Lemma 6(4), PΓ
opred(j)

→
≤ PΓ′

j , so κΓ
opred(j) ⊆

26

κΓ′
j . Therefore, lab(opred(j)) ∈ κΓ′

j . By Lemma 6(2), lab(j) = lab(opred(j)).
Hence lab(j) ∈ κΓ′

j .

Suppose Fun(j).

The first constraint is that lab(j) ∈ φΓ′
j . The analysis follows that for

channel() labels.

The next constraint is, if the number of free occurrences of the procedure binder
in the procedure body is greater than 1, then νΓ′

j.bv = ∞. Suppose the condition
holds. By Lemma 6(1), also Fun(opred(j)). Now, suppose β-reduction did not
substitute the application operand in [[opred(j)]]. Then [[opred(j)]] = [[j]], so in
opred(j), the number of free occurrences of the procedure binder in the procedure
body is also greater than 1. So by the local consistency of Γ, νΓ

opred(j).bv = ∞.

By Lemma 7, PΓ′
j.bv

→
≤ PΓ

opred(j).bv. By the
→
≤-order on propositions, also νΓ′

j.bv =
∞. Suppose instead that β-reduction did substitute the application operand in
[[opred(j)]]. Then [[j]] is a substitution instance of [[opred(j)]]. It is easy to show
that in opred(j), the number of free occurrences of its binder in its body is the
same as for j; so the result follows as before.

The escape constraints are triggered in case θΓ′
j = escape±. Assume that

condition holds, else we are done. By Lemma 6, PΓ
opred(j)

→
≤ PΓ′

j , so by the
→
≤-

order on propositions, θΓ′
j

→
≤ θΓ

opred(j). Therefore, θΓ
opred(j) = escape±, so the

escape constraints held in Γ.

We now examine each of the escape constraints.

Let j.k be a free variable occurrence in j. We want to show two things, that
θΓ′
j.k = escape±, and that if σΓ′

j.k = reach±, then ωΓ′
j.k = local±. For the latter

constraint, assume the condition holds.

By Lemma 6(1), also Var(opred(j.k)). Since j.k is a subterm of j, opred(j.k)
may have been a subterm of opred(j), that is, opred(j.k) = opred(j).k, but it
may instead be that opred(j.k) was a subterm of the substituted application
operand.

First suppose that opred(j.k) = opred(j).k; then opred(j.k) was also a
free variable occurrence in opred(j). By the local consistency of Γ, θΓ

opred(j.k) =
escape±, and, if σΓ

opred(j.k) = reach±, then ωΓ
opred(j.k) = local±. Since it is not

a value, opred(j.k) cannot have been a value substitution. So by Lemma 6(5),
PΓ

opred(j.k) = PΓ′
j.k, and θΓ′

j.k = escape±, as desired. Under our assumption that
σΓ′
j.k = reach±, also σΓ

opred(j.k) = reach±. Therefore, by the local consistency of
Γ, ωΓ

opred(j.k) = local±. Again using Lemma 6(5), ωΓ′
j.k = local±.

Suppose instead that opred(j.k) was a subterm of the substituted operand.
The operand was substituted for an occurrence of a free variable subterm of
opred(j), say opred(j).m. By the local consistency of Γ, θΓ

opred(j).m = escape±.

27

Now consider the substituted operand i.rand. Since the operand contained a vari-
able subterm, it must have been a function. We can show that PΓ

i.rand

→
≤ PΓ

opred(j).m

(we omit the straightforward details). Therefore, θΓ
i.rand = escape±. Since

opred(j.k) was a free variable occurrence in i.rand, from here, the analysis is
the same as in the case that opred(j.k) was a subterm of opred(j).

Next, we wish to show that for all channel constant occurrences j.m, if
σΓ′
j.m = reach±, then ωΓ′

j.m = local±. Observe that a channel constant is a value,
so in contrast to a variable, it may be a value substitution. If opred(j.m) is not
a value substitution, the analysis is identical to the free variable case for the com-
parable constraint. If opred(j.m) is a value substitution, then it must have been
the application operand i.rand, and it was substituted for some free variable in
opred(j). Observe that opred(j).m must have been the index of the substituted
free variable. By Lemma 8(1), PΓ′

j.m = PΓ
opred(j).m. So assume the condition in

the constraint holds. Therefore, σΓ
opred(j).m = reach±. Since opred(j).m was

a free variable in opred(j), by the local consistency of Γ, ωΓ
opred(j).m = local±.

Therefore, ωΓ′
j.m = local±.

We now want to show that Γ′ is remote-expectant at j. Consider any pair
of possible communications partners in the p thread such that exactly one of the
pair is a subterm of j. We want to show that in Γ′, the body of the send()
occurrence has a θ annotation of escape±, and that if the σ annotation of the
receive() occurrence is reach±, then its ω annotation is local±. By Lemma 9,
the occurrence predecessors of the pair were possible communications partners.

Suppose it is the send() that is a subterm of j, and the receive() is not.
The reverse situation is similar, and we will not analyze it further. Let these be
j.k and m, respectively. Now, opred(j.k) was a subterm of either opred(j) or
the substituted operand, i.rand. In the first case, opred(j) had a θ-annotation
of escape±, so Γ was remote-expectant at opred(j). In the second case, we can
show, as we did for free variable subterms, that i.rand had a θ-annotation of
escape±, so Γ was remote-expectant at i.rand. We will look just at the first case.

Consider opred(m). If opred(m) was not a subterm of opred(j), then by
the remote-expectancy of Γ, θΓ

opred(j.k).sbody = escape±. By Lemma 7, PΓ′
j.k.sbody

→
≤

PΓ
opred(j.k).sbody, hence θΓ′

j.k.sbody = escape±. Now assume that σΓ′
m = reach±. By

Lemma 6(4), PΓ
opred(m)

→
≤ PΓ′

m . By the
→
≤-order on propositions, σΓ′

m ≤ σΓ
opred(m), so

σΓ
opred(m) = reach±. So by the local consistency of Γ, ωΓ

opred(m) = local±. Since
a receive() cannot be a value substitution, by Lemma 6(5), also ωΓ′

m = local±.

But it may have been that opred(m) was also a subterm of opred(j). In that
case, it must have been that the β-reduction duplicated the operand i.rand, and
opred(m) was a subterm of i.rand. In fact, in that case, opred(j) was either the
same as i.rand, or a proper subterm of it. To see this, note that opred(m) was a

28

subterm of both i.rand and opred(j), hence one must have been a subterm of the
other; but reduction cannot occur in a function body, hence i.rand cannot have
been a proper subterm of opred(j). The β-reduction duplicates i.rand, so the
number of free occurrences of the binder of the application operator, [[i.bv]], in its
body, [[i.body]], must have been greater than 1. Hence, by the local consistency of Γ,
νΓ
i.bv =∞. Also by local consistency, we can show that νΓ

i.rand =∞; since opred(j)
is either the same as i.rand, or a function subterm of i.rand, νΓ

opred(j) = ∞.
By the nonlinear-expectancy of Γ at opred(j), θΓ

opred(j.k).sbody = escape±. So
by Lemma 7, also θΓ′

j.k.sbody = escape±. Again assume that σΓ′
m = reach±, so

σΓ
opred(m) = reach±, and again by the nonlinear-expectancy of Γ at opred(j),
ωΓ

opred(m) = local±. Again by Lemma 6(5), ωΓ′
m = local±.

Next we show the nonlinear-expectancy of Γ′ at j. Assume νΓ′
j =∞, otherwise

we are done. By Lemma 6(4), also νΓ
opred(j) = ∞. We have already shown that

Γ was nonlinear-expectant at opred(j). Consider a send() occurrence j.k and a
receive() occurrencem that are possible communications partners, and also both
subterms of j. We wish to show that θΓ′

j.k.sbody = escape± and, if σΓ′
m = reach±,

then ωΓ′
m = local±. By Lemma 9, opred(j.k) and opred(m) were possible com-

munications partners. On the left-hand side, opred(j.k) was either a subterm of
opred(j) or a subterm of i.rand; similarly for opred(m). We consider each of
the four possibilities. By Lemma 7, PΓ′

j.k.sbody

→
≤ PΓ

opred(j.k).sbody, so for each of the
four cases, it suffices to prove that θΓ

opred(j.k).sbody = escape±. We assume that

σΓ′
m = reach±. By Lemma 6(4), PΓ

opred(m)

→
≤ PΓ′

m , so by the
→
≤-order on proposi-

tions, also σΓ
opred(m) = reach±. Since a receive() cannot be a value substitution,

by Lemma 6(5), ωΓ′
m = ωΓ

opred(m). Therefore, for each of the four cases, it suffices
to prove that ωΓ

opred(m) = local±.

1. Suppose both opred(j.k) and opred(m) were subterms of opred(j). By
the nonlinear-expectancy of Γ at opred(j), θΓ

opred(j.k).sbody = escape± and
ωΓ

opred(m) = local±.

2. If both opred(j.k) and opred(m) were subterms of i.rand, and neither was a
subterm of opred(j), then the operand must have been substituted for a free
variable in opred(j). Since νΓ

opred(j) =∞, also that free variable occurrence
must have had a ν-annotation of ∞; since θΓ

opred(j) = escape±, the free
variable occurrence also had a θ-annotation of escape±. It is straightforward
to show that νΓ

i.rand =∞ and θΓ
i.rand = escape±. Therefore, Γ was nonlinear-

expectant at i.rand, so θΓ
opred(j.k).sbody = escape± and ωΓ

opred(m) = local±.

3. Suppose opred(j.k) was a subterm of opred(j), and not a subterm of i.rand,
but opred(m) was a subterm of i.rand, and not a subterm of opred(j).
Then by the remote-expectancy of Γ at j, we have θΓ

opred(j.k).sbody = escape±

29

and ωΓ
opred(m) = local±.

4. Suppose opred(j.k) was a subterm of i.rand, and not a subterm of opred(j),
but opred(m) was a subterm of opred(j), and not a subterm of i.rand. In
this case, too, the operand must have been substituted for a free variable
in opred(j), and by the local consistency of Γ, such a free variable occur-
rence had a θ-annotation of escape±. Therefore, θΓ

i.rand = escape±, so Γ
was remote-expectant at i.rand. By the definition of remote-expectancy,
θΓ

opred(j.k).sbody = escape± and ωΓ
opred(m) = local±.

Finally for the Fun(j) subcase, we have the constraint that if νΓ′
j = ∞, then

all free variable and function occurrence subterms of j have a ν-annotation of ∞.
Suppose the condition holds. By Lemma 6(4) and the

→
≤-order on propositions, also

νΓ
opred(j) = ∞. We shall soon deal with free variable subterms of j, but consider

first a function subterm of j, say j.k. opred(j.k) may have been a subterm of
opred(j), or it may have been a subterm of i.rand. In the first case, by the local
consistency of Γ, νΓ

opred(j.k) = ∞. Such a subterm was not a value substitution.
Therefore, by Lemma 6(5), νΓ′

j.k =∞.

In the second case, it must be that the operand was substituted for a free
variable occurrence in opred(j). By the local consistency of Γ, that free variable
occurrence had a ν-annotation of ∞, hence νΓ

i.rand = ∞ (we omit the details).
opred(j.k) may have been the operand itself, or a proper subterm of the oper-
and. If opred(j.k) = i.rand, then opred(j.k) was a value substitution, so by
Lemma 8(1), PΓ′

j.k = PΓ
opred(j).k. Now, opred(j).k was the substituted free vari-

able, which, as we stated, had a ν-annotation of∞. So also νΓ′
j.k =∞. Otherwise,

opred(j.k) is a proper subterm of i.rand, and so not a value substitution. The
only kind of value that may have proper subterms is a function. By the local
consistency of Γ, such a function subterm of i.rand has a ν-annotation of ∞. So
by Lemma 6(5), νΓ′

j.k = νΓ
opred(j.k) =∞.

Now consider a free variable subterm of j, say j.m. We want to show that j.m
has a ν-annotation of ∞. opred(j.m) may have been a subterm of opred(j), or
it may have been a subterm of i.rand. In the first case, opred(j.m) was also free
in opred(j), so by the local consistency of Γ, νΓ

opred(j.m) = ∞. By Lemma 6(5),
νΓ′
j.m = ∞. In the second case, we can show that νΓ

i.rand = ∞. opred(j.m)
must have been a proper subterm of the operand and so not a value substitution.
opred(j.m) was also a free variable subterm of i.rand. By the local consistency of
Γ, opred(j.m) had a ν-annotation of∞. By Lemma 6(5), νΓ′

j.m = νΓ
opred(j.m) =∞.

Suppose App(j).

We have the constraints that for all k such that lab(k) ∈ φΓ′
j.rator, PΓ′

j.rand

→
≤

PΓ′
k.bv and PΓ′

k.body

→
≤ PΓ′

j . Since App(j), also App(opred(j)), by Lemma 6(1).
Therefore, by the local consistency of Γ, for all k such that lab(k) ∈ φΓ

opred(j).rator,

30

PΓ
opred(j).rand

→
≤ PΓ

k.bv, and PΓ
k.body

→
≤ PΓ

opred(j).

By Lemma 7, φΓ′
j.rator ⊆ φΓ

opred(j).rator. Consider any function occur-
rence k from the right-hand side term such that lab(k) ∈ φΓ′

j.rator. Since
lab(opred(k)) = lab(k), lab(opred(k)) ∈ φΓ

opred(j).rator. By the local consist-

ency of Γ, lab(opred(k)) ∈ φΓ
opred(j).rator implies PΓ

opred(j).rand

→
≤ PΓ

opred(k).bv and

PΓ
opred(k).body

→
≤ PΓ

opred(j). Since opred(k).bv cannot have been the site of a substi-

tution, by Lemma 8(2), PΓ′
k.bv = PΓ

opred(k).bv. By Lemma 7, PΓ′
j.rand

→
≤ PΓ

opred(j).rand.

Therefore, PΓ′
j.rand

→
≤ PΓ′

k.bv. Also by Lemma 7, PΓ′
k.body

→
≤ PΓ

opred(k).body. By

Lemma 6(4), PΓ
opred(j)

→
≤ PΓ′

j . Hence, PΓ′
k.body

→
≤ PΓ′

j .

Suppose Cond (j).

By Lemma 6(1), also Cond(opred(j)). By the local consistency of Γ,
PΓ

opred(j).then, PΓ
opred(j).else

→
≤ PΓ

opred(j). By Lemma 7, PΓ′
j.then

→
≤ PΓ

opred(j).then,

and PΓ′
j.else

→
≤ PΓ

opred(j).else. By Lemma 6(4), PΓ
opred(j)

→
≤ PΓ′

j . Hence PΓ′
j.then,

PΓ′
j.else

→
≤ PΓ′

j .

Suppose RFork(j).

In this case, for all k such that lab(k) ∈ φΓ′
j.rffun, we require that the escape con-

straints hold at k. Consider such a k. By Lemma 6(2), lab(k) = lab(opred(k)).
By Lemma 6(1), also RFork(opred(j)). By Lemma 7, φΓ′

j.rffun

→
≤ φΓ

opred(j).rffun.
Hence, lab(opred(k)) ∈ φΓ

opred(j).rffun. Therefore, in Γ, the escape constraints
held at opred(k).

Now consider the reasoning we used in the Fun subcase to show that the
escape constraints held at function j′ in Γ′. We began by assuming the condition
θΓ′
j′ = escape±. Using Lemma 6(4), we had that θΓ

opred(j′) = escape±. By local
consistency, the escape constraints held in Γ at opred(j′). That was sufficient to
show that the escape constraints held in Γ′ at j′. Here, for the RFork subcase,
we have shown that the escape constraints hold in Γ at opred(k), using the local
consistency of Γ at opred(j). Therefore, the same reasoning we used in the Fun
subcase can be used to show that the escape constraints hold in Γ′ at k.

Suppose Send (j).

The only constraint is that σΓ′
j.schan = reach±. By Lemma 6(1), also

Send (opred(j)). Since Γ is locally consistent, we have σΓ
opred(j).schan = reach±.

By Lemma 7, PΓ′
j.schan

→
≤ PΓ

opred(j).schan. By the
→
≤-order on propositions, σΓ′

j.schan =
reach±.

Suppose Receive(j).

The first constraint is that σΓ′
j.rchan = reach±. We can use the similar reasoning

31

as in the Send subcase for the constraint on σ annotations.

The other constraint is that for all k such that Send (k) and κΓ′
k.schan∩κΓ′

j.rchan 6=
∅, PΓ′

k.sbody

→
≤ PΓ′

j . Choose any such k. By Lemma 9, opred(j) and opred(k) were
possible communications partners on the left-hand side. Also, both those occur-
rences were in the p thread on the left-hand side. So by the local consistency of Γ,
PΓ

opred(k).sbody

→
≤ PΓ

opred(j). By Lemma 7, PΓ′
k.sbody

→
≤ PΓ

opred(k).sbody; by Lemma 6(4),

PΓ
opred(j)

→
≤ PΓ′

j . So PΓ′
k.sbody

→
≤ PΓ′

j .

case seq/cond-true

We shall omit the proof of local consistency for the seq/cond-false case, which
is similar. As in the case for a seq/β transition, we omit the thread identifier
subscripts on annotation maps; let Γ be the left-hand side annotation map for the
thread p, and let Γ′ the annotation map for the right-hand side thread p.

Suppose Var (j).

The one constraint is that if k is the binding occurrence for j, then PΓ′
k

→
≤ PΓ′

j .
Use the same reasoning as in the seq/β case.

Suppose Channel (j).

The only constraint is that lab(j) ∈ φΓ′
j . Use the same reasoning as in the

seq/β case.

Suppose Fun(j).

The first constraint is that lab(j) ∈ φΓ′
j . This can be shown using the same

reasoning as in the seq/β case for channel() labels.

Next, we have the constraint that if the number of free occurrences of the
procedure binder in the procedure body is greater than 1, then νΓ′

j = ∞. A
conditional redex cannot occur in a function body, so [[j]] = [[opred(j)]]. Therefore,
in opred(j), the number of free occurrences of its binder in its body is the same as
for j. Assume the condition holds. By the local consistency of Γ, νΓ

opred(j).bv =∞.

By Lemma 7, PΓ′
j.bv

→
≤ PΓ

opred(j).bv, so also νΓ′
j.bv =∞.

Next we consider the escape constraints that are triggered if θΓ′
j = escape±.

Assume the condition holds. By Lemma 6(1), also Fun(opred(j)); by
Lemma 6(5), also θΓ

opred(j) = escape±.

The first constraints triggered by the condition are that for all free variable
occurrences j.k, θΓ′

j.k = escape±, and, if σΓ′
j.k = reach±, then ωΓ′

j.k = local±.
Assume the condition holds for the latter constraint. Observe that opred(j.k)
must have been a free variable occurrence in opred(j). So by the local consistency
of Γ, θΓ

opred(j.k) = escape±. Since opred(j.k) is not a value, it cannot have been
a value substitution. By Lemma 6(5), PΓ

opred(j.k) = PΓ′
j.k, so θΓ′

j.k = θΓ
opred(j.k).

32

Therefore, θΓ′
j.k = escape±. Similarly, σΓ

opred(j.k) = reach±, so by local consistency,
ωΓ

opred(j.k) = local±. So also ωΓ′
j.k = local±.

Next we consider the constraint that for any channel constant occurrence j.k,
if σΓ′

j.k = reach±, then ωΓ′
j.k = local±. We can use almost the same reasoning

as we just used for free variables. Although channel constants are values, unlike
variables, opred(j.k) cannot have been a value substitution. For a seq/cond-true
transition, no left-hand side occurrence is a value substitution.

Next we show that Γ′ is remote-expectant at j. Consider any pair of possible
communications partners such that exactly one of the pair is a subterm of j. We
want to show that in Γ′, the body of the send() occurrence has a θ annotation
of escape±, and that if the σ annotation of the receive() occurrence is reach±,
then its ω annotation is local±. By Lemma 9, the occurrence predecessors of the
pair were possible communications partners. Both occurrence predecessors were
in the p thread on the left-hand side.

Suppose it is the send() that is a subterm of j, and the receive() is not.
As in the seq/β case, the reverse situation is similar, so we will not discuss it.
Let these occurrences be j.k and m, respectively. opred(j.k) must have been a
subterm of opred(j). Now, opred(j) had a θ-annotation of escape±, so Γ was
remote-expectant at opred(j).

Consider opred(m). opred(m) must not have been a subterm of opred(j).
So by the remote-expectancy of Γ, θΓ

opred(j.k).sbody = escape±. By Lemma 7,

PΓ′
j.k.sbody

→
≤ PΓ

opred(j.k).sbody, so also θΓ′
j.k.sbody = escape±. Assume that σΓ′

m =

reach±. By Lemma 6(4), PΓ
opred(m)

→
≤ PΓ′

m . By the
→
≤-order on propositions, also

σΓ
opred(m) = reach±. By the local consistency of Γ, ωΓ

opred(m) = local±. Since a
receive() cannot be a value substitution, by Lemma 6(5), also ωΓ′

m = local±.

Next we show the nonlinear-expectancy of Γ′ at j. Assume νΓ′
j =∞, otherwise

we are done. By Lemma 6(4), PΓ
opred(j)

→
≤ PΓ′

j , so νΓ
opred(j) = ∞. Since also

θΓ
opred(j) = escape±, Γ was nonlinear-expectant at opred(j). Consider a send()

occurrence j.k with a possible communications partner m that is also a subterm
of j. We wish to show that θΓ′

j.k.sbody = escape±, and that if σΓ′
m = reach±, then

ωΓ′
m = local±. By Lemma 9, opred(j.k) and opred(m) were possible commu-

nications partners. On the left-hand side, opred(j.k) and opred(m) must both
have been subterms of opred(j). By the nonlinear-expectancy of Γ at opred(j),
θΓ

opred(j.k).sbody = escape±. By Lemma 7, PΓ′
j.k.sbody

→
≤ PΓ

opred(j.k).sbody. By the
→
≤-

order on propositions, also θΓ
j.k.sbody = escape±. Assume that σΓ′

m = reach±. By

Lemma 6(4), PΓ
opred(m)

→
≤ PΓ′

m , so σΓ′
m ≤ σΓ

opred(m), hence σΓ
opred(m) = reach±. By

the nonlinear-expectancy of Γ at opred(j), ωΓ
opred(m) = local±. A receive()

cannot be a value substitution, so by Lemma 6(5), also ωΓ′
m = local±.

33

Last for the Fun subcase, we have the constraint that if νΓ′
j = ∞, then all

free variable and function subterms of j have a ν-annotation of ∞. Suppose the
condition holds. By Lemma 6(4), also νΓ

opred(j) =∞. Consider a free variable or
function subterm j.k of j. opred(j.k) must have been a subterm of opred(j). If
j.k is a free variable in j, then opred(j.k) was a free variable in opred(j). So by
the local consistency of Γ, νΓ

opred(j.k) = ∞. opred(j.k) cannot have been a value
substitution, so by Lemma 6(5), also νΓ′

j.k =∞.

Suppose App(j).

Use the same reasoning as in the App subcase for seq/β transitions.

Suppose Cond (j).

Use the same reasoning as in the Cond subcase for seq/β transitions.

Suppose RFork(j).

We want to show that for all k such that lab(k) ∈ φΓ′
j.rffun, the escape constraints

hold at k. Consider such a k. By Lemma 6(2), lab(k) = lab(opred(k)). By
Lemma 6(1), also RFork(opred(j)). By Lemma 7, PΓ′

j.rffun

→
≤ PΓ

opred(j).rffun. Hence,
lab(opred(k)) ∈ φΓ

opred(j).rffun. Therefore in Γ, the escape constraints held at
opred(k). Using the same reasoning we used in the Fun subcase, above, we can
show that the escape constraints hold in Γ′ at k.

Suppose Send (j).

Use the same reasoning as in the Send subcase for seq/β transitions.

Suppose Receive(j).

Use the same reasoning as in the Receive subcase for seq/β transitions.

case channel

The context hole cannot be in a function body, therefore local consistency
follows by Lemma 3.

case fork

Let Γ be the annotation map for the parent thread p on the left-hand side of
the transition, let Γ′ be the annotation map for the p thread on the right-hand
side, and let Γ′′ be the annotation map for the child thread q on the right-hand
side.

The local consistency of Γ′ follows by Lemma 2.

Since the function body M is a subterm of the left-hand side term containing
the fork(), by Lemma 1, Γ′′ is locally consistent for M . By the Corollary to
Lemma 2, Γ′′ is locally consistent for M [unit/x].

34

case rfork

This case is nearly identical to that for fork.

case comm

Let Γp be the annotation map for the p thread on the left-hand side of the
transition. Γq is the annotation map for the q thread on the left-hand side of
the transition. Γ′p and Γ′q are the updated annotation maps for the corresponding
right-hand side threads.

The local consistency of Γ′p follows by Lemma 2.

For Γ′q, we need to show local consistency at each occurrence q : j. Since the
thread q is understood, we write j instead of q : j in the following discussion.

Suppose Var (j).

The only constraint is that if k is the binding occurrence for j, then PΓ′q
k

→
≤ PΓ′q

j .
If j has no binding occurrence, the constraint is satisfied. Otherwise, let k be the
binding occurrence for j. Since the context hole in C ′[] is not in a function body,
either j and k are both in the context C ′[], otherwise both are occurrences in the
transmitted value V . In either case, by Lemma 6(1), Var(opred(j)). Suppose
both j and k are occurrences in the context. opred(k) must have been the binding
occurrence for opred(j), and by the local consistency of Γq, PΓq

opred(k)

→
≤ PΓq

opred(j).

Since neither opred(j) nor opred(k) is a value substitution, PΓ′q
k = PΓq

opred(k), and

PΓ′q
j = PΓq

opred(j). Hence, PΓ′q
k

→
≤ PΓ′q

j . A similar analysis holds if both j and k are
occurrences in V , using the local consistency of Γp.

Suppose Channel (j).

By Lemma 6(1), also Channel(opred(j)). opred(j) may have been the trans-
mitted value or a subterm of the transmitted value, so opred(j) may have been
an occurrence in either p or q. Assume opred(j) was in p; the case for q is sim-
ilar. By the local consistency of Γp, lab(opred(j)) ∈ κΓp

opred(j). By Lemma 6(4),

PΓp
opred(j)

→
≤ PΓ′q

j , so κ
Γp
opred(j) ⊆ κ

Γ′q
j . Therefore, lab(opred(j)) ∈ κ

Γ′q
j . By

Lemma 6(2), lab(j) = lab(opred(j)). Hence lab(j) ∈ κΓ′q
j .

Suppose Fun(j).

We have the constraint that lab(j) ∈ φ
Γ′q
j . We can use similar reasoning as

just presented for occurrences of channel().

The next constraint is that if the number of free occurrences of the procedure
binder in the procedure body is greater than 1, then νΓ′q

j.bv =∞. Again we observe
that opred(j) is an occurrence in one of the left-hand side terms q or p. We claim
that in opred(j), the number of free occurrences of its binder in its body is the

35

same as for j. To see this, note that the context hole in C ′[] cannot be in the body
of a function; hence j and opred(j) must be occurrences of the same function. So
suppose that opred(j) is an occurrence from the p term; in this case, j must be a
subterm of V . By the local consistency of Γp, ν

Γp
opred(j).bv = ∞. By Lemma 6(4),

PΓ′q
j.bv

→
≤ PΓp

opred(j).bv. By the
→
≤-order on propositions, νΓp

opred(j).bv ≤ ν
Γ′q
j.bv, so ν

Γ′q
j.bv =

∞. A similar analysis works for the case that opred(j) is an occurrence from the
q thread, using the local consistency of Γq.

Next consider the escape constraints that are triggered if θΓ′q
j = escape±.

Assume the condition holds. Suppose that opred(j) is an occurrence from the
p thread on the left-hand side. Since PΓp

opred(j)

→
≤ PΓ′q

j , we have θΓ′q
j ≤ θ

Γp
opred(j).

Therefore, θΓp
opred(j) = escape±, and the escape constraints hold in Γp at opred(j).

The analysis to show that θΓq
opred(j) = escape± is similar in the case that opred(j)

is an occurrence from the q thread on the left-hand side; the analysis to show the
escape constraints hold in Γ′q at opred(j) as a consequence is similar to the analysis
in the following discussion.

We begin by showing that for all free variable occurrences j.k, θΓ′q
j.k = escape±,

and, if σΓ′q
j.k = reach±, then ω

Γ′q
j.k = local±. Assume the condition holds for the

latter constraint. Now, opred(j.k) was a free variable occurrence in opred(j),
since, as we reasoned earlier, j and opred(j) are occurrences of the same function.
By the local consistency of Γp, θ

Γp
opred(j.k) = escape±. Since it is a variable and

not a value, opred(j.k) cannot have been a value substitution. By Lemma 6(5),
PΓp

opred(j.k) = PΓ′q
j.k, so also θ

Γ′q
j.k = escape±. Also by Lemma 6(5), σΓp

opred(j.k) =
reach±. By the local consistency of Γp, ω

Γp
opred(j.k) = local±. Once more by

Lemma 6(5), ω
Γ′q
j.k = local±.

Next is the constraint for all channel constant occurrences j.m that if σ
Γ′q
j.m =

reach±, then ωΓ′q
j.m = local±. We can use the same reasoning as for the comparable

constraint for free variables. However, since it is a value, a channel constant may
be a value substitution. But opred(j.m) cannot have been a value substitution
here, since j and opred(j) are the same function. So the analysis we used for free
variables remains valid for channel constants.

Next we show that Γ′q is remote-expectant at j. Consider any pair of possible
communications partners such that exactly one of the pair is a subterm of j. We
want to show that in Γ′q , the body of the send() occurrence has a θ annotation
of escape±, and that if the receive() occurrence has a σ annotation of reach±,
then its ω annotation is local±. By Lemma 9, the occurrence predecessors of the
pair were possible communications partners.

Suppose it is the send() that is a subterm of j, and the receive() is not. The
reverse situation is similar. Let these be j.k and m, respectively. opred(j.k) was

36

a subterm of opred(j), so by our assumption that opred(j) was in the p thread,
so was opred(j.k). Since opred(j) also had a θ-annotation of escape±, Γp was
remote-expectant at opred(j).

Now consider opred(m), which cannot have been a subterm of opred(j).
However, opred(m) may have been from either the p or q threads.

Suppose opred(m) is from p. Then by the remote-expectancy of Γp at
opred(j), θΓp

opred(j.k).sbody = escape±. By Lemma 7, PΓ′q
j.k.sbody

→
≤ PΓp

opred(j.k).sbody,

so by the
→
≤-ordering on propositions, θ

Γ′q
j.k.sbody = escape±. Now assume that

σ
Γ′q
m = reach±. By Lemma 6(4), PΓp

opred(m)

→
≤ PΓ′q

m . By the
→
≤-ordering on

propositions, also σ
Γp
opred(m) = reach±. So by the remote-expectancy of Γp,

ω
Γp
opred(m) = local±. Since a receive() cannot be a value substitution, by

Lemma 6(5), also ω
Γ′q
m = local±.

Now suppose opred(m) is from q. We can use similar reasoning as just presen-
ted for the case that opred(m) is from p, except that we rely on the distributed
remote-expectancy of G at opred(j).

Last for the escape constraints, we show the nonlinear-expectancy of Γ′q at j.

Assume ν
Γ′q
j = ∞, else we are done. By Lemma 6(4), PΓp

opred(j)

→
≤ PΓ′q

j , so also
θ

Γp
opred(j) =∞. Therefore, Γp was nonlinear-expectant at opred(j). Consider now

a send() occurrence j.k with a possible communications partner m also a sub-
term of j. Both opred(j.k) and opred(m) must have been subterms of opred(j).
By Lemma 9, opred(j.k) and opred(m) were possible communications partners.
By the nonlinear-expectancy of Γp at opred(j), θΓp

opred(j.k).sbody was escape±. By

Lemma 7 and the
→
≤-order on propositions, also θΓ′q

j.k.sbody = escape±. Now assume

σ
Γ′q
m = reach±. By Lemma 6(4), PΓp

opred(m)

→
≤ PΓ′q

m , hence σΓ′q
m ≤ σ

Γp
opred(m). So

also σ
Γp
opred(m) = reach±, and by the nonlinear-expectancy of Γp at opred(j),

ω
Γp
opred(m) = local±. Since a receive() cannot be a value substitution, by

Lemma 6(5), also ωΓ′q
m = local±.

Finally, we have the constraint that if νΓ′q
j = ∞, then all free variable and

function subterms of j have a ν-annotation of ∞. Suppose the condition holds.
Again, opred(j) may have been in the p or q threads on the left-hand side. Assume
opred(j) was in the q thread; the analysis for the case that it was in the p thread
is similar. By Lemma 6(4) and the

→
≤-order on propositions, also ν

Γq
opred(j) =

∞. Let j.k be a free variable or function occurrence in j. Now, opred(j.k) =
opred(j).k, since j and opred(j) are the same function. If j.k is a free variable in
j, then opred(j.k) was a free variable in opred(j). By the local consistency of Γq ,
opred(j).k had a ν-annotation of∞. opred(j.k) was not a value substitution, so

37

by Lemma 6(5), PΓ′q
j.k = PΓq

opred(j.k) = PΓq
opred(j).k. Hence νΓ′q

j.k =∞.

Suppose App(j).

The first set of constraints requires that for all k such that lab(k) ∈ φΓ′q
j.rator,

PΓ′q
j.rand

→
≤ PΓ′q

k.bv and PΓ′q
k.body

→
≤ PΓ′q

j . By Lemma 6(1), App(opred(j)).

Consider any function occurrence k from the right-hand side thread q such
that lab(k) ∈ φΓ′q

j.rator. Now, opred(j).rator may be an occurrence in either the p

or q threads. Assume it is in p; the case for q is similar. By Lemma 7, PΓ′q
j.rator

→
≤

PΓp
opred(j).rator. By the

→
≤-order on propositions, φΓ′q

j.rator ⊆ φ
Γp
opred(j).rator, so lab(k) ∈

φ
Γp
opred(j).rator. By Lemma 6(2), lab(k) = lab(opred(k)), so lab(opred(k)) ∈
φ

Γp
opred(j).rator. opred(k) need not be an occurrence in p; it may be from q.

First suppose opred(k) is from p. Then by the local consistency of Γp,
PΓp

opred(j).rand

→
≤ PΓp

opred(k).bv and PΓp
opred(k).body

→
≤ PΓp

opred(j). Since opred(k).bv

is not the site of a substitution, by Lemma 8(2), PΓ′q
k.bv = PΓp

opred(k).bv. By

Lemma 7, PΓ′q
j.rand

→
≤ PΓp

opred(j).rand. Hence, PΓ′q
j.rand

→
≤ PΓ′q

k.bv. By Lemma 7,

PΓ′q
k.body

→
≤ PΓp

opred(k).body. By Lemma 6(4), PΓp
opred(j)

→
≤ PΓ′q

j . Hence, PΓ′q
k.body

→
≤ PΓ′q

j .

Now suppose opred(k) is from q. Then by the communicative consistency of
G, PΓp

opred(j).rand

→
≤ PΓq

opred(k).bv and PΓq
opred(k).body

→
≤ PΓp

opred(j). From here, we may
reason as in the case that opred(k) is from p, mutatis mutandis.

Suppose Cond (j).

By Lemma 6(1), also Cond(opred(j)). Now, opred(j) is either from p or from
q. Suppose opred(j) is from q; the other case is similar. So also opred(j).then
and opred(j).else are from q. Because Γq is locally consistent, PΓq

opred(j).then

→
≤

PΓq
opred(j) and PΓq

opred(j).else

→
≤ PΓq

opred(j). By Lemma 7, PΓ′q
j.then

→
≤ PΓq

opred(j).then and

PΓ′q
j.else

→
≤ PΓq

opred(j).else. By Lemma 6(4), PΓq
opred(j)

→
≤ PΓ′q

j . Hence, PΓ′q
j.then

→
≤ PΓ′q

j and

PΓ′q
j.else

→
≤ PΓ′q

j .

Suppose RFork(j).

In the Fun subcase above, under the assumption that θΓ′q
j = escape±, we

showed that θ for opred(j) was also escape±. By the local consistency of Γp, or
Γq, depending on the location of opred(j), we showed that the escape constraints
held for opred(j) and its subterms. That was sufficient to show that the escape
constraints held for j and its subterms.

We want to show that for all k such that lab(k) ∈ φΓ′q
j.rffun, the escape constraints

hold at k. Consider such a k. By Lemma 6(2), lab(k) = lab(opred(k)). By
Lemma 6(1), also RFork(opred(j)). If opred(j).rffun is from p, we have by

38

Lemma 7, φΓ′q
j.rffun ⊆ φ

Γp
opred(j).rffun, so lab(opred(k)) ∈ φ

Γp
opred(j).rffun. Therefore,

if opred(k) is also in p, we have satisfaction of the escape constraints in Γp at
opred(k). By the same reasoning we used in the Fun subcase above, we also have
satisfaction of the escape constraints in Γ′q at k. The case that both opred(j).rffun
and opred(k) are in q is similar, using the local consistency of Γq .

However, the quantification over all k in the constraint introduces a slight
difficulty. It might be that opred(j).rffun is from p, but opred(k) is from q, or
vice-versa. In those cases, the local consistency of Γp and Γq does not tell us that
the escape constraints held at opred(k). Recall, universal quantifiers appearing
in the local constraints range over occurrences in individual threads. Therefore,
for these cases, we rely on the comparable communicative consistency constraint
for RFork(j) to show that the escape constraints hold at opred(k). So in these
cases also, the escape constraints hold in Γ′q at k.

Suppose Send (j).

The constraint is that σ
Γ′q
j.schan = reach±. By Lemma 6(1), also

Send (opred(j)). Suppose opred(j) is from q. Since Γq is locally consistent,
σ

Γq
opred(j).schan = reach±. By Lemma 7, PΓ′q

j.schan

→
≤ PΓq

opred(j).schan. By the
→
≤-order

on propositions, σΓ′
j.schan = reach±. The case that opred(j) is from p is similar.

Suppose Receive(j).

The first constraint is that σΓ′q
j.rchan = reach±. Use similar reasoning as in the

Send subcase for the constraint on σ annotations.

Now consider a k from the right-hand side q term, such that Send (k), κ
Γ′q
k.schan∩

κ
Γ′q
j.rchan 6= ∅. By Lemma 6(1), also Send (opred(k)). By Lemma 9, opred(j) and

opred(k) were communications partners.

Suppose first that opred(j) and and opred(k).sbody were both from q. By
the local consistency of Γq , PΓq

opred(k).sbody

→
≤ PΓq

opred(j). By Lemma 7, PΓ′q
k.sbody

→
≤

PΓq
opred(k).sbody, and by Lemma 6(4) PΓq

opred(j)

→
≤ PΓ′q

j . Hence, PΓ′q
k.sbody

→
≤ PΓ′q

j . The
case that both opred(j) and and opred(k).sbody were from p is similar.

Suppose instead that opred(j) was from p, but opred(k).sbody was from q.
By the communicative consistency of G, PΓq

opred(k).sbody

→
≤ PΓp

opred(j). By Lemma 7,

PΓ′q
k.sbody

→
≤ PΓq

opred(k).sbody and by Lemma 6(4), PΓp
opred(j)

→
≤ PΓ′q

j . Hence, PΓ′q
k.sbody

→
≤

PΓ′q
j . The case that opred(j) was from q and opred(k).sbody was from p is similar.

Our last invariance result is:

Theorem 3 Let Π be a thread map with a family of annotation maps G that is
locally consistent, communicative consistent, and κ-coherent. Suppose Π −→

con
Π′.

39

Then the updated family of annotation maps G ′ is communicative consistent for
Π′.

Proof. By considering each possible −→
con

-transition and G ′, the updated family
of annotation maps.

For each possible −→
con

-transition, we check the communicative consistency
of the annotation map or maps at each occurrence r : j on the right-hand side,
where r is an arbitrary thread. Assume each transition is as in Figures 6 to 12.
As before, an unprimed Γs is the annotation map for a left-hand side thread s; Γ′s
is the updated annotation map for s on the right-hand side.

case seq/β

As shown in Figure 6, the β-reduction occurs in thread p.

Suppose Fun(r : j).

We want to show that if θΓ′r
r:j = escape±, then G ′ is distributed remote-

expectant at r : j. Assume the condition holds. Since no communication
between threads occurs, opred(r : j) is in the thread r on the left-hand side.
By Lemma 6(4), PΓr

opred(r : j)

→
≤ PΓ′r

r:j, so by the
→
≤-order on propositions, also

θΓr
opred(r : j) = escape±. Since also Fun(opred(r : j)), by the communicative con-

sistency of G, G was distributed remote-expectant at opred(r : j).

Consider a receive() that is a subterm of r : j, say r : j.k, and a send(),
say s : m, such that r : j.k and s : m are possible communications partners. By
Lemma 9, opred(r : j.k) and opred(s : m) were possible communications part-
ners. Note that r : j.k and s : m may be in the same or in different threads.

Suppose that opred(r : j.k) was a subterm of opred(r : j).

Suppose first that opred(s : m) was not a subterm of opred(r : j), includ-
ing the possibility the two occurrences were in different threads. By the distrib-
uted remote-expectancy of G at opred(r : j), θΓs

opred(s : m).sbody = escape±. By

Lemma 7, PΓ′s
s:m.sbody

→
≤ PΓs

opred(s : m).sbody, so θΓs
opred(s : m).sbody ≤ θ

Γ′s
s:m.sbody. Therefore,

θ
Γ′s
s:m.sbody = escape±. Assume that σΓ′r

r:j.k = reach±. Since a receive() is not a
value, by Lemma 6(5), PΓr

opred(r : j.k) = PΓ′r
r:j.k. Hence, σΓr

opred(r : j.k) = reach±. Then
by the distributed remote-expectancy of G at opred(r : j), ωΓr

opred(r : j.k) = local±.

So also ωΓ′r
r:j.k = local±.

Now suppose that opred(s : m) was a subterm of opred(r : j). There-
fore, s = r. In this case, it must have been that opred(r : j) was duplic-
ated by the β-reduction. The application operand i.rand must have contained
opred(r : j), and the operand must have been substituted for a pair of free
occurrences of the operator binder [[i.rator.bv]] in the operator body. By the
local consistency of Γr, νΓr

i.rator.bv = ∞. By the nonlinear-expectancy of Γr at

40

r : j, θΓr
opred(r : m).sbody = escape±. By Lemma 7, PΓ′r

r:m.sbody

→
≤ PΓr

opred(r : m).sbody,

so θΓr
opred(r : m).sbody ≤ θ

Γ′r
r:m.sbody. So also θ

Γ′r
r:m.sbody = escape±. Now assume

that σΓ′r
r:j.k = reach±. Since a receive() is not a value, by Lemma 6(5),

PΓr
opred(r : j.k) = PΓ′r

r:j.k. Hence also σΓr
opred(r : j.k) = reach±. Then by the nonlinear-

expectancy of Γr at opred(r : j), ωΓr
opred(r : j.k) = local±. So also ωΓ′r

r:j.k = local±.

Suppose instead that opred(r : j.k) was a subterm of the substituted operand.
We can show that in Γr, the operand had a θ-annotation of escape±. Therefore,
G was distributed remote-expectant at the operand. From here, we can reason as
in the case that opred(r : j.k) was a subterm of opred(r : j). We can distinguish
the situations where opred(s : m) was and was not a subterm of the operand.

We may reverse the roles of r : j.k and s : m, so that the former is a send()
and the latter is a receive(). A similar analysis gives the desired result.

Suppose App(r : j).

We wish to show that for all s 6= r, for all k such that lab(s : k) ∈ φΓ′r
r:j.rator,

that PΓ′r
r:j.rand

→
≤ PΓ′s

s:k.bv and PΓ′s
s:k.body

→
≤ PΓ′r

r:j.

Consider such a function occurrence s : k. By Lemma 7 and the
→
≤-order

on propositions, φ
Γ′r
r:j.rator ⊆ φΓr

opred(r : j).rator. By Lemma 6(2), lab(s : k) =
lab(opred(s : k)), so lab(opred(s : k)) ∈ φΓr

opred(r : j).rator. Note that opred(s : k)
and opred(r : j) were in different threads on the left-hand side. By the commu-
nicative consistency of G, PΓr

opred(r : j).rand

→
≤ PΓs

opred(s : k).bv and PΓs
opred(s : k).body

→
≤

PΓr
opred(r : j). By Lemma 7, PΓ′r

r:j.rand

→
≤ PΓr

opred(r : j).rand. Since opred(s : k).bv can-

not have been the site of a substitution, by Lemma 8(2), PΓ′s
s:k.bv = PΓs

opred(s : k).bv.

Therefore, PΓ′r
r:j.rand

→
≤ PΓ′s

s:k.bv. By Lemma 7, PΓs
s:k.body

→
≤ PΓs

opred(s : k).body. By

Lemma 6(4), PΓr
opred(r : j)

→
≤ PΓ′r

r:j. Hence PΓ′s
s:k.body

→
≤ PΓ′r

r:j.

Suppose RFork(r : j).

First we want to show that for all s and k such that lab(s : k) ∈ φΓ′r
r:j.rffun, that

G ′ is distributed remote-expectant at s : k.

Choose any such occurrence s : k. opred(r : j) was an occurrence of an
rfork() in the r thread on the left-hand side. By Lemma 7, PΓ′r

r:j.rffun

→
≤

PΓr
opred(r : j).rffun. Therefore, φΓ′r

r:j.rffun ⊆ φΓr
opred(r : j).rffun. Also, by Lemma 6(2),

lab(s : k) = lab(opred(s : k)). So lab(opred(s : k)) ∈ φΓr
opred(r : j).rffun. By

the communicative consistency of G, G was distributed remote-expectant at
opred(s : k). From here, we may reason as we did in the Fun subcase for the
distributed remote-expectancy constraint.

Next we want to show that for all s 6= r, for all k such that lab(s : k) ∈ r :

41

j.rffun, that the escape constraints hold in Γ′s at s : k.

Consider such a function occurrence s : k. By Lemma 7, PΓ′r
r:j.rffun

→
≤

PΓr
opred(r : j).rffun. So φ

Γ′r
r:j.rffun ⊆ φΓr

opred(r : j).rffun. Also, by Lemma 6(2),
lab(opred(s : k)) = lab(s : k), so lab(opred(s : k)) ∈ φΓr

opred(r : j).rffun. By the
communicative consistency of G, the escape constraints held at opred(s : k). Now,
if s 6= p, then the s thread is the same on both sides of the transition, and Γs = Γ′s,
so clearly the escape constraints must also hold at s : k. But suppose s = p. In
this case, as we showed for Theorem 2 in the Fun case for a seq/β transition, if the
escape constraints held at the occurrence predecessor of a right-hand side function
occurrence, then the escape constraints also hold at the function occurrence itself.

Suppose Receive(r : j).

We want to show that for all s 6= r, for all k such that Send (s : k), if r : j
and s : k are possible communications partners, then (1) PΓ′s

s:k.sbody

→
≤ PΓ′r

r:j, and (2)
procΠ′(r) 6= procΠ′(s) implies θΓ′s

s:k.sbody = escape±, and if σΓ′s
r:j = reach±, then

ωΓ′s
r:j = local±.

By Lemma 9, opred(r : j) and opred(s : k) were also communications part-
ners. Since these occurrence predecessors were also in the r and s threads, re-
spectively, by the communicative consistency of G, PΓs

opred(s : k).sbody

→
≤ PΓr

opred(r : j).

By Lemma 7, PΓ′s
s:k.sbody

→
≤ PΓs

opred(s : k).sbody. By Lemma 6(4), PΓr
opred(r : j)

→
≤ PΓ′r

r:j.

Hence, PΓ′s
s:k.sbody

→
≤ PΓ′r

r:j.

Now suppose procΠ′(r) 6= procΠ′(s). Then also procΠ(r) 6= procΠ(s). By
the communicative consistency of G, θΓs

opred(s : k).sbody = escape±. By Lemma 7,

PΓ′s
s:k.sbody

→
≤ PΓs

opred(s : k).sbody. By the
→
≤-order on propositions, also θ

Γ′s
s:k.sbody =

escape±. Since a receive() cannot be a value substitution, PΓs
opred(r : j) = PΓ′s

r:j.

Assume σΓ′s
r:j = reach±. Then also σΓs

opred(r : j) = reach±. By the communicative

consistency of G, ωΓs
opred(r : j) = local±. So also ωΓ′s

r:j = local±.

case seq/cond-true

We omit the similar seq/cond-false case.

Suppose Fun(r : j).

We want to show that if θΓ′r
r:j = escape±, then G ′ is distributed remote-

expectant at r : j. We can use almost the same analysis as in the seq/β case.
Since the conditional reduction does not involve substitution for a free variable,
if we have an occurrence r : j.k that is a subterm of r : j, then opred(r : j.k) is
certainly a subterm of opred(r : j). Also, if an occurrence s : m is not a subterm
of r : j, then opred(s : m) is certainly not a subterm of opred(r : j). There-
fore, we can exclude some of the possibilities we considered in the seq/β case. In

42

particular, we need not consider the possibility of duplicated terms.

Suppose App(r : j).

Use the same reasoning as in the App subcase for seq/β transitions.

Suppose RFork(r : j).

First we wish to show that for all s and k such that lab(s : k) ∈ φ
Γ′r
r:j.rffun,

that G ′ is distributed remote-expectant at s : k. As in the Fun subcase above, we
may follow the reasoning used in the seq/β case for the Fun and RFork subcases,
excluding the irrelevant situations.

Next, we wish to show that for all s 6= r, for all k such that lab(s : k) ∈ r :
j.sbody, that the escape constraints hold in Γ′s at s : k.

Consider such a function occurrence s : k. We can show that
lab(opred(s : k)) ∈ φΓr

opred(r : j).sbody. By the communicative consistency of G,
the escape constraints held at opred(s : k). If s 6= p, then the s term is the same
on both sides of the transition, also Γs = Γ′s, so the escape constraints hold at
s : k. Suppose instead s = p. As we showed in Theorem 2 in the Fun subcase
for a seq/cond-true transition, if the escape constraints held at the occurrence
predecessor of a right-hand function occurrence, such as s : k, then the escape
constraints also hold at the function occurrence itself.

Suppose Receive(r : j).

Use the same reasoning as in the Receive subcase for seq/β transitions.

case channel

We have G = G ′. All that is different between the left-hand and right-hand
sides is the fresh channel constant in the thread p, which replaces an occurrence of
channel(). The only communicative consistency constraint that might apply to
that channel constant is the escape constraint that applies to channel constants in
function bodies. Since the context hole in the p thread cannot be in the body of
the function, in fact that constraint does not apply. Since G was communicative
consistent, so is G ′.

case fork

Suppose Fun(r : j).

We want to show that if θΓ′r
r:j = escape±, then G ′ is distributed remote-

expectant at r : j. Assume the condition holds. Now, opred(r : j) may be
from the thread r, but if r is the child thread, then opred(r : j) is an occurrence
in the parent thread. In Figure 10, p is the parent thread. Let r′ be the left-hand
side thread containing opred(r : j), so either r′ = r or r′ = p. By Lemma 6(4),
PΓr′

opred(r : j)

→
≤ PΓ′r

r:j , so also θΓr′
opred(r : j) = escape±. By the communicative consist-

ency of G, G was distributed remote-expectant at opred(r : j).

43

Consider a receive() that is a subterm of r : j, say r : j.k, and a send()
occurrence, say s : m, that is not a subterm of r : j. As usual, the situation where
the send() is a subterm of r : j and the receive() is not a subterm is similar.
Assume the occurrences are possible communications partners. By Lemma 9,
opred(r : j.k) and opred(s : m) were possible communications partners.

Now, opred(r : j.k) and opred(s : m) may have been in in the same or in
distinct threads on the left-hand side. In either case, however, opred(r : j.k) is
certainly a subterm of opred(r : j), and opred(s : m) was certainly not a subterm
of opred(r : j). This is the same situation we had in the seq/cond-true case, so
the reasoning we used there for this constraint applies.

Suppose App(r : j).

We want to show that for all s 6= r, for all k such that lab(s : k) ∈ φΓ′r
r:j.rator,

that PΓ′r
r:j.rand

→
≤ PΓ′s

s:k.bv and PΓ′s
s:k.body

→
≤ PΓ′r

r:j.

Consider a function occurrence s : k such that lab(s : k) ∈ φΓ′r
r:j.rator. If

opred(r : j) and opred(s : k) are in distinct threads on the left-hand side, then
use the same reasoning as in the App subcases for seq/β and seq/cond-true
transitions.

If opred(r : j) and opred(s : k) are not in distinct threads, then they must
both have been occurrences in the parent thread p. We know App(opred(r : j)).
By Lemma 7 and the

→
≤-order on propositions, φ

Γ′r
r:j.rator ⊆ φ

Γp
opred(r : j).rator.

By Lemma 6(2), lab(s : k) = lab(opred(s : k)), so lab(opred(s : k)) ∈
φ

Γp
opred(r : j).rator. Therefore, by the local consistency of Γp, PΓp

opred(r : j).rand

→
≤

PΓp
opred(s : k).bv and PΓp

opred(s : k).body

→
≤ PΓp

opred(r : j). By Lemma 7, PΓ′r
r:j.rand

→
≤

PΓp
opred(r : j).rand. opred(s : k).bv cannot have been the site of a substitution,

so by Lemma 8(2), PΓ′s
s:k.bv = PΓp

opred(s : k).bv. Therefore, PΓ′r
r:j.rand

→
≤ PΓ′s

s:k.bv. By

Lemma 7, PΓs
s:k.body

→
≤ PΓp

opred(s : k).body. By Lemma 6(4), PΓp
opred(r : j)

→
≤ PΓ′r

r:j. Hence,

PΓ′s
s:k.body

→
≤ PΓ′r

r:j.

Suppose RFork(r : j).

First we wish to show that for all s and k such that lab(s : k) ∈ φΓ′r
r:j.rffun, that

G ′ is distributed remote-expectant at s : k.

Choose any such occurrence s : k. As in the seq/β and seq/cond-true cases,
we can show that G was distributed remote-expectant at opred(s : k). From here,
we may reason as in the seq/cond-true case, observing that there is no possibility
of term duplication.

Next, we show that for all s 6= r and all k such that lab(s : k) ∈ φΓ′r
r:j.rffun, that

the escape constraints hold in Γ′s at s : k.

44

Consider such a function occurrence s : k. Let r′ be the thread where
opred(r : j) occurred on the left-hand side. We can show, as in the seq/β and
seq/cond-true cases, that lab(opred(s : k)) ∈ φΓr′

opred(r : j).rffun.

Suppose opred(r : j) and opred(s : k) were occurrences in distinct threads
on the left-hand side. Then by the communicative consistency of G, the escape
constraints held at opred(s : k). As we showed in Theorem 2 in the Fun subcase
for fork transitions, since the escape constraints held at opred(s : k), the escape
constraints also hold at s : k.

On the other hand, suppose opred(r : j) and opred(s : k) were both in the
parent thread p on the left-hand side. Then by the local consistency of Γp, the
escape constraints held at opred(s : k). So again, the escape constraints also hold
at s : k.

Suppose Receive(r : j).

We want to show that for all s 6= r, for all k such that Send (s : k), if r : j
and s : k are possible communications partners, then (1) PΓ′s

s:k.sbody

→
≤ PΓ′r

r:j, and (2)
procΠ′(r) 6= procΠ′(s) implies that θΓ′s

s:k.sbody = escape± and that σΓ′s
r:j = reach±

implies ωΓ′s
r:j = local±.

By Lemma 9, opred(r : j) and opred(s : k) were also possible communica-
tions partners. Suppose these occurrence predecessors were in distinct threads.
Then by the communicative consistency of G, PΓs′

opred(s : k).sbody

→
≤ PΓr′

opred(r : j),
where s′ and r′ are the appropriate left-hand side threads. By Lemma 7,
PΓ′s
s:k.sbody

→
≤ PΓs′

opred(s : k).sbody. By Lemma 6(4), PΓr′
opred(r : j)

→
≤ PΓ′r

r:j. Therefore,

PΓ′s
s:k.sbody

→
≤ PΓ′r

r:j.

Suppose instead that these occurrence predecessors were both in the parent
thread p. So by the local consistency of Γp, PΓp

opred(s : k).sbody

→
≤ PΓp

opred(r : j). By

Lemma 7, PΓ′s
s:k.sbody

→
≤ PΓp

opred(s : k).sbody. By Lemma 6(4), PΓp
opred(r : j)

→
≤ PΓ′r

r:j . So

PΓ′s
s:k.sbody

→
≤ PΓ′r

r:j.

Now suppose procΠ′(r) 6= procΠ′(s). Suppose that r and s were also threads
on the left-hand side. In that case, opred(r : j) was in the r thread on the left-
hand side, and opred(s : k) was in the s thread. Also, procΠ(r) 6= procΠ(s), so
we may reason as in the seq/β and seq/cond-true cases for the same constraint.

But suppose that not both of r and s were threads on the left-hand side. One
of r and s must be the child thread, and the other is a thread other than the parent
thread. Suppose r is the child thread. Then on the left-hand side, opred(r : j)
was an occurrence in the parent thread and opred(s : k) was an occurrence in
the s thread. Since procΠ′(r) 6= procΠ′(s) and the child thread runs on the same
processor as its parent, we have procΠ(p) 6= procΠ(s). Suppose instead that s is
the child thread. Then on the left-hand side, opred(s : k) was an occurrence in

45

the parent thread and opred(r : j) was an occurrence in the r thread. So again
procΠ(p) 6= procΠ(r). From this point, we may reason much as in the seq/β and
seq/cond-true cases for this same constraint. Since the occurrence predecessor of
the child thread is in the parent thread, we just need to substitute Γp at relevant
points in the proof in place of Γr or Γs.

case rfork

Suppose Fun(r : j).

Use the same reasoning as in the Fun subcase for fork transitions.

Suppose App(r : j).

Use the same reasoning as in the App subcase for fork transitions.

Suppose RFork(r : j).

Use the same reasoning as in the RFork subcase for fork transitions.

Suppose Receive(r : j).

We want to show that for all s 6= r, for all k such that Send (s : k), if r : j
and s : k are possible communications partners, then (1) PΓ′s

s:k.sbody

→
≤ PΓ′r

r:j, and (2)
procΠ′(r) 6= procΠ′(s) implies θΓ′s

s:k.sbody = escape±, and σΓ′s
r:j = reach± implies

ω
Γ′s
r:j = local±.

For (1), we may reason exactly as in the Receive subcase for fork transitions.

Suppose that procΠ′(r) 6= procΠ′(s). Suppose also that r and s were distinct
threads on the left-hand side. Then procΠ(r) 6= procΠ(s). From here, we may
reason as in the seq/β, seq/cond-true, and fork cases for the same constraint.

But suppose that not both of r and s were threads on the left-hand side. One
of r and s must be the child thread; the other may be the parent thread, or
another thread. If opred(r : j) and opred(s : k) occurred in threads on different
processors, then again we may reason as in the seq/β, seq/cond-true, and fork
cases.

Suppose now that the two occurrence predecessors were in threads on the same
processor.

Suppose that r is the child thread. Then opred(r : j) must have been a sub-
term of the rfork()’d function.

One possibility is that opred(s : k) is also an occurrence in the parent thread.
opred(s : k) was not a subterm of the rfork()’d function. By the local consist-
ency of Γp, Γp was remote-expectant at the rfork()’d function. By Lemma 9,
opred(r : j) and opred(s : k) were possible communications partners. By the
remote-expectancy of Γp, θ

Γp
opred(s : k).sbody = escape±. By Lemma 7, PΓ′s

s:k.sbody

→
≤

46

PΓp
opred(s : k).sbody. By the

→
≤-order on propositions, also θΓ′s

s:k.sbody = escape±.

Assume σΓ′r
r:j = reach±. Since a receive() is not a value, by Lemma 6(5),

PΓr
r:j = PΓ′p

opred(r : j). So also σ
Γp
opred(r : j) = reach±. By the remote-expectancy

of Γp, ω
Γp
opred(r : j) = local±. So also ωΓ′r

r:j = local±.

The other possibility is that opred(s : k) is an occurrence in a thread different
from the parent thread, but running on the same processor as the parent thread.
In this case, the distributed remote-expectancy of G at the rfork()’d function
gives the desired results.

Suppose s is the child thread. Therefore, opred(s : k) must have been a sub-
term of the rfork()’d function.

One possibility is that opred(r : j) is also an occurrence in the parent thread.
opred(r : j) was not a subterm of the rfork()’d function. From here, we may
reason as in the case that r is the child thread, and opred(s : k) was also in the
parent thread.

The other possibility is that opred(r : j) is an occurrence in a thread different
than the parent thread, but running on the same processor as the parent thread.
Once more, the distributed remote-expectancy of G at the rfork()’d function
gives the desired results.

case comm

Suppose Fun(r : j).

We want to show that if θΓ′r
r:j = escape±, then G ′ is distributed remote-

expectant at r : j. Assume the condition holds. Since a value is transmitted,
opred(r : j) may be from a left-hand side thread other than r. Let r′ be the
thread in which opred(r : j) occurs. By Lemma 6(4), PΓr′

opred(r : j)

→
≤ PΓ′r

r:j, so by

the
→
≤-order on propositions, also θΓr′

opred(r : j) = escape±. By the communicative
consistency of G, G was distributed remote-expectant at opred(r : j).

Consider a receive() that is a subterm of r : j, say r : j.k, and a send()
occurrence, say s : m, that is not a subterm of r : j. As in the seq/cond-true,
fork, and rfork cases, opred(r : j.k) must have been a subterm of opred(r : j),
and opred(s : m) must not have been a subterm of opred(r : j). Therefore, we
may use the same reasoning as in those cases for this constraint. Reversing the
roles of r : j.k and s : m allows to obtain the desired results by a similar analysis.

Suppose App(r : j).

We wish to show that for all s 6= r, for all k such that lab(s : k) ∈ φΓ′r
r:j.rator,

that PΓ′r
r:j.rand

→
≤ PΓ′s

s:k.bv and PΓ′s
s:k.body

→
≤ PΓ′r

r:j.

Consider such a function occurrence s : k. Now, opred(r : j) could have been

47

in a thread other than r on the left-hand side. Let r′ be that thread. By Lemma 7
and the ordering on propositions, φΓ′r

r:j.rator

→
≤ φ

Γr′
opred(r : j).rator. By Lemma 6(2),

lab(s : k) = lab(opred(s : k)), so lab(opred(s : k)) ∈ φΓr′
opred(r : j).rator. Note that

opred(s : k) and opred(r : j) may have been in the same or in different threads
on the left-hand side.

Suppose opred(s : k) and opred(r : j) were in different threads on the left-
hand side. Let s′ be the thread in which opred(s : k) occurs. By the commu-
nicative consistency of G, PΓr′

opred(r : j).rand

→
≤ PΓs′

opred(s : k).bv and PΓs′
opred(s : k).body

→
≤

PΓr′
opred(r : j). By Lemma 7, PΓ′r

r:j.rand

→
≤ PΓr′

opred(r : j).rand. Since opred(s : k).bv can-

not have been the site of a substitution, by Lemma 8(2), PΓ′s
s:k.bv = PΓs′

opred(s : k).bv.

Therefore, PΓ′r
r:j.rand

→
≤ PΓ′s

s:k.bv. By Lemma 7, PΓs
s:k.body

→
≤ PΓs′

opred(s : k).body; by

Lemma 6(4), PΓr′
opred(r : j)

→
≤ PΓ′r

r:j. Hence, PΓ′s
s:k.body

→
≤ PΓ′r

r:j.

Now suppose opred(s : k) and opred(r : j) were in the same thread on the
left-hand side. Let t be that thread. The analysis is similar to that in the last
paragraph, except that we rely on the local consistency of Γt instead of the com-
municative consistency of G.

Suppose RFork(r : j).

We wish to show that for all s and k such that lab(s : k) ∈ φΓ′r
r:j.rffun, that G ′ is

distributed remote-expectant at s : k.

Choose any such occurrence s : k. Let r′ be the thread in which opred(r : j)
occurred. We can show that lab(opred(s : k)) ∈ φ

Γr′
opred(r : j).rffun, so G was dis-

tributed remote-expectant at opred(s : k). From here, the analysis is as in the
Fun subcase for this constraint.

Next, we wish to show that for all s 6= r, for all k such that lab(s : k) ∈ r :
j.sbody, that the escape constraints hold at s : k.

Consider such a function occurrence s : k. Let r′ be the left-hand side
thread where opred(r : j) occurs. We can show, as in previous cases for the
same constraint, that lab(opred(s : k)) ∈ φ

Γr′
opred(r : j).sbody. If opred(r : j) and

opred(s : k) were in different threads, then by the communicative consistency of
G, the escape constraints held at opred(s : k). If they were in the same thread
r′, then the escape constraints held at opred(s : k) by the local consistency of
Γr′ . As we showed in Theorem 2 in the Fun subcase for a comm transition, if
the escape constraints held at the occurrence predecessor of a right-hand function
occurrence, such as s : k, then the escape constraints also hold at the function
occurrence itself.

Suppose Receive(r : j).

We want to show that for all s 6= r, for all k such that Send (s : k), and r : j

48

and s : k are possible communications partners, that (1) PΓ′s
s:k.sbody

→
≤ PΓ′r

r:j , and (2)
procΠ′(r) 6= procΠ′(s) implies θΓ′s

s:k.sbody = escape±, and if σΓ′s
r:j = reach±, then

ωΓ′s
r:j = local±.

Choose any such s : k. By Lemma 9, opred(r : j) and opred(s : k) were also
communications partners. Suppose these occurrence predecessors were in differ-
ent threads. Then by the communicative consistency of G, PΓs′

opred(s : k).sbody

→
≤

PΓr′
opred(r : j), where s′ and r′ are the appropriate left-hand side threads. By

Lemma 7, PΓ′s
s:k.sbody

→
≤ PΓs′

opred(s : k).sbody. By Lemma 6(4), PΓr′
opred(r : j)

→
≤ PΓ′r

r:j . There-

fore, PΓ′s
s:k.sbody

→
≤ PΓ′r

r:j.

The only other possibility is that the occurrence predecessors were both in
the send()’ing thread p. So by the local consistency of Γp, PΓp

opred(s : k).sbody

→
≤

PΓp
opred(r : j). By Lemma 7, PΓ′s

s:k.sbody

→
≤ PΓp

opred(s : k).sbody. By Lemma 6(4),

PΓp
opred(r : j)

→
≤ PΓ′r

r:j. Hence PΓ′s
s:k.sbody

→
≤ PΓ′r

r:j.

Suppose that procΠ′(r) 6= procΠ′(s). Suppose also that opred(r : j) and
opred(s : k) were in distinct threads on different processors on the left-hand side.
Then we may reason as in previous cases for the same constraint.

Suppose instead that opred(r : j) and opred(s : k) were in the same thread,
or in different threads on the same processor, on the left-hand side. Then on the
right-hand side, at least one of r : j and s : k must be running on a processor
different than its occurrence predecessor. Therefore, at least one of opred(r : j)
and opred(s : k) must have been a subterm of the transmitted value. But if both
opred(r : j) and opred(s : k) were such subterms, then on the right-hand side,
r : j and s : k would be occurrences in the same thread. Therefore, exactly one
of opred(r : j) and opred(s : k) was a subterm of transmitted value. Also, the
transmitted value must have been a function.

Consider the communicating send() and receive() on the left-hand side.
They must have been in distinct threads on different processors. By the κ-
coherence of G, the intersection of the κ annotations of the channel-parts of the
send() and receive() was non-empty. So by the communicative consistency of
G, the transmitted function, which was the body of the send(), had a θ annotation
of escape±.

There are now two possibilities to consider: (1) that opred(r : j) and
opred(s : k) were both occurrences in the send()’ing thread p, and (2) that one
of opred(r : j) and opred(s : k) was an occurrence in p, and the other occurred
in some other left-hand side thread.

In the case of (1), by local consistency, Γp was remote-expectant at the trans-
mitted function. Regardless of which of opred(r : j) and opred(s : k) was the
subterm of the transmitted function, by remote-expectancy, θΓp

opred(s : k).sbody =

49

escape±. By Lemma 7, PΓ′s
s:k.sbody

→
≤ PΓp

opred(s : k).sbody, so θΓ′s
s:k.sbody = escape±.

Assume now that σΓ′r
r:j = reach±. Since a receive() is not a value, PΓ′r

r:j =
PΓp

opred(r : j). Hence, by remote-expectancy, ωΓp
opred(r : j) = local±, and also ωΓ′r

r:j =
local±.

For (2), by the communicative consistency of G, G was distributed remote-
expectant at the transmitted function. From here, we may reason as we did for
(1), except that the annotation for one of the occurrence predecessors is not given
by Γp, but by the annotation map for some other left-hand side thread.

13 Soundness

Any solution to the local consistency and communicative consistency constraints
that is also κ-coherent is sound. Our main result is:

Theorem 4 (Soundness) Let Π be a thread map with a family of annotation
maps G that is locally consistent, communicative consistent, and κ-coherent. If
Π −→∗

con
Π′, then Π −→∗

con
Π′ |= G.

Proof. By Theorems 2 and 3.

Let p : i be an occurrence of channel() in Π that G gives a ω annotation of
local+. Let Π′′ be any intermediate thread map in the evaluation, possibly the
same as Π′. Suppose there is an occurrence s : n of a channel constant k in Π′′,
such that s : n was produced by p : i in Π, and s : n is the channel-part subterm
of a send() or the channel-part subterm of a receive(). Suppose further that
s : n was directly produced by some r : m in a thread map Π′′′ preceding Π′′ in
the evaluation. Then procΠ′′(s) = procΠ′′′(r).

Assume instead that procΠ′′(s) 6= procΠ′′′(r). Then at least one of the follow-
ing must occur in the evaluation Π′′′ −→+

con
Π′′:

1. an occurrence of k was a subterm of an rfork()’d function

2. an occurrence of k was a subterm of a function transmitted between threads
on different processors

3. an occurrence of k itself was transmitted between threads on different pro-
cessors

Each of (1), (2), and (3) represents a −→
con

-transition with an occurrence of
k in a thread on the left-hand side. Consider the family of annotation maps for
the thread map on the left-hand side of the transition, given by updating the
family of annotation maps at each preceding step, starting with G. We claim

50

that in each of these situations, the σ annotation for the occurrence of k must be
reach±. By iterating Theorem 2, we can produce a locally consistent family of
annotation maps for Π′′. In Π′′, since k is a channel-part subterm of a send() or
receive(), it has a σ annotation of reach±. The occurrence of k in (1), (2), or
(3) is an occurrence predecessor of the k in Π′′. By iterating Lemma 6(4), and
using the

→
≤-order on propositions, the occurrence of k in (1), (2), or (3) also has

a σ annotation of reach±, as claimed.

Suppose (1) happens.

By Theorem 2, we can obtain a locally-consistent annotation map for the
thread containing the rfork(). By local consistency, the label of the rfork()’d
function must have been an element of φ for the function-part of the rfork().
As we have stated, the σ annotation for the occurrence of k in that function
was reach±. By local consistency, that occurrence of k also had a ω-annotation of
local±. By Lemma 6(4) and the transitivity of the

→
≤ relation on propositions, any

occurrence predecessor of this k also had a ω-annotation of local±. In particular,
the occurrence of k in the thread map where it was created had a ω-annotation
of local±. By the specification of annotation map updates, the occurrence r :
m of channel() also had a ω-annotation of local±. By Lemma 6(4) and the
transitivity of the

→
≤ relation on propositions, any occurrence predecessor of r : m,

including p : i, also must have had a ω-annotation of local±. This contradicts our
supposition that p : i had a ω annotation of local+. So (1) cannot happen.

Suppose (2) happens.

Consider the transmitted function that is the body of the send(). By the
κ-coherence and communicative consistency of the family of annotation maps in
which the send()’ing thread occurs, the θ annotation for the transmitted function
is escape±. So by the local consistency of the annotation map for that thread, the
ω annotation for the occurence of k in the function body must be local±. From
here, we can reason as in the previous case to derive a contradiction. Therefore,
(2) cannot happen.

Suppose (3) happens.

Consider the occurrence of the receive() that participates in the commu-
nication. By the κ-coherence and communicative consistency of the family of
annotation maps in which the send()’ing thread occurs, if the σ annotation for
the receive() is reach±, then its ω annotation is local±. By the specification of
annotation map updates, the proposition for a transmitted value on the right-hand
side of a comm transition is the same as that for the participating receive()
occurrence. We have shown that the σ annotation for the channel constant on the
right-hand side of the transition is reach±. Therefore, the σ annotation for the
receive() on the left-hand side of the transition is reach±. By the κ-coherence
and communicative consistency of the family of annotation maps in which the

51

receive() thread occurs, the receive()’s ω annotation is local±. Therefore, the
ω annotation for the channel constant k on the right-hand side of the transition
is also local±. Again we can derive a contradiction, so (3) cannot happen.

14 Related work

Many authors have described constraint-based static analyses. Besides our own
work already cited, see, for example, Heintze’s Ph.D. work on set-based analysis
[2] and Palsberg and Schwartzbach’s safety analysis [11].

Most work on static analysis for concurrent programs is relatively new. Peng
and Purushothaman presented a dataflow analysis to detect deadlock for com-
municating automata [12]. Reif and Smolka describe analyses for a language of
communicating processes with both fixed and dynamic communication topologies
[13]. Their methods are extensions of conventional dataflow analysis techniques for
sequential languages. Mercouroff used abstract interpretation to determine which
processes may communicate in a CSP-like language [7]. More recently, Jagan-
nathan and Weeks have used abstract interpretation to analyze a higher-order
language with communication using shared locations [3]. Nielson and Nielson
have done a variety of recent work using enhanced type systems [10][9]. Colby
uses abstract interpretation to determine the communications topology of con-
current programs [1]. Our κ annotations give us similar information, although
Colby’s is a finer, polyvariant analysis.

The linearity component of our propositions is similar in spirit to the usage
analysis of Turner, et al., which tracks the number of uses of a term using an ex-
tended Hindley-Milner type system [18], although our purposes are quite different.

To aid in source-level debugging of programs, Tip associates terms with earlier
terms in a rewrite system [17]. This technique appears similar to our use of
occurrence predecessors.

15 Conclusion

We have given a constraint-based static analysis for programs in a concurrent lan-
guage that is provably sound. As far as we know, this is the first constraint-based
static analysis for a concurrent language. Our proof method relies on showing
that given a solution to the constraints for the original program, we may produce
solutions at every transition step. As usual in such analyses, there are constraints
between the annotations of occurrences in individual terms. Because data flows
between threads, there are also constraints between the annotations of occurrences
in different threads.

52

We think this style of proof can support many different analyses for languages
with small-step operational behavior, whether sequential or concurrent. An open
challenge is whether such an analysis can justify more complex program trans-
formations.

Our analysis detects occurrences of the channel() primitive that produce dy-
namic channels certain to be used only on the same processor where they are
created. Another useful analysis would be to detect local references – those ref-
erences which are read or mutated only on the processor where they are created.
Such an analysis would be very similar to the one here.

16 Acknowledgments

David N. Turner pointed us to the right notion of locality and convinced us to
formulate the analysis using a value-passing operational semantics.

References

[1] Christopher Colby. Analyzing the communication topology of concurrent pro-
grams. In ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manupulation, pages 202–14, June 1995.

[2] Nevin Heintze. Set Based Program Analysis. PhD thesis, Carnegie-Mellon
University, October 1992.

[3] Suresh Jagannathan and Stephen Weeks. Analyzing stores and references in
a parallel symbolic language. In Proc. ACM Conf. on Lisp and Functional
Programming, pages 294–306, 1994.

[4] Karoline Malmkjaer, Nevin Heintze, and Olivier Danvy. ML partial evaluation
using set-based analysis. In 1994 ACM SIGPLAN Workshop on ML and its
Applications, pages 112–19, Orlando, Florida, June 1994.

[5] David C.J. Matthews. A distributed concurrent implementation of standard
ML. LFCS Report Series ECS-LFCS-91-174, University of Edinburgh, August
1991.

[6] David C.J. Matthews and Thierry Le Sergent. LEMMA: A distributed shared
memory with global and local garbage collection. In Henry Baker, editor,
Proc. Intl. Workshop in Memory Management, Lecture Notes in Computer
Science, pages 297–311. Springer-Verlag, September 1995.

[7] N. Mercouroff. An algorithm for analyzing communicating processes. In
Mathematical Foundations of Programming Semantics, volume 598 of Lecture

53

Notes in Computer Science, pages 312–25, Berlin, Heidelberg, and New York,
1991. Springer-Verlag.

[8] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, MA, 1989.

[9] Flemming Nielson and Hanne Riis Nielson. Constraints for polymorphic be-
haviours of concurrent ML. In Proc. Constraints in Computational Logic
’94, number 845 in Lecture Notes in Computer Science, pages 73–88, Berlin,
Heidelberg, and New York, September 1994. Springer-Verlag.

[10] Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent programs
with finite communication topology. In Conference Record of 21st ACM Sym-
posium on Principles of Programming Languages , pages 84–97, January 1994.

[11] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type in-
ference. Information and Computation, 118(1):128–41, April 1995.

[12] Wuxu Peng and S. Purushothaman. Towards dataflow analysis of commu-
nicating finite state machines. In Proc. 8th Annual ACM Symposium on
Principles of Distributed Computing, pages 45–58, August 1989.

[13] John H. Reif and Scott A. Smolka. Data flow analysis of distributed commu-
nicating processes. Intl. J. of Parallel Programming, 19(1):1–30, 1990.

[14] J.H. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University, 1992.
Report 92-1285.

[15] Paul Steckler and Mitchell Wand. Selective thunkification. In Baudouin Le
Charlier, editor, Proceedings of the 1st International Static Analysis Sym-
posium, volume 864 of Lecture Notes in Computer Science, pages 162–78,
Berlin, Heidelberg, and New York, 1994. Springer-Verlag.

[16] Paul Steckler and Mitchell Wand. Tracking available values for lightweight
closures (summary). In Neil Jones and Carolyn Talcott, editors, Proc. At-
lantique Workshop on Semantics Based Program Manipulation, pages 63–70,
1994. Available as DIKU Report No. 94/12, University of Copenhagen.

[17] Frank Tip. Generic techniques for source-level debugging and dynamic
program slicing. In Peter D. Mosses, Mogens Nielsen, and Michael I.
Schwartzbach, editors, Proc. TAPSOFT ’95, number 915 in Lecture Notes
in Computer Science, pages 516–30, Berlin, Heidelberg, and New York, May
1995. Springer-Verlag.

[18] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In
Proc. 7th Intl. Conf. on Functional Programming and Computer Architecture,
pages 1–11, June 1995.

54

[19] Mitchell Wand and Paul Steckler. Selective and lightweight closure conver-
sion. In Conference Record of 21st ACM Symposium on Principles of Pro-
gramming Languages, pages 435–45, 1994.

55

