

Some Lambda Calculus and Type Theory
Formalized∗

James McKinna
jhm@dcs.ed.ac.uk

Robert Pollack
rap@dcs.ed.ac.uk

Laboratory for Foundations of Computer Science
The King’s Buildings, University of Edinburgh, EH9 3JZ, Scotland

1 Introduction

“This paper is about our hobby.” That is the first sentence of [MP93],
the first report on our formal development of lambda calculus and
type theory, written in autumn 1992. We have continued to pur-
sue this hobby on and off ever since, and have developed a substan-
tial body of formal knowledge, including Church-Rosser and stand-
ardization theorems for beta reduction, and the basic theory of
Pure Type Systems (PTS) leading to the strengthening theorem and
type checking algorithms for PTS . Some of this work is reported
in [MP93, vBJMP94, Pol94b, Pol95]. In the present paper we sur-
vey this work, including some new proofs, and point out what we feel
has been learned about the general issues of formalizing mathematics.
On the technical side, we describe an abstract, and simplified, proof of
standardization for beta reduction, not previously published, that does
not mention redex positions or residuals. On the general issues, we em-
phasize the search for formal definitions that are convenient for formal
proof and convincingly represent the intended informal concepts.

The LEGO Proof Development System [LP92] was used to check
the work in an implementation of the Extended Calculus of Construc-
tions (ECC) with inductive types [Luo94]. LEGO is a refinement style
proof checker, publicly available by ftp and WWW, with a User’s
Manual [LP92] and a large collection of examples. Section 1.3 con-
tains information on accessing the formal development described in
∗Submitted to Journal of Automated Reasoning

1

this paper. Other interesting examples formalized in LEGO include
program specification and data refinement [Luo91], strong normaliza-
tion of System F [Alt93], synthetic domain theory [Reu95, Reu96], and
operational semantics for imperative programs [Sch97].

1.1 Why?

PTS have a beautiful meta-theory, developed informally in [Bar92,
Ber90, GN91, vBJ93, Geu93]. These papers are unusually clear and
mathematical, and there is little doubt about the correctness of their
results, so why write a machine-checked development? The informal
presentations leave many decisions unspecified and many facts un-
proved. They are far from the detail of representation needed to write
a computer program for typechecking PTS , and the lemmas needed to
prove correctness of such a program. At the start, our long-term goal
was to fill these gaps in order to increase confidence in proofchecking
programs (such as LEGO) based on type theory. That goal is largely
met in [Pol95]. Also, while the basic informal theory of PTS is well
understood, the difficulties of formalization suggested reformulations
which clarify the presentation.

Another goal of the project is to develop a realistic example of
formal mathematics. In mathematics and computer science we do not
prove one big theorem and then throw away all the work leading up
to that theorem; we want to build a body of formal knowledge that
can continually be extended. This suggests some design criteria for
formalization. Representations and definitions must be suitable for the
whole development, not specialized for a single theorem. The theory
should be structured, like computer programs, by abstraction, provid-
ing “isolation of components” so that several parts of the theory can
be worked on simultaneously, perhaps by several workers, and so that
the inevitable wrong decisions in underlying representations can later
be fixed without affecting too seriously a large theory that depends on
them. The body of knowledge we want to formalize is itself still grow-
ing, e.g. [vBJMP94] reports advances on typechecking for PTS done
later than our original formalization, that became part of our formal
development. The work on typechecking benefited from the basic form-
alization of PTS , since proofs about several related systems could be
easily adapted from proofs already done for PTS . Further, new sub-
jects were included; e.g. the standardization theorem, not used in the
type theory, was formalized by the first author. On the other hand, we
do not claim that type theory is a realistic example for all formal math-

2

ematics: it is especially suitable for formalization because the objects
are inductively constructed, their properties are proved by induction
over structure, and there is little equality reasoning.

Perhaps the most compelling reason for our continuing fascination
with this work is the lure of completely concrete, yet simple, proofs
of results whose conventional presentation seems to require some no-
tions that are “messy” to formalize, e.g. the standardization theorem
discussed in section 3.4. We see such proofs as beautiful, both by their
simplicity and their concreteness. There is a tendency in formaliza-
tion to throw simplicity to the winds in frustration to get the proof to
work at all; but once it is checked, it can be beautified relatively eas-
ily, as improved definitions and arguments are mechanically checked,
easily pointing out new glitches and suggesting how to fix them. Also,
a formal development is easy to come back to a year later, as all the
details you would not otherwise have written down are explicit, and
don’t have to be rediscovered.

1.2 Related Work

There are many formalizations of the Church–Rosser theorem [Sha85,
Hue94, Nip96, Pfe92]; the only formalization of a standardization the-
orem we know of is [Coq96a], for lazy combinator expressions. Form-
alizations of type theory include [DB93, Bar95]; both of these address
limited aspects of very special type theories (essentially the Calculus of
Constructions), although [Bar95] is very interesting work in which the
program extraction mechanism of Coq is used to extract an executable
typechecker from a proof of decidability of typechecking. In contrast
to all the cited work except [Bar95], our development hasn’t been ter-
minated by reaching one specified theorem, but continues to grow in
various directions guided by our interests, and by other work we come
across that we feel needs checking. For example, both authors have
checked parts of type theory papers we were asked to referee.

A novelty in our presentation is the use of named variables. Most
of the formalizations of type theory or lambda calculus that we know
of use de Bruijn indices (“nameless variables”) [Sha85, Alt93, Hue94,
Nip96, Bar95] or higher order abstract syntax [Pfe92] to avoid formal-
izing the renaming of variables to prevent unintended capture during
substitution. While de Bruijn notation is concrete and suitable for
formalization, there are reasons to formalize the theory with named
variables. For one thing, implementations must use names at some
level, whether internally or only for parsing and printing; in either

3

case this use of names must be formally explained. More interesting is
the insight to be gained into the meaning of binding. Many research-
ers agree that de Bruijn representation “really is” what we informally
mean by lambda terms, in the sense that there is no need to quotient
terms by alpha-conversion, i.e. intensional equality on de Bruijn terms
corresponds with what is informally meant by identity of terms. Non-
etheless, de Bruijn representation is a coding of the informal notion
of binding, and doesn’t address at all the relationship between free
and bound variables, namely how free variables become bound. In our
formalization, syntactic terms using named variables are themselves
concrete: the names of bound variables actually occur (parametrically)
in meta-formulas containing them, just as the names of free variables
do. This is done using a formulation suggested by Coquand [Coq91],
based on syntactically distinguishing free from bound variables1. Other
work on formalization of binding and substitution using names in-
cludes [Coq96b, GM96, Owe95, Sat83, Sto88], but these do not work
out any large examples using their binding notions. It would be inter-
esting to compare our development with some similar example using the
terms up-to alpha conversion of [GM96]. A presentation of type theory
based on treating terms with named variables concretely is Martin-
Löf’s calculus of explicit substitutions [Tas93], but this presentation is
not closed under alpha-conversion, as our presentation is (section 5.5.3),
and we view this as a failure of concreteness of Martin-Löf’s system.

1.3 This paper and the formal development

The source files for the development described in this paper, along
with a README file explaining how to check them, is available on the
LEGO WWW homepage http://www.dcs.ed.ac.uk/home/lego/.

LEGO uses a module system (described in [JP93]) based on Car-
delli’s mock modules [Car91]. Each source file is a module, and each
module has a header saying which modules it depends on. Thus the
directory of modules associated with this paper contains parallel, and
even incompatible, developments. If you type Load strengthening,
the file strengthening.l (which contains the proof of strengthening
for PTS) will be loaded, preceeded by every module it depends on2.

There are over 70 proof source files with extension .l3 containing
1This distinction is already present in Gentzen [Gen69, pages 71–2, 116–7, 141,

216–7] and Prawitz [Pra65]
2The dependencies are determined from the module headers, not by examining

the actual dependencies in the files.
3The .l files are the ones we wrote; LEGO generates “compiled” files with a .o

4

over 1500 definitions and lemmas. This is a large amount of formal
knowledge, which we can only survey here. This paper uses informal
mathematical notation, but almost every definition and lemma that
we mention is given with its formal name in typewriter font (often
in parentheses). You can then use grep to find the file in which it is
defined and the files in which it is used. This is not particularly elegant,
but it’s how we do it too. Keeping track of a large amount of formal
knowledge is a serious problem that we have not addressed very well.

1.3.1 About notation

As mentioned, this paper uses informal notation, which is arrived at
by manually translating from the formal LEGO notation into LATEX.
Further, the translation is not purely syntactical; we chose to surpress
some technical details to have a readable presentation. Errors are quite
likely, arising from both our translation and your interpretation. This
paper may be an informative outline of the formal work, but if you want
to believe one of our results you must read its formal statement, and all
the formal definitions used in its statement; see [Pol96] for discussion
of believing a large formal development.

In [MP93] we used formal notation, verbatim text manually extrac-
ted from LEGO source files; no translation errors occur, but there is no
reason to believe the verbatim text in the paper actually appears in the
files. Indeed, the the document and the files drifted apart over time.
In [Pol94b] we again used formal notation, mechanically extracting
marked sections of the source files, following the idea of Knuth’s WEB.
We could rerun the extraction to update the document to the formal
source, but many readers complained the document was as unreadable
as the formal source. Presenting a formal development is a serious
problem. Perhaps mechanical extraction with mechanical translation
to informal notation is the right direction to pursue.

For better or worse, we have sanitised this presentation so that very
little purely formal detail shows through. For example, we mostly sur-
press the distinction between boolean values and propositional values.
However, we don’t want to hide the fact that formalization requires
many details that don’t appear in informal presentations.

A few basic notations The development uses LEGO’s built-in lib-
rary of impredicative definitions for the usual logical connectives and

extension. These are the fully annotated λ -terms generated by the LEGO tactics
called in the .l file.

5

their properties; we use standard notation for these connectives. Quan-
tifiers are typed in ECC, but we reserve symbols to range over certain
types, and drop the type labels almost everywhere; e.g. p will be re-
served to range over parameters, PP , so we write ∀p . . . instead of
∀p:PP

Well known computer science notations are used, e.g. if (, ,)
as if-then-else, list() for the type of lists over , @ (or sometimes
just concatenation) for list append. All funtions of ECC are total (as
opposed to functions in the object theory of lambda terms and PTS),
so some operations take extra arguments for a “failure value”, e.g.
(assoc a b l) returns b if a is not the first element of a pair occurring
in l .

2 Pure Languages

In this section we discuss a formalization of the language of PTS ,
including terms, occurrences and substitution. We derive a strong in-
duction principle for well-formed terms.

A Pure Language (PL) is a triple (PP, VV, SS) where

• PP is an infinite set of parameters, ranged over by p , q , r ; these
are the global, or free, variables.

• VV is an infinite set of variables, ranged over by v , x , y ; these
are the local, or bound, variables.

• SS is a set of sorts, ranged over by s , t u ; these are the con-
stants.

PP , VV and SS have decidable equality. That PP and VV are infinite is
captured by the assumption that for every list of parameters (variables)
there exists a parameter (variable) not occurring in the list; e.g.4:

∀l∈ list(PP) . ∃p . ¬member(p, l) (PPinf)

We are not assuming mathematical principles, but working paramet-
rically in types PP , VV and SS having the stated properties. These
can be instantiated with particular types that provably do have these
properties, e.g. the natural numbers, or lists over some finite enumer-
ation type. By working parametrically we are preserving abstractness:
only the stated properties are used in our proofs.

4In this formula, member(p, l) is decidable because PP has decidable equality.

6

2.1 Terms

The terms of a PL , Trm , ranged over by M , N , A , . . . , E , a , b , are
given by the grammar

M ::= v | p | s atoms: variable, parameter, sort
| [v:M]M | {v:M}M binders: lambda, pi
| MM application

To be precise, Trm is inductively generated by six constructors: every
term can be thought of as a well-founded tree whose leaves are variables,
parameters and sorts, and whose interior nodes are lambda and pi
(having three branches each) and application (having two branches).
We often define functions on Trm by structural (primitive) recursion
over this inductive definition. As usual, we intend [v:A]B and {v:A}B
to bind v in B but not in A . However the intended binding structure
is not determined by the definition of Trm , but is made explicit by the
definitions of substitution and occurrence below. Equality on terms is
defined by recursion over Trm ; it inherits decidability from PP , VV and
SS .

Remark 2.1 (Notation) Often when doing case analysis by term
structure, we want to say that the binders, lambda and pi, behave the
same way. We introduce a notation 〈v:A〉a to allow combining these
cases. The actual formalization does not have such a notation, but this
would have saved much cutting and pasting in developing the proofs.

The length of a term is used as a measure for well-founded induc-
tion.

lngth(α) , 1 α ∈ PP, VV, SS
lngth(〈v:A〉a) , 1 + lngth(A) + lngth(a)
lngth(a b) , 1 + lngth(a) + lngth(b)

Two properties of this measure are used applications: if A is a proper
subterm of B then lngth(A) < lngth(B) (used in induction on the
length of terms), and every term has positive length (used in reasoning
about PTS by induction on the sum of the lengths of the terms in a
context).

2.2 Occurrences of Parameters and Sorts

The list of parameters occurring in a term is computed by primitive
recursion over term structure, and the boolean judgement whether or

7

not a given parameter occurs in a given term is decided by the member
function on this list of parameters.

params(p) , [p]
params(α) , [] α ∈ VV, SS
params(〈v:A〉a) , params(A) @ params(a)
params(a b) , params(a) @ params(b)

p ∈ A , member(p, params(A))

Similarly sorts(A) and s ∈ A are defined.

2.3 Substitution

For the machinery on terms, we need two kinds of substitution, for
parameters and for variables, both defined by primitive recursion over
term structure. Write [a/p]M (formally psub) for substitution of a
for a parameter, p , in M . This is entirely textual, not preventing
capture. Since parameters have no binding instances in terms, there is
no hiding of a parameter name by a binder.

[a/p]q , if(p=q, a, q)
[a/p]α , α α ∈ VV, SS
[a/p]〈v:B〉b , 〈v:[a/p]B〉[a/p]b
[a/p](MN) , [a/p]M [a/p]N

Substitution of a for a variable, v , in M , written [a/v]M (formally
vsub), does respect hiding of bound instances from substitution, but
does not prevent capture.

[a/v]x , if(v=x, a, x)
[a/v]α , α α ∈ PP, SS
[a/v]〈x:B〉b , 〈x:[a/v]B〉if(v=x, b, [a/v]b)
[a/v](MN) , [a/v]M [a/v]N

[/p] and [/v] will be used only in safe ways in the type theory and
the theory of reduction and conversion, so as to prevent unintended
capture of variables. Note that these operations are total functions, and
do not rename variables. Also, occurrences of a in [a/] are shared,
regardless of whether they occur within different binding scopes, in
contrast to the situation with de Bruijn indices.

Some important lemmas can now be proved:

p 6∈M ⇒ [N/p] [p/v]M = [N/v]M , (vsub is psub alpha)

8

Vcl-atom Vclosed(α) α ∈ PP ∪ SS

Vcl-bind

Vclosed(A) Vclosed([p/v]B)

Vclosed(〈v:A〉B)

Vcl-app

Vclosed(A) Vclosed(B)

Vclosed(AB)

Table 1: Inductive definition of the relation Vclosed .

and we have a ready supply of terms of the shape [p/v]M , with
p 6∈M :

∀p,M.∃v,M ′. M = [p/v]M ′ ∧ p 6∈M ′ (shape lemma)

Many other properties of these operations are proved in the formal
development.

2.4 No Free Occurrences of Variables

Intuitively parameters are the free names in terms; variables are inten-
ded to be the bound names, and we do not consider terms with free
variables to be well formed. We define inductively a predicate Vclosed
(variable-closed) over terms (table 1). This is analagous to the way a
typing relation specifies another kind of well-formedness. (It will turn
out that every PTS -typable term is Vclosed). Thus Vclosed is used
as an induction principle over well formed terms. As this relation is
a simple case of ideas that recur many times in what follows, we will
discuss it at some length.

Of course all terms of form s and p are Vclosed (rule Vcl-atom),
and no terms of shape v are Vclosed (there is no rule to introduce
Vclosed(v)), but how do we define Vclosed for binders? The ap-
proach to “going under binders” is a central idea of our formal hand-
ling of names: for 〈v:A〉a to be Vclosed , we require Vclosed(A)
and Vclosed([p/v]a) for some parameter p . That is, to go under a
binder, first fill the hole with parameter, p . But p doesn’t appear in
the conclusion of rule Vcl-bind; which parameter are we to use? In
the definition of Vclosed we say that any parameter will do, but there
is another possible choice: that Vclosed([p/v]B) be derivable for all

9

p . This is not a formal question; it is one of the tasks of a reader of
formal mathematics to decide if the formalisation correctly captures her
informal understanding. But a formaliser can help readers by pointing
out alternatives, and formally proving some relationship between them.
This is especially interesting when alternative definitions lead to easier
proofs in some cases. We will see this below for Vclosed .

Remark 2.2 Vclosed is equivalent to having no free variables
(Vclosed vclosed, vclosed Vclosed). This observation may be of
informal interest (“the definition of Vclosed is reasonable”), but we
do not use it formally because Vclosed allows us to avoid all talk of
free variables.

Vclosed Generation Lemmas Suppose you have a proof of
Vclosed(〈v:A〉B) ; without examining it you know it must be construc-
ted by Vcl-bind from proofs of Vclosed(A) and Vclosed([p/v]B) ,
because no other rule for Vclosed has a conclusion of shape
Vclosed(〈v:A〉B) . The very fact that a relation is inductively defined
means that its judgements can only be derived by using its rules. This
is often called case analysis, and more generally, the lemmas that ex-
press such properties are called generation lemmas [Bar92], or inversion
principles [DFH + 93]. Note that inversion principles are determined by
the shape of a definition, not by its extension. LEGO has new and very
useful tactics to automate the use of inversion [McB96], but most of
what we describe in this paper was done before the tactics were avail-
able. We will frequently use inversion on inductive definitions in the
rest of this paper without further comment.

The generation lemmas from the definition of Vclosed are

Vclosed(v) ⇒ absurd
Vclosed(〈v:A〉B) ⇒ Vclosed(A) ∧ ∃p . Vclosed([p/v]B)
Vclosed(AB) ⇒ Vclosed(A) ∧ Vclosed(B)

Notice how the existential quantifier in the case for binders expresses
the failure of the subformula property in Vclosed .

2.4.1 A better induction principle for Vclosed .

Here are three “obvious” facts about Vclosed (alpha Vclosed lem,
Vclosed alpha).

Vclosed(〈v:A〉B) ⇒ Vclosed(A) ∧ ∀p . Vclosed([p/v]B)
∀M.Vclosed(M) ⇒ ∀q, v.[q/v]M = M

∀B, p, v.Vclosed([p/v]B) ⇒ ∀q.Vclosed([q/v]B)

10

They are all directly provable, but appear to need length induction
(which appeals to well-founded induction and then subsidiary case ana-
lysis; e.g. the proof of claim aVclosed alpha below), for the usual
reason that statements about change of names are proved by length in-
duction rather than structural induction: e.g. [q/v]M is not generally
a subterm of (M N) , but it is shorter than (MN) . We will derive
a new induction principle which packages up such arguments once and
for all.

Consider an alternative definition, called aVclosed , differing
only in the rule for binders, in which the right premise requires
aVclosed([p/v]B) for every p :

aVcl-bind

aVclosed(A) ∀p . aVclosed([p/v]B)

aVclosed(〈v:A〉B)

We will show that Vclosed and aVclosed derive the same judge-
ments. Induction over aVclosed is the principle which Melham and
Gordon rediscovered as a consequence of their Axiom 4 (Unique Itera-
tion) [GM96, Section 3.2].

It is worth saying that Vclosed is a type of finitely branching
well-founded trees; i.e. Vcl-atom are the leaves, and Vcl-bind and
Vcl-app are binary branching nodes. On the other hand, aVclosed
contains infinitely branching well-founded trees, where aVcl-bind cre-
ates a branch for each parameter p . Notice also that for any term, A ,
there is at most one derivation of aVclosed(A) , while there may be
many derivations of Vclosed(A) , differing in the parameters used in
the left premises of instances of aVcl-bind.

Equivalence of Vclosed and aVclosed (aVclosed Vclosed,
Vclosed aVclosed)

∀A . aVclosed(A) ⇔ Vclosed(A) .

Both directions follow easily by structural inductions once we have the
following claim (aVclosed alpha):

∀B, p, v . aVclosed([p/v]B) ⇒ ∀q . aVclosed([q/v]B)

Proof. The claim is proved by induction on lngth(B) . This works
because every term appearing in a premise of a rule of aVclosed is
shorter than the term appearing in its conclusion; the typing relations
to be considered later do not have this property, and more subtle proofs
will be required (section 5.2.1).

11

By well-founded induction on lngth(B) , we have the goal

∀A . (∀X . lngth(X) < lngth(A)⇒
∀p, v . aVclosed([p/v]X)⇒ ∀q . aVclosed([q/v]X))⇒

∀p, v . aVclosed([p/v]A)⇒ ∀q . aVclosed([q/v]A)

Now using term structural induction on A , we have cases for sort, vari-
able, parameter, binder and application (only case analysis is necessary
here; we don’t use the structural induction hypotheses). Consider the
case for binder: we must show aVclosed([q/v] 〈n:A〉B) , i.e.

aVclosed(〈n: [q/v]A〉if (v=n, B, [q/v]B))

under the assumptions

ih : ∀X . lngth(X) < lngth(〈n:A〉B)⇒
∀p, v . aVclosed([p/v]X)⇒ ∀q . aVclosed([q/v]X)

vclp : aVclosed([p/v]〈n:A〉B)
(i.e. aVclosed(〈n:[p/v]A〉if(v=n, B, [p/v]B)))

By aVclosed inversion applied to assumption vclp we also know

h1 : aVclosed([p/v]A)
h2 : ∀r . aVclosed([r/n]if(v=n, B, ([p/v]B)))

By aVcl-bind, it suffices to show

aVclosed([q/v]A) and ∀r . aVclosed([r/n]if (v=n, B, [q/v]B))

Noticing that [p/v] doesn’t change lngth, the first of these holds
by ih and h1. For the second, let r be an arbitrary parameter, and
consider cases. If v = n then we are done by h2; i.e. [q/v]B doesn’t
actually appear in the goal, and [p/v]B doesn’t actually appear in h2.
Finally the interesting case: if v 6= n we use a straightfoward lemma
(alpha commutes alpha)

∀v, w . v 6= w⇒ ∀r, q, A . [r/v] [q/w]A = [q/w] [r/v]A

to rewrite the goal to aVclosed([q/v] [r/n]B) . By ih it suffices to show
aVclosed([p/v] [r/n]B) , which follows by h2 after again rewriting the
order of substituting p and r .

12

What have we gained? By defining aVclosed and showing it to
be extensionally equivalent to Vclosed , we can view the induction
principle of aVclosed as an induction principle for the extension of
Vclosed , and this is clearly stronger than the induction principle of
Vclosed . We insist on extension to point out that aVclosed-induction
may be used to prove statements about the judgement Vclosed , but
not about derivations of the judgement.

Notice that we could directly prove the analogue of claim
aVclosed alpha for Vclosed (the proof outlined above works), but
it is not just the stronger premises of aVclosed we are after (i.e. the
generation lemmas), it is the stronger induction hypotheses.

2.5 A Technical Digression: Renamings

[/p] and [/v] are sequential operations; we have not used a notion
of simultaneous substitution, except in the following special case. A re-
naming is a finite function from parameters to parameters. Renamings
are represented formally by their graphs as lists of ordered pairs.

rp , PP× PP (renaming pair)
Renaming , list(rp)

ρ and σ range over renamings. The action of a renaming (renTrm)
on parameters is by lookup in the representing list, and is extended
compositionally to all terms.

ρp , (assoc p p ρ)
ρα , α (α ∈ VV, SS)
ρ〈v:A〉a , 〈v:ρA〉ρa
ρ(MN) , ρ(M) ρ(N)

This is a “tricky” representation. First, if there is no pair (p, q) in ρ ,
(assoc p p ρ) returns p , so the action of a renaming is always total,
with finite support. Also, while there is no assumption that renamings
are the graphs of functional relations, the action of a renaming is func-
tional, because assoc finds the first matching pair. Conversely, consing
a new pair to the front of a renaming will “shadow” any old pair with
the same first component. We do not formalize these observations.

Renamings commute with substitution in a natural way:

∀ρ,M,N, v. ρ([N/v]M) = [ρN/v]ρM . (vsub renTrm commutes)

13

Renaming is iterated substitution. We can analyse the action of
a renaming in terms of substitution (renTrm is conjugated psub):

∀r,M, ρ, p, q . r 6∈M ∧ r 6∈ ρ ⇒ ((p, q)::ρ)M = [q/r](ρ([r/p]M))

From this lemma it is easy to show that renaming respects any relation
that substitution of parameters respects (psub resp renTrm resp):

∀R : Trm→Trm→Prop .
(∀A,B . R(A,B) ⇒ ∀q, p . R([q/p]A, [q/p]B)) ⇒
∀A,B . R(A,B) ⇒ ∀ρ . R(ρA, ρB)

Similar results hold for n -ary relations R .

Injective and Surjective Renamings It is useful to have bijective
renamings (e.g. in Section 5.2.1). The definitions are standard:

inj(ρ) , ∀p, q . ρp = ρq ⇒ p = q , sur(ρ) , ∀p ∃q . ρq = p

It is surprisingly difficult to construct bijective renamings in general be-
cause of the trickiness of the representation mentioned above. However
it’s clear that any renaming that only swaps parameters is bijective
(swap sur, swap inj), and this is enough for our purposes:

swap(p, q) , [(p, q), (q, p)]
∀p, q . sur(swap(p, q)) ∧ inj(swap(p, q))

3 Reduction and Conversion

In this section we outline the theory of reduction and conversion of
Pure Languages. The main results are the Church-Rosser and stand-
ardization theorems.

As in the definition of Vclosed (Section 2.4), the interesting point
in defining reduction is how the relation goes under binders. To under-
stand how reduction works, consider informally one-step beta-reduction
of untyped lambda calculus. In our style the β and ξ rules are:

β (λx.M)N → [N/x]M Vclosed(N)

ξ
[q/x]M → [q/y]N

λx.M → λy.N
q 6∈M, q 6∈ N

The substitution [N/x]M on the RHS of β does not prevent capture,
so some restriction is required. It is obvious that no capture can occur

14

if N is closed in the usual informal sense, but because we distinguish
between parameters and variables it is enough that N be Vclosed .
This is no actual restriction: we will only want to reason about Vclosed
terms anyway, as these are the “well-formed” terms.

To use β under a binder, as allowed by ξ , we must preserve the
invariant that β is only applied to Vclosed terms: we fill the “holes”
left by stripping off the binder with a fresh parameter. Here is an
instance of ξ where incorrect capture might occur (contracting the
underlined redex):

[q/x](λv.λx.v) x = (λv.λx.v) q → λx.q = [q/y]λx.y

λx.((λv.λx.v) x) → λy.λx.y

After removing the outer binder λx , replacing its bound instances by a
fresh parameter, q , and contracting the Vclosed redex thus obtained,
we must re-bind the hole now occupied by q . (Since q was fresh, all
instances of q mark holes that should be re-bound). According to ξ ,
we require a variable, y , and a term, N , such that [q/y]N is the
contractum of the Vclosed redex, λx.q in the example. Such a pair
is y , λx.y (the one we have used above), as is z , λx.z for any z 6= x .
However ξ does not derive the incorrect judgement

λx.((λv.λx.v) x) → λx.λx.x

because
[q/x]λx.x = λx.x 6= λx.q.

Thus incorrect capture is avoided.

3.1 Parallel Reduction

Rather than use ordinary β -reduction, we take parallel reduction (à
la Tait–Martin-Löf) as the basic reduction relation. Parallel reduction
is convenient for the Church-Rosser and standardization theorems, as
emphasised by Takahashi in her beautiful account [Tak95]. Our devel-
opment follows that of [Tak95], with some refinements.

3.1.1 One-step parallel reduction

This relation, →[[(par red1), is defined in Table 2. As in Vclosed
above, the dependence of the congruence rule for binders on the choice
of a parameter p is only apparent. However, something new arises here,
namely the side conditions p 6∈ B , p 6∈ B′ . These are eigenvariable

15

pr1-atom α→[[α α ∈ PP ∪ SS

pr1-beta

A→[[A′ [p/u]B →[[[p/v]B′

([u:U]B)A →[[[A′/v]B′
p 6∈ B, p 6∈ B′
Vclosed(U)

pr1-bind

A→[[A′ [p/u]B →[[[p/v]B′

〈u:A〉B →[[〈v:A′〉B′
p 6∈ B , p 6∈ B′

pr1-app

A→[[A′ B →[[B′

AB →[[A′ B′

Table 2: 1-Step Parallel Reduction

conditions5, which ensure that the parameter p correctly indicates the
position of the bound variables in the compound terms.

Only Vclosed terms participate in →[[(par red1 Vclosed)

∀A,B. A→[[B ⇒ Vclosed(A) ∧ Vclosed(B) ,

and →[[is reflexive on Vclosed terms (par red1 refl)

∀A . Vclosed(A) ⇒ A→[[A .

A stronger induction principle for →[[The rules pr1-atom, pr1-

bind and pr1-app are the congruence rules for our language. As with
Vclosed (section 2.4.1), we introduce a strong congruence rule for bind-
ers

˜pr1 -bind

A→̃[[A′ ∀p. [p/u]B →̃[[[p/v]B′

〈u:A〉B →̃[[〈v:A′〉B′

and prove that →[[and →̃[[are extensionally equivalent, giveing us
stronger induction and inversion principles. Because of the eigenvari-
able conditions in pr1-bind, a technique using renamings is required

5Kleene [Kle52, §78, on the notion of “pure variable” proof] explains how to
treat such conditions; however, to do so he must explicitly consider operations on
derivations, hence dependent elimination, whereas our methods require only rule
induction, i.e. non-dependent elimination. The second author is grateful to N.
Shankar for this reference.

16

to show the equivalence. We omit the details, but a similar argument
is used in section 5.2.1.

The strong induction principle is used to show that →[[is closed
under substitution (par red1 psub):

M→[[M ′ N→[[N ′

[N/p]M→[[[N ′/p]M ′

Many-step parallel reduction →→[[(par redn), is the transit-
ive closure of →[[. It inherits properties par redn Vclosed and
par redn refl from the corresponding properties of →[[mentioned
above.

3.1.2 Alpha-Conversion

We define α -conversion, α∼ , to be the least congruence, i.e. α∼ is ex-
actly →[[without the rule pr1-beta, so α∼⊆→[[. This definition is
symmetric, by inspection. To show that it is transitive requires the
stronger induction principle for α∼ , which we prove in the same way as
above. Hence α∼ is an equivalence relation6. It is decidable for Vclosed
terms (decide alpha conv):

∀A,B. Vclosed(A) ⇒ Vclosed(B) ⇒ decidable(A α∼ B)

with a straightfoward but messy proof, by double induction on
aVclosed(A) and aVclosed(B) .

Informally, alpha-conversion is used for changing the names of vari-
ables. We do not have 〈x:A〉B α∼ 〈y:A〉([y/x]B) because [y/x]B does
not prevent capture. However, we do have (true alpha conv pi):

∀v, A, B . Vclosed(〈v:A〉B) ⇒ ∀x∃C . 〈v:A〉B α∼ 〈x:A〉C

Closure under α -conversion One of Coquand’s original motiva-
tions for distinguishing between variables and parameters was to avoid
the need to reason about α -conversion; many of the arguments below
(Church-Rosser, standardisation, subject reduction) achieve this goal.

Name-carrying syntax is regarded as an abbreviation for a quotient
modulo α -conversion, so that when we formalise a relation R such
as parallel reduction above, we really intend R modulo the quotient
structure, i.e. α∼◦R◦α∼ . We say a relation R is:

6This should be contrasted with Gallier’s meticulous but long-winded treatment
in [Gal90].

17

closed under α if α◦R ⊆ R◦α ; strongly closed, if α◦R ⊆ R ;
full wrt α if R◦α ⊆ α◦R ; strongly full, if R◦α ⊆ R .

Remark 3.1 →[[is strongly closed under α -conversion: the proof is
the same as that for transitivity of α∼ , with the additional case of a
redex handled by observing that an α -variant of a redex is a redex.
However →[[is not full w.r.t. α∼ -classes. For example

([x:q]x x) ([w:q]w) →[[([y:q]y) ([y:q]y) for every y ,

but no α -variant of the LHS →[[-reduces to ([y1:q]y1) ([y2:q]y2) where
y1 6= y2 , although this is an α -variant of the RHS.

3.1.3 A Church-Rosser Theorem

Using the argument of Tait and Martin-Löf, as modernized in [Tak95],
we prove the first CR theorem (par redn DP):

∀M,M ′,M ′′. M →→[[M ′ ∧ M →→[[M ′′ ⇒ ∃N. M ′ →→[[N ∧ M ′′ →→[[N

by the usual strip lemma argument and the diamond property of →[[

(comp dev par red1 DP).
To do so, we introduce an inductive characterisation of complete

development, −→[[, (comp dev)7. It is given by the same rules as →[[,
except for the application rule:

cd-app

A −→[[A′ B −→[[B′

AB −→[[A′B′
A is not a lambda

The side condition in cd-app forces contraction of all redexes: we have
a deterministic sub-relation of →[[.

The theorem on finiteness of developments now becomes the com-
bination of:

• induction on the definition of −→[[, which we may think of as a
partial correctness assertion;

• the existence (for Vclosed terms) of complete developments,
(comp dev exists), which we may think of as a termination ar-
gument.

7cf. the definition of −→[[as a function by structural recursion on terms [Tak95]

18

This separation of concerns gives us an advantage over Takahashi’s
informal proofs, in that we do not have to consider, in each proof about
−→[[, a subsidiary induction (case-analysis) to resolve the redex/non-
redex distinction in the case of an application. This is handled once
and for all in the existence proof, while induction on the definition of
−→[[already delineates the redex/non-redex distinction. The price we
pay is that we no longer work with an object-level function, but rather
a functional relation.

Of course, we have simplified matters by considering developments
of the entire set of redexes in a term: this is sufficient for our purposes,
but a more refined analysis (e.g. [Hue94]) would take us beyond our
simple datastructure of terms.

The diamond property (comp dev par red1 DP) follows easily from
the following “Takahashi” lemma (comp dev preCR):

∀M,N,M ′. M→[[N , M−→[[M ′ ⇒ N→[[M ′

whose proof is by induction on M−→[[M ′ , with inversion of M→[[N . As
usual, the interesting case, of a redex/redex, appeals to par red1 psub.

Remark 3.2 These proofs do not make any appeal to α -conversion.
This is because both the →[[and −→[[relations are strongly closed under
α -conversion. Indeed, we may show the following two properties, which
strengthen comp dev exists, namely comp dev unique:

M−→[[M ′ , M−→[[M ′′ ⇒ M ′
α∼M ′′ ;

and comp dev exists unique:

M
α∼M ′ ⇒ ∃M ′′.M−→[[M ′ , M−→[[M ′′

3.2 Conversion

We define conversion, ' (conv), as the symmetric and transitive clos-
ure of →→[[. It inherits properties conv Vclosed and conv refl from
those of →→[[mentioned above.

The second Church-Rosser theorem is now straightfoward to
prove for conversion (convCR):

∀M,M ′. M 'M ′ ⇒ ∃N. M→→[[N ∧ M ′→→[[N

19

3.3 Normal Forms

A term is beta normal (beta norm), if it has no beta redexes . This
may be defined with the same rules as aVclosed , except the rule for
application, which is

bn-app

beta norm (A) beta norm (B)

beta norm (AB)
A is not a lambda

All beta norm terms are Vclosed (beta norm Vclosed). A relation
of reduction to normal form is defined:

A ↓ N , beta norm (N) ∧ A→→[[N (normal form)

→→[[is reflexive, so there is reduction from a normal form, but every
reduct of a normal form is a normal form (par_redn_bnorm_is_bnorm)

∀A,B . A→→[[B ⇒ beta norm (A) ⇒ beta norm (B)

Any reduct of a normal form alpha-converts with that normal form
(par_redn_bnorm_is_alpha_conv)

∀A,B . A→→[[B ⇒ beta norm (A) ⇒ A
α∼ B .

Hence, by Church-Rosser, normal forms of a term are unique up to
alpha-conversion (nf_unique). Since α∼⊆→[[, the converse also holds
(nf_alpha_class)

∀A,M,N. A ↓M ⇒ (A ↓ N ⇔ M
α∼ N) .

Thus the class of normal forms of a (Vclosed) term is either empty or
exactly an alpha-conversion equivalence class.

Deciding conversion Conversion is decidable for normalizing terms.
The proof of this depends on Church-Rosser; since normal forms are
unique only up to alpha-conversion, it also depends on decidability of
alpha-conversion (Section 3.1.2).

3.4 The Standardization Theorem

Our work on type-checking requires us to go beyond theorems such
as Church-Rosser in the analysis of reduction. In particular, to talk
of syntax-directed systems, we must consider deterministic reduction
relations, of which weak-head reduction is the simplest. A typical

20

wh1-app

A→wh A
′

AB →wh A
′B

wh1-beta ([v:V]B)A →wh [A/v]B

Table 3: One step of weak-head reduction

property required of such a relation is the following counterpart to the
quasi-normalisation theorem (wh standardisation lemma):

A→→[[B, whnf(B) ⇒ ∃C.A�wh C, whnf(C), C →→[[B

Takahashi showed how to approach such theorems with an analysis of
parallel reduction into head reduction followed by internal reduction, a
so-called semi-standardization lemma [Mit79]. We adapted her meth-
ods to the case of weak-head reduction, and the corresponding modified
notion of internal reduction. In doing so we simplify them somewhat,
in particular by removing the need for the complex invariant M ? N .
Moreover, the arguments we employed can be replicated in the context
of head reduction and internal reduction in their classical senses.

Recently, we rounded off this line of development by proving a
standardization theorem for pure languages. The main novelty here
is the removal of any mention of residuals (so the reader may be un-
convinced that we have formalised the standardization theorem). The
other thing to observe is that all the desirable consequences of standard-
ization, which we required to analyse type-checking, such as the lemma
above, are already corollaries to the semi-standardization lemma.

There are three main ingredients to the theorem: weak-head reduc-
tion, internal parallel reduction, and standard reduction itself.

3.4.1 Weak-head reduction

One step of weak-head reduction (wh red1) is shown in Table 3. By
inversion, we see that there are no weak-head reducts of a lambda, so
we may assume without loss of generality that A is not a lambda in the
rule wh1-app. We have not built any Vclosed assumptions into the
definition, as this will always be used in a context in which all terms
are Vclosed .

The reader may validate such a definition by considering the weak-
head normal forms (Table 4), and various lemmas relating →wh and

21

wh-atom whnf(α) α ∈ PP ∪ SS

wh-bind whnf(〈v:A〉B)

wh-app

whnf(A)

whnf(AB)
A is not a lambda

Table 4: Weak-head normal forms

ip1-atom α→[[iα α ∈ PP ∪ SS

ip1-bind

A→[[A′ [p/u]B→[[[p/v]B′

〈u:A〉B→[[i 〈v:A′〉B′
p 6∈ B , p 6∈ B′

ip1-app

A→[[iA
′ B→[[B′

AB→[[iA
′ B′

Table 5: One step of internal parallel reduction

whnf (wh red1 determin, wh nf is nf1, alpha conv resp wh nf).
Many-step weak-head reduction, �wh , (wh redn) is defined as

the reflexive transitive closure of →wh . It is closed under renam-
ings, substitution (psub resp wh redn), and application on the right
(wh redn app):

∀M,M ′.M �wh M
′ ⇒ [N/p]M �wh [N/p]M ′

∀M,M ′.M �wh M
′ ⇒ MN �wh M

′N

3.4.2 Internal parallel reduction

The classical notion of head reduction leads to a notion of “internal”
redex, as any non-head redex. We adapt such a notion to weak-head re-
duction, which gives us the definition of internal parallel reduction, →[[i ,
(ipar red1) as shown in Table 5. We allow arbitrary parallel reduction
in each compound term, except in the rator position of applications,
where we restrict to internal reduction.

22

It is immediate by structural induction that internal parallel re-
ductions are parallel reductions. We also have the important abstract
property (ipar red1 refl wh nf) that →[[i preserves and reflects weak-
head normal forms, and a fortiori , the shape (outermost constructor)
of a term. This reflection of weak-head normal forms, together with
the lemma below, is the key to the proof of the quasi-normalisation
result with which we opened this discussion.

Semi-standardization (par red1 wh redn ipar red1)

∀M,M ′. M→[[M ′ ⇒ ∃Mw.M �wh Mw→[[iM
′

Proof. The proof proceeds by induction on M→[[M ′ . The only tricky
case is that of the parallel β step. By inductive hypothesis, we obtain
(introducing Skolem constants Aw, Bw)

ihA : A�wh Aw→[[iA
′

ihB : [p/u]B�wh [p/w]Bw→[[i[p/v]B′

and we are required to show that there exists some Mw such that

([u:U]B)A �wh Mw→[[i [A′/v]B′

Since

([u:U]B)A →wh [A/u]B = [A/p] [p/u]B �wh [A/p] [p/w]Bw

by psub resp wh redn and psub is vsub alpha, we may conclude the
result by stitching weak-head reduction sequences together, provided
we can establish the following claim, which is the easy base case of
Lemma 2.4 in [Tak95] (wh ipar red1 psub):

M→[[iM
′ N �wh Nw→[[iN

′ N→[[N ′

∃P. [N/p]M �wh P→[[i [N ′/p]M ′

This is proved in the same way as we showed closure of parallel reduc-
tion under substitution, by induction on M→[[iM

′ . A detail to observe
here is that we must explicitly assume that the reduction from N to
N ′ is parallel. Takahashi builds this into her ? invariant, whereas in
the use of wh ipar red1 psub, we obtain this assumption for free as
the premise associated with reduction in A .

We show the case of an application M = AB , where A→[[iA
′

and B→[[B′ . By induction hypothesis, there exists some PA such

23

that [N/p]A �wh PA→[[i [N ′/p]A′ . The proof of the claim, and hence
of the whole lemma, is completed by taking P=def PA ([N/p]B) ,
and appealing once more to psub resp wh redn, ipar red1 app and
par red1 psub.

To establish the full semi-standardization result for →→[[, we must
also show the commutation result (ipar wh redn commutes):

M→[[iMw �wh M
′ ⇒ ∃M ′w.M �wh M

′
w→[[iM

′

This is a corollary (by induction on Mw �wh M
′) of the following

lemma (ipar wh red1 commutes):

∀M,Mw,M
′. M→[[iMw →wh M

′ ⇒ ∃M ′w.M �wh M
′
w→[[iM

′

Proof. Induction on M→[[iMw , and inversion of the ancillary hypo-
thesis Mw →wh M

′ . All cases are trivial, except that of application
M = AB , where Mw = A′B′ , A→[[iA

′ and B→[[B′ . We show
the case of a wh-redex, where we have: Mw = ([v:V]A′′)B′

and M ′ = [B′/v]A′′ . We use the fact that ipar red1 reflects the
weak-head normal form A′ = [v:V]A′′ to infer that A = [u:U]A′′′ .
Moreover, since A→[[iA

′ , we obtain by inversion that U→[[V and
∀p. [p/u]A′′′→[[[p/v]A′′ . Choosing p 6∈ A′′ , p 6∈ A′′′ , and applying
pr1-sub, we obtain [B/u]A′′′→[[[B′/v]A′′ . Now we appeal to
Lemma 3.4.2, finally to conclude that for some P , we have

M = ([u:U]A′′′)B →wh [B/u]A′′′ �wh P→[[i [B′/v]A′′ = M ′

as required.

Throughout we used induction on the definitions of the various re-
duction relations to establish these lemmas. This is by contrast with
Takahashi’s treatment, where induction is on the term structure (with
inversion of the relational hypotheses). This leads to slightly weaker
arguments, and consequently to the need for stronger inductive in-
variants. Such refinements to these arguments would be inconceivable
without machine support.

3.4.3 Standard Reduction

The property of being a standard reduction, −→s , is usually stated
(e.g. by Mitschke [Mit79]) in terms of a highly intensional geometric
definition on λ -terms. To formalise this definition directly, we would
have to enrich the datatype of terms in order to be able to speak of

24

std-atom α−→sα α ∈ PP ∪ SS

std-bind

A−→sA
′ [p/u]B−→s [p/v]B′

〈u:A〉B−→s 〈v:A′〉B′
p 6∈ B , p 6∈ B′

std-app

A−→sA
′ B−→sB

′

AB−→sA
′B′

std-wh

A�wh B B−→sC

A−→sC

Table 6: Standard reduction, standard (adapted from Plotkin)

redex positions in a term. Such an approach has been taken in [Hue94];
we have chosen instead a presentation (table 6), adapted from Plotkin’s
notion of standard sequence [Plo75]. The essence of this presentation
is to define standard reduction as the least congruence closed under
prefixing by weak-head reductions. We leave implicit the sequence
of redexes contracted, as this may be computed by recursion, and its
“left-to-right” character, and thus avoid mention of residuals or redex
positions.

Remark 3.3 We have defined standard reductions of arbitrary length
once and for all, and without any considerations of reduction to normal
form; note furthermore, however, that we may easily achieve this end
by adding the side condition A′ 6= λ to the std-app rule, and whnf(B)
to the std-wh rule. Also, this definition is both strongly closed under
α -conversion, and strongly full.

Our final aim is the following standardization theorem
(the standardisation lemma):

∀A,B. A→→[[B ⇒ A−→sB

Induction on A→→[[B suffices if we can show that our notion of standard
reduction absorbs single steps of parallel reduction:

A→[[B−→sC ⇒ A−→sC .

25

By our Lemma 3.4.2, and std-wh, it suffices to prove the following
lemma, that standard reduction absorbs single steps of internal parallel
reduction (standard absorbs ipar red1):

A→[[iB−→sC ⇒ A−→sC .

Proof. The proof is by induction on B−→sC . This avoids reconsider-
ing the tricky application case of the commutation lemma above, and
we may exploit the fact that→[[i preserves and reflects the shape of
terms. The price we pay is the need for strong induction on B−→sC ,
as the ancillary hypothesis A→[[iB is then an expansion step. In each
non-atomic case, we make a subsidiary appeal to semi-standardization,
in order to be able to exploit the induction hypotheses. This gives a
rather mechanical and “abstract nonsense” flavour to the argument,
emphasising once more that the real complexity lies in the the proof of
Lemma 3.4.2.

We focus on the case of a binder, where we have as hypotheses:

premA : A−→sA
′

premB : B−→sB
′

ihA : ∀C.C→[[iA ⇒ C−→sA
′

ihB : ∀p.∀C.C→[[i[p/u]B ⇒ C−→s[p/v]B′

H : C→[[i〈u:A〉B

By inversion of H, we conclude that C = 〈w:Ac〉Bc , where Ac→[[A
and ∀p. [p/w]Bc→[[[p/u]B . But now by semi-standardization,
Ac �wh Aw→[[iA and [p/w]Bc �wh Bw→[[i [p/u]B . So by induction
hypothesis ihA, we have Aw−→sA

′ , and using std-wh to fold back the
weak-head reductions Ac �wh Aw , we finally obtain Ac−→sA

′ . In ex-
actly the same way, modulo the choice of a parameter p 6∈ Bc, B, B′ ,
we obtain [p/w]Bc−→s [p/v]B′ . But now C−→s 〈v:A′〉B′ by con-
struction.

This concludes the proof that standard reduction absorbs internal
reduction, and hence parallel reduction, and so finally we may conclude
that every (parallel) β -reduction sequence may be standardized.

4 Pure Type Systems

PTS is a class of type theories given by a set of derivation rules (table 7)
parameterized by a PL , (PP, VV, SS) , and by two relations

• axioms, ax ⊆ SS× SS , written informally as ax(s1:s2)

26

Ax • ` s1 : s2 ax(s1:s2)

Start

Γ ` A : s

Γ[p:A] ` p : A
p 6∈ Γ

Weak

Γ ` α : C Γ ` A : s

Γ[p:A] ` α : C
α ∈ PP ∪ SS , p 6∈ Γ

Pi

Γ ` A : s1 Γ[p:A] ` [p/x]B : s2

Γ ` {x:A}B : s3

p 6∈ B
rl(s1, s2, s3)

Lda

Γ[p:A] ` [p/x]M : [p/y]B Γ ` {y:A}B : s

Γ ` [x:A]M : {y:A}B
p 6∈M
p 6∈ B

App

Γ ` M : {x:A}B Γ ` N : A

Γ ` M N : [N/x]B

tConv

Γ ` M : A Γ ` B : s

Γ ` M : B
A ≤ B

Table 7: The Typing Rules of PTS (formal name gts)

• rules, rl ⊆ SS× SS× SS , written informally as rl(s1, s2, s3) .

We usually intend ax and rl to be decidable, but this assumption is
not used in the basic theory of PTS . When we are interested in al-
gorithms for typechecking ([Pol94b, Pol95]), even stronger assumptions
about decidability are needed.

The typing judgement has the shape Γ ` M : A , meaning that in
context Γ, term M has type A . (The formal name of this relation
is gts, from the old name “Generalized Type Systems”.) We call M
(or (Γ,M)) the subject and A the predicate of judgement. Contexts,
ranged over by Γ, ∆, bind parameters to types:

Γ ::= • | Γ[p:A] (null, cons).

Contexts are formalized as lists over PP × Trm . If Γ participates in
some derivable judgement, Γ ` M : A , we say Valid(Γ) .

27

4.1 A Generalization: Abstract Conversion

We have further generalized PTS by parameterizing the rules of
table 7 on another relation, ≤ (called abstract conversion), occurring
in the side condition of rule tConv. In conventional presentations of
PTS [Bar92], the actual relation of beta-conversion (') is used for ≤ .

There are several reasons to be interested in parameterizing PTS on
its conversion relation. For one thing, the type theory ECC, implemen-
ted in LEGO, is not actually a PTS because it uses a generalized notion
of conversion called cumulativity. ECC is of special interest to us, so we
formalize an extension of PTS which includes ECC. Our formal devel-
opment includes a typechecking algorithm for ECC [Pol94b]. Even for
PTS , there is a notorious open problem, the Expansion Postponement
problem [vBJMP94, Pol94b], which asks if the conversion relation in
table 7 can be replaced by beta-reduction without changing the typ-
ability of any terms. We know of one other work on PTS using an
abstract conversion relation: [BM].

The only properties of ≤ necessary to prove the substitution lemma
(section 5.4) are reflexivity, transitivity, and invariance under substitu-
tion:

cnv refl ∀A . Vclosed(A) ⇒ A ≤ A
cnv trans ∀A,D,B . A ≤ D ⇒ D ≤ B ⇒ A ≤ B
psub resp cnv ∀N,A,B, p . Vclosed(N)⇒

A ≤ B ⇒ [N/p]A ≤ [N/p]B

To prove the subject reduction theorem (section 5.5), we finally need
that conversion is related to contraction of redexes, and has an “intern-
al” Church-Rosser property:

cnv conv '⊆≤
cnvCR pi ∀u, v, A, a, B, b .

{u:A}B ≤ {v:a}b ⇒ a ≤ A ∧ ∀q . [q/u]B ≤ [q/v]b

Notice the contravariance in the last property. It is easy to prove that
' has these properties, so we can formally instantiate ≤ by ' (or by
the cumulativity of ECC) and discharge all these assumptions; we are
working abstractly, not making assumptions.
' is an equivalence relation, but ≤ is a partial order (which is why

we use an asymmetric symbol for ≤). Other significant properties of
' that do not generally hold for ≤ include:

s1 ' s2 ⇒ s1 = s2 , A ' s ⇒ A→→[[s , A→→[[s ⇒ s ∈ A .

28

Some differences between abstract-conversion- PTS and β -conversion-
PTS are detailed in [Pol94b]. This kind of analysis, of which properties
are actually used in some body of work, is greatly aided by formaliza-
tion.

4.2 Are the rules a formalization of PTS?

Leaving aside abstract conversion, the rules of table 7 differ from the
standard informal presentation [Bar92] in several ways. First, the hand-
ling of parameters and variables in the Pi and Lda rules, is similar to
that in the rules of table 2. Other differences are restriction of weak-
ening to atomic subjects, and the Lda rule.

Binding and substitution The treatment of operating under bind-
ers in table 7 is analogous to that in the reduction relations considered
above. (See discussion of the rule Lda below.) As the substitution
used in rule App may cause capture of variables, we must show that
N is Vclosed . In fact we have (gts Vclosed lem)

∀Γ,M, A . Γ ` M : A ⇒ Vclosed(M) ∧ Vclosed(A)

by structural induction. It also follows easily that a Valid context is
Vclosed in an obvious sense.

Atomic Weakening The standard presentation of weakening in
PTS allows any term as subject

(weakening)

Γ ` M : C Γ ` A : s

Γ[p:A] ` M : C
p 6∈ Γ

where we restrict to atomic terms, α (see rule Weak). Our rules
derive the same judgements (weakening is seen to be admissible in sec-
tion 5.3), but allow fewer derivations (those derivations where weak-
ening is pushed to the leaves). This gives a cleaner meta theory, as
induction over derivations treats fewer cases. For example, given a
judgement, Γ ` M N : B , with an application as its subject, there
is no confusion whether it is derived by App or Weak. Thus, with
atomic weakening, any judgement may only be derived by tConv or
by exactly one of the remaining rules.

29

The Lambda Rule For the rule for typing a lambda in informal
presentations [Bar92, Geu93] is

λ
Γ[x:A] ` M : B Γ ` {x:A}B : s

Γ ` [x:A]M : {x:A}B

The conventional understanding is that the bound variable, x , doesn’t
really occur in the conclusion of rule λ , as the notations “ [x:A]M ”
and “{x:A}B ” refer to alpha-equivalence classes8. Thus, in concrete
notation, the subject and predicate of the lambda rule may bind differ-
ent variables, which we formalize in our rule Lda. One might, instead,
formalize rule λ as

Lda’

Γ[p:A] ` [p/x]M : [p/x]B Γ ` {x:A}B : s

Γ ` [x:A]M : {x:A}B
p 6∈M
p 6∈ B

This was our first attempt, and surprisingly, this system derives the
same judgements as the system of table 7 (lemmas rlts gts and
gts rlts). However, using Lda’, the subject reduction theorem is
difficult to prove, and derivations are distorted by the need to use the
conversion rule for alpha-conversion. See [Pol94b] for more details.

5 PTS With Abstract Conversion

We survey the development leading to the subject reduction the-
orem. The main difference between this section and the presentation
in [Bar92] is our use of the atomic weakening rules (section 4.2), and
our simpler proof of subject reduction (section 5.5).

5.1 Some basic facts

Here is a sample of the many small facts that had to be established,
usually by simple structural induction.
Parameter lemmas All parameter occurrences in a judgement are
bound in the context, and the binding instances in a Valid context are
distinct parameters:

(Γ ` M : A ∧ p 6∈ Γ) ⇒ p 6∈M ∧ p 6∈ A
Γ[p:B] ` M : A ⇒ p 6∈ Γ

(free params lem1)
(CxtCorrect0)

8However, in the left premise of rule λ , all free instances of the actual symbol
“ x ” in M and B are intended to refer to the context entry [x:A] . Thus the
conventional reading of this rule doesn’t make sense as concrete notation.

30

Start Lemmas Every axiom is derivable in every valid context, and
the global bindings of a valid context are all derivable:

(Γ ` M : A ∧ ax(s1:s2)) ⇒ Γ ` s1 : s2
Γ[p:B]∆ ` M : A ⇒ Γ[p:B]∆ ` p : B

(sStartLem)
(vStartLem)

5.2 A Better induction principle for PTS

As for previous relations, we define an alternative typing relation, `a
(apts), that identifies all those derivations of each ` judgement that
are inessentially different because of parameters occurring in the de-
rivation but not in its conclusion. `a differs from ` only in the right
premise of the Pi rule and the left premise of the Lda rule.

aPi

Γ `a A : s1 ∀p 6∈ Γ . Γ[p:A] `a [p/x]B : s2

Γ `a {x:A}B : s3
rl(s1, s2, s3)

aLda

∀p 6∈ Γ . Γ[p:A] `a [p/x]M : [p/y]B Γ `a {y:A}B : s

Γ `a [x:A]M : {y:A}B
In these premises we avoid choosing a particular parameter by requiring
the premise to hold for all parameters for which there is no reason it
should not hold, that is, for all “sufficiently fresh” parameters. As
before, we will show that ` and `a derive the same judgements.

It is interesting to compare the side conditions of Pi with those of
aPi. In Pi we need the side condition p 6∈ B so that no unintended
occurrences of p (i.e. those not arising from occurrences of the variable
x) are bound in the right premise; we do not need p 6∈ Γ because the
validity of Γ[p:A] is obvious from the right premise. In aPi, we cannot
require the right premise for all p , but only for those such that Γ[p:A]
remains valid, i.e. those p not occurring in Γ. However the condition
p 6∈ B is not required because of “genericity”, that is, the right premise
of aPi must hold for the infinitely many parameters not occurring in
Γ, while only finitely many of these instances can occur in B .

5.2.1 `a is equivalent to `

As with previous relations, this equivalence will give us a stronger in-
duction principle, and stronger generation (inversion) lemmas for ` .

∀Γ,M, A . Γ `a M : A ⇔ Γ ` M : A (apts gts, gts apts)

31

Proof. Direction ⇒ is straightfoward by structural induction on
Γ `a M : A .

To prove direction ⇐ , first prove a lemma that bijective renamings
respect `a (bij ren resp apts)

∀ρ,Γ,M, A . Bij(ρ) ⇒ Γ `a M : A ⇒ ρΓ `a ρM : ρA

by `a -structural induction9.
Now we proceed to prove Γ ` M : A ⇒ Γ `a M : A by structural

induction on a derivation of Γ ` M : A . All cases are trivial except
for the rules Pi and Lda. Consider the case for Pi: we must prove
Γ `a {n:A}B : s3 under the assumptions

sc : rl(s1, s2, s3)
noccB : p 6∈ B
l prem : Γ ` A : s1
r prem : Γ[p:A] ` [p/n]B : s2
l ih : Γ `a A : s1
r ih : Γ[p:A] `a [p/n]B : s2

By rule aPi (using l ih) it suffices to show Γ[r:A] `a [r/n]B : s2 for
arbitrary parameter r 6∈ Γ . Thus, using the free parameter lemmas of
section 5.1, we know

noccG : r 6∈ Γ
norA : r 6∈ A from l prem and noccG
nopG : p 6∈ Γ from r prem
nopA : p 6∈ A from r prem

Taking ρ = swap(r, p) , we have ρ(Γ[p:A]) `a ρ([p/n]B) : ρs2 is de-
rivable using bij_ren_resp_apts to rename r ih. (Recall from sec-
tion 2.5 that swap(p, q) is always bijective.) Thus we are finished if we
can show

ρ(Γ[p:A]) = Γ[r:A] ∧ ρ([p/n]B) = [r/n]B .

It is clear that the first equation holds from nopG, noccG, norA and
nopA. For the second equation, notice that if r = p then we are done
trivially, so assume r 6= p , and hence r 6∈ [p/n]B (from r prem and
noccG). Now, using vsub renTrm commutes (section 2.5) we have

ρ([p/n]B) = {p 7→ r}([p/n]B) (r 6∈ [p/n]B)
= [{p 7→ r}p/n]({p 7→ r}B)) (vsub renTrm commutes)
= [r/n]B (noccB)

9Actually injectivity of a renaming is enough for it to preserve `a , but we cannot
prove this until after we know `a = ` .

32

as required.

5.3 The Thinning Lemma and Weakening

The Thinning Lemma is important to our formulation because it shows
that full weakening (weakening) is admissible in our system, justifying
our use of atomic weakening in the definition of ` (section 4.2).

The subcontext relation is defined

Γ v ∆ , ∀b : PP× Trm . b ∈ Γ ⇒ b ∈ ∆

We also say ∆ extends Γ. This is the definition used informally
in [Bar92, GN91, vBJ93]; a much more complicated definition is re-
quired to express this property in a representation using de Bruijn
indices for global variables. Now we can state (thinning lemma):

∀Γ,∆,M, A . Γ ` M : A ⇒ (Γ v ∆ ∧ Valid(∆)) ⇒ ∆ ` M : A

A naive attempt to prove the thinning lemma by structural induction
on Γ ` M : A encounters serious difficulties with parameter side condi-
tions (see [MP93, Pol94b] for discussion), but a proof is straightfoward
using `a -induction, justified by the previous section. The full weaken-
ing rule is a corollary of thinning lemma.

5.4 Cut and type correctness

The substitution lemma

Γ ` N : A Γ[p:A]∆ ` M : B

Γ([N/p]∆) ` [N/p]M : [N/p]B
(substitution lemma)

is proved by induction on the derivation of Γ[p : A]∆ ` M : B . From
this we get the commonly used case (cut rule) by instantiating ∆ to
the empty context.

Among the correctness criteria for type systems is that every type is
itself well formed. In PTS we have the theorem (type correctness):

∀Γ,M, A . Γ ` M : A ⇒ ∃s . A = s ∨ Γ ` A : s

The proof is by structural induction; the only non-trivial case is rule
App, which uses the substitution lemma and vsub_is_psub_alpha
(section 2.3).

33

5.5 Subject Reduction Theorem: Closure Under Reduc-
tion

An important property of type systems is that a term does not lose
types under reduction, thus types are a classification of terms preserved
by computation. In fact we will show entire ` -judgements are closed
under reduction. We now need all five properties of abstract conversion
(section 4.1).

5.5.1 Non-Overlapping Reduction

Our goal is to prove

Γ ` M : A ⇒ M →→[[M ′ ⇒ Γ ` M ′ : A (gtsSR)

usually called the subject reduction theorem. Our naive strategy is
to show that one step of reduction preserves typing, by induction on
Γ ` M : A . The critical case is rule App, when the application is
actually a redex that is contracted. In order to simplify that case,
we want to avoid overlapping redexes, as allowed in the β -rule of →[[.
We want some reduction relation with no overlapping, whose transitive
closure is equal to →→[[.

Another difficulty is that in rules Pi and Lda, a subterm of the
subject of the conclusion (the type-label) appears in the context part
of a premise; thus in these cases of an induction argument, a reduction
in the subject of the conclusion may result in a reduction in the context
of a premise. This suggests that the induction hypothesis should be
strengthened to simultaneously treat reduction in the context and the
subject, leading to the goal

G ` M : A ⇒
(M →M ′ ⇒ G ` M ′ : A) ∧ (G→ G′ ⇒ G′ ` M : A)

where → is ordinary one-step β -reduction. This approach is used
in [GN91, Bar92], and produces a large number of case distinctions,
based on which subterm of the subject contains the one redex which
is contracted; all of these subcases are inessential except to isolate
the one non-trivial case where the redex contracted is the application
constructed by rule App. This simultaneous treatment of one reduction
in either the context or the subject suggested to us that the proof would
be smoother using a reduction relation that is congruent simultaneously
in all branches, while forbidding overlapping of redexes. One step non-
overlapping reduction, no→ (no red1), is defined by the same rules as →[[

34

(table 2) except for the β -rule, which is modified to prevent overlapping
redexes:

nor1-beta ([u:U]B)A no→ [A/u]B Vclosed(([u:U]B)A)

Clearly no→⊆→[[, so from the assumed property cnv conv (section 4.1),
we have

A
no→ B ⇒ A ≤ B ∧ B ≤ A .

We extend no→ compositionally to contexts (red1Cxt), and to
pairs of a context and a term (red1Subj), writing Γ no→ ∆ and
〈Γ,M〉 no→ 〈∆, N 〉 . We also define no→→ (no redn), the transitive closure

of no→ , and show no→→=→→[[(no par redn, par no redn).

5.5.2 The Main Lemma (subject reduction lem)

Γ ` M : A ⇒ 〈Γ,M〉 no→→ 〈Γ′,M〉 ′ ⇒ Γ′ ` M ′ : A

Proof. By structural induction on Γ ` M : A . We show the interest-
ing case, from rule App. Given

l prem : Γ ` M : {x:A}B
r prem : Γ ` L : A
l ih : ∀Γ′,M ′ . (〈Γ,M〉 no→ 〈Γ′,M ′〉) ⇒ Γ′ ` M ′ : {x:A}B
r ih : ∀Γ′, L′ . (〈Γ, L〉 no→ 〈Γ′, L′〉) ⇒ Γ′ ` L′ : A
red subj : 〈Γ,M L〉 no→ 〈∆, R〉

we must show ∆ ` R : [L/x]B . By induction hypotheses

gtsDM : ∆ ` M : {x:A}B
gtsDL : ∆ ` L : A

By type correctness of gtsDM, for some s

gtsDpi : ∆ ` {x:A}B : s

By the pi-generation lemma, for some s2 and p 6∈ B

gtsDB : ∆[p:A] ` [p/x]B : s2

By the cut rule on gtsDL and gtsDB (we also use vsub_is_psub_alpha
(section 2.3) here, and several more times in this case)

gtsDBsub : ∆ ` [L/x]B : s2.

Now there are two subcases

35

R = M 0 L0 where M
no→M ′ and L

no→ L′ .
The goal is ∆ ` M ′ L′ : [L/x]B ; by rule App and the induction hypo-
theses we easily have ∆ ` M ′ L′ : [L′/x]B . Use rule tCnv and gts-
DBsub to expand L′ in the predicate back to L as required (this uses
cnv_conv).

R = [L/v]b where M = [v:A′]b .
The goal is ∆ ` [L/v]b : [L/x]B . By l ih ∆ ` [v:A′]b : {x:A}B and
by the lambda-generation lemma, for some w , B′ and s′

gtsDpi’ : ∆ ` {w:A′}B′ : s′

gtsDb : ∀p 6∈ ∆ . ∆[p:A′] ` [p/v]b : [p/w]B′

c’ : {w:A′}B′ ≤ {x:A}B

By (cnvCR_pi c’) (this is the only time it is used in this proof)

cnvA : A ≤ A′
cnvB : ∀q . [q/w]B′ ≤ [q/x]B

By a generation lemma on gtsDpi’

gtsDA’ : ∆ ` A′ : s1′

By (tCnv cnvA gtsDL gtsDA’)

gtsDL’ : ∆ ` L : A′

By tCnv, cnvB and gtsDBsub, it suffices to show
∆ ` [L/v]b : [L/x]B′ which follows by cut on gtsDL’ and gtsDb.

5.5.3 Closure Under Reduction

It is now easy to show the subject reduction theorem, gtsSR, and a
useful corollary, predicate reduction

Γ ` M : A ⇒ A→→[[A′ ⇒ Γ ` M : A′ . (gtsPR)

Finally, extending →→[[compositionally to contexts10, ` is closed under
beta-reduction (gtsAllRed)

Γ ` M : A ⇒ (Γ→→[[Γ′ ∧ M →→[[M ′ ∧ A→→[[A′) ⇒ Γ′ ` M ′ : A′ .
10This relation is equivalent to transitively closing the compositional extension of

of no→ to contexts.

36

There is a trivial but useful lemma (predicate conv):

(Γ ` M : A ∧ A ' s) ⇒ Γ ` M : s .

Unlike rule tCnv, we don’t ask for evidence that s has a type, but the
side condition uses ' , not ≤ . To prove such a lemma with ≤ requires
technical restrictions; e.g. ECC with its type hierarchy chopped off a
finite level fails to have such a property because of the sort at the top
of the hierarchy.

Closure Under Alpha-Conversion From gtsAllRed and the fact
that α∼⊆→[[, it follows that ` judgements are preserved by α∼
(gts alpha closed). Hence an implementation may typecheck a
judgement as stated by a user, rather than searching for an alpha-
equivalent judgement which is derivable. See [Pol94b, Pol94a].

5.6 Another Presentations of PTS

In several rules of ` the context Γ occurs more then once in the list of
premises; in order to build a complete derivation, Γ must be construc-
ted (by Start and Weak) in each branch in which it appears. It is
much more efficient to assume that we start with a valid context, and
only check that when rules extend the context (i.e. the right premise
of Pi and the left premise of Lda) they maintain validity. This is more
in keeping with implementations which are actually used, where we
work in a “current context” of mathematical assumptions. We present
such a system in table 8, and show it is equivalent to ` . The idea is
originally due to Martin-Löf [Mar71], and is used in [Hue89].

This system has two judgements, a type judgment of shape
Γ `lv M : A (lvtyp), and a validity judgement of shape Γ `lv (lvcxt).
Note that they are not mutually inductive: validity depends on typing,
but not conversely.

We have proved that `lv characterizes ` (iff gts lvcxt lvtyp):

∀Γ,M, A . Γ ` M : A ⇔ (Γ `lv M : A ∧ Γ `lv)

Direction ⇐ of the proof is subtle. Formally, it uses an auxiliary
mutual inductive definition, and a well-founded induction requiring de-
pendent elimination; this is the only place in the entire development
that either mutual induction or dependent elimination are used. More
abstractly, direction ⇐ claims termination of a function that replaces
all the proof annotations omitted by `lv . As this is a fast-growing
function, its termination is a strong result. The proof is described
in [Pol94b].

37

lvSrt Γ `lv s1 : s2 ax(s1:s2)

lvPar Γ `lv p : A [p:A] ∈ Γ

lvPi

Γ `lv A : s1 Γ[p:A] `lv [p/x]B : s2

Γ `lv {x:A}B : s3

rl(s1, s2, s3)
p 6∈ B, p 6∈ Γ

lvLda

Γ[p:A] `lv [p/x]M : [p/y]B Γ `lv {y:A}B : s

Γ `lv [x:A]M : {y:A}B
p 6∈M

p 6∈ B, p 6∈ Γ

lvApp

Γ `lv M : {x:A}B Γ `lv N : A

Γ `lv MN : [N/x]B

lvConv

Γ `lv M : A Γ `lv B : s

Γ `lv M : B
A ≤ B

lvNil • `lv

lvCons

Γ `lv

Γ[p:A] `lv
p 6∈ Γ , Γ `lv A : s

Table 8: The system of locally valid contexts (lvtyp, lvcxt)

6 PTS with β -conversion

It is remarkable how little about ≤ has been needed for the theory
described so far (section 4.1). In [Pol94b] we pursue the theory of
PTS with abstract conversion to a correct typechecking algorithm for
cumulative PTS , including Luo’s system ECC. Here, we point out a
more standard theory of PTS with β -conversion, i.e. we instantiate ≤
in the preceeding with the actual relation ' . (In LEGO the command
Cut executes the admissible rule substitution lemma of section 5.4.)
This theory, leading to the strengthening theorem and typechecking
algorithms for classes of PTS , is detailed in [vBJMP94].

38

6.1 Strengthening

Strengthening is a tricky result about PTS , first proved by Jut-
ting [vBJ93]:

∀Γ,∆, C, d, D, q .
(q 6∈ d ∧ q 6∈ D ∧ q 6∈ ∆) ⇒

Γ[q:C]∆ ` d : D ⇒ Γ∆ ` d : D
(gts strengthening)

The development we formalize, in which strengthening is a corollary to
work on typechecking, is described in detail in [vBJMP94]. We were
particularly interested to prove strengthening because LEGO uses it in
the Discharge command.

6.2 Functional PTS

Functional PTS are well behaved and are, perhaps, the only ones that
are interesting in practice.

Functional ,
{

ax(s:t) ∧ ax(s:u) ⇒ t = u, and
rl(s1, s2, t) ∧ rl(s1, s2, u) ⇒ t = u.

In a functional PTS , ax and rl are the graphs of partial functions,
but we do not necessarily have procedures to compute these functions.

Uniqueness of Types The definition of functional PTS makes sense
for abstract-conversion PTS , and is useful in that setting, as it gives a
kind of uniqueness: when building a derivation of a typing judgement
guided by the syntax of its subject, it is deterministic which axiom
to use at each instance of Ax, and which rule to use at each instance
of Pi [Pol94b]. The idea behind the definition of functional is that
the uniqueness just mentioned propagates through whole derivations
to give a property that types are unique up to conversion:

conv unique types ,
∀Γ,M, A, B . Γ ` M : A ∧ Γ ` M : B ⇒ A ' B

For β -conversion PTS we prove

Functional ⇒ conv unique types (types unicity)

by structural induction on Γ ` M : A and inversion of Γ ` M : B .
However, this proof uses properties of ' , and cannot be mod-
ified to prove any similar property of abstract-conversion PTS .

39

types unicity is too linear for ≤ , which is only a partial order; the
correct generalization is a principal types lemma, saying that any type
is above some principal type, but we cannot hope that every two types
are comparable [Pol94b].

Subject Expansion Any β -PTS with uniqueness of types also has
a subject expansion property (subject expansion):

conv unique types ⇒
∀Γ,M,N, A, B . (M →→[[N ∧ Γ ` N : A ∧ Γ ` M : B) ⇒

Γ ` M : A

While subject reduction says that terms don’t lose types under reduc-
tion, this lemma says terms don’t gain types under reduction. In this
reading, Γ ` N : A is the principal premise, and Γ ` M : B is a well-
formedness premise. There are examples of two different ways subject
expansion can fail for non-functional PTS in [vBJMP94].

References

[Alt93] Thorsten Altenkirch. A formalization of the strong normaliza-
tion proof for System F in LEGO. In Proceedings of the Inter-
national Conference on Typed Lambda Calculi and Applications,
TLCA’93. Springer-Verlag, LNCS 664, March 1993.

[Bar92] Henk Barendregt. Lambda calculi with types. In Abramsky,
Gabbai, and Maibaum, editors, Handbook of Logic in Computer
Science, volume II. Oxford University Press, 1992.

[Bar95] Bruno Barras. Coq en coq. Master’s thesis, DEA Informatique,
Mathématiques et Applications, INRIA–Rocquencourt, October
1995.

[Ber90] Stefano Berardi. Type Dependence and Constructive Mathemat-
ics. PhD thesis, Dipartimento di Informatica, Torino, Italy, 1990.

[BM] Gilles Barthe and Paul-Andre Melliès. On the subject reduc-
tion property for algebraic type systems. Presented at CSL’96;
submitted for the proceedings.

[Car91] Luca Cardelli. F-sub, the system. Technical report, DEC Systems
Research Centre, 1991.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type
theory. In G. Huet and G. D. Plotkin, editors, Logical Frame-
works. Cambridge University Press, 1991.

40

[Coq96a] Caterina Coquand. Combinator shared reduction and in-
finite objects in type theory. Manuscript obtained from
http://www.cs.chalmers.se, March 1996.

[Coq96b] Thierry Coquand. An algorithm for type-checking dependent
types. submitted, 1996.

[DB93] Gilles Dowek and Robert Boyer. Towards checking proof checkers.
In Herman Geuvers, editor, Informal Proceedings of the Nijmegen
Workshop on Types for Proofs and Programs, May 1993.

[DFH + 93] Dowek, Felty, Herbelin, Huet, Murthy, Parent, Paulin-Mohring,
and Werner. The Coq proof assistant user’s guide, version 5.8.
Technical report, INRIA-Rocquencourt, February 1993.

[Gal90] Jean Gallier. On Girard’s ‘Candidats de reductibilité’. In P. Odi-
freddi, editor, Logic and Computer Science, volume 31 of APIC
Studies in Data Processing, pages 123–203. Academic Press, 1990.

[Gen69] Gerhard Gentzen. The Collected Papers of Gerhard Gentzen.
Studies in Logic and the Foundations of Mathematics. North-
Holland, 1969. editor M. Szabo.

[Geu93] Herman Geuvers. Logics and Type Systems. PhD thesis, De-
partment of Mathematics and Computer Science, University of
Nijmegen, 1993.

[GM96] Andrew Gordon and Tom Melham. Five axioms of alpha conver-
sion. In International Conference on Theorem Proving in Higher
Order Logics, Turku, Finland, 1996. To appear.

[GN91] Herman Geuvers and Mark-Jan Nederhof. A modular proof of
strong normalization for the calculus of constructions. Journal of
Functional Programming, 1(2):155–189, April 1991.

[Hue89] Gérard Huet. The constructive engine. In R. Narasimhan, editor,
A Perspective in Theoretical Computer Science. World Scientific
Publishing, 1989. Commemorative Volume for Gift Siromoney.

[Hue94] Gérard Huet. Residual theory in λ -calculus: A formal develop-
ment. Journal of Functional Programming, 4(3):371–394, July
1994.

[JP93] Claire Jones and Randy Pollack. Incremental changes in LEGO:
1993. See http://www.dcs.ed.ac.uk/home/lego/, May 1993.

[Kle52] Stephen C. Kleene. Introduction to Metamathematics. van Nos-
trand, Princeton, 1952.

[LP92] Zhaohui Luo and Robert Pollack. LEGO proof development sys-
tem: User’s manual. Technical Report ECS-LFCS-92-211, LFCS,
Computer Science Dept., University of Edinburgh, The King’s
Buildings, Edinburgh EH9 3JZ, Scotland, May 1992. Updated
version. See http://www.dcs.ed.ac.uk/home/lego/

41

[Luo91] Zhaohui Luo. Program specification and data refinement in
type theory. In TAPSOFT ’91 (Volume 1), number 493 in Lec-
ture Notes in Computer Science, pages 143–168. Springer-Verlag,
1991.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Com-
puter Science. International Series of Monographs on Computer
Science. Oxford University Press, 1994.

[Mar71] Per Martin-Löf. A theory of types. Technical Report 71-3, Uni-
versity of Stockholm, 1971.

[McB96] Conor McBride. Inverting inductively defined predicates in
LEGO. Technical report, The University of Edinburgh, 1996.
forthcoming.

[Mit79] Gerd Mitschke. The standardisation theorem for λ -calculus.
Zeitschrift für Mathematische Logik und Grundlagen der Math-
ematik, 25:29–31, 1979.

[MP93] James McKinna and Robert Pollack. Pure Type Systems form-
alized. In M.Bezem and J.F.Groote, editors, Proceedings of the
International Conference on Typed Lambda Calculi and Applica-
tions, TLCA’93, Utrecht, number 664 in LNCS, pages 289–305.
Springer-Verlag, March 1993.

[Nip96] Tobias Nipkow. More Church-Rosser proofs (in isabelle/hol). In
Automated Deduction – CADE-13, volume 1104 of LNCS, pages
733–747. Springer-Verlag, 1996.

[Owe95] Chris Owens. Coding binding and substitution explicitly in Isa-
belle. In Proceedings of the Isabelle Users’ Workshop, 1995.

[Pfe92] Frank Pfenning. A proof of the Church-Rosser theorem and its
representation in a logical framework. Technical Report CMU-
CS-92-186, Carnegie Mellon University, September 1992.

[Plo75] Gordon Plotkin. Call-by-name, call-by-value, and the λ -calculus.
Theoretical Computer Science, 1, 1975.

[Pol94a] Robert Pollack. Closure under alpha-conversion. In Henk Baren-
dregt and Tobias Nipkow, editors, Types for Proofs and Programs:
International Workshop TYPES’93, Nijmegen, May 1993, Selec-
ted Papers, volume 806 of LNCS, pages 313–332. Springer-Verlag,
1994.

[Pol94b] Robert Pollack. The Theory of LEGO: A Proof
Checker for the Extended Calculus of Construc-
tions. PhD thesis, University of Edinburgh, 1994.
ftp://ftp.dcs.ed.ac.uk/pub/lego/thesis-pollack.ps.Z.

42

[Pol95] Robert Pollack. A verified typechecker. In M.Dezani-Ciancaglini
and G.Plotkin, editors, Proceedings of the Second International
Conference on Typed Lambda Calculi and Applications, TL-
CA’95, Edinburgh. Springer-Verlag, LNCS 902, April 1995.

[Pol96] Robert Pollack. How to believe a machine-checked proof. Talk
given at TYPES’96. Submitted for publication, 1996.

[Pra65] Dag Prawitz. Natural Deduction; A Proof-Theoretical Study.
Stockholm Studies in Philosophy 3. Almqvist and Wiksell, 1965.

[Reu95] Bernhard Reus. Program Verification in Synthetic Domain The-
ory. PhD thesis, Ludwig-Maximilians-Universität München,
1995.

[Reu96] Bernhard Reus. Synthetic domain theory in type theory: Another
logic of computable functions. In Theorem Proving in Higher
Order Logics: 9th International Conference, TPHOLs’96, volume
1125 of LNCS, pages 363–381. Springer-Verlag, 1996.

[Sat83] Masahiko Sato. Theory of symbolic expressions, I. Theoretical
Computer Science, 22:19–55, 1983.

[Sch97] Thomas Schreiber. Auxiliary variables and recursive procedures.
In TAPSOFT’97, LNCS. Springer-Verlag, 1997. To appear.

[Sha85] N. Shankar. A mechanical proof of the Church-Rosser theorem.
Technical Report 45, Institute for Computing Science, University
of Texas at Austin, March 1985.

[Sto88] A. Stoughton. Substitution revisited. Theoretical Computer Sci-
ence, 17:317–325, 1988.

[Tak95] Masako Takahashi. Parallel reductions in λ -calculus (revised
version). Information and Computation, 118(1):120–127, April
1995.

[Tas93] A. Tasistro. Formulation of Martin-Löf’s theory of types with ex-
plicit substitutions. Master’s thesis, Chalmers Tekniska Högskola
and Göteborgs Universitet, May 1993.

[vBJ93] L.S. van Benthem Jutting. Typing in Pure Type Systems. In-
formation and Computation, 105(1):30–41, July 1993.

[vBJMP94] L.S. van Benthem Jutting, James McKinna, and Robert Pollack.
Checking algorithms for Pure Type Systems. In Henk Barendregt
and Tobias Nipkow, editors, Types for Proofs and Programs: In-
ternational Workshop TYPES’93, Nijmegen, May 1993, Selected
Papers, volume 806 of LNCS, pages 19–61. Springer-Verlag, 1994.

43

