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Abstract

This thesis takes a pedagogical stance in demonstrating how results from theoretical
computer science may be applied to yield significant insight into the behaviour of the
devices computer systems engineering practice seeks to put in place, and that this is
immediately attainable with the present state of the art. The focus for this detailed
study is provided by the type of solid state signalling systems currently being deployed
throughout mainline British railways. Safety and system reliability concerns dominate
in this domain. With such motivation, two issues are tackled: the special problem
of software quality assurance in these data-driven control systems, and the broader
problem of design dependability. In the former case, the analysis is directed towards
proving safety properties of the geographic data which encode the control logic for the
railway interlocking; the latter examines the fidelity of the communication protocols
upon which the distributed control system depends.

The starting point for both avenues of attack is a mathematical model of the in-
terlocking logic that is derived by interpreting the geographic data in process algebra.
Thus, the emphasis is on the semantics of the programming language in question, and
the kinds of safety properties which can be expressed as invariants of the system’s
ongoing behaviour. Although the model so derived turns out to be too concrete to
be effectual in program verification in general, a careful analysis of the safety proof
reveals a simple co-induction argument that leads to a highly efficient proof methodo-
logy. From this understanding it is straightforward to mechanise the safety arguments,
and a prototype verification system is realised in higher-order logic which uses the
proof tactics of the theorem prover to achieve full automation.

The other line of inquiry considers whether the integrity of the overall design that
coordinates the activities of many concurrent control elements can be compromised.
Therefore, the formal model is developed to specifically answer safety-related con-
cerns about the protocol employed to achieve distributed control in the management of
larger railway networks. The exercise reveals that moderately serious design flaws do
exist, but the real value of the mathematical model is twofold: it makes explicit one’s
assumptions about the conditions under which the faults can and cannot be activated,
and it provides a framework in which to prove a simple modification to the design
recovers complete security at negligible cost to performance.
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Chapter 1

Introduction

This thesis presents a study into the application of theoretical computer science to
problems arising in the railway signalling industry. Although the focus is on the type
of computer controlled signalling systems that are currently replacing electromechan-
ical technology throughout mainline British railways, the analysis techniques used and
illustrated here are of a general nature and may be applied in a similar fashion to a
range of data-driven control systems. The technical material in this thesis is presented
in a style which, it is hoped, is sufficiently transparent to be intelligible to practising
engineers seeking to emulate the study. This introductory chapter covers much of the
background needed to establish an intuitive framework which later chapters will build
upon more formally.

1.1 Motivation

While results from this work have already enjoyed both direct and indirect influence in
the given industrial domain, this thesis is mtoutrailway signalling any more than it
is aboutcomputer science itself. Indeed, this work falls somewhere between the needs
of engineering practice on the one hand, and the advancing scientific basis of comput-
ing on the other. That it does so is not really an accident: it is precisely because of the
gulf that exists between the communities of industrial developers of computer based
systems whose work is strongly governed by market imperatives, and academic com-
puter scientists who have hitherto been motivated more by the mathematical elegance
and precision of their theories. Our endeavour is, in a small way, to shed some light
on what lies in between these positions with a particular regard to the application of
notions from theoretical computer science to relevant problems faced by industry.
Appliedtheoretical computer science has, for better or worse, become synonymous
with the term ‘formal methods’. Despite several decades of research in the area, formal
methods have yet to be wholeheartedly incorporated into the development of computer
systems on any scale of design. In the large scale applications that include the control



Chapter 1. Introduction 2

of industrial plant, power generation, aviation and mass transportation, this may be
because the move towards computer dominated solutions to the engineering problems
is a relatively recent development for communities and licensing authorities that have
strong, conservative safety cultures. On the smaller scale, in consumer electronics
say, the financial risks seem too great when formal mathematical techniques towards
software development and system design are difficult to apply in general, currently
impossible to use with only m& understanding of the theory and supporting tools,
and poorly promoted by real, or even realistic, case-studies from which to learn.

The emergence of two relevant industrial standards is thus particularly interest-
ing: MOD 00-55: The Procurement of Safety Critical Software in Defence Equip-
ment[69], andIEC 1131-3: Software for Computers in the Application of Industrial
Safety-Related Systen46]. One of the requirements appearing in the former (In-
terim) standard is the mandatory use of formal methods in projects intended to supply
equipment to the UK Ministry of Defence; the latter standard defines several languages
(e.g, Function Block Diagrams, or Structured Text) that provide software for Program-
mable Logic Controllers (PLC), mainly used in the process control industry. Neither
standard is solely for use within the given sector. However, it is fair to say that the
assemblagef PLC languages defined in IEC 1131-3 seems insufficiently well defined
mathematically for such software to be readily acceptable according to the coding re-
guirements of MOD 00-55. This is a shame since the relative simplicity of the PLC
languagesd.g, when compared to Ada) ostensibly offer excellent opportunities for the
kind of formal design and development anticipated in MOD 00-55.

Interestingly, Halang and lrmer [39] (unintentionally) illustrate one of the key
technical difficulties involved here. Their work addresses the reluctance of licensing
authorities to certify software embedded in process control with a proposal for a formal
software development methodology for PLC programs. The underlying theory is OBJ
through which the authors formalise requirements and functional aspects of the design
specification assembled as a Function Block Diagram. Properties of the specification
can be verified largely automatically with the mechanical support for OBJ, and design
validation is further supported through symbolic execution. A Structured Text program
(Structured Text is a small, procedural tasking language) is then developed and annot-
ated in the sense of Floyd-Hoare logic with assertions drawn from the requirements and
specification documents—the verification conditions derived from the structured text
can also be discharged using OBJ. Practical considerations aside, the main problem
with this development methodology is simply that the relationship between Function
Block Diagrams and Structured Text (and indeed the other PLC languages) is entirely
informal. This reflects the relationship between these languages in the defining IEC
standard.
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Halang and Kamer seriously tackle the crisis in embedded software but there
may yet be some doubt, depending of course on how one interprets the standard,
whether their efforts satisfy the strictures of MOD 00-55. (Similar concerns have also
been voiced about the RAISE wide spectrum language and programming methodo-
logy [23].) While there is no intended cross-reference between the two cited standards,
the point is that neither really grasps the strength of applied theoretical computer sci-
ence. MOD 00-55 is very rigid in its definition of ‘formal methods’ and probably
overestimates the benefit currently to be accrued from, if not the difficulty attending
to, the use of mathematical formalismdevelopingsoftware all the way down from
high-level requirements to detailed code. Although MOD 00-55 addresses software is-
sues only, neither it nor MOD 00-56 [70] with which it is explicitly related, recognise
a potential ole for formal methods in supporting system design as a whole. The IEC
standard, however, underestimates the insight and assurance to be obtained by theor-
etical analysis of programming languages, by clarifying their mathematical definitions
and, in this case, by elaborating the semantics of their interactions. This is a partic-
ular concern for languages intended for use in the burgeoning area of safety critical
computer systems.

Mandating the use of formal methods is certainly one way of getting designers
to use them, but the paucity of guidance of timv-tovariety is evidently a major
stumbling block: the guidance [68] offered on the selection of formal techniques to
use to meet the requirements of MOD 00-55 suggests that case-studies published in the
open literature should already demonstrate their successful industrial application. In
1991 such evidence was thin on the ground even for ‘mainstream’ formal methods like
Z and VDM,; several years later the situation is not much improved, but the publication
of the NIST report by Craigen, Gerhart, and Ralston [22, 23], and the FAA report by
Rushby [83], indicate growing awareness in several key industrial sectors. The former
was commissioned by the (US) National Institute of Science and Technology (and other
bodies) to inform deliberations within industry and government on the potential impact
of formal methods on standards and regulations; the latter report was commissioned
by the (US) Federal Aviation Administration who face the increasingly challenging
task of certifying to very high levels of dependability the computer systems on board
commercial aircraft (in particular).

The NIST report summarises twelve industrial applications of formal methods used
with varying degrees of mathematical rigour on projects of substantial commercial im-
portance. The timescales involved ranged from about nine months (Hewlett-Packard,
Medical Instruments), to about nine years (GEC Alsthom, Railway Signalling). The
projects studied focused mainly on software specification. The GEC case-study was
thought particularly successful: 15,000 lines of formally specified and verified code
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were produced for a signalling system that increased the capacity of one Paris Metro
line by 12,000 passengers per hour (25%), so saving the operators the enormous cost
of constructing a new line to meet the capacity. The success of the project is perhaps
better judged by the fact that GEC Alsthom are presently using the same tools and
software development techniques on similar railway contracts. The Hewlett-Packard
case-study is singled out here for another reason: this produced 4,500 lines of ‘zero
defect’ code (according to the certifier, another branch of the organisation) through
machine supported formal specification, but without proof because the software was
not safety critical. The project was also intended to achieve technology transfer by
promoting the specification language used, but was in this respect an abject failure.

Implicated in the additional costs that arose in the least successful case-study sum-
marised in the NIST report (Ontario Hydro, Tripwire Computer) is the lack of tools
support for the formal method used (the fidelity of the formalism is not otherwise in
guestion). Given such a small sample it would be premature to suppose that there is
in general a relationship between the level of tool support and the costs incurred (or
savings made) in applying formal methods. What several examples in the NIST report
do indicate is that the methodology into which more rigorous mathematical techniques
are introduced is at least as important to the project’s success as the strength of tools
applied. However, perhaps the strongest suggestion Cratganput forwardis that
the standard of tools supporting particularly the deeper applications (where, for ex-
ample, proofs demonstrating the conformance of code to specifications are required
to satisfy licensing authorities) urgently needs to be improved. This may be so, but
begs the question whether there are tangible benefits presently to be obtained through
formal verification at the level of program code: the report does not examine the is-
sue, but the evidence presented hardly convinces one that there are—indeed, it rather
illustrates that theale of formal methods (olormal proo) in the design of complex
systems is as yet poorly understood. Unfortunately the analysis in the NIST report is
guite shallow, and it therefore offers little guidance in these matters.

Rushby [83] on the other hand, offers considerable practical guidance on the uptake
of formal methods in a thorough, and far ranging, survey of current techniques in sup-
port of system (and software) quality control, and assurance. This report is intended
to inform licensing bodies, in particular the FAA, about the strengths and fallibilit-
ies of mathematical formalism in system desigs,well asto inform those seeking
to license critical software-based systems about where in the development lifecycle to
apply formal methods to best effect. The analysis begins with a classification of formal
methods that is given in terms of the degree of rigour attending the mathematical argu-
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ments used in support of system development. In a simplified form:

Level 0 No applied mathematics at all, but perhaps appeal to tabular or diagrammatic
notations, pseudocode, and equations defining transfer funatiens,

Level 1 The use of concepts and notations from discrete mathematics, with proofs
conducted in the traditional, informal style of mathematical discourse.

Level 2 The use of formalised specification languages with mechanised support for
syntax analysis, pretty-printing, and simple type checking.

Level 3 The use of fully formal specification languages with comprehensive support
environments including mechanised theorem proving and proof checking.

Proofs at levels 1 and 2 are conducted in the manner of the rigorous arguments pre-
ferred by mathematicians, although specification formalisms at level 2 may provide
deduction rules that could in principle lead to formalising such arguments; the trans-
ition to level 3 is therefore marked by the provision of theorem provers and the ‘fully
formal’ specification languages alluded to which are firmly rooted in mathematical lo-
gic (making mechanical support a practical necessity), and which have demonstrably
sound axiomatisations.

This classification may not be universally applicable, but it serves Rushby’s pur-
pose which is to examine the likelplg of formal methods in the development life-
cycle and in the certification of critical systems. His conclusions address the aviation
industry specifically, but are quite unequivocal in assertingttieit current best prac-
tise, based as it is on design reviews, inspections and structured walkthroughs, and but-
tressed by various approaches to testing to support verification and validation, appear
to be adequate for the task of producing certifiable software from clearly stated require-
ments and unambiguous specifications. Formal methods should first be applied in the
earlier stages of the lifecycle, with whatever appropriate degrees of rigour, to produce
precise statements of requirements and assumptions, and thoroughly debugged design
specifications. Neither the evidence nor the analysis in the FAA report prioritises the
application of formal methods to the problem of producing code from specifications.

Rushby goes on to argue that the most rigoroes (evel 3) applications of formal
methods should be brought to bear precisely where traditional approaches are appar-
ently least adequate: in designing those aspects of digital (avionic) systems that deal
with the management of hardware redundancy, algorithms to achieve fault tolerance,
and the synchronisation of independent control channels (in particular). The anecdotal
evidence in the NIST report also indicates that the lower level applications of formal
methods €.g, RAISE andZ which are identified explicitly) are particularly weak in
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the specification and analysis of the coordination between concurrent, synchronous, but
often asynchronous and distributed, activities. To apply formal methods with success
at any level to such challenging problems demands intense effort and deep abstractions
in order to gain intellectual control over the task at hand. But then formal methods can,
and indeed as we shall see in later chapdersead to discoveries and insights into the
nature of complex control systems that are quite unapproachable by other means.

Some care has to be exercised in transferring Rushby’s analysis to other industrial
domains however, since the non-existence of a safe state for airborne systems nat-
urally introduces a heightened appreciation of the need for rigour and robust design
throughout the development cycle which may be less marked in other industrial do-
mains. Yet many terrestrial control systems are acutely safety critical and have similar
architectural needs that involve replicated hardware for high availability, independent
data and control channels and voting mechanisms to mask random environmental per-
turbations, and so on. Moreover, there is an important class of control systems that
apparently challenge the notion that formal verification ‘close to the code’ does not
deserve a high priority: these adata-drivencontrol systems. The architecture of
such systems typically consists of a generic hardware platform that executes a generic
read/write loop (or polling cycle) which is parameterised by application specific con-
trol laws manifest in static data that are interpreted to yield appropriate responses to
polled inputs. Such data (though one might as well call them software) may be highly
safety critical in that they govern the behaviour of the control system as a whole; they
therefore demand the most rigorous techniques of analysis (and design).

Large scale examples of data-driven control systems that have been developed in
recent years can be found in the railway signalling industry. A specific example is Brit-
ish Rail's Solid State Interlockingvhich is described in more detail in later sections of
this chapter. Clearly, one of the main attractions of developing data-driven controllers
for highly complex systems such as this is that to a large extent they effect a clean
separation of concerns. On the one hand the computer systems engineering concerns,
such as those identified by Rushby, are focused in the design of the generic hardware
platform and control software. On the other hand the application specific concerns that
can be addressed by domain experts without the need for particular computing skills
are focused in the preparation of the data. In the world of railway signalling the ap-
plication data are instantiated for each network installation—that is, roughly speaking,
for each station—and express logical relationships between the various controlled ele-
ments in the network as well as dynamic relationships between trains and signals, and
the sequencing of signal aspects. Such data vary in the details according to the geo-
graphic layout of the network concerned; then, the generic control software applied to
thesegeographic datyields the desired control function.



Chapter 1. Introduction 7

Unfortunately a complete separation of concerns according to this division between
data and control is rather more ideal than it is commonplace. Complications arise in
the realm of railway signalling from the practical necessity of subdividing the railway
into separate control authorities. One has therefore to design the interfages; or
tocols between physically separated controllers, and this inevitably blurs the division
between what one considers to be application data, and that which is thought of as
generic control softwareSomeayer of the protocol will very likely be expressed in
the application data since it is required to set up communication to enable one control
system to perform specific (within the geography of the network concerned) signalling
functions on behalf of another. But if one wishes to avoid programming timers, queues,
and watchdogs (the stock in trade of protocol design) at the application layer then one
is left with little choice but to encode specific domain knowledge about the nature of
the data transferred, or the functions requested/acknowledged, in the underlying ar-
chitecture. Thus, in order to conceal the interface at the application layer (this might
be construed as a good thing to do) one has to complicate the generic software with
non-generic code.

While this example illustrates something of a paradox in the philosophy of (dis-
tributed) data-driven control, in practice some experimentation leads to a workable
compromise. But this thesis will demonstrate, echoing Rushby’s appeal for the utmost
rigour in precisely this area of system design, that enormous care has to be exercised
in building such interfaces. For when in Chapter 6 our formal analysis is focused on
one of the protocols by which Solid State Interlocking achieves distributed control of
the railway, we shall indeed find subtle (and not-so-subtle) flaws in the overall design.

A second advantage of data-driven controllers is the introduction of application
specific languages in which to express the control functions. A well-known example is
Ladder Logic (or Ladder Diagrams, now standardised in IEC 1131-3) which evolved
in the electrical engineering community as a specification notation for relay circuits
(with delayed feedback). Ladder Logic has found use in interlocking design too, but
with solid state logic gradually replacing the more costly relay logic, more appropri-
ate notations have begun to emerge. An example is British Ra#sgraphic Data
Languagewhich is studied in this thesis. Both these examplesapessively weak
application specific languages are not typically called upon to express more complex
programs than sequences of commands like

IF (conditions THEN (actions

for simple atomic actions like assigning a variable or setting a register, and condi-
tions that are expressed in terms of internal state variables. From the point of view
of software assurance such languages are interesting in several ways. Firstly, because
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they support design abstraction in a notation that is closely integrated with the applic-
ation domain. Secondly, such unsophisticated languages admit precise mathematical
definitions from which compilers and interpreters can be rigorously derived. Finally,
efficient interpretations in formal logic are possible to realiséomaticverification

tools for checking behavioural properties of their programs.

With respect to Solid State Interlocking in particular, one of the problems with data
preparation is that the activity is very much like programming, even to the point that
the specifications are incomplete. For signalling, specifications are giveorixol
tableswhich, loosely, indicate all of the conditions that have to be satisfied before a
signal can be switched from red to green to admit a train into the track section beyond.
These tables have a well defined syntax, and a clear meaning for signalling engineers,
but remain exceedingly difficult to ‘get right'—so difficult, in fact, that some railway
authorities have abandoned control tables as specification documents. Nonetheless
these are used along with other documents by British Rail to guide the production of
their geographic data. In the absence of any means to demonstrate completeness (in
the informal sense, but also the formal) of these specifications there is inevitably a need
to verify that the derived code does enjoy certain fundamental safety properties—such
as logically prohibiting the possibility for two trains to simultaneously enter the same
section of the railway.

Traditional methods of verificationg., those which constitute current practice, are
based on inspections of control tables and the derived geographic data, on simple de-
compilers and syntax comparators, and massive testing both in the design offine and
situ. The enormous combinatorial complexity inherent to railway interlockings means
that exhaustive simulation is simply impossible. Yet the syntactic nature of the data
also make visual inspection an extremely arduous task—so that the discovery by this
means of deep errors (problems of specification), or even minor ‘typographic’ errors
(problems of coding), can be haphazard at best. Logical flaws in geographidadata
emerge through testing the designs, but there is a clearly recognised need (throughout
the industry, in fact) to reduce the costs of extensive testing and to boost productivity
in interlocking design. To achieve these ends, but particularly to introduce the rigour
needed to radically improve quality assurance, calls for a measured introduction of
formal methods into the design process. These are some of the reasons why we need
theorem proving for geographic data.

1.2 A Whistle-stop Tour of Railway Signalling

Railway signalling engineers face a difficult distributed control problem. Train drivers
can know little of the overall topology of the network through which they pass, or of the
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whereabouts of other trains in the network and their requirements. Safety is therefore
invested in the control system, oterlocking (the glossary clarifies the meaning of
unfamiliar signalling terms emphasised thus), and drivers are required only to obey
signals and speed limits. The task of the train dispatcher (signalman, or signal operator)
is to adjust the setting of switches and signals to permit or inhibit traffic flow, but the
interlocking has to be designed to protect the operator from inadvertently sending trains
along conflicting routes.

The network can be operated with more security and efficiency if the operators have
a broad overview of the railway and the distribution of trains. Since the introduction
of mechanical interlockings in the late 1800’s, and as the technology has gradually
improved, the tendency has therefore been for control to become progressively cent-
ralised with fewer signal control centres individually responsible for larger portions
of the network. In the last deca@®lid State Interlockinghas introduced computer
controlled signalling, but the task of designing a safe interlocking remains essentially
unchanged.

Solid State Interlocking is a data-driven signal control system designed for use
throughout the British railway system. SSI is a replacement for electromechanical
interlockings—which are based on highly reliable relay technology—and has been de-
signed with a view to modularity, improved flexibility in serving the needs of a diversity
of rail traffic, and greater economy. The hugely complex relay circuitry found in many
modern signalling installations is expensive to install, difficult to modify, and requires
extensive housing—but the same functionality can be achieved with a relatively small
number of interconnected solid state elements as long as they are individually suffi-
ciently reliable. SSI has been designed to be compatible with current signalling prac-
tice and principles of interlocking design, and to maintain the operator’s perception of
the behaviour and appearance of the control system.

At the signal control centre eontrol panel displays the current distribution of
trains in the network, the current status of signals, and sometimes fanbswitches
(points) and other signalling equipment. The railway layout is depicted schematically
on the panel by a graphic similar to Figure 1.1. There are seven (three aspect) main
signals shown here, and three sets of points. It is British Rail’s practice to associate
routesonly with main signals. The operator can select a route by pressing the button
at the entrance signal (say,), then pressing the button at the exit signal—the consec-
utive main signal, being the entrance signal for the next ratife (This sequence of
events is interpreted agpanel route requestand is forwarded to the controlling com-
puter for evaluation. Other panel requests arise fronpthets keysvhich are used to
manually call (and hold) the points to the specified position, or from button pull events
(to cancel a route by pulling the entrance signal button).
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Figure 1.1: Signals §,) on the control panel appear on the left to the direction of travel, each
signal has a lamp indicator, and each main signal has a button. Switches (pO)jrgehpw
thenormalposition, and there is usually a points key on the panel so one can throw the points
‘manually’. Lamps illuminate those track sectiori§)(over which routes are locked (white),

and those in which there are trains (red).

When the controlling computer receives a panel route request it evaluates the avail-
ability conditions specified for the route. These conditions are given in a database by
Geographic Datawhich the control program evaluates in its on-going dialogue with
the network. If the availability conditions are met the system responds by highlight-
ing thetrack sectionsalong the selected route on the display (otherwise the request
is simply discarded). At this point the route is said toldseked no conflicting route
should be locked concurrently, and a property of the interlocking we should certainly
verify is that no conflicting routeanbe locked concurrently.

Once aroute is locked the interlocking will automaticatthe route. Firstly, this
involves calling the points along the route into correct alignment. Secondly, the route
must beproved—this includes checking that points are correctly aligned, that the fila-
ments in the signal lamps are drawing current, and that signals controlling conflicting
routes are onife., red). Finally, the entrance signal can be switched off when the route
is clear of other traffic—a driver approaching the signal will see it change from red to
some less restrictive aspect (green, yelletg,), and an indicator on the control panel
will be illuminated to notify the operators.

The operation of Solid State Interlocking is organised around the concept of a
polling cycle. During this period the controlling computer will exchange messages
with each piece of signalling equipment to which it is attached. An outgoing command
telegram will drive the track-side equipment to the desired state, and an incoming data
telegram will report the current state of the device. Signalling equipment is interfaced
with the SSI communications system throuack-side functional modulesA points
module will report whether the switchdetected normadr detected reversgepending
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on which, if either, of the electrical contacts in the switch is closed. A signal module
will report the status of theamp proving circuitin the signal: if no current is flowing
through the lamp filaments the lamp proving input in the data telegram will warn the
signal operators about the faulty signal.

Other than conveying status information about points and signals, track-side func-
tional modules report the current positions of trains. These are inferredtfemi
circuit inputs to the modules. Track circuits are identified with track sections which
are electrically insulated from one another. If the low voltage applied across the rails
can be detected, this indicates there is no train in the section; a train entering the section
will short the circuit causing the voltage to drop and the track section will be recorded
asoccupiedat the control centre. Track circuits are simple, fail-safe devices, and one
of the primary safety features of the railway.

All actions performed by Solid State Interlocking—whether in response to periodic
inputs from the track-side equipment, aperiodic panel requests, or in preparing outgo-
ing command telegrams—are governed by rules given in the Geographic Data that
configure each Interlocking differently. Some examples of route locking and release
data are explained in Section 1.3.3 below. Beographic Data Languag€GDL) is
introduced in more depth in Chapter 2. In the following section an outline is given of
the architecture of the system, and the organisation of the software. These details are
needed for a proper appreciation of the models developed in succeeding chapters.

1.3 Solid State Interlocking

Cribbens [24] describes the overall organisation and operation of SSI, and discusses
many of the philosophical and technical problems that have had to be overcome in its
development. Here we only recall the salient details in order to give a broad overview
of the architecture and the manner in which the system maintains safety. The Glossary
in Appendix A.2 accompanies this section.

1.3.1 Overall System Architecture

SSlis a multicomputer system with two panel processors, a diagnostic processor, and
three central interlocking processors which operate in repairable triple modular redund-
ancy. Higher-order control devices such as route planning and automatic route setting
computers are not part of SSI, but they can be interfaced with the system.

The central interlocking processorsre responsible for executing all signalling
commands and producing correct system outputs, and operate in TMR to ensure high
availability and single fault tolerance in the presence of occasional hardware faults.
These are the safety critical elements of SSI. A TMR system has been implemented
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for hardware reliability: each subsystem is identical, and runs identical software. All
outputs are voted upon, redundantly in each interlocking processor, and the system is
designed so that a module will be disconnected in the event of a majority vote against
it—SSI will continue to operate as long as the outputs of the remaining modules are
in agreement. A replacement module is updated by the two functioning modules be-
fore being allowed online. (In the sequel we usually refer to the central interlocking
processors collectively dse SS|orthe Interlocking)

The panel processorsre responsible for tasks which are not safety critical such
as interfacing with the signal control panel, the display, and other systems such as
automatic route setting computers. These processors are run in duplex ‘hot standby’
for reasons of availability. The diagnostic processor is accessible from a maintenance
terminal (thetechnician’s consolgthrough which the system’s performance and fault
status can be monitored, and whereby temporary restrictions on the Interlocking’s be-
haviour can be introduced. In the latter case this is a provision for temporarily barring
routes, locking points, or imposing other restrictions that are not directly under the
control of the signal operators (for example, at times when there is a need for track
maintenance).

A central feature of SSI is that the controlling computer is directly connected to
track-side equipment by means of a duptiata highwaycarrying discrete signalling
information f. Figure 1.2). Track-side functional modules (TFMs) interface with
signals and points to provide power switching under microprocessor control. Here,
duplication of the hardware has been designed to ensure safe response to failures, but
not fault masking: the TFM will set its outputs to the most restrictive statg gignals
at red) whenever a faultis detected or the duplicated control paths are found to diverge.
One points module may be connected to two to four point switches, and can report up
to four track circuit inputs. A signal module is usually connected to one signal and
several nearby track circuits, but is flexible enough for any other desired function.

The operation of Solid State Interlocking is organised around the concephaf a
jor cycle During this period the central interlocking will address each of the track-side
functional modules, and expect a reply from each in turn. A maximum of 63 TFMs can
be connected to one SSI, and the major cycle is consequently divided imin64
cycles In the zeroth cycle data are exchanged with the diagnostic processor. In each
minor cycle the central interlocking will decode one incoming messagéddatartele-
gram) from the data highway, and process one outgamgmand telegram

The cable conveying messages to and from the central interlocking is a screened
twisted pair carrying relatively high signal levels. Cribbens discusses in detail the
performance requirements for this vital component of the system: the minimum refresh
rate for the TFMs, the necessity of real-time encoding and decoding of transmitted
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Figure 1.2: Schematic overview of the main features of SSI

data, the geographic extent of the interlocking area and the need for an acceptable
range without the need for repeaters (circa 15km), are all factors that contribute to
the design. A data rate of 20k bits per second has been adopted, and a cyclic polling
strategy implemented to ensure early detection of communications breakdown at either
end of the link. The data path is duplicated and TFMs and central interlocking are
designed to tolerate single faults on the line—detected through missed or corrupted
messages. In each addressing cycle 25 bits of message data are padded with five parity
bits to form a truncated (31,26) Hamming code which is transmitted in Manchester
encoded biphase form. TFMs are configured to reply immediately upon receipt of
a message from the central interlocking. Cribbens argues convincingly that the SSI
transmission system is highly secure.

1.3.2 Generic SSI Software

SSI has been designed to be data-driven with a generic program operating on rules
held in a ‘geographic’ database. These data configure each SSl installation differently,
and define the specific interlocking functions (although the more primitive functions
are directly supported by the software). The relationship between generic program and
the data is one in which the former acts asraerpreterfor the latter—for this reason

we usually refer to the generic software as tloatrol interpreterin the sequel. The
Motorola 6800 microprocessors used in SSI have a 16-bit address space: 60—80k bytes
are EPROM which hold the generic program (about 20k bytes), and the Geographic
Data; 2k bytes are RAM, and the rest is used for input and output devices. The modest
RAM is used, mainly, to hold the system'’s record of the state of the railway—generally
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referred to as thanage of the railwayor theinternal statein the sequel.

All SSI software is organised on a cyclic basis with the major cycle determining
the rate at which track-side equipment receive fresh commands, and the rate at which
the image of the railway is updated. During one minor cycle the generic program:
performs all redundancy management, self-test and error recovery procedures; updates
system (software) timers and exchanges data with external devices such as panel pro-
cessors; decodes one incoming data telegram and processes an associated block of
Geographic Data; and processes the data associated with one outgoing command tele-
gram. The latter phase is the most computational intensive part of the standard minor
cycle because it is through these data that the Interlocking calculates the correct signal
aspects.

The SSI minor cycle has a minimum duration of 9.5ms, and a minimum major
cycle time of 608 ms. However, SSI can operate reliably with a major cycle of up to
1,000 ms, with an individual minor cycle extensible to 30 ms. This flexibility is needed
for handling panel requests. If the required minor cycle processes mentioned above
can be completed in under the minimum minor cycle time, the control interpreter will
process one of any pending panel requests (which are stored in a ring buffer). The
data associated with a panel request must not require more than a further 20 ms of pro-
cessing time—the data are structured such that accurate timing predictions can be made
at compile time. If the minor cycle is too long the track-side functional modules will
interpret the gaps between messages as data link faults, and will drive the equipment
to the safe state in error.

The initialisation software compares the internal state of each of the three inter-
locking processors to determine the required start up procedure. When power is first
applied amode 1’ startupis necessary: this sets the internal state to a (designated)
safe configuration, forces all output telegrams to drive the track-side equipment to the
safe state and disables processing of panel requests; after a suitable delay so that TFM
inputs can bring the internal state up to date, the Interlocking can be enabled under
supervision from the technician’s console. After a short power failure much of the
contents of RAM will have been preserved and a ‘mode 2’ or ‘mode 3’ start up is
appropriate. A ‘mode 2’ start up resets the internal state to the safe configuration but
preserves any restrictions that had been applied through the technician’s console—the
system is disabled for a period long enough for all trains to come to a halt, and allowed
to restart normal operation automatically. A ‘mode 3’ start up involves a similar reset
but the status of routes is also preserved, and the system restarts immediately.

Validation of the generic SSI program has been described by Short [85] who points
out the need for extensive testing to validate the final hardware and software com-
bination because the software performs safety checks (redundancy managea)ent,
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on the hardware. Short also notes the difficuite.( the intractability) of perform-

ing correctness proofs at the level of the semantics of 6800 assembler—yet when one
considers that there are of the order of twenty megabytes of control and monitoring
software on board the A340 [5] airliners, for example, the 20 thousand bytes of ma-
chine code that constitute the safety critical software in SSI is quite modest.

The validation effort that Short describes is rigorous and very thorough. The ana-
lysis has been aided by the fact that the SSI software is highly modular, and because
the control flow is not complicated by the use of interrupts—polling mechanisms, as
opposed to preemption mechanisms, have been used throughout. The analytic frame-
work described includes functional, structural, information flow, and semantic ana-
lysis. These techniques have been applied in top down fashion through the modular
structure of the software. Functional analysis checks the design against the (informal)
requirements specification and identifies the requirements for each program module.
Structural analysis checks the design and code for conformance to certain structured
programming standards, and is intended to prove accessibility of every line of code.
Information flow analysis detects illegal or omitted reference to variables. Given the
control flow graph obtained by structural analysis, a semantic analysis assembles the
individually validated modules into a validated whole, with a check that derived in-
put/output relations correspond to the requirements. A detailed timing analysis is per-
formed in the final review stage, prior to extensive online testing.

It seems that a completely formal treatment of the design path from high level
system requirements to detailed timing analysis of the SSI generic program would
present a major engineering challenge if conducted in a formal manner. Interesting
though it would be to conduct a reappraisal of the correctness of the SSI software
given the current state of the art, it is not what this thesis sets out to achieve (although
see Chapter 6). Instead we consider an issue not mentioned by Short, nor even by Crib-
bens [24]—namely, the validation of the Geographic Data. Cribbens hints at the need
for a “knowledge based approach to scheme design”, but it was only later that proposals
for formally based tools for Geographic Data preparation and analysis emerged [25].
The work reported in this thesis started from early consultations with Mitchell [66],
but has progressed independently of British Rail's own research [48].

1.3.3 Examples of Geographic Data

A more thorough account of the Geographic Data Language is given in Chapter 2,
but it is easy to introduce the main concepts occupying later chapters through a few
examples. Figure 1.3 reproduces gwheme plarfor the layout in Figure 1.1 with
further annotations to show routes aub-routes RouteR,g proceeds fronb, to Sg
through the points?, and P, reverse and normal respectively. In this scheme plan,
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Figure 1.3: The scheme plan signalling layout in Figure 1.1 with route and sub-route annota-
tions. Routes are identified paths between main signals, and each track circuit is associated
with a collection of sub-routes so that a sub-route is defined for each path through a track cir-
cuit that lies on a route. A sub-route may be a component of more than one rot (&sr
instance).

there are four sub-routes associated Withwestwardl'?* and7¢, and eastward>
and7®. ThusR,, (say) can be identified with the sub-roues, 7*, and7” in that
order, by the point$>, and P, which are required normal (and anyerlapbeyond the

exit signalSg, but shall not consider overlaps at present). These entities are control
variables upon which the Geographic Data and control interpreter operate.

The Geographic Data are conceptually organised into a number of files each of
which holds data that serves a specific purpose. Some of these files are accessed at
random (as, for example, when a panel request is processed), whilst others are pro-
cessed in rotation, once a major cycle. Thus, data imiet data fileare responsible
for copying the incoming status information to memory, andabgut data filecon-
tains data that determine the command to be issued to each TFM as the system evolves.
These data are accessed periodically, and there is one block of code to execute corres-
ponding to each telegram. For example, the data listed for the command telegram for
signal .S, will specify the conditions under which the signal can be switchedi@f (
from red to a less restrictive aspect). These will typically include checksSthat,
andsS, are on, that the points on the route are detected (in some position), and that the
track circuits to the next signal are clear. These data are designed to ensure that signals
remain at red unless an onward route is locked,(by testing the appropriate route
variables)—though this is propertythat should be checked.

The conditions under which a route may be locked, and the locking conditions for
the route (.e., the conditions that must not change while the route is set), are specified
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by route request dataFor the running example:

*Q28 if Pycrf |, Pyenf [Tt [ Tebf
then R,gs,Pycr , Pyen [ Tg0l TE4l [Tl \.

This guarded command is a statement in the Geographic Data Language that is ex-
ecuted in response to a route request issued at the signal control panel. Execution
begins at thdabel *Q28 (which is treated as a pointer into the static data table), and

continues without interruption up to the™which terminates the command. Several
variables are tested here: poirfts are tested to see if they are controlled reverse or
“free to move” reverseR, crf ); similarly, P, cnf is a test to see if these points are nor-
mal or “free to move” normal (a more detailed discussion of the points test is deferred
until Chapter 2). In addition, several conflicting sub-routes are tegtgd ( 79°f ) to
check that they arfree If all these conditions are satisfied the route is locked by up-
dating the variables as specified in the conclusion of the rule: the route variaele is
the points areontrolled reversendcontrolled normal and the sub-routes alecked

(The terminology of railway signalling is used here, but it is mildly confusing to speak
of the route being ‘locked’ by this action, rather than ‘set’, although the control vari-
able for the routés ‘set’. Note that the signalling actions in setting a route are firstly
that it is ‘locked’, then it is ‘proved’; the route is finally ‘set’ when the entrance signal
displays a proceed aspect, usually green.)

Another class of Geographic Data specifies conditions that govern route release. It
is (usually) necessary to lock routes in a single action, but they can be released gradu-
ally as the train proceed$reeing’ the network to the rear. Such bookkeeping is carried
out by commands listed in theub-route releaselata file which are executed sequen-
tially over the course of a major cycle. Continuing with the example in Figure 1.3,
these data may specify:

Tg*f if Rygxs ,T,c \.

Tt it TRef  Teof  Tyc \.

Tbef if  TEMf  TYf ,Toc \.
These rules introduce the following signalling principle: the first sub-route on a route
can be released (freed) as soon as the route has been unset as long as the track circuit is
clear; subsequent sub-routes are released in the sequence they are traversed. The sub-
route release data must specify the sequence correctly. The order in which the rules are
specified in the file, and hence the order in which they are executed, is immaterial—
more precisely, safety properties of the interlocking must not depend on the order.

To illustrate the importance of this, the t&st°f should be sufficient to guarantee
that neither of the conflicting routes that terminateSatis locked in whenR, is
locked; indeed, if a train oR,; (say) has passed the entrance signal but not yet cleared
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Ty, this test in the availability conditions fdt,s, and similar tests in the rule fag,;,
will ensure that these two routes do not interfere however far the train has progressed
from S,. The command tainsetR,, is executed from the output data file (usually
when the data for signal modulg, are processed). A route is unset in response to a
cancellation request from the signal control panel (or automatically as the train enters
the route), but the conditions under which the entrance signal can be returned to red
will depend on whether an approaching train is within sighting distance of the signal.
The problem we have to face is to determine whether the locking conditions in
rules such as the above are adequate to ensure that trains do not run an undue risk
of a collision or derailment. This is clearly not a trivial matter. In order to approach
this subject the semantics of the Geographic Data Language are discussed further in
Chapter 2, and properties of the data are examined in succeeding chapters. The next
section introduces thremote route requegtrotocol which is investigated in Chapter 6,
and explains the mechanisms that enable several Interlockings at the control centre to
communicate to achieve their collective management of larger railway networks.

1.4 Inter-SSI Communications

In any signalling scheme there may be a requirement, depending on the physical extent
of the network, to divide the railway into a number of areas (or blocks), each controlled
by a separate interlocking. Where SSlis concerned this distribution of control is further
necessitated by the limited capacity of a single central interlocking processor. Limited
capacity means the signalling area under the control of one operator will be divided
between a number of Interlockings. On this scale the divisions may be rather small
so it is important that boundaries are not only transparent to traffic in the network, but
also transparent to the signal operator. The less fragmented the operator’s view of the
network is the better SSI can approach the broad aim in railway signalling of relieving
the signal operator of the greater part of the burden of the safety of railway traffic.

In order for the control of a train to pass safely between interlocking areas some
communication mechanism is needed to transfer information that needs to be shared
about the status of the network in the fringe area. A typical situation is illustrated by
the scheme plan in Figure 1.4 which focuses the discussion below. Here the cross-
boundary routes converge before the boundary and terminate at a common exit signal.
It is also possible that routes will diverge again after the boundary. In general there
will be numerous lines linking the two interlockings. Signal engineering practice seeks
to avoid placing boundaries through points since the complications introduced signi-
ficantly increase the communication overheads. For the same reason boundaries are
avoided if there would be points immediately beyond the signal at the boundary.
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Figure 1.4: EAST and WEST communicate to set routes from entry sigfalor S, in EAST,

to the exit signal §5) in WEST—since WEST controls the tail portion of both routes (just that
overT:, plus overlaps). There are noBAIT to EAST routes as those up 1§ are contained in
WEST, and routes onward from this signal are controlled & E, as is the signal itself.

Data are transmitted between Interlockings by means of a high speed communic-
ation bus called thénternal Data Link. Several Interlockings can be connected to a
single bus, but normally an individual need only exchange data with its nearest neigh-
bours. OutgoindDL telegramsare prepared by commands in the Geographic Data
and the generic control program is configured to copy their contents to the link at
least once a major cycle. Two main classes of data are required to be communicated:
continuously required data such as the aspects displayed by signals in advance of the
boundary, and intermittently required data such as requests from one SSI for another
to perform some signalling function such as moving a set of points or setting a route.
Exactly what data need to be communicated depends on the nature of the boundary—
our concern in Chapter 6 will only be with the complex situation of setting routes that
are divided by Interlocking boundaries. Typically, the inter-SSI communications these
induce occupy about twenty percent of the capacity of one Interlocking.

1.4.1 Setting Routes over Boundaries

Suppose that one wished to route a train fr8nto S;. On receiving the panel request
for this route ERAST first evaluates the availability conditions in its portion of the net-
work: if these are not met the request simply fails, otherwisseEmust wait until it is
certain the route is also available in the other Interlocking before locking it. To achieve
this EAST issues aemote route requesb WEST over the internal data link.

Onreceiving such an input 6T should handle the request just as it would handle
route requests coming directly from the control panel—this simplifies the design of
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the control interpreter, and data preparation. Thus an incoming IDL request will be
translated into a panel request and queued in the usual manner. When a remote route
request is subsequently processed the difference is tlEsr\Whust communicate to

EAST if, or when, the route is locked: ¥5T sends its acknowledgement via a reply
telegram to BST over the IDL.

In EAST the acknowledgement is also treated as a remote route request: on this
occasion BST proceeds to lock the route it had originally requested. The two Inter-
lockings need to use a dedicated pair of IDL telegrams to communicate request codes
and their acknowledgements. Normally, many routes over numerous lines link the two
signalling areas, but a single pair of (eight bit) telegrams should suffice to carry all the
necessary request codes and their acknowledgements. To summarise:

1. EAST receives a panel route request for a cross-boundary route. If the route is
available in EAST, issue a remote route request tE8V.

2. WEST receives an IDL input conveying a remote route request. If the route is
available, lock the route and reply taET with an acknowledge telegram.

3. EAsST receives a reply telegram to the earlier remote route request: it can then
lock the route and control the entrance signal as usual.

Once the route has been locked indg the aspect of the entrance signal can be
changed if the prevailing conditions allow this. For example, only if the tracks down
to the exit signal are clear, and if opposing signals are on, eaT Elear the signal—
to green or yellow, depending on the aspect displayed by the exit signal. Thus, in
addition to the telegrams used to convey request codes, another IDL telegram is needed
to convey the status of tracks and signals in the fringe area. Such data are needed
continuously.

1.4.2 Releasing Sub-routes over Boundaries

Once a train has passed the entrance signal and progressed along the route (or if the
route is subsequently cancelled by the signal operator) the sub-routes along it should
be released in the usual manneres- by rules in the continuously executed sub-route
release data (as in Section 1.3.3). At least, the sub-routes can be freed in this way up
to the boundary7¢? is a control variable in EST of course, whilel'#? is in WEST, so

the usual rule for freeing the ‘inward’ sub-route does not apply.

In order for the whole of the route to become freesE must send a request to
WEST for it to release its part of the route once the correct circumstances obtain. If
the sub-route release mechanism is to be transparent (to the operators) the necessary
cancellation requesshould be issued automatically. To achieve this in SSI the correct



Chapter 1. Introduction 21

circumstances are recognised by rules in the sub-route release datasifré¢eives

a cancellation request it can release the inward portion of the cross-boundary route
unconditionally. Furthermore, W6T should acknowledge the cancellation request so
that EAST will be aware that the route has indeed been released. The usual sub-route
release mechanism in ¥¢T will ensure that the remainder of the route is released as
the train proceeds to the next signal. To summarise:

4. Whenever conditions indicate that a route has cleared up to the boundany, E
issues a remote cancellation request te3N.

5. When WEST receives a request to cancel an inward route it does so uncondition-
ally, and acknowledges the request with a reply telegrannre

6. Onreceipt of such an acknowledgememtsE should cease to issue cancellation
requests, the route having been cancelled in both Interlockings.

1.4.3 Implementing Remote Route Locking

With the current generation of Solid State Interlocking the number of IDL telegrams
that can be used is limited to a maximum of fifteen in total. Each IDL telegram conveys
eight data bits, and the Interlockings connected to the link take it in turns to transmit
all fifteen bytes of data in a round-robin protocol: the transport layer is configured so
that each SSI broadcasts its data at least once a major cycle (the frequency depends on
the number of Interlockings connected to the link). On receipt of an IDL data packet
the SSl is able to extract those bytes that are relevant to it (this address information
can be computed statically, and is ‘burned’ into EPROM when the system is installed).
Since the outgoing IDL telegram will be written at arbitrary times during a major cycle
it is necessary to buffer the telegrams. As a consequence the protocol as presented
is far from being robust as the various uses of the request telegram can interfere with
one another. If one SSI locks the inward portion of a route in response to a remote
route request, the (buffered) reply telegram should not be overwritten before it can be
sent. While not unsafe, in extreme circumstances this may lead to livelock, and other
problems. Another reason why the protocol sketched above is not correct is that the
remote route request may simply fail in the second InterlockinggVWy, but the first
(EAsT) has to be notified of this failure.

Such concerns introduce the need for telegram protection and timers. To implement
remote route locking the designer has access to a collectietap$ed timersvhich
may be stopped and started by commands from the Geographic Data, but which are
otherwise updated by the (real-time) generic program. Note that an elapsed timer can
serve both purposes if we can differentiate between a timer trstibjged and one
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that isrunning One timer is needed for each IDL telegram used to convey request
codes to another SSI, but other control data are needed to implement the sub-route
release mechanism over the boundary. The details are drawn out in Chapter 6 where
safety properties of these inter-SSI communications will be examined. Until then our
concern will be with the safety properties of the Geographic Data within a single SSI.

1.5 Formal Approaches to Signalling Safety

In seeking to adopt rigorous techniques British Rail (now Railtrack), along with sev-
eral other railway authorities, advance the opinion that the more formal analysis will
improve the quality and safety of their products and services. While the reasons for
introducing computer controlled railway signalling may be largely economic, it seems
that with the advent of design notations such as the Geographic Data Language the
overall safety case can be strengthened because of the possibility to produce formal
proofs of the behaviour of the interlocking. Even without formal proofs the possibility

to test (simulate) the design long before tracks are laid down, and with full confidence
that the same software will control the live network, is a considerable boost to safety
and productivity. In principle at least, the introduction of more rigorous techniques
will improve productivity in the long run because a formal proof that the Geographic
Data are safe may remove much of the need for testing the design.

These arguments indicate that what is required is a framework within which to
conduct various forms of analysis on Geographic Data. Simulation and testing remain
central concerns in signalling engineering—if only because of the need to test the final
data/control configuration for each instantiation of the data. In the context of this thesis
the ‘formal correctness’ of the Solid State Interlocking is not in itself the issue. Rather,
the central problem is that of automatically checking SSI data through an appropriate
language of logical assertions and proof. There appear to be two distinct approaches
to providing the analytic framework required: either we attempt to formalise the prin-
ciples of railway signalling, or we reduce a given design to a formal specification (or
model) whose properties we verify. A brief survey of related work will help to illustrate
these choices.

1.5.1 Related Work

The treatise by O. S. Nock [76] sets out in considerable detail the recent signalling
engineering practice on British railways. Nock deals both withstlaticanddynamic

issues of scheme design: static issues include network topology, the placement of sig-
nals, and their relative separation; dynamic issues address the relationships between
train positions and signal aspects, and the separation between étainis the evol-
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ution of the network topology (as points settings change), and as trains proceed. For
example, Nock can be interpreted to yield the following requirements for clearing the
entrance signal of an uncomplicated (mainline) route without overlaps:

i All track circuits on the route must bdear,

il Track circuits on all conflicting routes up to the point of conflict musthear,
iii All points on the route must beontrolledanddetectedin correct position);
iv The exit signal must balight (i.e., drawing current);

v The entry signal for all conflicting routes must te

The route’s entrance signal may off if and only if these conditions are satisfied,
and the route is locked. One persistent problem for signalling engineers is to decide
whether all conflicting routes have been identified.

Recent work by King [51] records the current signalling rules applied by Railtrack.
King’s layeredZ specification is intended to form part of requirements specification
documents used for the procurement of signalling systems. The first layer defines the
concept of network topology in terms of primitive track components (points, plain track
anddiamond crossingsand their allowable interconnections. Paths, and the concept
of interference between paths, are defined on this static component. The second layer
formalises the dynamic signalling rules irtanceptual foundaticr-since this is sup-
posed to be independent of any particular technology, trains themselves are modelled
(in terms of the paths they are on and in which they may come to a halt).

The third layer in King’s specification is an instantiation of the conceptual found-
ation (e.g, SSI, which introduces signals, routes and sub-routes as control elements).
However, since King does not address the question of whether the rules formalised in
the conceptual foundation are ‘safe’ (or at least consistent), itis inevitable, as the author
himself points out, that verification of the safety properties of foamgnal refinement
of the conceptual foundation will be needed. Thepecification cannot therefore be
used to define safety requirements—although safety can of course be defined in terms
of the conceptual foundation.

Wong [99] also attempts to codify the dynamic signalling rules in a formal theory.
He proposes a scheme design methodology that links a theorem prover for higher-order
logic with CAD tools for signalling scheme plans. The theorem prover automatically
checks that the network described is legal with respect to some simple rules for assem-
bling network components(g, that it forms a finite connected graph). Wong goes
on to generateontrol tablesfor each route inferred from the scheme plan—these are
specification documents used to guide the preparation of Geographic Data for an SSI
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installation. This is practically interesting because of the difficulty of certifying that
the route setting conditions specified in the control table are sufficient (for safety).

However, Wong does not use his HOL theory directly to address the question of the
adequacy of control table route specifications. Instead he derives the behaviour of the
railway from the network structure, presenting the model as a finite state automaton.
In higher-order logic a ‘time’ varying function describes the state of the network at
any instant, and the behaviour is governed by the dynamic signalling rules. Wong
demonstrates how to prove that the automaton is safe with respect to the property that
no two conflicting routes can be simultaneously set. Unhappily Wong’s demonstration
is somewhat vacuous since the notioncohflict in defining the formal property is
identical to that used to encode Nock’s requirements. Cullyer and Wong [26] have
used a similar model to examine safety related properties of a level crossing.

Some related work on behalf of the Danish State Railways has been carried out
by Mark Hansen [56] under the aegis of the ProCos project. Her VDM specification
is also based on a description of the network topology, and the purpose of the model
is to clarify formal requirements (functional, as well as safety) for interlockings to be
developed on a per station basis. This work emphasises model validation (through
simulation), and requirements capture. The principal requirement is that trains do not
collide. Modulo the usual caveats about coupling trains, this is expressed in a predicate
that asserts that no track section contains more than one train. An attribute of track
sections in the model is, therefore, that they may be associated sétiottrains. The
hidden assumption here is that track-side equipment is capable of determining that a
second or subsequent train has entered an already occupied track section. Track circuits
are unable to decide this, for example, although more sophisticated train detection
systems can relay train identities to the control system (trains and tracks communicate).

The authors cited above record the (static and) dynamic signalling rules in a math-
ematical theory. The natural focus in these enterprises is on requirements capture, with
safety requirements dominating. But this begs the question of how to demonstrate
that a purported implementation conforms to the requirements—in particular, to verify
that the interlocking is safe. Another body of work addresses the verification problem
directly.

Atkinson and Cunningham [4] describe a signalling case-study that exercised a
tableaux proof system for Modal Action Logic (a variant of PDL). This took a simple
interlocking (the ®HRESTLoOP scheme [8, illustrated on page 215]) described by a
system of MAL axioms derived from the Geographic Data and the network topology,
and furtheractionrules to describe permitted train movements. The idea is to prove
that a modal property is a consequence of such a specificatipec: the MAL prover
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attempts to refute the godbec = —p. The logic has a refutation complete decision
procedure to prove such goals—meaning that if a counter model exists it will always
be found. The procedure is semi-decidable however, so cannot alwaysyove:-

p when it is true. This case-study can fairly be said to demonstrate the capabilities
of the FOREST tools, but the model is too concrete to specification and too
impoverished (in its notion of time and computation step in calculating signal aspects,
for example) to be useful as a vehicle for proving safety of the interlocking.

In a similar, but much more successful vein, Stimarck aaflud model inter-
lockings for the Swedish railway authorities (Banverket, and SJ, the railway company)
using propositional logic [88]. They have developed dedicated tools for analysing
safety related properties offSRNOL programs which are used in interlocking design.

A STERNOL program is a system of equations, with one equation—really, a guarded
command—for each value a variable in the program can take. One group of equations
may refer, for example, to the aspect of a particular signal. The Circuit Verification
Tool [88] is used to verify that exactly one of the guards in the equations for a program
variable is true at any time. This guarantees determinism (in each execution cycle),
and such a 8ERNOL program can therefore be implemented by executing the equa-
tions inany order (cyclically). For SJ and their subcontractors this is an important
safety property of their interlockings.

By representing a8RNOL program in propositional logic it is possible to go on to
examine other safety properties by provifigg = p. Given the size of such formulas,
this would be a severe challenge but for Stimarck’s (patented) natural deduction style
proof technique for Boolean satisfiability. The time complexity of the algorithm is
polynomially related to the number of subterms in the formula, with the exponent
(hardness) being determined by the number of simultaneous free assumptions needed
in the natural deduction proof tree. The empirical evidence is that for many practical
problems the degree of hardness is low by this measure, so the proof technique is
effective for extremely large formulae (exceedirtj connectives). To obtain counter
models an ordering on the subterms in the formula is needed; this does not affect the
hardness of the proof, but makes space requiremeéetsthe length of the proof)
sensitive to the order chosen.

The Vital Processor Interlocking (VPI) analysed by Graettal.[37] for the Dutch
Railway Company has an execution model that is similar to theREOL programs
described above: a sequence of equations that are solved once a cycle, each of which
defines the value of an internal control variable or system output. Groote and his col-
leagues formulate safety requirements in a modal logic so as to express properties
relating to finite sequences of program steps (or statedytformulae refer to a finite
future, just formulae refer to finite immediate past, asigtic formulae refer only to
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the current state. To prove that the program satisfies a modal property both are trans-
lated into propositional logic, anflrog = p is checked using Stimarck’s method. In
general, if the property refers totime steps then this many time-indexed copies of
the program are needed for the proof. Clearlgnd the size ofrog, in terms of the
number of subformulae, determine the range of application of this approach to VPI
program verification. Taken literally, may be ‘large’ (21 s in the example), but a time
abstraction alleviates the complexity problem so that the results are encouraging.
Returning, finally, to the problem of verifying safety properties of Geographic
Data, we should note British Rail’s own research which tackles the problem from an
automata-theoretic perspective. Ingleby and Mitchell [48] represent SSI behaviour in
a Mealy machine having next state and output functiommdw. Safety properties
are characterised as state predicagtatic properties in Groote’s terminology [37])
and output predicates (also static). The problem is to demonstrate that the automaton
modelling the interlocking isafety transitiveif safe(s) asserts that stateis safe, the
interlocking is safety transitive if for all statesand inputs, safe(s) = safe(v(s,1)).
This proof concept [74, illustrated more coherently in Chapter 4] is an instance of a
powerful proof technique for safety properties calkbedinduction
Ingleby’s data decompositions [47] (discussed further in Chapter 5) are what makes
this approach to automatic verification of safety properties of Geographic Data prac-
tical at all: these lead to state clustering in the automaton, dadahproof strategy,
but complicate the task of generating counter models and tracing the location in the
data where the safety properties are being violated. Related work has been reported by
Conroy and Pulley [21] whose models aredBi automata. These authors are plagued
by the enormous combinatorial complexity of the reachable state space in signal inter-
lockings. For the Hoorn-Kersenboogerd interlocking [37], Groote puts the reachable
state space somewhere betweaet and10°% states: the lower bound arises because
the VPI records circa 100 Boolean inputs—SSiI receives up to 512 such inputs in each
major cycle (ignoring the occasional panel request) and the internal state is a vector of
(at most) 1,216 bytes.

1.5.2 Contributions & Thesis Overview

When approaching the question of automated verification, the cited work illustrates
that great care should be exercised to avoid intractable state spaces on the one hand,
and combinatorial explosion in checking Boolean formulae on the other. Both can be
avoided by selecting an appropriate abstraction with which to work, and as long as
safety can be satisfactorily formalised through invariants of the internal state of the
SSI (which may still refer to system inputs and outputs of course). We concentrate
on the semantics of the Geographic Data Language which, in programming terms,



Chapter 1. Introduction 27

is a somewhat richer language thane&NoL or the Vital Logic Code in VPI. The
focus on semantics leads t@a@ampositionalerification strategy—»but the route to this
understanding of the problem is as important to record here as the final synopsis itself.

Chapter 2 The next chapter fills out the background, concentrating on the syntax and
semantics of the Geographic Data Language, and explains the overall organisation of
the data in the SSI. The Geographic Data Preparation Guide [9] defines the language
informally, in a manner that is intelligible to signalling engineers, but to prove proper-
ties of programs written in the language a more rigorous understanding is needed. In
this chapter therefore, a formal semantics is proposed that is faithful to the informal
description. This defines the execution model that is elsewhere assumed to be valid.

Chapter 3 The starting point was not a formal description of the Geographic Data
Language, but a model of a much simplified signalling scheme. The model is derived
by a systematic translation of the data into CCS. The execution model abstracts from
such details as minor and major cycles, concentrating only on the transitions allowed
by the rules held in the database. The focus then is oprtgertiesof the Geographic
Data, and their formulation in terms of a predic&tef the states of the abstract ma-
chine M. For the simple example we can verify these properties by model checking:
we proveF is invariant, that is\/ = vZ.F A [—]Z in the terminology of the modal-
calculus, using the Concurrency Workbench and tools developed for the task. However,
this verification method does not scale beyond the small examples tried—the problem
is one of abstraction in tharoof.

Chapter 4 This chapter examines the invariance proof in detail. Instead of trying to
establish that (all reachable) states of the model are safe we prove that the transitions
preserve safetyThis gives a much more direct demonstration that the Geographic Data
are safe because the data really define the state transitions of the SSI (with respect to
the semantics). The (co-)inductive nature of the proof is explained here in terms of the
proof tableau constructed by the model checker used in Chapter 3: the idea is to show
that if a stateS is safe (.e, S = F) then every staté’ that is immediately reachable

from S is safe: S’ = F. We do not worry about whethef is reachable. Since the
proof method is to be mechanised, time is taken here to identify the steps needed to
demonstrate that theserification conditionsre true.

Chapter 5 The arguments formulated in Chapter 4 are interpreted here in the frame-
work of Floyd-Hoare logic. In this chapter the syntax and semantics of the Geographic
Data Language are formalised as a theory of higher-order logic, and embedded in the
HOL proof system. From this theory the program logic is derived, and the proof oblig-
ation formulated in the godlF} ¢ {F}, for each command in the data. Through the



Chapter 1. Introduction 28

tactics of the HOL system, and a modest amount of ML programming, we recover a
fully automatic proof method which is linear in both in the length~aind the number

of commands: (and independent of the number of states of the SSI). We show that
the range of application of this prototype Geographic Data verifier can be considerably
extended through techniques for decomposing the invariance proofs. Decomposition
according to the structure efcomes for free with Floyd-Hoare logic, so we concen-
trate on decomposirig.

Chapter 6 Here the model presented in Chapter 3 is developed in a different way
to analyse properties of the inter-SSI communications—specifically, those by which
two Interlockings cooperate in locking routes over their common boundary. The logic
to achieve this route locking (and release) is also encoded in Geographic Data. It is
found that unfavourable message delays can lead to circumstances in which hazards
that compromise the safety of railway traffic can arsprinciple. Since such hazards

are not precludeth practice a strict interpretation of the term ‘safety’ leads to the
conclusion that this is a design flaw in the remote route request protocol. In fact the
risk implied by this fault in the generic program is difficult to quantify precisely—
which is sufficient reason to study the problem formally. Our analysis leads to several
recommendations to eliminate the flaw, and we prove that it is possible to implement
the protocol so that it cannot then, of itself, lead to unsafe states in the railway.

Finally, Chapter 7 concludes this work with a summary, and indicates the likely
impact of our findings on the industrial usage of formal methods and the practice of
interlocking design. The application of the theorem prover developed in Chapter 5
to ‘live’ data from the Leamington Spa signalling scheme is described in this final
chapter. Also considered are the concrete recommendations coming from the analysis
in Chapter 6: these indicate that only very minor changes to the SSI generic program
would be needed to address the concerns raised there.



Chapter 2
The Geographic Data Language

It is the main purpose of this thesis to devise an approach to the verification of safety
properties of Geographic Data. The Introduction described the relevant features of
Solid State Interlocking to provide the necessary context. The focus in this chapter
will be on the language in which the interlocking functions are encoded. Section 2.2

explains the overall organisation of the Geographic Data which are conceptually ar-

ranged in a number of files at the source level. In Section 2.3 the (concrete) syntax of
the Geographic Data Language is given, accompanied by an explanation of the intu-
itive meaning of the various constructs. Sections 2.4 and 2.5 introduce rigour to the
underlying execution model by providing the language with a mathematically precise

semantics.

2.1 Introduction

Due to the undesirability of developing and verifying the correct implementation of
a separate control program for each SSI installation, the system’s software has been
separated into itsontrolanddataparts. The control part is independent of the specific
signalling functions and is implemented in the generic software which is the same in
every installation. The Geographic Data Language expresses the specific signalling
functions which vary from Interlocking to Interlocking. This is an application spe-
cific language designed to be intelligible to railway signalling engineers without their
needing specialised knowledge of computer programming. The SSI generic program
interpretsthese data, and for this reason is usually referred to asotheol interpreter
in the sequel. In fact, the program interprets a (byte) compiled version of the Geo-
graphic Data, so the correct implementation of the compiler is also an issue that should
be addressed in checking (safety) properties of the data.

This separation of concerns means one can use very different techniques to val-
idate the generic software on the one hand, and the Geographic Data on the other.
Whereas the control interpreter requires to be validated with respect to its require-

29
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ments only once (see Section 1.3.2), the Geographic Data have to validated with re-
spect to the prevailing principles of signal engineering at each installation. We expect
the (safety) properties of the generic software to be independent of the data interpreted,
although precise timing properties inevitably depend on the final data/control config-
uration. There are also some (functional) properties of the combination that cannot be
verified by considering these aspects of the SSI software in isolation. The principal
culpritin this respect is the remote route request protocol examined in Chapter 6.
Properties of the Geographic Data, however, only depend on the execution model
supplied by the control interpreter. It will therefore be fruitful to formalise the se-
mantics of the Geographic Data Language. On the one hand this provides a reference
for the language against which we can judge whether the compiler and the interpreter
have been correctly implemented, and on the other it provides a precise mathematical
framework in which to condugtroofsabout the behaviour of the interlocking. These
semantics are discussed in Sections 2.4 and 2.5 below. This focus leads to the treat-
ment of the Geographic Data ap@gramwhich has static and dynamic components.
The static data are the rules listed in the database—these are code fragments stored
in EPROM, and are what is meant when referringhte Geographic Data in the se-
guel. The dynamic component is the memory on which the data and generic program
operate.

2.2 Static Data and Dynamic Data

At the source level the data are separated into a number of files that deal with distinct
interlocking functions. The static data can be broadly placed into two groups: those
data that are executed periodically over the course of a major cycle, and those that
are accessed randomly. Concrete examples are given in the next section—here we
are interested in the data’s overall organisation, and the general functions they are to
perform. The glossary in Appendix A.3 accompanies this section.

2.2.1 Geographic Data ldentity Files

The dynamic component of a ‘Geographic Data program’ is given by a collection of
state variables upon which the static data operate—these constitute the internal state
of the SSI, stored in RAM. One variable is defined for each physical control device—
i.e. for each signal, track circuit and point switch—as well as for each logical control.
Logical controls include routesub-routesand sub-overlapstimers and latches (as

well as the telegrams used to communicate with external devices). These variables are
globally declared and may be accessed throughout the Geographid ettty files

define sets of variables of appropriate types:
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TCS the status of a track circuit may hmdefined occupiedor clear. An eight-bit
timer in track circuit memoryrecords how long it has been in the current state
(up to 254 seconds).

PTS each point switch is represented by two four-bit records, one fontimmal
and one for theeverselie of the switch. The normal or reverse field must be
specified whenevayoints memoryis accessed in the data.

ROU each route through the network is represented by two control bits. Routes may
be setor unset Routes may also be barred by clearing the other control bit, but
this can only be modified from the technician’s console.

FLG flags are single bit control variables. In the sequel we are mainly concerned with
sub-routes: these, and sub-overlaps, may be ditckedor free

SIG signals have many attributes and require three bytes of data. One byte is a timer,
three bits indicate the aspect to display, and other fields are for control informa-
tion such as the status of the lamp proving circuit, recording cancellation requests
from the signal control panegtc.

In addition, each panel request is identified, and a collection of general p@ippsed

timers is provided (used to implement the remote route request protocol, and for
swinging overlaps In the sequel we shall let the script lettdPs R, S, 7, andU

stand for the sets of points, routes, signals, track circuits and sub-routes declared in the
Interlocking; Q is the set of panel requests.

2.2.2 Source Files: Periodic Access

One major cycle is divided into 64 minor cycles irrespective of the actual number (

63) of track-side modules with which the Interlocking communicates. One incoming
data telegram is processed, and one outgoing command telegram is processed in each
minor cycle. Command and data telegrams convey up to eight bits of information. A
block of data is associated with each telegram, drawn from the appropriate Geographic
Datasource file

IPT One block of data is associated with each input telegram received from the track-
side functional modules. These data are normally very simple since all that is
required is to copy the bit-fields in the incoming telegram to the internal state. In
preparing these data (a sequence of assignments) the signalling engineer has to
be careful to associate the input fields, which correspond to the physical output
pins in the TFM, with the correct data variable—for instance, bits 7 (and 5)
and 6 (and 4) conventionally refer to thetected normahnddetected reverse
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fields when the message is from a points module. Low-order bits are used for
track circuit inputs from the device, which are likewise copied to track circuit
memory.

OPT One block of data is needed for each TFM addressed by the Interlocking. When
the command is to a points module these data are again rather simple since all
that is required is to copy theontrolled normaland controlled reversdields
in points memory to the appropriate outputs. More complex instructions are
necessary when the command is to a signal module since it is these data that
must calculate the correct aspect to be displayed. This calculation depends on
the aspects of neighbouring signals, which if any of the onward routes is locked,
and on the proximity of trains to the signal. Several other attributes of the signal
(not transmitted in the command telegram) have also to be computed by the
output telegram data. These calculations are repeated every major cycle.

FOP Each command in the flag operations data file is executed in sequence, once
a major cycle. These data perform various bookkeeping functions, the most
important of which issub-route releasésee Section 1.3.3). The flag operations
data are essentially guarded commands, and the control interpreter will execute
1/64™ of these in each minor cycle.

During one major cycle therefore, all of the data in tRg, OPT, and FOPdata files

will be executed once, and the data will be executed in the same order (the polling
sequence, specified by the signalling engineer when the data are compiled) in every
major cycle. ThelPT and OPT data are listed in the same order, input telegram
corresponding to output telegram(and the TFM with that index), but being processed

in minor cyclem + 1 (modulo 64).

2.2.3 Source Files: Random Access

The other source files considered here contain geographic conditions and commands
that only need to be accessed on demand:

PRR Each input from the signal control panel corresponds to a command, or command
sequence. Theanel route requestiata file lists all route requests that arrive
from the panel processor (or, as described in Section 1.4, from another SSI), and
all route cancellation requests. The block of code associated with a route request
usually consists of a conditional statement that tests the internal state to ascertain
if the route availability conditions are met, and a command sequence to update
the internal state accordingly, locking the route. Subsequent processing of the
OPTdata will effect the necessary changes in the network to set the route.
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PFM Points “free to move” data specify the conditions under which points may be
switched, with one set of data required for each lie of the points (normal or
reverse). The conditions are shared by instructions elsewhere in the data, notably
in the PRRdata since route availability always depends on being able to move
the points on the route to the correct position. Several routes may pass through
the same collection of switches. TH&M data therefore help to reduce the
volume of instructions needed in the database; they simplify the data according
to the geographic principle that the conditions for moving the points are local
ones, and this, in turn, reduces the likelihood of introducing errors in the route
specifications. The interpretation of tR&Mdata is discussed in Section 2.4.

MAP Map data typically define a partial graph of the railway network. Searches are
performed on this graph whenever it is necessary to look for evidence of a train
in the approach to a signat.g, an occupied track section). Such searches are
often performed as part of the aspect calculation in@#eT data for a signal
module, and will be used to decide if a route can be cancelled. Unlikefé
data, theMIAP data do not specify stattestson the internal state: instead, when
the control interpreter encountersrap searcht executes an algorithm to dy-
namically compute the test to perform given a starting point in the graph, and a
set of termination points. Map search data are also discussed in Section 2.4.

Once the control interpreter begins to execute a block of data from one of the above
sources, it continues without interruption until the block has been completed. The con-
trol interpreter is a sequential program so this behaviour is expected for the periodically
accessed data processed as part of the standard minor cycle. However, this is also the
case for the data executed on demand, so it is vital to be able to predict timing bounds
for the execution of each code fragment. The Geographic Data Language admits only
assignment of constants to variables, branching and sequence (and a simple code shar-
ing mechanism), permitting one to accurately predict upper timing bounds.

Occasionally it is found, by a timing analysis of the Geographic Data, that the
code for a panel request cannot be computed inside the permitted 20 ms. In such cases
the data must be split over two or more minor cycles. This is achieved by a mech-
anism to add a panel request to the input buffer via a data command—the control
interpreter processes the first part of the data for such a panel request, and queues a
second panel request for the continuation to be processed in a subsequent minor cycle.
At most one panel request is processed each minor cycle. It seems, even from this
informal description of events, that the practice of splitting panel requests may intro-
duce unpredictable behaviour because of the possibility that conflicting requests may
intervene—although predictability may be recovered by placing the subsequent parts
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Figure 2.1: Signalling scheme plan for B&T

of the split panel request always at theadof the queue rather than at the tail, but

the author does not know if the generic program has this behaviour. In any case, it

is clear that validation of the Geographic Data is an issue that demands considerable
effort. Presently the data are prepared by hand and (visually) inspected for errors by
the engineers responsible for the design of the interlocking [25]. Software supports

various kinds of syntactic analysis only (but several authors have begun to address the
problem of providing semantics-based tools to support interlocking design and data

validation [48, 75, 99, 88]).

2.3 Geographic Data Source File Syntax

This section spells out the details of the concrete syntax of the Geographic Data Lan-
guage, although we shall restrict attention here, and in the rest of this thesis, to the
route locking data in th®RR FOR, andPFM (and MAP) data files. The semantics of

the language will be clarified in Section 2.4, but we begin with a few examples drawn
from the data for the signalling scheme in Figure 2.1e3¥ will serve as a concrete
example for this and subsequent chapters when such is needed. The entities declared
in this scheme are:

7 {T1,,T,,...,T:} Track Circuits
P {P, P, P} Points
S {S,,5,...,5} Signals

which represent physical entities in the network, and

R {R027R047R17R27R37R4, R5,R51,R53,R6} Routes
u {Tg°, 130,17, ..., T} Sub-routes

which represent logical control entities. The set of panel requgsssalso declared:
{Q02,Q04,...,Q6,...}.



Chapter 2. The Geographic Data Language 35

2.3.1 Examples: Route Locking & Release

The conditions under which a route can be locked (prior to being set), and the locking
conditions for the route.g., the conditions that must not change while the route is set),
are specified by data in tfreRRandPFMfiles. ForR, and R, in WEST we have:

*Q4 if Pycnf | Pyenf [ T00f  T9bf
then R,s,P,cn,Pyen, TPl [ Tgrl [T\,

*Q51 if Pycrf |, Pyenf [ Teef Teof
then Ry s, Pycr , Pyen [ Tgel ,Tecl [ T901\.

It is not necessary to test all opposing sub-routes in the availability conditions for a
route—thugQ4 does not check <, for example. lis necessary to tegt* in this rule
because itis the last sub-route on all routes terminatirtg ébut sub-routes further to
the east do not need testing since it is required to release sub-routes in sequence). In
the same rule, it is also necessary to tE&t because this sub-route opposes the first
sub-route on the route, and is the last conflicting sub-route on routes that also require
the pointsP, normal {.e, R.;). Similar principles apply t6Q51, and all other main
routes on British railways.
As a matter of principle, all points on the route should be checked in the availability

conditions. ForR;, the first set of points#,) are required in the normal position,
and the second set are required reverse. The control interpreter evdlyatesas a
disjunctive test; it first checks whether the points are already controlled reverse)(
and if they are not evaluates tR&Mdata:

2N Tgof | Tgof , Tyc \

*P2R  T0f TPf [ T,c \
The pointsP, can be moved to the normal position if the reverse sub-routes are free,
and the track circuit is clear. Conversely, the points are “free to move” reverse if the
normal sub-routes are free and the track circuit is clear.

The FOPdata specify route release conditions: it is (usually) necessary to lock

a route in a single action, but routes can be released gradually as the train proceeds,
and the tracks in the rear can be released and made available to other routes. Such
bookkeeping is carried out by commands in f@Pdata file which are executed se-
guentially over the course of a major cycle. These data may specify:

Tgef if  Rgxs,Rszxs ,Tgc \.

Tocf it Taef | T,c \.
T if  Tof | T,c \.
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(cy == fif [(gc>]*then [(oc>]*[else [(oc>]*}\

(go) == (tesph
| (map
- [ee ] [or [eo] ')
| @
(o) = (cmd
| (c9
| (s9
| @
(s == ( (a9 [or (ac>ror [(oc>r)
(a9 = if [(gc>]*then [(oc>]*\
(evseh = if [(gc>r\
(exsebh = [(oc>r\

Figure 2.2: Geographic Data: conditional language constructs

The first sub-route on a route is released (freed) as soon as the route has been unset
as long as the track circuit is clear; subsequent sub-routes are released in the sequence
traversed. Note that theFMand the sub-route release data (in particular) are specified

in accordance with the geographic principle: the interlocking of elements in the railway
depend orlocal components only.

2.3.2 Concrete Syntax of the Geographic Data Language

The syntax of the conditional language used throughout the Geographic Data is given
by the grammar displayed in Figure 2.2. A conditional statenijest contains a list

of geographic conditionggc) followed by an operational claus@c) . Essentially, a

test list is a conjunction of simple testsest on the internal state, but or-branching
and map searchegmap , introduce more complex conditions. The empty test list is
allowed (meaning ‘true’), which indicates that the alternative clajase is redundant.

The selective (switch) construesc) is also redundant, but is often more natural to use
than an extended conditional.

Tests and commands (which in this text will be separated by commas in lists to
aid readability) have similar syntax. The basic format is a pair, whereD is a
variable and selects a field in the record: when this istas} , v is the value being
tested for; when this is &md) , v is the value assigned. Usually the fields tested are
binary, in which case the modifiarcan be used to test or assign the opposite value.
Throughout, the mnemonidsandf denote the two states of a sub-routeckedor
freg the modifierx is not used)s andxs denote thesetor unsetstate of a routep
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andc denote track circuiteccupiedor clear (two separate fields in the track circuit
memory). Where points are accessed one must modify the field selected with either
r or n for the reverse or normal fields in points memory. Thenodifier in P, crf is
discussed later in Section 2.4.

To reduce the volume of data required the language provides a simple subroutine
mechanism. In the context of a test the direct®ecauses the interpreter to jump to
theevaluation setdentified by the labet L in the source; in the context of a command
the label should identify aexecution set Evaluation sets have no side-effects, and
return true or false at the point at which they occur; execution sets can be arbitrary
sequences of data. Heranarks the end of the subroutine code, but otherwise it closes
theif bracket. A further syntactic constraint is imposed on the use of the subroutine
mechanism: the referen@ and the labet L must both appear in the same data file.
(See Figure 7.3 for an example of the use of this subroutine machanism.)

The @directive is one of several so-callepecials These directives indicate to
the interpreter that it should execute a pre-programmed sequence of actions, being
typically given a variable name as a parameter upon which to operate. Use of the
specials in preparing Geographic Data is not mandatory, but it shortens the runtime
execution of the program. Further examples are given below.

Letting * Q, * P, and* L be metavariables over the class of labels, AR PFM,
andFOPdata files can be constructed thus:

PRR ::= [*Q [(oc>]*. ‘ *L (ev.sed ‘ *L (exsebr
PFM == |*P|[(gC
FOP := |(cmd)

<[z

r\ ‘ *L(ev_seb]*

—~

ev.seb . ‘ (€9 . r

Each panel request and flag operation is terminated by a period. In these files the period
terminates a block of data that will always be executed without interruption in the SSI
minor cycle. ThePFM data contain only tests and the labelis the entry point for

the interpreter when it is evaluating a points “free to move” test. The tabeés the

entry point for a panel request, as*Q4 above. Other labels are targets for jumps
(@) appearing in these data. There should be no jumps irF@Edata. (It will be
convenient in the sequel to use the notatRRR* Q) to refer to the data for the panel
reques € Q; similarly, whenP € P we will refer to the two data sets BJFM* PN)
andPFM* PR), and so on.)

Our final concern in this section is with the map search data. These data, like the
PFMdata, may be accessed throughout the other source files—but typically@®Pthe
data when a search is needed to determine the proximity of a train to a signepA
searchis a geographic condition having the syntax specification:

(map = {L[}L]Jr
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The entry point for the search is the label referenced by the first entry in thigllist,
while the search end-points are specified by the labels referenced by the remaining
elements} L. The map search must specify at least one end-point. Map data are
constructed thus:

MAP ::= [(segmer}t]*
(segment := *L (ref) [(entry}}* (exit)
(entry) == (ref) ‘ if [(gc>]*then (exit) \
(ref)y == #T ‘ #S
(exit)y ::= pass ‘ fail ‘ "L

S andT are variables representing signals and track circuits respectively, where the

specialstT and#.S abbreviate simple tests on track circuit and signal memory.
Informally, a map search begins at a feature reference, usually a signal, and pro-

ceeds back through the network untibass or afail is encountered, or a label

remembered from the beginning of the search. The conditional used MAlfRedata

is an expression, not a command as it is elsewhere. For a concrete example, the data

for the search back frorfi; might include the fragment:

*T3DN #T} , #1),
if P,cdr then pass\
if P,cdn then "T6DN \
fail

*T3UP ...

*T6DN #T} , #1,
if P;cdr then pass\
if P;cdn then fail \
fail

When points are encountered in the search there is a choice to be made which is gov-
erned by their current state. If these @maling points in the direction of the search

(e.g, B,), and if they arecontrolled and detected reversie search succeeds uncon-
ditionally because there can be no train approaching thew siggillf the points are
controlled and detected normé#ie search continues from the locatioréDN in the

map; otherwise the search fails (probably because the points were moving when the
search started since the controlled and detected fields in points memory will normally
be in correspondence). When points taeing the direction of the search a different
principle applies, deflecting the search along one or other of the paths to the signal.
The meaning of theL special is discussed below.
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2.4 Semantics: The Control Interpreter

The Geographic Data Language has not hitherto benefited from a formal semantics.
Therefore in analysing safety properties of the data one must offer formal semantics
that are faithful to the informal description of the language given in the Data Prepara-
tion Guide [9]. The informal description is inevitably vague and imprecise in places—
particularly in explaining the logic encoded in the interpreter itself. It is noted, for
example, that the logic encoded in the specials can be expressed in the conditional lan-
guage alone, but no translation table is given to clarify the point. That this translation
is not trivial is illustrated below where we discuss the relationship between the control
interpreter and the points “free to move” data and the map search data in Sections 2.4.2
and 2.4.3 respectively.

2.4.1 Abstract Syntax of Simple Tests and Commands

Earlier we characterised the state of the SSlin terms of dynamic and static components.
The dynamic component is what one usually means when referring tetatesof a
program, and we shall model states with the function space

State: Var — Val

i.e, mappings from a domain of variablesd, P, T'...) to a suitable domain of values
({0,1} say). Leto € State D € Var be representative elements from these domains.
It will also be necessary to have direct access to the static data. For this we are given
a domain of labels. Lat € Lab. Labels and references to them will be syntactically
distinguished as before.

The phrase structure of the Geographic Data inRR& PFM, and FOPfile (and
the MAP file, but this is postponed until Section 2.4.3) is succinctly specified by the
abstract syntax below. Letbe a test, and a command:

Tst := B ‘ t1, 1o ‘ (t1 or t3) ‘ Q
Cmd = A ‘ c1, Ca ‘ skip ‘ if ¢ then ¢, else c¢» Q
B is a basic variable tese(@, P, cr ), A is the basic command to set the value of

(a field in) a variable. In order to be specific about the meaning of simple tests and
commands we define interpretation functidhandC:

C : Cmd — State— State
T : Tst — State — (State x State) — State

We expect a command to yield a new state given an initial stakor example, if the
command is to control the poinf3 reverse:

C[Pcr]o = o[Pcr :=1] 1)
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This (function updating) notation is chosen to emphasise that the command assigns
a value to a (binary) field in the points record. Tests, on the other hand, are best
understood in terms of ‘continuations’:

T[Pcn]o (s, f) = if o(Pcn)=1thens elsef (2
Tt1, t2]o (s, f) = T[t]o(Ttao (s, f), f) (3)
T[(ty or ta)]o(s,f) = T[ti]o (s, Tt2]o (s, f)) (4)

Heres is the successful continuation, arfids the failure continuation+e., the state
reached if the test fails. Notice that a test list (3) is treated as conjunction. Elaborating
on this theme we obtain for the one-armed conditional:

C[if tthen cJo = T[t]Jo(C[c]o,0) (5)

If the testt is passed in state the commands are executed in that state, otherwise the
state remains unchanged. Command continuations may be needed to elegantly model
jumps, but they do not enhance the clarity of the presentation of the language here.

2.4.2 Points Free to Move Conditions

Whenever a route is to be set over points they must first be called into the correct
alignment. In SSI this is achieved in two stages: firstly, the control field in points
memory must be properly set (as in the conclusior@f above); secondly, the output
telegram for the points module must be set up with the correct command (usually
achieved by copying the control bits to the output). There is a problem, however, with
the nave semantics of th@oints commanduggested aboves[P.cr := 1] is not
the correct interpretation. According to the informal presentation of the language the
control interpreter is programmed to clear the reverse control bit when the normal bit is
set, and vice versa. Thu€[Pcr Jo = o[P.cr := 1|[P.cn := 0], for example. Track
circuit clear and occupied fields also have this inversion property, but other commands
(assignments) in the language are treated uniformly as suggested by Equation (1).
The points test? crf also introduces behaviour that depends on the interpreter.
The test is disjunctive: it is passed if the points are already controlled reverse, and if
not, it is passed if the “free to move” conditions are met. Intuitively:

T[Pcrf Jo(s,f) = T[( Pcror PFM*PR))]o (s, f)
= T[Pecr]o(s, TIPFM*PR)]o (s, f))
However, it should be noted that the control interpreter performs two further tests when

the PFMdata are accessed: firstly the key switch field in points memory in the opposite
direction is examined; secondly, the program checks that the points have not been
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disabled in the opposite direction by an override from the technician’s console. The
former condition can be programmed in the Geographic Data, but the latter cannot
since the override flag in points memory is accessible only to the generic program.
Since the override flag alwaysstricts the behaviour of the SSI we shall generally
ignore its effect in the sequel.

Specialising for the moment, and bringing the key switch test into consideration,
we expect the following equivalence to hold:

Pyerf = ( Pyeror Pyxkn ,T0°f TMf ,T,c)

Similarly for the other direction of the points. More generally we obtain agi@ning
of the points “free to move” geographic conditions:
T[Pcrf Jo(s,f) = T[Pcr]o(s, T[Pxkn ,PFM*PR)]o (s, f)) (6)
T[Penf Jo(s,f) = T[Pcn]o (s, T[Pxkr ,PFM*PN)]o (s, f)) (7

The substitutiorPFM(* PN) used above has been informally presented, but can be rig-
orously defended since tli&~Mdata file is just such a function:

PFM : Lab — Tst

We shall generalise this notion AP and PRRin the sequel.

2.4.3 The Map Search

Another point of contact between the Geographic Data Language and the interpreter
arises in theVIAP data. Given a (concrete) specification of the fgnm}L,,...}L,,

which we shall henceforth represent fiy, £), the interpreter begins the search at
location* L and terminates at one of the end-points given by thé&'set{L, ..., L,}.

More formally, letMap andEnt be new phrase classes:

Tst == ... ‘ (L, E)
Map == *L #D.,m
Ent .= #D,m ‘ if tthen e, m ‘ e

wherem is a map entryD € 7 U S, ande is one of the map exitgass , fail , or”L.
The interpretation functioll takes a set of labels in its first argument. However, since
for any map search the set of end-points is fixed, we shall Writd-] instead

Mg : (Map + Ent) — State — (State x State) — State
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and define this function inductively along these lines:

TIL, E)]o (s, f) = Mgp[*L MAP(*L)]o (s, f) (8)
. | T[Tc]o(s, f) ifLe E
Mal*L #T, mlo (s, f) = { ME[[;T, m]o (s, f) otherwise ©)
Mp[#T", mlo(s, f) = T[T'c]o(Mg[m]o(s, f), [) (10)
(s, f)

Mg[if tthen e, m]o (s, f T[t]loe Mgle]o (s, f),Mg[m]o (s, f)) (11)

From (9) note that the map search terminates if the label at the head of the list is
a designated end-point (successfully or not, depending on whether the track circuit
referenced is clear); otherwise the search continues along theurifalpe track circuit

is clear, or fails if it is not by (10). A signal referengé is treated in a similar manner,
being also an abbreviation for a simple test on the signal memory. Clause (11) is what
one would expect for aif-then-elseexpression. The end-point rules are simpler:

Mg[pass Jo (s, f) = s (12)
Mg[fail Jo(s,f) = f (13)
Mg[ L]o(s,f) = Mg[*L MAP(*L)]o (s, f) (14)

Thus, when the specialL is encountered the interpreter jumps to the indicated label

in the map—of course, this means that there is no guarantee that a map search ever
terminates since one can easily define a cyclic map segment. In order to ensure that the
interpretation functions are total we suppose that the data are well formed in the sense
that cyclic references are syntactically prohibited (which is the case, in fact). Note that
only one branch in the map is explored for any search conducted: no backtracking is
necessary since there can be at most one open path to a signal at any time.

2.5 Indirect Semantics of the Map Search

The interpretation functioM defines the algorithm that the control interpreter should
perform when encountering a map seafchE) geographic condition—that isyi
specifies how to conduct the s