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Abstract

We define the typed lambda calculus Fω∧ , a natural generalization of Girard’s
system Fω with intersection types and bounded polymorphism. A novel aspect of
our presentation is the use of term rewriting techniques to present intersection types,
which clearly splits the computational semantics (reduction rules) from the syntax
(inference rules) of the system. We establish properties such as Church-Rosser for the
reduction relation on types and terms, and Strong Normalization for the reduction
on types. We prove that types are preserved by computation (Subject Reduction
property), and that the system satisfies the Minimal Types property. On the way
to establishing these results, we define algorithms for type inference and subtype
checking.

1 Introduction

The formal study of subtyping in programming languages was begun by Reynolds [36]
and Cardelli [10], who used a lambda-calculus with subtyping to model the refinement of
interfaces in object oriented languages. This led to a considerable body of work, covering
an increasing range of object-oriented features by combining subtyping with other type-
theoretic constructs, including polymorphic functions [15, 27, 7], records with update and
extension operators [10, 14], recursive types [2, 8], and higher-order polymorphism [11, 13,
12, 33].

Type systems with subtyping have also arisen from the study of lambda-calculi with
intersection types at the University of Torino [26, 6]. Most of this work has been carried
out in the setting of pure lambda-calculi, but it has also been applied to programming
language design by Reynolds [37]. Some work has begun on combining intersections with
other typing features [34, 17].
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1 INTRODUCTION 2

The system F ω
∧ (F-omega-meet) was first introduced in [23], where it was shown to

be rich enough to provide a typed model of object oriented programming with multiple
inheritance. F ω

∧ is an extension of F ω [30] with bounded quantification and intersection
types, which can be seen as a natural generalization of the type disciplines present in the
current literature, for example in [27, 34, 35, 18]. Systems including either subtyping or
intersection types or both have been widely studied for many years. What follows is not
intended to be an exhaustive description, but a framework for the present work.

First-order type disciplines with intersection types have been investigated by the group
in Torino [25, 6] and elsewhere (see [16] for background and further references). A second-
order λ-calculus with intersection types was studied in [34]. Systems including subtyping
were present in [15, 10]. Higher order generalizations of subtyping appear in [9, 24, 33, 8].
F≤, a second-order λ-calculus with bounded quantification, was studied in [29], and in [34].

Because F ω
∧ has reduction on types, we introduce a conversion rule that includes inter-

convertible types in the subtype relation. Therefore, our subtyping relation relates types of
a more expressive type system than that presented in [18]. In fact, treating the interaction
between interface refinement and encapsulation of objects in object oriented programming
has required higher-order generalizations of subtyping: the F-bounded quantification of
Canning, Cook, Hill, Olthoff and Mitchell [9] or system F ω

≤ [11, 13, 12, 33, 8].
We present a definition of F ω

∧ that differs from the one introduced in [23] in two ways.
First, the ill-behaved Castagna and Pierce’s quantifier rule has been replaced by Cardelli
and Wegner’s kernel Fun rule. Secondly, we introduce a richer notion of reduction on
types, and thereby the four distributivity rules become particular cases of the conversion
rule. This new reduction is shown to be confluent and strongly normalizing. The latter
simplification was motivated by structural properties of the former presentation.

This new perspective suggests that to study the subtyping relation it is enough to
concentrate on types in normal form. Note that the solution cannot be as simple as
to restrict the subtyping rules of F ω

∧ to handle only types in normal form and replace
conversion by reflexivity. The following is a good example of the problem to be solved.
Consider the context Γ ≡ W :K,X ≤ ΛY :K.Y :K→K, Z ≤ X:K→K; observe that X and
Z are subtypes of the identity on K. Then Γ ` X(Z W ) ≤ W is not derivable without
using conversion, i.e. without performing any β-reduction, even when the conclusion is in
normal form. (For a derivation see section 6.1.)

The subtyping rules of F ω
∧ are not syntax directed, in the sense that the form of a

derivable subtyping statement does not uniquely determine the last rule of its derivation,
i.e. there might be more than one derivation of the same subtyping judgement. To develop
a deterministic decision procedure to check subtyping, we need a new presentation of
the subtyping relation that provides the foundations for a subtype-checking deterministic
algorithm.

We develop a normal subtyping system, NFω
∧ , in which only types in normal form are

considered. We prove that derivations in NFω
∧ can be normalized by eliminating transitivity

and simplifying reflexivity. This simplification yields an algorithmic presentation, AlgF ω
∧ .

Moreover, we prove that AlgF ω
∧ is indeed an alternative presentation of the F ω

∧ subtyping
relation, that is Γ ` S ≤ T if and only if Γnf `Alg Snf ≤ T nf (proposition 9.2).
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In [38] Steffen and Pierce studied F ω
≤ proving that typing is decidable and that the

system satisfies the minimal types property. A central result in the proof of decidability is
establishing the decidability of subtyping, a result first proved in [20]. There are several
differences between our work and theirs. Our results are for a stronger system which also
includes intersection types. A major difference is the choice of the intermediate subtyping
system. We define the normal system NFω

∧ which provides a generation principle for
subtyping, yielding the algorithm AlgF ω

∧ . In [38] the intermediate system, called a reducing
system, leads to a much more complicated proof which involves dealing with several notions
of reduction and further reformulation of the intermediate system. A generation principle
for subtyping is crucial to prove the Subject Reduction property (proposition 12.7), which
is not proved in [38].

1.1 Results

• We define the typed lambda calculus F ω
∧ , a natural generalization of Girard’s sys-

tem F ω with intersection types and bounded polymorphism. A novel aspect of our
presentation is the use of term rewriting techniques to present intersection types,
which clearly splits the computational semantics (reduction rules) from the syntax
(inference rules) of the system.

• The reduction rules of F ω
∧ can be divided into two main groups, reductions on types

(→β∧) and reductions on terms (→βfors). Although confluence is not a modular
property in general, in our case it is possible to provide a modular proof of it. In
section 3, we combine the independent proofs of confluence for reductions on types
and confluence for reduction on terms to yield a proof of confluence of the reduction
relation in the whole system.

• We prove the strong normalization property of →β∧ on well-formed types.

• We define a normalized system NFω
∧ equivalent to the original presentation of subtyp-

ing, and prove the transitivity elimination and reflexivity simplification properties.

• We define a subtyping algorithm AlgF ω
∧ , and prove that it is equivalent to the original

presentation.

• In section 10, we prove that F ω
∧ satisfies the minimal types property, and we provide

an algorithm for computing minimal types.

• We prove that F ω
∧ satisfies the subject reduction property using the minimal types

property.

The original paper [20] defines the system F ω
∧ and its equivalent normal subtyping

system NFω
∧ . In the current paper we extend this framework to prove Subject Reduction

and Minimal Typing.
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2 Syntax of Fω
∧

We now present the rules for kinding, subtyping, and typing in F ω
∧ . They are organized as

proof systems for four interdependent judgement forms:

Γ ` ok well-formed context
Γ ` T : K well-kinded type
Γ ` S ≤ T subtype
Γ ` e : T well-typed term.

We sometimes use the metavariable Σ to range over statements (right-hand sides of judge-
ments) of any of these four forms.

2.1 Syntactic Categories

The kinds of F ω
∧ are those of F ω: the kind ? of proper types and the kinds K1→K2 of

functions on types (sometimes called type operators).

K ::= ? types
| K→K type operators

The language of types of F ω
∧ is a straightforward higher-order extension of F≤, Cardelli

and Wegner’s second-order calculus of bounded quantification. Like F≤, it includes type
variables (written X), function types (T→T ′), and polymorphic types (∀X≤T :K.T ′), in
which the bound type variable X ranges over all subtypes of the upper bound T . Moreover,
like F ω, we allow types to be abstracted on types (ΛX:K.T ) and applied to argument types
(T T ′); in effect, these forms introduce a simply typed λ-calculus at the level of types.
Finally, we allow arbitrary finite intersections (

∧K [T1..Tn]), where all the Ti’s are members
of the same kind K.

T ::= X type variable
| T→T function type
| ∀X≤T:K .T polymorphic type
| ΛX:K .T operator abstraction
| TT operator application
| ∧

K [T..T ] intersection at kind K

We use the abbreviation >K for nullary intersections and sometimes X:K for X ≤
>K :K.

>K ≡ ∧K [ ] X:K ≡ X ≤ >K :K

We drop the maximal type Top of F≤, since its role is played here by the empty intersec-
tion >?. For technical convenience, we provide kind annotations on bound variables and
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intersections so that every type has an “obvious kind,” which can be read off directly from
its structure and the kind declarations in the context.

The language of terms includes the variables (x), applications (e e), and functional ab-
stractions (λx:T.e) of the simply typed λ-calculus, plus the type abstraction (λX≤T :K.e)
and application (e T ) of F ω. As in F≤, each type variable is given an upper bound at the
point where it is introduced.

Intersection types are introduced by expressions of the form “for(X∈T1..Tn)e”, which
can be read as instructions to the type-checker to analyze the expression e separately under
the assumptions X ≡ T1, X ≡ T2, . . . , X ≡ Tn and conjoin the results. For example, if
+ : Int→Int→Int ∧Real→Real→Real, then we can derive:

for(X∈Int, Real)λx:X.x+ x : Int→Int∧ Real→Real.

e ::= x variable
| λx:T.e abstraction
| e e application
| λX≤T:K .e type abstraction
| eT type application
| for(X∈T..T)e alternation

The operational semantics of F ω
∧ is given by the following reduction rules on types and

terms.

Definition 2.1.1 (Reduction rules for types)

1. (ΛX:K.T1)T2 →β∧ T1[X←T2]

2. S → ∧?[T1..Tn]→β∧
∧?[S→T1 .. S→Tn]

3. ∀X≤S:K.
∧?[T1..Tn]→β∧

∧?[∀X≤S:K.T1 .. ∀X≤S:K.Tn]

4. ΛX:K1.
∧K2[T1..Tn]→β∧

∧K1→K2[ΛX:K1.T1 .. ΛX:K1.Tn]

5. (
∧K1→K2[T1..Tn])U →β∧

∧K2[T1 U .. TnU ]

6.
∧K [T1 ..

∧K [S1..Sn] .. Tm]→β∧
∧K [T1 .. S1..Sn .. Tm]

The first rule is the usual β-reduction rule for types. Rules 2 through 5 express the fact that
intersections in positive positions distribute with respect to the other type constructors.
Rule 6 states that intersection is an associative operator. In section 5 we consider the
reduction defined by rules 1 through 5 as →β∧− and the one defined by 6 as →a (a comes
from associativity). The left-hand side of each reduction rule is a redex and the right-hand
side its reduct. The relation →β∧ is extended so as to become a compatible relation with
respect to type formation, �β∧ is the transitive and reflexive closure of →β∧, and =β∧ is
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the least equivalence relation containing →β∧. The capture-avoiding substitution of S for
X in T is written T [X←S]. Substitution is written similarly for terms, and is extended
point-wise to contexts. The β∧-normal form of a type S is written Snf, and is extended
point-wise to contexts.

Definition 2.1.2 (Reduction rules for terms)

1. (λx:T1.e1)e2 →βfors e1[x←e2]

2. (λX≤T1:K1.e)T →βfors e[X←T ]

3. (for(X∈T1..Tn)e1)e2 →βfors for(X∈T1..Tn)(e1 e2)

4. for(X∈T1..Tn)e→βfors e, if X 6∈ FV(e)

Rules 1 and 2 are the β-reductions on terms. Rule 3 says that the for constructor can
be pushed to the outermost level. We consider the reduction defined by rules 1 through
3 as →βfor and the one defined by 4 as →s (s comes from simplification). The left-hand
side of each reduction rule is a redex and the right-hand side its reduct. The relation
→βfors is extended so as to become a compatible relation with respect to term formation,
�βfors is the transitive reflexive closure of→βfors, and =βfors is the least equivalence relation
containing →βfors.

2.2 Contexts

A context Γ is a finite sequence of typing and subtyping assumptions for a set of term and
type variables.

The empty context is written ∅. Term variable bindings have the form x:T ; type variable
bindings have the form X≤T :K, where T is the upper bound of X and K is the kind of
T .

Γ ::= ∅ empty context
| Γ, x:T term variable declaration
| Γ, X≤T :K type variable declaration

When writing nonempty contexts, we omit the initial ∅. The domain of Γ is written
dom(Γ). The functions FV(—) and FTV(—) give the sets of free term variables and
free type variables of a term, type, or context. Since we are careful to ensure that no
variable is bound more than once, we sometimes abuse notation and consider contexts as
finite functions: Γ(X) yields the bound of X in Γ, where X is implicitly asserted to be in
dom(Γ).

Types, terms, contexts, statements, and derivations that differ only in the names of
bound variables are considered identical. The underlying idea is that variables are de Bruijn
indexes [28].
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Definition 2.2.1 (Closed)

1. A term e is closed with respect to a context Γ if FV(e)∪ FTV(e) ⊆ dom(Γ).

2. A type T is closed with respect to a context Γ if FTV(T ) ⊆ dom(Γ).

3. A typing statement Γ ` e : T is closed if e and T are closed with respect to Γ.

4. A kinding statement Γ ` T : K is closed if T is closed with respect to Γ.

5. A subtyping statement Γ ` S ≤ T is closed if S and T are closed with respect to Γ.

We consider only closed typing statements. Observe that in the limit case of the rule
T-Meet, when n = 0, not having the closure convention would allow nonsensical terms
to be typed. On the other hand, the free variable lemma (lemma 4.3) guarantees that
kinding statements are closed and the well-kindedness of subtyping (lemma 4.18) ensures
that subtyping statements are closed as well.

2.3 Context Formation

The rules for well-formed contexts are the usual ones: a start rule for the empty context
and rules allowing a given well-formed context to be extended with either a term variable
binding or a type variable binding.

∅ ` ok (C-Empty)

Γ ` T : ? x 6∈ dom(Γ)
Γ, x:T ` ok

(C-Var)

Γ ` T : K X 6∈ dom(Γ)
Γ, X≤T :K ` ok

(C-TVar)

2.4 Type Formation

For each type constructor, we give a rule specifying how it can be used to build well-
formed type expressions. The critical rules are K-OAbs and K-OApp, which form type
abstractions and type applications (essentially as in a simply typed λ-calculus).

The well-formedness premise Γ ` ok in K-Meet (and in T-Meet below) is required for
the case where n = 0.

Γ1, X≤T :K, Γ2 ` ok
Γ1, X≤T :K, Γ2 ` X : K

(K-TVar)

Γ ` T1 : ? Γ ` T2 : ?
Γ ` T1→T2 : ?

(K-Arrow)

Γ, X≤T1:K1 ` T2 : ?
Γ ` ∀X≤T1:K1.T2 : ?

(K-All)
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Γ, X :K1 ` T2 : K2

Γ ` ΛX :K1.T2 : K1→K2
(K-OAbs)

Γ ` S : K1→K2 Γ ` T : K1

Γ ` S T : K2
(K-OApp)

Γ ` ok for each i ∈ {1..n} , Γ ` Ti : K

Γ `
∧K [T1..Tn] : K

(K-Meet)

2.5 Subtyping

The rules defining the subtype relation are a natural extension of familiar calculi of bounded
quantification. Aside from some extra well-formedness conditions, the rules S-Trans, S-

TVar, and S-Arrow are the same as in the usual, second-order case. Rules S-OAbs and
S-OApp extend the subtype relation point-wise to kinds other than ?. The rule of type
conversion in F ω, that is, if Γ ` e : T and T =β T ′ then Γ ` e : T ′, is captured here as the
subtyping rule S-Conv, which also gives reflexivity as a special case. The rule S-All is
the rule of Cardelli and Wegner’s Fun language [15] in which the bounds of the quantifiers
are equal. Rules S-Meet-G and S-Meet-LB specify that an intersection of a set of types
is the set’s order-theoretic greatest lower bound.

Γ ` S : K Γ ` T : K S =β∧ T

Γ ` S ≤ T (S-Conv)

Γ ` S ≤ T Γ ` T ≤ U
Γ ` S ≤ U (S-Trans)

Γ1, X≤T :K, Γ2 ` ok
Γ1, X≤T :K, Γ2 ` X ≤ T

(S-TVar)

Γ ` T1 ≤ S1 Γ ` S2 ≤ T2 Γ ` S1→S2 : ?
Γ ` S1→S2 ≤ T1→T2

(S-Arrow)

Γ, X≤U :K ` S ≤ T Γ ` ∀X≤U :K.S : ?
Γ ` ∀X≤U :K.S ≤ ∀X≤U :K.T

(S-All)

Γ, X :K ` S ≤ T
Γ ` ΛX :K.S ≤ ΛX :K.T

(S-OAbs)

Γ ` S ≤ T Γ ` S U : K
Γ ` S U ≤ T U (S-OApp)

for each i ∈ {1..n} , Γ ` S ≤ Ti Γ ` S : K

Γ ` S ≤ ∧K [T1..Tn]
(S-Meet-G)

Γ ` ∧K [T1..Tn] : K

Γ ` ∧K [T1..Tn] ≤ Ti
(S-Meet-LB)
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2.6 Term Formation

Except for T-Meet and T-For, the term formation rules are precisely those of the second-
order calculus of bounded quantification. T-For provides for type checking under any of a
set of alternate assumptions. For each Si, the type derived for the instance of the body e
when X is replaced by Si is a valid type of the for expression itself. The T-Meet rule can
then be used to collect these separate typings into a single intersection. Type-theoretically,
T-Meet is the introduction rule for the ∧ constructor; the corresponding elimination rule
need not be given explicitly, since it follows from T-Subsumption and S-Meet-LB.

Γ1, x:T , Γ2 ` ok
Γ1, x:T , Γ2 ` x : T

(T-Var)

Γ, x:T1 ` e : T2

Γ ` λx:T1.e : T1→T2
(T-Abs)

Γ ` f : T1→T2 Γ ` a : T1

Γ ` f a : T2
(T-App)

Γ, X≤T1:K1 ` e : T2

Γ ` λX≤T1:K1.e : ∀X≤T1:K1.T2
(T-TAbs)

Γ ` f : ∀X≤T1:K1.T2 Γ ` S ≤ T1

Γ ` f S : T2[X←S]
(T-TApp)

Γ ` e[X←S] : T S : {S1..Sn}
Γ ` for(X∈S1..Sn)e : T

(T-For)

Γ ` ok for each i ∈ {1..n} , Γ ` e : Ti
Γ ` e :

∧?[T1..Tn]
(T-Meet)

Γ ` e : S Γ ` S ≤ T
Γ ` e : T

(T-Subsumption)

Most of the rules include premises which have two rather different sorts: structural premises,
which play an essential role in giving the rule its intended semantic force, and well-formation
premises, which ensure that the entities named in the rule are of the expected sorts.

We sometimes omit well-formation premises that can be derived from others. For
example, in the rule S-Arrow, we drop the premise Γ ` T1→T2 : ?, since it follows from
Γ ` S1→S2 : ? using the properties proved in section 4.

2.7 Discussion

An equivalent presentation of intersection types uses binary intersections as in [25]. The
intersection of S and T is then written S∧T , and there is a maximal element at each kind,
ωK . The rules of the system have to be modified according to this alternative notation. In
most cases, each of our rules about intersection types has to be replaced by two rules, one
for the binary case and another for the maximal element. For example, the reduction rule

∀X≤S:K.
∧?[T1..Tn]→β∧

∧?[∀X≤S:K.T1 .. ∀X≤S:K.Tn]
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is replaced by

∀X≤S:K.T1 ∧ T2 →β∧ ∀X≤S:K.T1 ∧ ∀X≤S:K.T2 and
∀X≤S:K.ω? →β∧ ω?.

Similar replacement takes place for rules 3 through 5 in definition 2.1.1. The term formation
rule K-Meet is replaced by the two following rules.

Γ ` S : K Γ ` T : K
Γ ` S ∧ T : K

(K-Int)

Γ ` ok
Γ ` ωK : K

(K-Max)

The rule S-Meet-G is replaced by the following two rules.

Γ ` S ≤ T1 Γ ` S ≤ T2

Γ ` S ≤ T1 ∧ T2
(S-Int-G)

Γ ` S : K
Γ ` S ≤ ωK (S-Max)

In the λ-cube [4], F ωcorresponds to λω, the system defined by the rules (?, ?), (2, ?),
and (2,2). If K is a kind defined by the grammar K , then

Γ `λω K : 2.

The rule (2,2) corresponds to the recursive step in the definition of K ; the rule (?, ?)
corresponds to K-Arrow, and K-All is the parallel of rule (2, ?) enriched with subtyping.

3 Confluence

In this section, we show that the system F ω
∧ is confluent. By that we mean that the

reduction→βfors ∪ →β∧ defined by putting together the reduction on terms,→βfors (defini-
tion 2.1.2), and the reduction on types, →β∧ (definition 2.1.1), satisfies the Church-Rosser
property. We use the Hindley-Rosen lemma (c.f. 3.3.5 [5]) to establish this result. This
factors the proof into two parts:

1. proving that the reductions�βfors and �β∧ commute, and

2. proving that the reductions →βfors and →β∧ satisfy the Church-Rosser property.

Full details of the proofs of this section as well as intermediate results can be found
in [22]. Remember that two binary relations →1 and →2 commute if given A →1 B and
A →2 C, there exists D such that C →1 D and B →2 D. In order to prove that �βfors

and �β∧ commute we use the following lemma.
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Lemma 3.1 (3.3.6 [5]) Let →1 and →2 be two binary relations on a set X. Suppose that
if A →1 B and A →2 C, there exists D such that C →=1 D and B →→2 D, where →=1 is
the reflexive closure of →1. Hence →→1 and →→2 commute.

Lemma 3.2 If A →βfors B and A →β∧ C, there exists D such that C →=βfors D and
B �β∧ D

Proof: By induction on the structure of E. 2

Corollary 3.3 �β∧ and �βfors commute.

The Church-Rosser theorem for →β∧

We now prove the Church-Rosser property for the reduction defined in 2.1.1. The strategy
we use here is similar to the one used in chapter 11 section 1 of [5] to prove the corresponding
result for →β in the type-free λ-calculus.

In order to prove the Church-Rosser property for →β∧ it is sufficient to show the
following strip lemma.

Lemma 3.4 (Strip) Let S, T1, and T2 ∈ T. If S →β∧ T1 and S �β∧ T2, then there exists
T3 ∈ T such that T1 �β∧ T3 and T2 �β∧ T3.

The idea of the proof is as follows. Let T1 be the result of replacing the redex R in S by
its reduct R′. If we keep track of what happens with R during the reduction S �β∧ T2,
then we can find T3. To be able to trace R we define a new set of terms T where redexes
can appear underlined. Consequently, if we underline R in S we only need to reduce all
occurrences of the underlined R in T2 to obtain T3.

Theorem 3.5 (Church-Rosser for →β∧)

If S, T1, and T2 ∈ T are such that S �β∧ T1 and S �β∧ T2, then there exists T3 ∈ T
such that T1 �β∧ T3 and T2 �β∧ T3.

Proof: By induction on the generation of S �β∧ T1. 2

The Church-Rosser theorem for →βfors

Next we prove the Church-Rosser property for the reduction defined in definition 2.1.2.

Theorem 3.6 (Church-Rosser for →βfors)

Let e, f1, f2 ∈ E. If e �βfors f1 and e �βfors f2, then there exists f3 ∈ E such that
f1 �βfors f3 and f2 �βfors f3.
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The idea of the proof is as follows. We prove that→βfor and→s are Church-Rosser (theorem
3.7 and lemma 3.8); that→s reduction steps can be postponed (lemma 3.9), and that�βfor

and �s commute (lemma 3.10).
Those four results allow us to prove the Church-Rosser theorem for →βfors. Let e, e1,

e2 ∈ E , such that e �βfors e1 and e �βfors e2. Then, by s-postponement, there exist f1

and f2; by Church-Rosser for →βfor, there exists f3; and, by lemma 3.10, there exist f4

and f5, and finally, by Church-Rosser for→s, there exists e3 which completes the following
diagram.

e
βfor
-- f1 s

-- e1

f2

βfor

??
. . . . . . . . .

βfor
-- f3

??

........
βfor

. . . . . . . . .
s
-- f4

??

........
βfor

e2

s

??. . . . . . . . .
βfor
-- f5

??

........
s

. . . . . . . . .
s
-- e3

??

.........

s

The Church-Rosser property for →βfor follows using the same strategy used to prove
theorem 3.5.

Theorem 3.7 (Church-Rosser for →βfor)

If e, f1, and f2 ∈ E are such that e �βfor f1 and e �βfor f2, then there exists f3 ∈ E
such that f1 �βfor f3 and f2 �βfor f3.

The Church-Rosser property for →s is proved using the Newman’s proposition 3.1.25
in [5], by proving that →s is strongly normalizing and weak Church-Rosser.

Lemma 3.8 (Church-Rosser for →s) If e, e1, and e2 ∈ E are such that e �s e1 and
e�s e2, then there exists e3 such that e1 �s e3 and e2 �s e3.

Lemma 3.9 (s-postponement) If e →s e1 and e1 →βfor e2, then there exists e3 such that
e→βfor e3 and e3 �s e1.

Lemma 3.10 If e, e1, and e2 ∈ E are such that e �βfor e1 and e �s e2 then there exists
e3 such that e1 �s e3 and e2 �βfor e3.

Finally, we can state and prove the confluence property for the reduction relation of
F ω
∧ .
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Confluence of F ω
∧

Theorem 3.11 (Church-Rosser for →βfors ∪ →β∧)

If E, F , and G ∈ T ∪ E are such that E �βfors∪β∧ F and E �βfors∪β∧ G, then there
exists H ∈ T ∪ E such that F �βfors∪β∧ H and G�βfors∪β∧ H.

Proof: By the commutativity of �βfors and �β∧ (corollary 3.3) and the Church-Rosser
property of →βfors and →β∧ (theorems 3.5 and 3.6). 2

The Church-Rosser theorem has interesting corollaries that we will use in the sequel.

Corollary 3.12 See chapter 3 of [5]. Let R be a reduction satisfying the Church-Rosser
property. Then

1. If T=RS, then there exists U such that T →→R U and S →→R U .

2. If T is a normal form of S, then S →→R T .

3. Each term has at most one R-normal form.

Fact 3.13

1. ∀X≤S:K.T =β∧ >? if and only if T =β∧ >?.

2. ΛX:K.T =β∧ >? if and only if T =β∧ >?.

3. S→T =β∧ >? if and only if T =β∧ >?.

4. T S =β∧ >? if and only if T =β∧ >?.

Lemma 3.14 If S �β∧ S ′, then S[X←U ]�β∧ S ′[X←U ].

4 Structural properties

This section establishes a number of structural properties of F ω
∧ . Except where noted,

the proofs proceed by structural induction and are straightforward when performed in the
order in which they appear.

Lemma 4.1 If Γ ` Σ and Γ1 is a prefix of Γ, then Γ1 ` ok as a subderivation. Moreover,
except for the case Γ1 ≡ Γ and Σ ≡ ok, the subderivation is strictly shorter.

Lemma 4.2 (Generation for context judgements)

1. If Γ1, X≤T :K, Γ2 ` ok, then Γ1 ` T : K by a proper subderivation.

2. If Γ1, x:T , Γ2 ` ok, then Γ1 ` T : ? by a proper subderivation.

Lemma 4.3 (Free variables)
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1. If Γ ` T : K, then FTV(T ) ⊆ dom(Γ).

2. If Γ ` ok, then each variable or type variable in dom(Γ) is declared only once.

If one tries to prove Weakening (Corollary 4.6) directly by induction on derivations the
induction hypothesis is too weak in the cases for K-All and S-OAbs, for example. This
problem occurs in the lambda calculus without subtyping for the abstraction rule, and
was identified by McKinna and Pollack for Pure Type Systems. We adapt their idea of
renaming [32].

Definition 4.4 (Parallel Substitution) A parallel substitution γ for Γ is an assignment
of types to type variables in dom(Γ) and terms to term variables in dom(Γ). A renaming
for Γ in ∆ is a parallel substitution γ from variables to variables such that

• for every x:A in Γ, γ(x):A[γ] is in ∆, and

• for every X≤T :K in Γ, γ(X)≤A[γ]:K is in ∆.

We write Σ[γ] for the result of performing the substitution γ in the judgement Σ. The
renaming γ{x 7→ y} maps x to y and behaves like γ elsewhere, similarly for type variables.

Lemma 4.5 (Renaming) If ∆ ` ok and γ is a renaming for Γ in ∆ then Γ ` Σ implies
∆ ` Σ[γ].

Proof: By induction on the derivation of Γ ` Σ. Most cases follow easily using the
induction hypothesis or the definition of renaming. We illustrate here the case for K-All,
which is representative of the interesting cases.

Let Z 6∈ dom(∆). Define γ0 as γ0 ≡ γ{X 7→ Z}, then γ0 is a renaming for Γ, X≤T1:K1

in ∆, Z≤T1[γ0]:K1. By lemmas 4.1 and 4.2(1), there exists a shorter subderivation of
Γ ` T1 : K1, and by the free variables lemma (lemma 4.3), X 6∈ FV(T1), therefore T1[γ0] ≡
T1[γ].

We need to show that ∆, Z≤T1[γ]:K1 ` ok. By assumption we know that ∆ ` ok,
by the induction hypothesis, ∆ ` T1[γ] : K1. Since we chose Z not to be in dom(∆), by
K-TVar, ∆, Z≤T1[γ]:K1 ` ok.

We can now apply the induction hypothesis to prove ∆, Z≤T1[γ]:K1 ` T2[γ0] : ?.
By K-All, ∆ ` ∀Z≤T1[γ]:K1.T2[γ0] : ?, and by the definition of substitution ∆ `
(∀X≤T1:K1.T2 : ?)[γ]. 2

Weakening now follows as a corollary of renaming taking γ to be the identity substitu-
tion.

Corollary 4.6 (Weakening/Permutation) Let Γ and Γ′ be contexts such that Γ ⊆ Γ′

and Γ′ ` ok. Then Γ ` Σ implies Γ′ ` Σ.

Proof: Let γ be the identity substitution. Then γ is a renaming for Γ in ∆ and Σ[γ] ≡ Σ.
Then, by Renaming (Proposition 4.5), it follows that ∆ ` Σ. 2
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Lemma 4.7 (Context, kind, and term strengthening)

1. If Γ1, X≤T :K, Γ2 ` ok and X 6∈ FTV(Γ2), then Γ1, Γ2 ` ok.

2. If Γ1, X≤T :K, Γ2 ` S : K ′ and X 6∈ FTV(Γ2) ∪ FTV(S), then Γ1, Γ2 ` S : K ′.

3. If Γ1, x:T , Γ2 ` Σ and x 6∈ FV(Σ), then Γ1, Γ2 ` Σ.

Moreover, the derivations of the conclusions are strictly shorter than the derivation of the
premises.

Proof: Statements 1 and 2 follow by simultaneous induction on the length of derivations,
and statement 3 by induction on the derivation of Γ1, x:T , Γ2 ` Σ. In all cases lemmas
4.1 and 4.3 are used. 2

Proposition 4.8 (Generation for kinding)

1. Γ ` X : K implies Γ ≡ Γ1, X≤T :K, Γ2 for some Γ1, T , and Γ2.

2. Γ ` T1→T2 : K implies K ≡ ? and Γ ` T1, T2 : ?.

3. Γ ` ∀X≤T1:K1.T2 : K implies K ≡ ? and Γ, X≤T1:K1 ` T2 : ?.

4. Γ ` Λ(X:K1)T2 : K implies K ≡ K1→K2 and Γ, X≤>K1:K1 ` T2 : K2, for some
K2.

5. Γ ` S T : K implies Γ ` S : K ′→K and Γ ` T : K ′, for some K ′.

6. Γ ` ∧K [T1..Tn] : K ′ implies K ≡ K ′ and Γ ` ok and Γ ` Ti : K for each i.

Moreover, the proofs of the consequents are all strictly shorter than those of the ante-
cedents.

Proof: In each case the antecedent uniquely determines the last rule of its derivation.
The proof follows by inspection of the rules. 2

Lemma 4.9 (Uniqueness of kinds) If Γ ` T : K and Γ ` T : K ′, then K ≡ K ′.

Lemma 4.10 (Type substitution) Let Γ1 ` T : KU . Then

1. If Γ1, X≤U :KU , Γ2 ` S : KS , then Γ1, Γ2[X←T ] ` S[X←T ] : KS.

2. If Γ1, X≤U :KU , Γ2 ` ok, then Γ1, Γ2[X←T ] ` ok.

Proof: By simultaneous induction on derivations of the premises. The proof of part 2 is
straightforward using part 1 of the induction hypothesis. We consider the details of the
proof of 1. The cases K-Arrow, K-All, K-OAbs, and K-OApp follow by straightforward
application of part 1 of the induction hypothesis and the corresponding rule, while the case
of K-Meet also uses part 2 of the induction hypothesis. We examine the case of K-TVar,
where S ≡ Y for some variable Y . By proposition 4.8(1) Y≤TY :KS : (Γ1, X≤U :KU , Γ2)
for some TY . There are three cases to consider.
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Y≤TY :KS ∈ Γ1 Then we also have Y≤TY :KS ∈ (Γ1, Γ2[X←T ]). By part 2 of the induc-
tion hypothesis, Γ1, Γ2[X←T ] ` ok. Applying K-TVar, we get Γ1, Γ2[X←T ] ` Y :
KS .

Y≤TY :KS ≡ X≤U :KU We know that Γ1 ` T : KS ≡ KU . From the premise of K-TVar

and part 2 of the induction hypothesis, we have Γ1, Γ2[X←T ] ` ok. The result follows
by weakening (corollary 4.6).

Y≤TY :KS ∈ Γ2 Then we have Y≤TY [X←T ]:KS ∈ (Γ1, Γ2[X←T ]). By part 2 of the
induction hypothesis, Γ1, Γ2[X←T ] ` ok, from which the result follows by K-TVar.
2

Lemma 4.11 (Subject reduction for kinding judgements) If S �β∧ T and Γ ` S : K,
then Γ ` T : K.

Proof: In order to prove this result it is enough to prove the following statements by
simultaneous induction on the derivation of Γ ` S : K. The rest follows by induction on
the definition of �β∧.

1. Γ ` ok and Γ→β∧ Γ′ implies Γ′ ` ok.

2. Γ ` S : K and S →β∧ T implies Γ ` T : K.

3. Γ ` S : K and Γ→β∧ Γ′ implies Γ′ ` S : K. 2

Theorem 4.12 (Kind invariance under type conversion) If Γ ` S : KS and Γ ` T : KT ,
with S =β∧ T , then KS ≡ KT .

Proof: By the Church-Rosser theorem 3.5, there exists U such that S �β∧ U and
T �β∧ U , and the result follows by subject reduction and unicity of kinds. 2

Lemma 4.13 Let Γ ` Sj : K for each j ∈ {1..m} . Then if for every i ∈ {1..n} there
exists j ∈ {1..m} such that Γ ` Sj ≤ Ti, then Γ ` ∧K [S1..Sm] ≤ ∧K [T1..Tn].

A particular case of the previous lemma is the following.

Corollary 4.14 Let Γ ` Si : K for each i ∈ {1..n} . Then Γ ` Si ≤ Ti, for every
i ∈ {1..n} , implies Γ ` ∧K [S1..Sn] ≤ ∧K [T1..Tn].

Lemma 4.15 Let Γ ` S, T : K. Then Γ ` S ≤ T if and only if Γ ` Snf ≤ T nf.

Proof: We shall consider only one part the other is similar.

⇒) By subject reduction, we have that Γ ` Snf : K, then, by S-Conv, Γ ` Snf ≤ S. By
similar reasoning we have Γ ` T ≤ T nf. The result follows by applying S-Trans twice.

2
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Lemma 4.16 (Context modification) If Γ1 ` U ′ : K and Σ is either ok or T : K ′, then
Γ1, X≤U :K, Γ2 ` Σ implies Γ1, X≤U ′:K, Γ2 ` Σ.

Lemma 4.17 Let Γ ` Si : K for every i ∈ {1..n} . If for every j in {1..m} there exists i
in {1..n} such that Γ ` Si ≤ Tj, then Γ ` ∧K [S1..Sn] ≤ ∧K [T1..Tm].

Proposition 4.18 (Well-kindedness of subtyping) If Γ ` S ≤ T , then Γ ` S : K and
Γ ` T : K for some K.

Proof: By induction on the derivation of Γ ` S ≤ T . We show a few representative cases.

S-Conv We are given that Γ ` S : K and Γ ` T : K ′ and S =β T . By lemma 4.12,
K ≡ K ′.

S-TVar We are given that Γ1, X≤T :K, Γ2 ` ok. Γ1, X≤T :K, Γ2 ` X : K follows by K-

TVar. Moreover, by lemma 4.2, we have Γ1 ` T : K, and by weakening (corollary 4.6),
Γ1, X≤T :K, Γ2 ` T : K.

S-Arrow We are given Γ ` T1 ≤ S1 and Γ ` S2 ≤ T2 and Γ ` S1→S2 : ?. By proposi-
tion 4.8, Γ ` S1, S2 : ?. Further, by the induction hypothesis together with uniqueness
of kinds (lemma 4.9), we have Γ ` T1, T2 : ?. Finally, the result follows by applying
K-Arrow. 2

Proposition 4.19 (Well-kindedness of typing) If Γ ` e : T , then Γ ` T : ?.

Proof: By induction on the derivation of Γ ` e : T . We show here a few interesting cases

T-Var We are given Γ1, x:T , Γ2 ` ok. The result follows by generation for context judge-
ments (lemma 4.2) and weakening (corollary 4.6).

T-Abs We are given Γ, x:T1 ` e : T2. By the induction hypothesis, Γ, x:T1 ` T2 : ?. By
lemma 4.7, it follows that Γ ` T2 : ?. Furthermore, by lemmas 4.1 and 4.2, Γ ` T1 : ?.
Hence, K-Arrow yields Γ ` T1→T2 : ?.

T-TApp We know that Γ ` f : ∀(X≤T1:K1)T2 and also Γ ` S ≤ T1. By the induction
hypothesis, Γ ` ∀(X≤T1:K1)T2 : ? and, by proposition 4.8, Γ, X≤T1:K1 ` T2 : ?. By
lemmas 4.1 and 4.2, there exists a derivation of Γ ` T1 : K1. By the well-kindedness of
subtyping (proposition 4.18) and uniqueness of kinds (lemma 4.9), we have Γ ` S : K1.
Then, by the type substitution lemma (lemma 4.10), Γ ` T2[X←S] : ?.

T-Sub By the induction hypothesis, proposition 4.18 and lemma 4.9. 2



5 STRONG NORMALIZATION OF →β∧ 18

5 Strong normalization of →β∧

We prove that every type that has a kind in F ω
∧ is strongly normalizing in three steps.

We first prove that →a and also →β∧− are strongly normalizing. Then we prove that
both reductions commute, i.e. if T →a T1 and T1 →β∧− T2, then there exists S such that
S →a T2 and T �β∧−

>0 S (in at least one step). Finally, using the previous two steps we
prove that →β∧ is strongly normalizing.

A type T is called strongly normalizing if and only if all reduction sequences starting
with T terminate. We write T for the set of all type expressions and SN for the subset
of T of strongly normalizing type expressions. If A and B are subsets of T, then A → B
denotes the following subset of T

A→ B = {F ⊆ T | for all a ∈ A, Fa ∈ B}.

Lemma 5.1 →a is strongly normalizing.

Proof: By induction on the number of intersection symbols of the type expression being
reduced. 2

To prove strong normalization of→β∧− we use a model-theoretic argument interpreting
kinds as sets of normalizing terms, and the soundness of the model gives, as a corollary, the
strong normalization property. The interpretation of a kind K, notation [[K]], is defined as
follows.

[[ ? ]] = SN
[[K1→K2]] = [[K1]]→ [[K2]].

Definition 5.2 (Saturated set) S ⊆ SN is saturated if is satisfies the following condi-
tions:

1. If R1..Rn ∈ SN, then XR1..Rn ∈ S.

2. If R1..Rn, Q ∈ SN, then

(a) if P [X←Q]R1..Rn ∈ S, then (ΛX:K.P )QR1..Rn ∈ S, for every K and

(b) if (
∧K2[T1Q, .., TmQ])R1, .., Rn ∈ S,

then (
∧K1→K2[T1, .., Tm])QR1, .., Rn ∈ S, for every K1.

Intuitively, a set of strongly normalizing type expressions is saturated if it contains all type
variables and is closed under expansion of expressions which may have a kind of the form
K1→K2.

Lemma 5.3

1. SN is saturated.



5 STRONG NORMALIZATION OF →β∧ 19

2. If A,B are saturated, then A→ B is saturated.

3. For any kind K, [[K]] is saturated.

Definition 5.4

1. A valuation ρ in T is a mapping from type variables to types.

2. The interpretation of a type with respect to ρ is

[[T ]]ρ = T [X1 ← ρ(X1)..Xn ← ρ(Xn)],

where FV(T ) = {X1..Xn}.

3. Let ρ be a valuation in T. Then ρ satisfies T : K, written ρ |= T : K, if [[T ]]ρ : [[K]]
and ρ satisfies X≤T :K, written ρ |= X≤T :K, if ρ(X) : [[K]]. We say that ρ satisfies
a context Γ, ρ |= Γ, if ρ |= X ≤ S:K for all X ≤ S:K : Γ.

4. A context Γ satisfies T : K, written Γ |= T : K, if for every ρ such that ρ |= Γ, it
follows that ρ |= T : K.

Lemma 5.5

1. >K ∈ [[K]].

2. If Ai ∈ [[K]] for each i ∈ {1..n} , then
∧K [A1..An] ∈ [[K]].

Proof: We show item 2. Item 1 also follows follows by induction on the structure of K.

K ≡ ? Then, by definition of [[K]], Ai ∈ SN for each i ∈ {1..n} . Since every reduction
starting from

∧K [A1..An] is a reduction consisting only of steps inside the Ai
′s, one

has
∧K [A1..An] ∈ SN ≡ [[K]].

K ≡ K1→K2 Let B ∈ [[K1]]. By the definition of →, AiB ∈ [[K2]], for each i ∈ {1..n} .
By the induction hypothesis,

∧K2 [A1B..AnB] ∈ [[K2]]. Moreover,
∧K1→K2[A1..An]B ∈

[[K2]] by the saturation of [[K2]], which means that
∧K1→K2[A1..An] ∈ [[K1→K2]]. 2

Proposition 5.6 (Soundness) If Γ ` T : K, then Γ |= T : K.

Proof: By induction on the derivation of Γ ` T : K.
We consider the case for K-Meet. The other cases follow by similar reasoning. Let

T ≡ ∧K [T1..Tn]. We have to consider two cases.

n 6≡ 0 We are given Γ ` Ti : K for each i ∈ {1..n} , and, by the induction hypothesis,
Γ |= Ti : K. Let ρ be a valuation such that ρ |= Γ. Then [[Ti]]ρ ∈ [[K]], for each
i ∈ {1..n} . By lemma 5.5(2),

∧K [[[T1]]ρ..[[Tn]]ρ] ∈ [[K]].



6 TOWARDS A GENERATION PRINCIPLE FOR SUBTYPING 20

n ≡ 0 T ≡ >K . Since [[>K ]]ρ ≡ >K , the result follows by 5.5(1). 2

Theorem 5.7 (Strong normalization for →β∧−)

Γ ` T : K implies that every (β∧−)-reduction sequence starting from T is finite.

Proof: By soundness, Γ |= T : K. Choose ρ0 such that ρ0(X) = X. Observe that ρ0 |= Γ
trivially. Hence T ≡ [[T ]]ρ0

∈ [[K]] ⊆ SN. 2

Lemma 5.8 If T →a T1 and T1 →β∧− T2, then there exists S such that T �β∧−
>0 S and

S →a T2.

Proof: By induction on the structure of T . 2

Corollary 5.9 (a postponement) If T �a T1 and T1 �β∧− T2, then there exists S such
that T �β∧−

>0 S and S �a T2.

Proof: By induction on the generation of T �a T1. 2

Finally, we can prove strong normalization for →β∧.

Theorem 5.10 (Strong normalization for →β∧) Γ ` T : K implies that every (β∧)-
reduction sequence starting from T is finite.

Proof: Let Γ ` T : K. We reason by contradiction. Assume that there is an infinite
β∧-reduction sequence starting from T . Then lemma 5.1 and theorem 5.7 imply that there
are infinitely many alternations of →a and →β∧− reduction sequences. By corollary 5.9,
we can construct an infinite (β∧−)-reduction which contradicts theorem 5.7. 2

6 Towards a generation principle for subtyping

In this section we start our quest towards a generation principle for the subtyping relation
of F ω

∧ . First, we develop a normal subtyping system, NFω
∧ , in which only types in normal

form are considered. We then prove that proofs in NFω
∧ can be normalized by eliminating

transitivity and simplifying reflexivity. This simplification yields an algorithmic presenta-
tion, AlgF ω

∧ , whose rules are syntax directed. Moreover, we prove that AlgF ω
∧ is indeed an

alternative presentation of the F ω
∧ subtyping relation. Formally, Γ ` S ≤ T if and only if

Γnf `Alg Snf ≤ T nf, when S and T are well-formed (proposition 9.2).
In the solution for the second order lambda calculus presented in [34], the distributivity

rules for intersection types are not considered as rewrite rules. For that reason, new
syntactic categories have to be defined (composite and individual canonical types) and an
auxiliary mapping (flattening) transforms a type into a canonical type. Our solution does
not need either new syntactic categories or elaborate auxiliary mappings, since the role
played there by canonical types is performed here by types in normal form.
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6.1 Normal Subtyping

An important property of derivation systems is the information that a derivable judgement
contains about its proofs. This information is essential to produce results which not only
state properties about the subproofs, but also help identify ill formed judgements.

As we mentioned in the introduction, in F ω
∧ we can prove:

W :K,X ≤ ΛY :K.Y :K→K, Z ≤ X :K→K ` X(ZW ) ≤W (1)

Note that X and Z are subtypes of the identity on K, therefore it makes sense for
X(Z W ) to be a subtype of W . The derivation is as follows: Let Γ ≡ W :K, X ≤
ΛY :K.Y :K→K, Z ≤ X:K→K. For the sake of readability we omit kinding judgements.

Γ ` ok
S-TVar

Γ ` X ≤ ΛY :K.Y
S-OApp

Γ ` X(ZW ) ≤ (ΛY :K.Y )ZW

(ΛY :K.Y )ZW =β∧ ZW
S-Conv

(ΛY :K.Y )ZW ≤ ZW
S-Trans

Γ ` X(ZW ) ≤ ZW
Γ ` ok

S-TVar

Γ ` Z ≤ X

Γ ` ok
S-TVar

Γ ` X ≤ ΛY :K.Y
S-Trans

Γ ` Z ≤ (ΛY :K.Y )
S-OApp

Γ ` ZW ≤ (ΛY :K.Y )W

(ΛY :K.Y )W =β∧ W
S-Conv

(ΛY :K.Y )W ≤W
S-Trans

Γ ` ZW ≤W
Γ ` X(ZW ) ≤ ZW Γ ` ZW ≤W

S-Trans

Γ ` X(ZW ) ≤W

This simple example already shows that S-Trans erases information obtained by S-

Conv that is not present in the conclusion any longer. A first step towards an algorithm
to check the subtyping relation is to design a set of rules in which the derivable judge-
ments contain all the information about their derivations. To this end we define a set of
rules, NFω

∧ , in which conversion is reduced to a minimum and, as we show in lemma 7.6,
transitivity can be eliminated. Both results are proved with a standard cut-elimination
argument. This yields a syntax directed subtyping relation, AlgF ω

∧ , which constitutes a
decision procedure for the original system.

In the rest of this section, we present the subtyping system NFω
∧ , which uses the con-

text and type formation rules of F ω
∧ . We define rewriting rules for derivations in NFω

∧
(definitions 7.3 and 7.4), and describe a terminating procedure to normalize proofs, which
gives, as a consequence, the generation for subtyping (proposition 7.10) and an algorithmic
presentation, AlgF ω

∧ (see section 9).
Finally, in section 9, we show that there is an equivalence between subtyping in F ω

∧ and
subtyping in AlgF ω

∧ .
We now define the normal subtyping system, NFω

∧ . Subtyping statements in NFω
∧ are

written Γ `n S ≤ T , and S, T , and all types appearing in Γ are in β∧-normal form.
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Notation 6.1.1 A, B, and C range over types whose outermost constructor is not an
intersection.

Remark 6.1.2 It is an immediate consequence of the β∧-reduction rules that, if T is in
β∧-normal form, then T is either X, S→A, ∀X≤S:K.A, ΛX:K.A, AS where A is not an
abstraction, or

∧K [A1..An]. We frequently use this notation as a reminder of the shape of
types in normal form.

We now define lubΓ(S). We prove in lemma 8.1 and corollary 8.1.2, that, when defined,
it is the smallest type beyond S with respect to Γ.

Definition 6.1.3 (Least strict Upper Bound)

lubΓ(X) = Γ(X),
lubΓ(T S) = lubΓ(T )S.

Definition 6.1.4 (NFω
∧ subtyping rules)

Γ ` S : K
Γ `n S ≤ S

(NS-Refl)

Γ `n S ≤ T Γ `n T ≤ U
Γ `n S ≤ U

(NS-Trans)

Γ `n Γ(X) ≤ A X 6≡ A
Γ `n X ≤ A

(NS-TVar)

Γ `n T ≤ S Γ `n A ≤ B Γ ` S→A : ?
Γ `n S→A ≤ T→B

(NS-Arrow)

Γ, X≤S:K `n A ≤ B Γ ` ∀X≤S:K.A : ?
Γ `n ∀X≤S:K.A ≤ ∀X≤S:K.B

(NS-All)

Γ, X≤>K :K `n A ≤ B
Γ `n ΛX :K.A ≤ ΛX :K.B

(NS-OAbs)

Γ `n (lubΓ(AS))nf ≤ B Γ ` AS : K AS 6≡ B
Γ `n T S ≤ A

(NS-OApp)

∀i ∈ {1..m}Γ `n A ≤ Ti Γ ` A : K

Γ `n A ≤
∧K [T1..Tm]

(NS-∀)

∃j ∈ {1..n}Γ `n Sj ≤ A ∀k ∈ {1..n}Γ ` Sk : K

Γ `n
∧K [S1..Sn] ≤ A

(NS-∃)

∀i ∈ {1..m} ∃j ∈ {1..n}Γ `n Sj ≤ Ti ∀k ∈ {1..n}Γ ` Sk : K

Γ `n
∧K [S1..Sn] ≤

∧K [T1..Tm]
(NS-∀∃)
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As we mentioned in the introduction, an important factor to develop this system was to
consider the distributivity rules of the presentation of F ω

∧ in [23] as reduction rules instead
of subtyping rules. This new point of view suggested that an algorithmic system should, to
a certain extent, concentrate on normal forms replacing the conversion rule by reflexivity.
Consequently, a derivation of a subtyping statement should involve only types in normal
form. But enlightened by the simple (counter)example 1 it is not possible to perform all
reductions at once. In other words, the system does not satisfy an S-Conv postponement
property. Without using S-Conv it is not possible to derive example 1. Hence, the solution
is not as simple as replacing S-Conv by NS-Refl.

In general, the interaction between S-Trans and S-Conv can be analyzed as follows. In
S-Trans the metavariable T of the hypothesis is not present in the conclusion, but this is
not a problem by itself (a similar situation appears in the simply typed lambda calculus in
its application rule and the system is deterministic). The problem is that in the presence
of S-Conv the vanishing T can be β∧-convertible to either S or U or to both S and U .
What example 1 shows is that S and U may be different normal forms, which means that
searching for T is inherently nondeterministic.

We cannot eliminate transitivity completely, we still need it on type variables and on
type applications. In F≤ [29] transitivity is eliminated and hidden in a richer variable rule
in which deciding whether Γ ` X ≤ T when T 6≡ X is reduced to deciding whether the
bound of X is smaller than or equal to T . The bound of X has the particular property of
being the least strict upper bound of X. This observation motivated the definition of our
NS-OApp rule, in which we reduce the decision of whether Γ ` AS ≤ B when B 6≡ AS,
to checking if the least strict upper bound of AS is smaller than or equal to B (See lemma
8.1 and corollary 8.1.2). The least strict upper bound of AS, lubΓ(AS), is obtained from
AS by replacing its leftmost innermost variable by the corresponding bound in Γ. In our
example, lubΓ(X(ZW )) is (ΛY :K.Y )(Z W ). Consequently, lubΓ(AS) may be other than a
normal form. That is the reason we normalize it. The strength of the conversion rule that is
not captured by reflexivity is hidden in this normalization step. Since AS is a well kinded
type, by the free variables lemma (lemma 4.3), FTV(AS) ⊆ dom(Γ). Therefore, lubΓ(AS)
is defined. By lemma 8.1(1), lubΓ(AS) is well-kinded, and since well-kinded types are
strongly normalizing, its normal form exists. The rules S-Meet-LB and S-Meet-G are
replaced by NS-∃, NS-∀, and NS-∀∃. Except for the restriction of types being in normal
form NS-Arrow, NS-All, and NS-OAbs have the same form as S-Arrow, S-All, and
S-OAbs respectively.

7 Structural properties of NFω
∧

This section establishes a number of structural properties of NFω
∧ . The proofs of lemmas

7.1 and 7.2 are similar to those of the corresponding properties for F ω
∧ .

Lemma 7.1 If Γ `n S ≤ T and Γ1 is a prefix of Γ, then Γ1 ` ok as a subderivation.
Moreover, the subderivation is strictly shorter.
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Lemma 7.2 (Weakening/Permutation) Let Γ and Γ′ be contexts such that Γ ⊆ Γ′ and
Γ′ ` ok. Then Γ `n S ≤ T implies Γ′ `n S ≤ T .

We present rewriting rules on derivations to simplify instances of NS-Refl and NS-

Trans. We give a terminating strategy to transform a given derivation into a deriva-
tion with occurrences of NS-Refl only applied to type variables or type applications and
without occurrences of NS-Trans. To improve readability we omit kinding judgements in
the transitivity elimination rules which appear as hypothesis in the redex or in a proper
subderivation of the missing ones, as we proved in generation for kinding (proposition 4.8).
The derivations of the kinding judgements of each reduct of the reflexivity rules are proper
subderivations of the kinding judgements in its redex.

Definition 7.3 (Reflexivity simplification rules)

1.
Γ ` S→A : ?

NS-Refl

Γ `n S→A ≤ S→A

⇒R

Γ ` S : ?
NS-Refl

Γ `n S ≤ S

Γ ` A : ?
NS-Refl

Γ `n A ≤ A
NS-Arrow

Γ `n S→A ≤ S→A

2.
Γ ` ∀X≤S:K.A : ?

NS-Refl

Γ `n ∀X≤S:K.A ≤ ∀X≤S:K.A

⇒R

Γ, X≤S:K ` A : ?
NS-Refl

Γ, X≤S:K `n A ≤ A
NS-All

Γ `n ∀X≤S:K.A ≤ ∀X≤S:K.A

3.
Γ ` ΛX :K.A : K→K ′

NS-Refl

Γ `n ΛX :K.A ≤ ΛX :K.A

⇒R

Γ, X :K ` A : K ′
NS-Refl

Γ, X :K `n A ≤ A
NS-OAbs

Γ `n ΛX :K.A ≤ ΛX :K.A

4.
Γ ` ∧K [A1..An] : K

NS-Refl

Γ `n
∧K [A1..An] ≤ ∧K [A1..An]

⇒R

Γ ` Ai : K
NS-Refl

Γ `n Ai ≤ Ai ∀i ∈ {1..n}
NS-∀∃

Γ `n
∧K [A1..An] ≤

∧K [A1..An]



7 STRUCTURAL PROPERTIES OF NFω
∧ 25

Definition 7.4 (Transitivity elimination rules)

1.

Γ ` S : K
NS-Refl

Γ `n S ≤ S Γ `n S ≤ T
NS-Trans

Γ `n S ≤ T

⇒T Γ `n S ≤ T

2. Γ `n S ≤ T

Γ ` T : K
NS-Refl

Γ `n T ≤ T
NS-Trans

Γ `n S ≤ T

⇒T Γ `n S ≤ T

3.

Γ `n Γ(X) ≤ A
NS-TVar

Γ `n X ≤ A Γ `n A ≤ B
NS-Trans

Γ `n X ≤ B

⇒T

Γ `n Γ(X) ≤ A Γ `n A ≤ B
NS-Trans

Γ `n Γ(X) ≤ B
NS-TVar

Γ `n X ≤ B

4.

Γ `n T ≤ S Γ `n A ≤ B
NS-Arrow

Γ `n S→A ≤ T→B

Γ `n U ≤ T Γ `n B ≤ C
NS-Arrow

Γ `n T→B ≤ U→C
NS-Trans

Γ `n S→A ≤ U→C

⇒T

Γ `n U ≤ T Γ `n T ≤ S
NS-Trans

Γ `n U ≤ S

Γ `n A ≤ B Γ `n B ≤ C
NS-Trans

Γ `n A ≤ C
NS-Arrow

Γ `n S→A ≤ U→C

5.

Γ, X≤S:K `n A ≤ B
NS-All

Γ `n ∀X≤S:K.A ≤ ∀X≤S:K.B

Γ, X≤S:K `n B ≤ C
NS-All

Γ `n ∀X≤S:K.B ≤ ∀X≤S:K.C
NS-Trans

Γ `n ∀X≤S:K.A ≤ ∀X≤S:K.C

⇒T

Γ, X≤S:K `n A ≤ B Γ, X≤S:K `n B ≤ C
NS-Trans

Γ, X≤S:K `n A ≤ C
NS-All

Γ `n ∀X≤S:K.A ≤ ∀X≤U :K.C

6.

Γ, X :K `n A ≤ B
NS-OAbs

Γ `n ΛX :K.A ≤ ΛX :K.B

Γ, X :K `n B ≤ C
NS-OAbs

Γ `n ΛX :K.B ≤ ΛX :K.C
NS-Trans

Γ `n ΛX :K.A ≤ ΛX :K.C
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⇒T

Γ, X :K `n A ≤ B Γ, X :K `n B ≤ C
NS-Trans

Γ, X :K `n A ≤ C
NS-OAbs

Γ `n ΛX :K.A ≤ ΛX :K.C

7.

Γ `n lubΓ(AS)nf ≤ B
NS-OApp

Γ `n AS ≤ B Γ `n B ≤ C
NS-Trans

Γ `n AS ≤ C

⇒T

Γ `n (lubΓ(AS))nf ≤ B Γ `n B ≤ C
NS-Trans

Γ `n lubΓ(AS))nf ≤ C
NS-OApp

Γ `n AS ≤ C

8.

∀i ∈ {1..n} Γ `n A ≤ Ai
NS-∀

Γ `n A ≤
∧K [A1..An]

∃j ∈ {1..n} Γ `n Aj ≤ B
NS-∃

Γ `n
∧K [A1..An] ≤ B

NS-Trans

Γ `n A ≤ B

⇒T

∃j ∈ {1..n} Γ `n A ≤ Aj Γ `n Aj ≤ B
NS-Trans

Γ `n A ≤ B

9. Γ `n A ≤ B

∀i ∈ {1..n} Γ `n B ≤ Ai
NS-∀

Γ `n B ≤
∧K [A1..An]

NS-Trans

Γ `n A ≤
∧K [A1..An]

⇒T

∀i ∈ {1..n} Γ `n A ≤ B Γ `n B ≤ Ai
NS-Trans

∀i ∈ {1..n} Γ `n A ≤ Ai
NS-∀

Γ `n A ≤
∧K [A1..An]

10.

∃j ∈ {1..n} Γ `n Aj ≤ B
NS-∃

Γ `n
∧K [A1..An] ≤ B Γ `n B ≤ A

NS-Trans

Γ `n
∧K [A1..An] ≤ A

⇒T

∃j ∈ {1..n} Γ `n Aj ≤ B Γ `n B ≤ A
NS-Trans

∃j ∈ {1..n} Γ `n Aj ≤ A
NS-∃

Γ `n
∧K [A1..An] ≤ A
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11.

∃j ∈ {1..m} Γ `n Aj ≤ A
NS-∃

Γ `n
∧K [A1..Am] ≤ A

∀i ∈ {1..n} Γ `n A ≤ Bi
NS-∀

Γ `n A ≤
∧K [B1..Bn]

NS-Trans

Γ `n
∧K [A1..Am] ≤ ∧K [B1..Bn]

⇒T

∃j ∈ {1..m} Γ `n Aj ≤ A ∀i ∈ {1..n} Γ `n A ≤ Bi
NS-Trans

∀i ∈ {1..n} ∃j ∈ {1..m} Γ `n Aj ≤ Bi
NS-∀∃

Γ `n
∧K [A1..Am] ≤ ∧K [B1..Bn]

12.

∀i ∈ {1..n} ∃j ∈ {1..m} Γ `n Aj ≤ Bi
Γ `n

∧K [A1..Am] ≤ ∧K [B1..Bn]

∀k ∈ {1..r} ∃i ∈ {1..n} Γ `n Bi ≤ Ck
NS-∀∃

Γ `n
∧K [B1..Bn] ≤ ∧K [C1..Cr]

NS-Trans

Γ `n
∧K [A1..Am] ≤

∧K [C1..Cr ]

⇒T

∀k ∈ {1..r} ∃i ∈ {1..n} ∃j ∈ {1..m} Γ `n Aj ≤ Bi Γ `n Bi ≤ Ck
NS-Trans

∀k ∈ {1..r} ∃j ∈ {1..m}Γ `n Aj ≤ Ck
NS-∀∃

Γ `n
∧K [A1..Am] ≤ ∧K [C1..Cr]

13.

∀i ∈ {1..n} ∃j ∈ {1..m} Γ `n Aj ≤ Bi
NS-∀∃

Γ `n
∧K [A1..Am] ≤ ∧K [B1..Bn]

∃i ∈ {1..n} Γ `n Bi ≤ C
NS-∃

Γ `n
∧K [B1..Bn] ≤ C

NS-Trans

Γ `n
∧K [A1..Am] ≤ C

⇒T

∃j ∈ {1..m} ∃i ∈ {1..n} Γ `n Aj ≤ Bi Γ `n Bi ≤ C
NS-Trans

∃j ∈ {1..m}Γ `n Aj ≤ C
NS-∃

Γ `n
∧K [A1..Am] ≤ C

14.

∀i ∈ {1..n} Γ `n A ≤ Bi
NS-∀

Γ `n A ≤
∧K [B1..Bn]

∀k ∈ {1..r} ∃i ∈ {1..n} Γ `n Bi ≤ Ck
NS-∀∃

Γ `n
∧K [B1..Bn] ≤ ∧K [C1..Cr ]

NS-Trans

Γ `n A ≤
∧K [C1..Cr]

⇒T

∀k ∈ {1..r} ∃i ∈ {1..n} Γ `n A ≤ Bi Γ `n Bi ≤ Ck
NS-Trans

∀k ∈ {1..r} Γ `n A ≤ Ck
NS-∀

Γ `n A ≤
∧K [C1..Cr]

A derivation of a subtyping statement is in refl-normal form if it has no reflexivity re-
dexes and it is in trans-normal form if it has no transitivity redexes, and it is in normal form
if it has neither reflexivity nor transitivity redexes. The elimination of NS-Trans, and the
simplification of NS-Refl follow a standard cut-elimination argument.

Lemma 7.5 (Reflexivity simplification) Let D be a derivation of a subtyping statement
with only one application of NS-Refl. Then D has a refl-normal form.
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Proof: Same argument as in lemma 7.6. 2

Lemma 7.6 (Transitivity elimination) Let D be a derivation of a subtyping statement
with only one application of NS-Trans. Then D has a trans-normal form.

Proof: By induction on the size of D following a case analysis of the last rule of D. If the
last rule is not NS-Trans, then the result follows by the induction hypothesis. Otherwise we
consider all possible last rules of the derivations of the premises and note that each possible
configuration determines a trans-redex. Finally, observe that each reduction yields either
a derivation in normal form or shorter derivations with only one occurrence of NS-Trans

in which case the result follows by the induction hypothesis. 2

An immediate corollary of this last result is that transitivity elimination terminates.
Given a derivation D of Γ `n S ≤ T , iterate the previous lemma on all subderivations of
D that have only one NS-Trans application. The number of times the lemma is applied
is equal to the number of occurrences of NS-Trans in D. Furthermore, lemma 7.5 implies
that reflexivity simplification terminates. The simplification rules are such that transitivity
simplification rules do not create new reflexivity redexes. Therefore, we can reduce all
instances of NS-Refl first and then all instances of NS-Trans, which is a terminating
procedure to normalize a derivation. Consequently, we have proved the following corollary.

Corollary 7.7 (Existence of normal derivations) Given a derivation of Γ `n S ≤ T .
Then there exists a derivation in normal form of Γ `n S ≤ T .

Lemma 7.8

1. A derivation in normal form whose last rule is NS-Refl is either a proof of Γ `n X ≤
X or Γ `n AT ≤ AT .

2. If the last rule of a subtyping derivation D is NS-Trans, then D is not in normal
form.

Proof:

1. According to the reflexivity elimination rules, any other possible NS-Refl application
is a redex.

2. By case analysis of the last rules of the premises of the last rule of D. In each case
the result follows either by the induction hypothesis or because the last rule of at
least one of the derivations of the premises of D constitutes a redex. 2

We can summarize the previous results as follows.

Corollary 7.9 If Γ `n S ≤ T , then there exists a proof of the same judgement with
no applications of NS-Trans and in which NS-Refl is only applied to type variables and
type applications.
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A consequence of the normalization of proofs is the following generation result.

Proposition 7.10 (Generation for normal subtyping)

1. Γ `n X ≤ B implies X ≡ B and Γ ` X : K for some K, or Γ `n Γ(X) ≤ B.

2. Γ `n S→A ≤ B implies B ≡ T→C, Γ `n T ≤ S, Γ `n A ≤ C, and Γ ` S→A : ?.

3. Γ `n ∀X≤S:K.A ≤ B implies B ≡ ∀X≤S:K.C, Γ, X≤S:K `n A ≤ C, and Γ `
∀X≤S:K.A : ?.

4. Γ `n ΛX:K.A ≤ B implies B ≡ ΛX:K.C and Γ, X≤>K :K `n A ≤ C.

5. Γ `n AS ≤ B implies B ≡ AS, or Γ `n (lubΓ(AS))nf ≤ B, and Γ ` AS : K.

6. Γ `n
∧K [A1..Am] ≤ B implies that there exists j ∈ {1..m} such that Γ `n Aj ≤ B

and ∀k ∈ {1..m}Γ ` Ak : K.

7. Γ `n A ≤
∧K [B1..Bn] implies that for each i ∈ {1..n} Γ `n A ≤ Bi and Γ ` A : K.

8. Γ `n
∧K [A1..Am] ≤ ∧K [B1..Bn] implies that for each i ∈ {1..n} there exists j ∈

{1..m} such that Γ `n Aj ≤ Bi and ∀k ∈ {1..m}Γ ` Ak : K.

Moreover, given a normal proof of any of the antecedents, the proofs of the consequents
are proper subderivations.

Proof: In each case, given a proof of the antecedent, there is also a proof in normal
form. Due to lemma 7.8(2), such a derivation cannot end with an application of NS-

Trans, and, because of lemma 7.8(1), if it ends with NS-Refl, then it is a derivation
of a subtyping statement between type variables or type applications. Finally, the result
follows by inspection of the other rules. 2

Lemma 7.11

1. Γ `n T ≤
∧K [A1..An] if and only if Γ `n T ≤ Ak for each k ∈ {1..n} .

2. Γ `n T ≤
∧K [A1..An] if and only if Γ `n T ≤

∧K [Ak] for each k ∈ {1..n} .

3. Let Γ ` ∧K [A1..An] : K. Then Γ `n
∧K [A1..An] ≤ T if and only if Γ `n Ak ≤ T for

some k ∈ {1..n} .

Proof: By induction on derivations, using lemma 7.7 and generation. 2
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8 Equivalence of ordinary and normal subtyping

In this section, we show that a subtyping statement is derivable in F ω
∧ if and only if the

corresponding normalized statement is derivable in NFω
∧ . This equivalence is proved in

theorem 8.9. As usual, we need some auxiliary properties and definitions, among which we
can highlight propositions 8.2 (Soundness) and 8.8 (Completeness).

Lemma 8.1 Let lubΓ(S) be defined. Then

1. Γ ` S : K implies Γ ` lubΓ(S) : K.

2. Γ ` S ≤ lubΓ(S).

Proof: Item 1 follows by induction on derivations, while item 2 follows by induction on
the structure of S. 2

Proposition 8.2 (Soundness) If Γ `n S ≤ T , then Γ ` S ≤ T.

Proof: By induction on the derivation of Γ `n S ≤ T . We consider here a few illustrative
cases.

NS-TVar By the induction hypothesis, S-TVar and S-trans.

NS-OApp By the induction hypothesis, lemma 8.1(2), S-Conv and S-Trans.

NS-∀∃ We are given that for each k in {1..n} Γ ` Ak : K, and for each i in {1..m} there
is a j in {1..n} such that Γ `n Aj ≤ Bi. By K-Meet, Γ ` ∧K [A1..An] : K, and,
by S-Meet-LB, Γ ` ∧K [A1..An] ≤ Ak for each k. Hence the result follows by the
induction hypothesis, S-Trans and S-Meet-G. 2

Note that the cases for type variable and type application reveal the fact that NS-TVar

and NS-OApp hide steps of transitivity.
The following lemma says that empty intersections, >K , are maximal elements of the

subtyping order.

Lemma 8.3

1. Γ ` T : K implies Γ `n T ≤ >K .

2. Γ ` T : K implies Γ ` T ≤ >K .

Proof: Statement 1 follows by the cases m = 0 in NS-∀ and NS-∀∃. Statement 2 is the
case n = 0 in S-Meet-G. 2

Lemma 8.4

1. Γ ` ok implies Γnf ` ok.
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2. Γ ` T : K implies Γnf ` T : K.

3. Γ ` S ≤ T implies Γnf ` S ≤ T .

4. Let Γ1, Γ2 ` ok. Then Γnf
1 , Γ2 ` T : K implies Γ1, Γ2 ` T : K.

5. Let Γ1, Γ2 ` ok. Then Γnf
1 , Γ2 ` S ≤ T implies Γ1, Γ2 ` S ≤ T .

6. Let Γ ` S, T : K. Then Γnf ` Snf ≤ T nf if and only if Γ ` S ≤ T .

Proof: Statements 1 and 2 follow by simultaneous induction on the size of derivations
using lemma 4.16. Statement 3 follows by induction on the derivation of Γ ` S ≤ T using
part 1, part 2, and lemma 4.16. Statement 4 follows by induction on the derivation of
Γnf

1 , Γ2 ` T : K. Item 5 follows by induction on the derivation of Γnf
1 , Γ2 ` S ≤ T , using

part 4. Item 6 is a corollary of part 3, part 5 and lemma 4.15. 2

In the last lemma, items 1, 2, and 3 show that well formation of contexts, kinding
judgements, and subtyping judgements are invariant under normalization of contexts, while
items 4 and 5 are the converse of 2 and 3 respectively.

The following lemma states that S-TVar is an admissible rule in NFω
∧ .

Lemma 8.5 Let Γ be a context in normal form such that Γ ` ok and Y ∈ dom(Γ). Then
Γ `n Y ≤ Γ(Y ).

Proof: Let Γ ≡ Γ1, Y ≤ T :K, Γ2. By lemma 4.2, Γ1 ` T : K. If T is not an intersection,
then, by NS-Refl and NS-TVar, we have Γ `n Y ≤ T . If T ≡ ∧K′ [B1..Bm], then by
generation for kinding and uniqueness of kinds, Γ ` Bi : K for each i and K ≡ K ′. By NS-

Refl, Γ `n Bi ≤ Bi for each i. Then, by NS-∃ and NS-TVar, it follows that Γ `n Y ≤ Bi

for each i, and, by NS-∀, Γ `n Y ≤ T . 2

The following lemma shows that the normal subtyping system has the substitution
property.

Lemma 8.6 (Substitution) If Γ ` U : K and Γ, X:K, Γ′ `n S ≤ T , then Γ, (Γ′[X←U ])nf

`n (S[X←U ])nf ≤ (T [X←U ])nf.

Proof: By induction on the derivation of Γ, X:K, Γ′ `n S ≤ T . For the sake of clarity,
we sometimes leave out kinding judgements and their justifications which follow easily from
the structural properties in section 4. We show here a couple of representative cases. Let
Γ′′ ≡ Γ, X:K, Γ′.

NS-TVar We are given Γ′′ `n Γ′′(Y ) ≤ A. We have to consider three cases.

1. Y ≡ X. By subject reduction, Γ ` Unf : K, and by lemma 8.3(1), it follows
that Γ `n Unf ≤ >K . By weakening, it follows that Γ, (Γ′[X←U ])nf `n Unf ≤
>K and, by the induction hypothesis, it follows that Γ, (Γ′[X←U ])nf `n >K ≤
(A[X←U ])nf. Finally, the result follows by NS-Trans.
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2. Y ∈ dom(Γ). By the free variables lemma, X 6∈ FV(Γ(Y )) and X 6≡ Y . By
lemmas 4.10, 8.4(1), and 8.5, it follows that Γ, (Γ′[X←U ])nf `n Y ≤ Γ(Y ),
and, by the induction hypothesis, it follows that Γ, (Γ′[X←U ])nf `n Γ(Y ) ≤
(A[X←U ])nf. Finally, the result follows by NS-Trans.

3. Y ∈ dom(Γ′). By the induction hypothesis, it follows that

Γ, (Γ′[X←U ])nf `n (Γ′(Y )[X←U ])nf ≤ (A[X←U ])nf.

By lemmas 4.10, 8.4(1), and 8.5, Γ, (Γ′[X←U ])nf `n Y ≤ (Γ, (Γ′[X←U ])nf)(Y ).
Furthermore, (Γ, (Γ′[X←U ])nf)(Y ) = (Γ′(Y )[X←U ])nf. Hence the result follows
by NS-Trans.

NS-Arrow We are given that Γ′′ `n T ≤ S and Γ′′ `n A ≤ B. By the induction
hypothesis, Γ, (Γ′[X←U ])nf `n (T [X←U ])nf ≤ (S[X←U ])nf and Γ, (Γ′[X←U ])nf `n
(A[X←U ])nf ≤ (B[X←U ])nf. There are four cases to consider, since (A[X←U ])nf and
(B[X←U ])nf may be intersections or not. We shall consider only two of them to
illustrate the proof method.

1. (A[X←U ])nf and (B[X←U ])nf are not intersections. Then the result follows by
applying NS-Arrow.

2. (A[X←U ])nf =
∧?[C1..Cn] and (B[X←U ])nf is not an intersection. Then we have

that
((T→B)[X←U ])nf = (T [X←U ])nf→(B[X←U ])nf and
((S→A)[X←U ])nf

=
∧?[(S[X←U ])nf→C1..(S[X←U ])nf→Cn].

By lemma 7.10, it follows that for some i Γ, (Γ′[X←U ])nf `n Ci ≤ (B[X←U ])nf.
Applying NS-Arrow,
Γ, (Γ′[X←U ])nf `n (S[X←U ])nf→Ci ≤ (T [X←U ])nf→(B[X←U ])nf. Finally, the
result follows by NS-∃. 2

This substitution lemma is the key result we use in proving that S-OApp has a correspond-
ing admissible rule in NFω

∧ .

Lemma 8.7 Γ ` S U : K. Then Γ `n S ≤ T implies Γ `n (S U)nf ≤ (T U)nf.

Proof: By induction on the derivation of Γ `n S ≤ T , assuming a derivation in normal
form. The cases for NS-Arrow and NS-All are impossible because of the assumption
Γ ` S U : K. We show here the interesting cases.

NS-TVar We are given Γ `n Γ(X) ≤ A. By the induction hypothesis, Γ `n (Γ(X)U)nf ≤
(AU)nf. We have to consider two cases.

(AU)nf ≡ B By NS-OApp.
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(AU)nf ≡ ∧K [A1..An] By lemma 7.11, Γ `n (Γ(X)U)nf ≤ Ak for each k in {1..n} . By
NS-OApp, Γ `n X U ≤ (Ak) for each k, which, by NS-∀, implies Γ `n X U ≤
(AU)nf.

NS-OAbs We are given Γ, X:K `n A ≤ B. By the substitution lemma 8.6, it fol-
lows that Γ `n (A[X←U ])nf ≤ (B[X←U ])nf. On the other hand, we have that
(ΛX:K.A)U →β∧ A[X←U ] and (ΛX:K.B)U →β∧ B[X←U ]. Finally, the result fol-
lows by the uniqueness of normal forms. 2

Proposition 8.8 (Completeness) If Γ ` S ≤ T , then Γnf `n Snf ≤ T nf.

Proof: By induction on the derivation of Γ ` S ≤ T , using lemma 8.7 for the case of
S-OApp. 2

Theorem 8.9 (Equivalence of ordinary and normal subtyping) Let Γ ` S : K and Γ `
T : K. Then Γ ` S ≤ T if and only if Γnf `n Snf ≤ T nf.

Proof: ⇒) By completeness (8.8). ⇐) By soundness (8.2), it follows that Γnf ` Snf ≤ T nf,
and, by lemma 8.4(6), it follows that Γ ` S ≤ T . 2

8.1 Least strict upper bound

So far we only used that lubΓ(S) is an upper bound of S in the context Γ (See lemma
8.1(2)). We can now give the final motivation of the name we chose, showing that if
lubΓ(S) is defined and T 6=β∧ S, then Γ ` S ≤ T implies Γ ` lubΓ(S) ≤ T . We first show
that the corresponding property holds for the normalized system.

Lemma 8.1.1 Let lubΓ(S) be defined. Then

1. If S �β∧ S ′ and Γ�β∧ Γ′, then lubΓ(S)�β∧ lubΓ′(S ′).

2. If Γ `n S ≤ T , then Γ `n lubΓ(S)nf ≤ T or S ≡ T .

Proof:

1. By induction on the structure of S, observing that if lubΓ(S) is defined, so is lubΓ′(S ′).

2. By induction on the derivation of Γ `n S ≤ T . It is immediate for the case NS-Refl;
for NS-Arrow, NS-All, and NS-OAbs lubΓ(S) is not defined; for the other rules the
result follows using the induction hypothesis. 2

Corollary 8.1.2 Let lubΓ(S) be defined. Then Γ ` S ≤ T and T 6=β∧ S implies
Γ ` lubΓ(S) ≤ T .

Proof: By completeness, it follows that Γnf `n Snf ≤ T nf. By lemma 8.1.1(2), Γnf `n
(lubΓnf(Snf))nf ≤ T nf, because Snf 6≡ T nf. By soundness, it follows that Γnf ` (lubΓnf(Snf))nf ≤
T nf, which is equivalent to Γ ` lubΓnf(Snf) ≤ T by lemma 8.4(6). Finally, (using lemmas
8.1(1) and 4.11, and proposition 4.18 to get the corresponding kinding judgements) it
follows that Γ ` lubΓ(S) ≤ T by lemma 8.1.1(1), S-Conv and S-Trans. 2
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8.2 Example

In this section, we give the derivation in NFω
∧ of the example 1 mentioned in the introduc-

tion and in section 6.1.
Let Γ ≡ W :K, X ≤ ΛY :K.Y :K→K, Z ≤ X:K→K. We present a proof in the

normal system of Γnf `n X(Z W )nf ≤ W nf , Which is the translation of Γ ` X(Z W ) ≤
W. Observe that Γnf ≡ Γ, (X(Z W ))nf ≡ X(ZW ), and W nf ≡ W. For the sake of
readability we omit kinding judgements. Observe that the derivation in normal form in
NFω
∧ is substantially shorter than the one in F ω

∧ shown in section 6.1.

Γ `W : K
NS-Refl

Γ `n ((ΛY :K.Y )W )nf ≤W
NS-OApp

Γ `n XW ≤W
NS-OApp

Γ `n ((ΛY :K.Y )(ZW ))nf ≤W
NS-OApp

Γ `n X(ZW ) ≤W

9 A subtype checking algorithm, AlgFω
∧

As it stands, NFω
∧ as defined in section 6.1 is not a deterministic algorithm, because its rules

are not syntax directed. Fortunately, we are not far away from an algorithmic presentation.
In fact, corollary 7.9 is the bridge to the algorithmic presentation of the subtyping relation,
AlgF ω

∧ , which states that transitivity steps can be eliminated and reflexivity steps can be
simplified. AlgF ω

∧ is obtained from NFω
∧ by removing NS-Trans and restricting NS-Refl

to type variables and type applications.
The new reflexivity rules are:

Γ ` X : K
Γ `Alg X ≤ X

(AlgS-TVarRefl)

Γ ` T S : K
Γ `Alg T S ≤ T S

(AlgS-OAppRefl)

Lemma 9.1 (Equivalence of normal and algorithmic subtyping)

Let Γ ` S, T : K. Then Γ `n S ≤ T if and only if Γ `Alg S ≤ T.

Proof: (⇒) By corollary 7.9. (⇐) Immediate. 2

We have thereby proved that AlgF ω
∧ is indeed a sound and complete algorithm to

compute F ω
∧ ’s subtyping relation.

Proposition 9.2 (Equivalence of ordinary and algorithmic subtyping)

Let Γ ` S : K and Γ ` T : K. Then Γ ` S ≤ T if and only if Γnf `Alg Snf ≤ T nf.

Proof: By the equivalence of ordinary and normal subtyping (theorem 8.9) and the
equivalence of normal and algorithmic subtyping (lemma 9.1). 2
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10 Type checking and type reconstruction

Given a context Γ, a term e, and a type T , type checking consists of analyzing whether
the judgement Γ ` e : T is derivable from a given set of inference rules. Type checking
algorithms for lambda calculi, unless they are formulated using Gentzen’s sequent calculus
style, involve guessing the type of subterms. For example, when e is e1 e2, the type of e2 is
not necessarily a subexpression of T , and in order to corroborate or to refute the assertion
Γ ` e : T we need to infer a type for e2.

In this section, we present an algorithm for inferring minimal types in F ω
∧ . Given Γ and

e, the type S constructed by the algorithm is a subtype of every T such that Γ ` e : T . In
this way, we reduce the problem of whether Γ ` e : T to that of inferring a type S such
that Γ ` e : S and Γ ` S ≤ T . Solving this problem involves not only the typing rules but
all the inference rules of F ω

∧ : the rule T-Subsumption depends on a subtyping judgement,
the rule T-Var depends on an ok judgement, and the ok judgements depend on kinding
judgements. Consequently, type checking uses the full power of the F ω

∧ system.
As an example, consider type checking the following judgement:

Γ, X ≤ T1→T2, f :X, a:T1 ` f a : T2.

The application f a can only be formed if f has an arrow type. Using T-Var we can assign
type X to f , which means that in order to obtain an arrow type for f we have to replace
X by its bound, which has the right form. Observe how this replacement is performed by
T-Subsumption in the following derivation.

Γ, X ≤ T1→T2, f :X, a:T1 ` ok

Γ, X ≤ T1→T2, f :X, a:T1 ` f : X

Γ, X ≤ T1→T2, f :X, a:T1 ` ok

Γ, X ≤ T1→T2, f :X, a:T1 ` X ≤ T1→T2
T-Sub

Γ, X ≤ T1→T2, f :X, a:T1 ` f : T1→T2

Γ, X ≤ T1→T2, f :X, a:T1 ` f : T1→T2

Γ, X ≤ T1→T2, f :X, a:T1 ` ok

Γ, X ≤ T1→T2, f :X, a:T1 ` a : T1
T-App

Γ, X ≤ T1→T2, f :X, a:T1 ` f a : T2

Note that, in the presence of T-Subsumption, we may actually perform the application
when the type of a is a subtype of T1. Namely, if

Γ, X ≤ T1→T2, f :X, a:U1 ` a : U1 Γ, X ≤ T1→T2, f :X, a:U1 ` U1 ≤ T1
T-Sub

Γ, X ≤ T1→T2, f :X, a:U1 ` a : T1

Moreover, we may want to check whether Γ, X ≤ T1→T2, f :X, a:U1 ` f a : U2, where T2

is a subtype of U2.
The situation gets more complicated if f has an intersection type. Suppose that

Γ, X ≤ T1→T2, Y ≤ S1→S2, f :X ∧ Y ∧ ∀Z≤V1:K.V2, a:U1 ` f a : U2,
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where U1 is a subtype of T1 and S1. An algorithm should not consider the type ∀Z≤V1:K.V2

for f since, in this case, f is applied to a term and not to a type. Then it has to replace
X and Y by their bounds, T1→T2 and S1→S2. Moreover, given that the type of a, U1, is
a subtype of both S1 and T1, it should check whether S2 ∧ T2 is a subtype of U2.

Another source of problems in the search for an algorithmic presentation of the typing
rules is that types may not be in normal form. Consider the judgement

Γ, X ≤ T1→T2, Z ≤ ΛY : ? .Y , f :Z X, a:T1 ` f a : T2, (2)

In order to type the application, f should be assigned type T1→T2. To do that, Z should
be replaced by its bound in Z X. This replacement produces a type which is not in normal
form, so ΛY : ? .Y X has to be normalized to obtain X. Finally, X is replaced by its bound
and then the application can be typed.

The main new source of difficulty is the interaction between the need for normalization
and the presence of intersection types.

An algorithm to infer types should proceed structurally on the form of the term whose
type is to be inferred. This requires us to remove the rules which make our typing rules
non-deterministic: we should eliminate T-Subsumption and T-Meet from the original
presentation, and modify the other rules in such a way that we can still type the same set
of terms.

We give some preliminary definitions and results before presenting the rules of our new
system:

• We define the mapping flub, which performs the “replacements” which we motivated
with the previous examples.

• We define the function arrows, to filter arrow types in order to deal with term ap-
plication.

• We define the function alls to filter polymorphic types to deal with type application.

The function lub (definition 6.1.3) is a partial function which is only defined for type
variables and type applications. Here, we extend the definition of lub to intersection types
in such a way that it is defined if the least upper bound is defined for at least one of the
types in the intersection.

Definition 10.1 (Homomorphic extension of lub to intersections, lub∗)

lub∗Γ(X) = Γ(X),
lub∗Γ(S T ) = lub∗Γ(S)T,

lub∗Γ(
∧K [T1..Tn]) =

∧K [T ′1..T ′n], if ∃i ∈ {1..n} such that lub∗Γ(Ti)↓,

where T ′i is lub∗Γ(Ti), if lub∗Γ(Ti)↓, and Ti otherwise, and T↓ means T is defined.

Lemma 10.2 If lub∗Γ(T ) is defined, then Γ ` T ≤ lub∗Γ(T ).
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Proof: By induction on the complexity of T , using corollary 4.14. 2

We define the mapping flub which given a type T (and a context Γ) finds the smallest
type larger than T (with respect to the subtype relation) having structural information to
perform an application.

Definition 10.3 (Functional Least Upper Bound) The functional least upper bound of
a type T , in a context Γ, flubΓ(T ) is defined as follows.

flubΓ(T ) =
{

flubΓ(lub∗Γ(T nf)), if lub∗Γ(T nf)↓;
T nf, otherwise.1

The intuition behind the definition of the function flub is to find T1→T2 starting form ZX
in the example 2 above. In other words, flubΓ(Z X) = T1→T2. For simplicity we assume
T1→T2 in normal form. Step by step,

flubΓ(Z X) = flubΓ(lub∗Γ(Z X))
= flubΓ((ΛY :K.Y )X)
= flubΓ(lub∗Γ(((ΛY :K.Y )X)nf))
= flubΓ(lub∗Γ(X))
= flubΓ(T1→T2)
= T1→T2.

More generally, flub climbs the subtyping hierarchy until it finds an arrow, a quantifier,
or an intersection of these two.

Lemma 10.4 Let Γ ` S, T : ? and S =β∧ T . Then flubΓ(S) ≡ flubΓ(T ).

Definition 10.5 (arrows and alls )

1. arrows (T1→T2) = {T1→T2},
arrows (

∧?[T1..Tn]) = ∪i∈{1..n} arrows (Ti),
arrows (T ) = ∅, if T 6≡ T1→T2 and T 6≡ ∧?[T1..Tn].

2. alls (∀X≤T1:K.T2) = {∀X≤T1:K.T2},
alls (

∧?[T1..Tn]) = ∪i∈{1..n} alls (Ti),
alls (T ) = ∅, if T 6≡ ∀X≤T1:K.T2 and T 6≡ ∧?[T1..Tn].

1This step can be optimised in an implementation of the type checking algorithm, allowing us to avoid
the normalization of T when T is either an arrow type or a quantified type.
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The situation here is significantly more complex than in [34] for F∧, an extension of the
second order λ-calculus. There it is enough to recursively search for arrows or polymorphic
types in the context, because in F∧ there is no reduction on types. The information to be
searched for is explicit in the context, so the job done here by flub is simply an extra case
in the definition of arrows and alls . Namely,

arrows (X) = arrows (Γ(X)) and
alls (X) = alls (Γ(X)).

Moreover, to prove that flub is well-founded is similar for us in complexity to proving
termination of subtype checking. The similarity comes from the fact that computing flub
involves replacing variables by their bounds in a given context and normalizing with respect
to →β∧. A proof of the well-foundation of flub can be found in [19]. In contrast, in [34] it
is enough to observe that well-formed contexts cannot contain cycles of variable references.

Notation 10.6 We introduce a new notation for intersection types. The intersection of
all types T such that φ(T ) holds is written

∧K [T |φ(T )]. Note that this is an alternative
notation to

∧K [T1..Tn] such that φ(Ti) holds if and only if i ∈ {1..n} .

We can now define a type inference algorithm for F ω
∧ .

Definition 10.7 (A type inference algorithm, inf)

Γ1, x:T , Γ2 ` ok
Γ1, x:T , Γ2 `inf x : T

(AT-Var)

Γ, x:T1 `inf e : T2

Γ `inf λx:T1.e : T1→T2
(AT-Abs)

Γ `inf f : T Γ `inf a : S
Γ `inf f a :

∧?[Ti |Si→Ti ∈ arrows (flubΓ(T )) and Γ ` S ≤ Si]
(AT-App)

Γ, X≤T1:K1 `inf e : T2

Γ `inf λX≤T1:K1.e : ∀X≤T1:K1.T2
(AT-TAbs)

Γ `inf f : T
Γ `inf f S :

∧?[Ti[X←S] | ∀X≤Si:K.Ti ∈ alls (flubΓ(T )) and Γ ` S ≤ Si]
(AT-TApp)

for all i ∈ {1..n} Γ `inf e[X←Si] ∈ Ti
Γ `inf for(X∈S1..Sn)e :

∧?[T1..Tn]
(AT-For)

The algorithmic information of rule AT-App is that in order to find a type for f a in
Γ, we need to infer a type S for a and a type T for f , and to take the intersection of all
the T ′is such that Ti→Si ∈ arrows (flubΓ(T )) and Γ ` S ≤ Si.
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11 Minimal typing

In this section we show that F ω
∧ satisfies the minimal typing property (theorem 11.11).

We first prove that the algorithm inf is sound with respect to F ω
∧ : if Γ `inf e : T , then

Γ ` e : T (proposition 11.4). We then prove that every closed term is typeable using either
set of typing rules (lemma 11.8). Finally, we prove that inf computes minimal types for
F ω
∧ terms (proposition 11.10).

Lemma 11.1 Let Γ ` T : ?. Then Γ ` T ≤ flubΓ(T ).

Proof: Since flub is well-founded, we can proceed by induction on the number of unfolding
steps in flubΓ(T ). If flubΓ(T ) = T nf, the result follows by S-Conv. Otherwise, flubΓ(T ) =
flubΓ(lub∗Γ(T nf)). By S-Conv, Γ ` T ≤ T nf. By lemma 10.2, Γ ` T nf ≤ lub∗Γ(T nf). By the
induction hypothesis, Γ ` lub∗Γ(T nf) ≤ flubΓ(lub∗Γ(T nf)). Finally, by S-Trans, the result
follows. 2

Lemma 11.2 Let Γ ` T : ?. Then

1. Γ ` T ≤ ∧?[S |S ∈ arrows (flubΓ(T ))].

2. Γ ` T ≤ ∧?[S |S ∈ alls (flubΓ(T ))].

Proof: Item 1: Using lemma 11.1, we reduce our problem to proving that
Γ ` T ≤ ∧?[S |S ∈ arrows (T )],

which follows by induction on the structure of T . Item 2 follows similarly. 2

Lemma 11.3

1. If Γ ` T ≤ T1→T2, then Γ ` ∧?[S |S ∈ arrows (flubΓ(T ))] ≤ T1→T2.

2. If Γ ` T ≤ ∀X≤T1:K.T2, then Γ ` ∧?[S |S ∈ alls (flubΓ(T ))] ≤ ∀X≤T1:K.T2.

Proof: We show only case 1 here, case 2 is similar. By induction on the derivation of
Γ ` T ≤ T1→T2. The last rule of a derivation of this subtyping statement can only be
S-Conv, S-TVar, S-Trans, or S-Meet-LB. The first three cases use similar arguments,
therefore we consider here only the cases for S-Conv and S-Meet-LB.

S-Conv We are given that T =β∧ T1→T2. By lemma 10.4 and the definition of flub, we
have that: arrows (flubΓ(T )) = arrows (flubΓ(T1→T2)) = arrows ((T1→T2)nf)

We now have two cases to analyze.

1. If (T1→T2)nf = T nf
1 →T nf

2 , then the result follows by S-Meet-LB and S-Conv.

2. Otherwise, let (T1→T2)nf =
∧?[T nf

1 →U1..T nf
1 →Un], where T nf

2 =
∧?[U1..Un]. Then,

arrows (flubΓ(T )) = {T nf
1 →U1..T nf

1 →Un}. Consequently,∧?[S |S ∈ arrows (flubΓ(T ))] = (T1→T2)nf, and the result follows by S-Conv.
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S-Meet-LB We are given that Γ ` ∧?[S1..T1→T2..Sn] ≤ T1→T2. By the definition of flub,
flubΓ(

∧?[S1..T1→T2..Sn]) =
∧?[....T nf

1 →A1..T
nf
1 →Am....], where T nf

2 =
∧?[A1..Am]

or T nf
2 = A1. Now, arrows (flubΓ(

∧?[S1..T1→T2..Sn])) ⊇ {T nf
1 →A1..T

nf
1 →Am}. Then, if

T nf
2 =

∧?[A1..Am], by lemma 4.17; and, if T nf
2 = A1, by S-Meet-LB, we have that

Γ ` ∧?[S |S ∈ arrows (flubΓ(
∧?[S1..T1→T2..Sn]))] ≤ (T1→T2)nf.

Finally, the result follows by S-Conv. 2

Proposition 11.4 (Soundness of inf) If Γ `inf e : T , then Γ ` e : T .

Proof: By induction on the derivation of Γ `inf e : T . The interesting cases are when the
last applied rule is either AT-App and AT-TApp.

AT-App Γ `inf f a :
∧?[Ti |Si→Ti ∈ arrows (flubΓ(T )) and Γ ` S ≤ Si] is derived from Γ `inf

f : T Γ `inf a : S. If
∧?[Ti |Si→Ti ∈ arrows (flubΓ(T )) and Γ ` S ≤ Si] =β∧ >?, then

the result follows immediately using T-Meet. Otherwise, by the induction hypo-
thesis, we have that Γ ` f : T . By lemma 11.2(1), S-Meet-LB, S-Trans, and
T-Subsumption, Γ ` f : Si→Ti. By the induction hypothesis and T-Subsumption,
Γ ` a : Si. By T-App, Γ ` f a : Ti. Finally, by T-Meet,

Γ ` f a :
∧?[Ti |Si→Ti ∈ arrows (flubΓ(T )) and Γ ` S ≤ Si].

AT-TApp Γ `inf f S :
∧?[Ti[X←S] | ∀X≤Si:K.Ti ∈ alls (flubΓ(T )) and Γ ` S ≤ Si] is de-

rived from Γ `inf f : T . If
∧?[Ti |Si→Ti ∈ arrows (flubΓ(T )) and Γ ` S ≤ Si] =β∧ >?,

then the result follows immediately, using T-Meet. Otherwise, assume

alls (flubΓ(T )) ≡ ∧?[∀X≤S1:K.T1..∀X≤Sn:K.Tn].

By the induction hypothesis, we have that, Γ ` f : T . By lemma 11.2(2), S-Meet-LB,
S-Trans, and T-Subsumption, it follows that

Γ ` f : ∀X≤Si:K.Ti. Since Γ ` S ≤ Si, by T-App, Γ ` f S : Ti[X←S]. Finally, by
T-Meet, Γ ` f S :

∧?[Ti[X←S] | ∀X≤Si:K.Ti ∈ alls (flubΓ(T )) and Γ ` S ≤ Si]. 2

Lemma 11.5 (Term application)

If Γ ` ∧?[S1→T1..Sn→Tn] ≤ S→T and Γ ` U ≤ S,
then Γ ` ∧?[Tj |Γ ` U ≤ Sj ] ≤ T.

Proof: There are two cases to be considered according to the normal form of S→T . The
case when (S→T )nf ≡ Snf→T nf is similar to but simpler than the one we consider here.
Assume

(S→T )nf ≡ ∧?[Snf→A1..Snf→Am], where T nf ≡ ∧?[A1..Am].
By the equivalence of ordinary and normal subtyping (theorem 8.9),

Γnf `n
∧?[Snf

1 →B1
1 ..S

nf
1 →Bk1

1 ..S
nf
n→B1

n..S
nf
n→Bkn

n ] ≤ ∧?[Snf→A1..S
nf→Am],

where T nf
i =

{
B1
i , if it is not an intersection;∧?[B1

i ..B
ki
i ], otherwise.
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By generation for normal subtyping (proposition 7.10), for each i ∈ {1..m} there exist
j ∈ {1..n} and lj ∈ {i..kj} such that Γnf `n Snf

j →B
lj
j ≤ Snf→Ai. Again, by generation

for normal subtyping (proposition 7.10), for each i ∈ {1..m} there exist j ∈ {1..n} and
lj ∈ {i..kj} such that Γnf `n Snf ≤ Snf

j and Γnf `n B
lj
j ≤ Ai. By NS-Trans and the

equivalence of ordinary and normal subtyping (theorem 8.9), for each i ∈ {1..m} there
exist j ∈ {1..n} and lj ∈ {i..kj} such that Γ ` U ≤ Sj and Γnf `n Blj

j ≤ Ai. By NS-∃, for
each i ∈ {1..m} there exist j ∈ {1..n} such that Γ ` U ≤ Sj and Γnf `n

∧?[B1
j ..B

kj
j ] ≤ Ai.

By the equivalence of ordinary and normal subtyping (theorem 8.9), for each i ∈ {1..m}
there exist j ∈ {1..n} such that Γ ` U ≤ Sj and Γ ` Tj ≤ Ai. By lemma 4.13, S-Conv,
and S-Trans, Γ ` ∧?[Tj |Γ ` U ≤ Sj ] ≤ T. 2

Lemma 11.6 (Substitution for subtyping)

If Γ1 ` S1 ≤ T1 and Γ1, X≤T1:K1, Γ2 ` S2 ≤ T2, then Γ1, Γ2[X←S1] ` S2[X←S1] ≤
T2[X←S1].

Proof: By straightforward induction on the derivation of Γ1, X≤T1:K1, Γ2 ` S2 ≤ T2,
using weakening (corollary 4.6), the type substitution lemma (lemma 4.10), and lemma
3.14. 2

Lemma 11.7 (Type application)

If Γ ` ∧?[∀X≤S1:K1.T1..∀X≤Sn:Kn.Tn] ≤ ∀X≤S:K.T and Γ ` U ≤ S,
then Γ ` ∧?[Tj[X←U ] |Γ ` U ≤ Sj] ≤ T [X←U ].

Proof: There are two cases to be considered according to the normal form of ∀X≤S:K.T .
The case when (∀X≤S:K.T )nf ≡ ∀X≤Snf:K.T nf is similar to but simpler than the one we
consider here. Assume (∀X≤S:K.T )nf ≡ ∧?[∀X≤Snf:K.A1..∀X≤Snf:K.Am]where T nf ≡∧?[A1..Am]. By the equivalence of ordinary and normal subtyping (theorem 8.9),

Γnf `n
∧?[∀X≤Snf

1 :K1.B1
1 ..∀X≤Snf

1 :K1.B
k1
1 ..∀X≤Snf

n :Kn.B1
n..∀X≤Snf

n :Kn.Bkn
n ]

≤ ∧?[∀X≤Snf:K.A1..∀X≤Snf:K.Am],

where T nf
i =

{
B1
i , if it is not an intersection;∧?[B1

i ..B
ki
i ], otherwise.

By generation for normal subtyping (proposition 7.10), for each i ∈ {1..m} there exist
j ∈ {1..n} and lj ∈ {i..kj} such that Γnf `n ∀X≤Snf

j :Kj .B
lj
j ≤ ∀X≤Snf:K.Ai. Again,

by generation for normal subtyping (proposition 7.10), for each i ∈ {1..m} there exist
j ∈ {1..n} and lj ∈ {i..kj} such that K ≡ Kj ,Snf ≡ Snf

j , and Γnf, X≤Snf
j :K `n Blj

j ≤ Ai.
By NS-∀∃, for each i ∈ {1..m} there exist j ∈ {1..n} such that Γnf, X≤Snf

j :K `n T nf
j ≤ Ai.

By the equivalence of ordinary and normal subtyping (theorem 8.9), for each i ∈ {1..m}
there exist j ∈ {1..n} such that Γ, X≤Sj:K ` Tj ≤ Ai. Furthermore, by S-Conv and
S-Trans, Γ ` U ≤ Sj. Then, by the substitution lemma for subtyping (lemma 11.6),
for each i ∈ {1..m} there exist j ∈ {1..n} such that Γ ` Tj[X←U ] ≤ Ai[X←U ]. By
NS-∀∃, Γ ` ∧?[Tj[X←U ] |Γ ` U ≤ Sj ] ≤

∧?[A1[X←U ]..Am[X←U ]]. By the definition of



12 SUBJECT REDUCTION 42

substitution, Γ ` ∧?[Tj[X←U ] |Γ ` U ≤ Sj] ≤ T nf[X←U ]. Finally, by lemma 3.14, S-

Conv, and S-Trans, Γ ` ∧?[Tj[X←U ] |Γ ` U ≤ Sj] ≤ T [X←U ], 2

Usually, the next step to prove the accuracy of an algorithm, inf in our case, would
be to prove a completeness result: if the term e has type T with respect to the context
Γ in the the typing system F ω

∧ then the algorithm inf finds a type T ′ for e in Γ. In the
present situation this result is not strong enough, since every closed term is typeable in
both systems. One easily proves that

Lemma 11.8

1. If e is closed in Γ, then there exists T such that Γ ` e : T .

2. If e is closed in Γ, then there exists T such that Γ `inf e : T .

We use the fact that inf is deterministic, which means that the rules are invertible, to
prove that inf finds a minimal type.

Proposition 11.9 (Generation for inf) The form of a derivable typing statement uniquely
determines the last applied rule.

Proposition 11.10 (inf computes minimal types)
If Γ ` e : T and Γ `inf e : T ′, then Γ ` T ′ ≤ T .

Proof: By induction on the derivation of Γ ` e : T . We illustrate the proof technique
showing the case for T-App. We are given that e ≡ f a, Γ ` f : V→T, and Γ ` a : V. By
generation for inf (proposition 11.9), Γ `inf f : U, Γ `inf a : S, and T ′ ≡ ∧?[Ti |Si→Ti ∈
arrows (flubΓ(U)) and Γ ` S ≤ Si]. By the induction hypothesis, Γ ` U ≤ V→T, and Γ `
S ≤ V. By lemma 11.3(1), Γ ` ∧?[Si→Ti |Si→Ti ∈ arrows (flubΓ(U))] ≤ V→T. Finally, by
the term application lemma (lemma 11.5), it follows that Γ ` ∧?[Ti |Γ ` S ≤ Si] ≤ T,where
Si→Ti ∈ arrows (flubΓ(U)). In other words, Γ ` ∧?[Ti |Si→Ti ∈ arrows (flubΓ(U))] ≤ T.
2

Finally, we have proved the following result.

Theorem 11.11 (Minimal typing for F ω
∧ ) Given a term e and a context Γ, there exists

T such that for every T ′, if Γ ` e : T ′, then Γ ` T ≤ T ′.

12 Subject reduction

The F ω
∧ system is layered in three syntactic categories: kinds, types, and terms. Since

terms do not appear in either types or kinds, reductions in type expressions can be studied
independently from the reductions of terms. In section 2, we proved that reduction on
types preserves kinding properties: the sub-language of types and kinds satisfies the subject
reduction property (lemma 4.11):

if Γ ` S : K and S �β∧ T, then Γ ` T : K.
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In this section, we show the subject reduction property for typing judgements (proposition
12.7):

if Γ ` e : T and e�βfor e
′, then Γ ` e′ : T.

In other words, reductions on terms are also safe.

Lemma 12.1 If Y 6∈ FV(S), then

1. e[Y←T ][X←S] ≡ e[X←S][Y←T [X←S]]

2. U [Y←T ][X←S] ≡ U [X←S][Y←T [X←S]]

Proof: By induction on the structure of e and U respectively. 2

Lemma 12.2 (Substitution for typing)

1. If Γ1 ` e1 : S1 and Γ1, x:S1, Γ2 ` e2 : S2, then Γ1, Γ2 ` e2[x←e1] : S2.

2. If Γ1 ` S≤S1 and Γ1, X≤S1:K1, Γ2 ` e2 : S2, then Γ1, Γ2[X←S] ` e2[X←S] :
S2[X←S].

Proof:

1. By induction on the derivation of Γ1, x:S1, Γ2 ` e2 : S2.

2. By induction on the derivation of Γ1, X≤S1:K1, Γ2 ` e2 : S2, using the type substi-
tution lemma (lemma 4.10) in the T-Var and T-Meet cases; the substitution lemma
for subtyping (lemma 11.6) and lemma 12.1 in the case for T-TApp; lemma 12.1
in the T-For case, and the substitution lemma for subtyping (lemma 11.6) in the
T-Subsumption case. 2

Lemma 12.3 Γ ` >? ≤ T if and only if T =β∧ >? and Γ ` T : ?.

Proof: If T =β∧ >?, then the result follows by S-Conv. Otherwise, if Γ ` >? ≤ T , by the
well-kindedness of subtyping (proposition 4.18), T-Meet, and uniqueness of kinds (lemma
4.9), Γ ` T : ?. By the equivalence of ordinary and algorithmic subtyping (proposition
9.2), Γnf `Alg >? ≤ T nf, which can only be derived using AlgS-∀∃ where T nf is the empty
intersection. 2

Given Γ ` S ≤ T , generation for normal subtyping (proposition 7.10) and the equi-
valence of ordinary and normal subtyping (theorem 8.9) provide subtyping information
about the normal forms of S and T . We can also show that subtyping is structural for
arrow types, quantified types and type operators, without reducing the terms in the sub-
typing relation to normal form. An implementation of a subtyping algorithm for F ω

∧ could
take advantage of this fact by delaying normalizing steps, which might result in having to
consider fewer recursive calls or calls with smaller arguments.
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Lemma 12.4 (Generation for ordinary subtyping)

1. Γ ` T1→T2 ≤ S1→S2 and S2 6=β∧ >? if and only if Γ ` S1 ≤ T1 and Γ ` T2 ≤ S2.

2. Γ ` ∀X≤T1:KT .T2 ≤ ∀X≤S1:KS .S2 and S2 6=β∧ >? if and only if KS ≡ KT , T1 =β∧
S1, and Γ, X≤T1:KT ` T2 ≤ S2.

3. Γ ` ΛX:KT .T2 ≤ ΛX:KS .S2 and S2 6=β∧ >? if and only if Γ, X:KS ` T2 ≤ S2 and
KT ≡ KS .

Proof: The three statements are proved using a similar argument. We consider here the
proof of part 2. If KS ≡ KT , T1 =β∧ S1, and Γ, X≤T1:KT ` T2 ≤ S2, then, by S-All

and S-Conv, Γ ` ∀X≤T1:KT .T2 ≤ ∀X≤S1:KS .S2. Conversely, let Γ ` ∀X≤T1:KT .T2 ≤
∀X≤S1:KS .S2 and S2 6=β∧ >?. Lemma 12.3 implies that T nf

2 6=β∧ >?. Then we have to
consider four cases according to whether Snf

2 and T nf
2 are intersection types or not. We

illustrate the proof argument considering just one case. Let

(∀X≤T1:KT .T2)nf ≡ ∀X≤T1
nf:KT .T nf

2 , and
(∀X≤S1:KS .S2)nf ≡ ∧?[∀X≤S1

nf:KS .A1..∀X≤S1
nf:KS .An],

where Snf
2 ≡

∧?[A1..An]. By the equivalence of ordinary and normal subtyping (the-
orem 8.9) and generation for normal subtyping (proposition 7.10), for each i ∈ {1..n}
Γnf `n ∀X≤T1

nf:KT .T nf
2 ≤ ∀X≤S1

nf:KS .Ai and, again generation for normal subtyping
(proposition 7.10) implies that Γnf, X≤T nf

1 :KT `n T nf
2 ≤ Ai, and T nf

1 ≡ Snf
1 . By NS-∀,

Γnf, X≤T nf
1 :KT `n T nf

2 ≤ Snf
2 and Γ, X≤T1:KT ` T2 ≤ S2, by the equivalence of ordinary

and normal subtyping (theorem 8.9). 2

Lemma 12.5 (Generation for typing)

1. If Γ ` λx:S1.e : S, then there exists S2 such that Γ, x:S1 ` e : S2 and Γ ` S1→S2 ≤ S.

2. If Γ ` λX≤S1:K1.e : S, then there exists S2 such that Γ, X≤S1:K1 ` e : S2 and
Γ ` ∀X≤S1:K1.S2 ≤ S.

3. If Γ ` for(X∈{U1..Un})e : T , then there exist T1..Tn such that, for each i in {1..n} ,
Γ ` e[X←Ui] : Ti and Γ ` ∧?[T1..Tn] ≤ T .

Proof: Each statement is proved by induction on the derivation of the typing statement
in the antecedent. We exhibit here the proof of part 3. We proceed by case analysis on
the last rule of the derivation of Γ ` for(X∈{U1..Un})e : T .

T-For We are given that Γ ` e[X←U ] : T for some U ∈ {U1..Un}. Since every closed term
has a type, we have that, for each i in {1..n} , Γ ` e[X←Ui] : Ti, and, by S-Meet-LB,
Γ ` ∧?[T1..T ..Tn] ≤ T.
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T-Meet Let T ≡ ∧?[S1..Sk]. We are given that, Γ ` ok and Γ ` for(X∈{U1..Un})e : Sj, for
each j in {1..k} . By the induction hypothesis, for each j ∈ {1..k} and each i ∈ {1..n} ,
there exist Tji such that Γ ` e[X←Ui] : Tji, and Γ ` ∧?[Tj1..Tjn] ≤ Sj, and, by the
minimal type property (theorem 11.11), there exist T1..Tn such that Γ ` e[X←Ui] : Ti,
and Γ ` Ti ≤ Tji, by lemma 4.17, it follows that Γ ` ∧?[T1..Tn] ≤ ∧?[Tj1..Tjn], and by
S-Trans, Γ ` ∧?[T1..Tn] ≤ Sj . Finally, by S-Meet-G, it follows that Γ ` ∧?[T1..Tn] ≤∧?[S1..Sk].

T-Sub We are given that Γ ` for(X∈{U1..Un})e : S, and Γ ` S ≤ T. The result follows by
the induction hypothesis and S-Trans. 2

Since terms cannot occur in types, subject reduction for terms does not need to consider
reductions in contexts.

Proposition 12.6 (One step subject reduction for typing judgements)
If Γ ` e : T and e→βfor e′, then Γ ` e′ : T .

Proof: Since every term has type >?, the interesting case is when T 6=β∧ >?. This
proposition follows by induction on the derivation of Γ ` e : T . We consider the cases
where e is a redex; the other cases follow by straightforward application of the induction
hypothesis.

T-App There are two possibilities for e to be a redex.

1. e ≡ (λx:S1.e1) e2, e′ ≡ e1[x←e2], and T ≡ T2 . We are given that Γ ` λx:S1.e1 :
T1→T2 and Γ ` e2 : T1. By the generation lemma for typing (lemma 12.5), there
exists S2 such that, Γ, x:S1 ` e1 : S2 and Γ ` S1→S2 ≤ T1→T2. Since T2 6=β∧ >?,
by the generation lemma for ordinary subtyping (lemma 12.4), Γ ` T1 ≤ S1

and Γ ` S2 ≤ T2. Then, by T-Subsumption, it follows that Γ, x:S1 ` e1 : T2

and Γ ` e2 : S1. Finally, by the substitution lemma for typing (lemma 12.2(1)),
Γ ` e1[x←e2] : T2.

2. e ≡ (for(X∈U1..Un)e2) e1, e′ ≡ for(X∈U1..Un)(e2 e1), and T ≡ T2. We are given
that Γ ` for(X∈U1..Un)e2 : T1→T2 and Γ ` e1 : T1. By the generation lemma
for typing (lemma 12.5), there exist V1..Vn such that Γ ` e2[X←Ui] : Vi for each
i ∈ {1..n} , and Γ ` ∧?[V1..Vn] ≤ T1→T2.

We write V nf
i ≡ Ai1, if it is not an intersection,
V nf
i ≡ ∧?[Ai1..Aiki

], otherwise.

Note that
∧?[V1..Vn]nf ≡ ∧?[A11..A1k1 ..An1..Ankn

]. By the equivalence of or-
dinary and normal subtyping (theorem 8.9), Γnf `n

∧?[A11..A1k1 ..An1 ..Ankn
] ≤

(T1→T2)nf. There are two cases to consider according to the form of (T1→T2)nf.
If (T1→T2)nf is T nf

1 →T nf
2 or

∧?[T nf
1 →B1..T nf

1 →Br] where T nf
2 ≡

∧?[B1..Br]. We
show here the latter; the former is simpler.
By generation for normal subtyping (proposition 7.10), for every s ∈ {1..r} there
exist l ∈ {1..n} and j ∈ {1..kl} such that Γnf `n Alj ≤ T nf

1 →Bs, and, by NS-∃
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or NS-Refl, Γnf `n V nf
l ≤ Alj , by NS-Trans, for every s ∈ {1..r} there exists

l ∈ {1..n} such that Γnf `n V nf
l ≤ T nf

1 →Bs, and, by the equivalence of ordinary
and normal subtyping (theorem 8.9), Γ ` Vl ≤ T1→Bs. By T-Subsumption, for
every s ∈ {1..r} there exists l ∈ {1..n} Γ ` e2[X←Sl] : T1→Bs. By T-App, for
every s ∈ {1..r} there exists l ∈ {1..n} Γ ` (e2[X←Sl]) e1 : Bs, and since X is
not a free variable of e1 we have that, for every s ∈ {1..r} there exists l ∈ {1..n}
Γ ` e2 e1[X←Sl] : Bs. Applying T-For, we get that for every s ∈ {1..r} Γ `
for(X∈U1..Un)e2 e1 : Bs, by T-Meet, Γ ` for(X∈U1..Un)e2 e1 : T nf

2 . Finally, by
S-Conv and T-Subsumption, Γ ` for(X∈U1..Un)e2 e1 : T2.

T-TApp There are two possibilities for e to be a redex. We show only one case here. The
case when e ≡ (for(X∈U1..Un)e2)S follows a similar argument to the one used for the
case e ≡ (for(X∈U1..Un)e2) e1 in T-App.

If e ≡ (λX≤S1:KS.e2)S, e′ ≡ e2[X←S], and T ≡ T2[X←S], we have that Γ `
λX≤S1:KS .e1 : ∀X≤T1:KT .T2 and Γ ` S ≤ T1. By the generation lemma for typing
(lemma 12.5), there exists S2 such that Γ, X≤S1:KS ` e2 : S2 and Γ ` ∀X≤S1:KS .S2 ≤
∀X≤T1:KT .T2. Since T2[X←S] 6=β∧ >?, lemma 3.14 implies that T2 6=β∧ >?. Then, by
the generation lemma for ordinary subtyping (lemma 12.4), Γ, X≤S1:KS ` S2 ≤ T2,
S1 =β∧ T1, and KS ≡ KT . By T-Subsumption, Γ, X≤S1:KS ` e2 : T2, and, by S-

Trans and S-Conv, Γ ` S ≤ S1. Finally, by the substitution lemma for typing (lemma
12.2(2)), Γ ` e2[X←S] : T2[X←S].

T-For Let e ≡ for(X∈U1..Un)e1, where X 6∈ FTV(e1) and e′ ≡ e1. We are given that
Γ ` e1[X←U ] : T , with U ∈ {U1..Un}. Since e1 ≡ e1[X←U ], the result holds. 2

We now have all the results needed in order to prove that reduction on terms preserves
typing. The following proposition, the subject reduction property for F ω

∧ terms, is a con-
sequence of the previous one.

Proposition 12.7 (Subject reduction for typing judgements)
If Γ ` e : T and e�βfor e′, then Γ ` e′ : T .

Proof: By induction on the derivation of e�βfor e′, using proposition 12.6. 2

13 Conclusions

We defined the typed lambda calculus F ω
∧ , a natural generalization of Girard’s system F ω

with intersection types and bounded polymorphism. A novel aspect of our presentation is
the use of term rewriting techniques to present intersection types, which clearly splits the
computational semantics (reduction rules) from the syntax (inference rules) of the system.
We prove the Church-Rosser property of the reduction relation for types and terms in F ω

∧
and the strong normalization result for the reduction on types.

The normalized subtyping system, NFω
∧ , is a significant technical contribution which is

the key to finding a generation principle for the subtyping relation in F ω
∧ and an algorithm,
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AlgF ω
∧ , which is shown to be equivalent to the original presentation. A generation prin-

ciple is the key result needed to prove the Subject Reduction property for F ω
∧ , which we

established in section 12.
We also presented a type inference algorithm and prove that it computes Minimal Types

for F ω
∧ .

The work presented here has been extracted from the Ph.D thesis of the author [22],
and a short version of sections 6 to 9 has been published in CSL’94 [21]. The techniques
developed here have been applied to study the combination of dependent types and subtyp-
ing in [3]. Mart́ın Abadi and Luca Cardelli used these techniques in their book “A Theory
of Objects” [1], demonstrating that our method extends naturally to a higher-order system
with recursive types and object constructors.
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