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Abstract: A proof by pointing user interface component allows a user to direct
the course of a proof assistant by selecting terms with a mouse. Such a gesture is
interpreted as a high-level tactical which triggers a sequence of low-level basic com-
mands for the proof engine. The algorithm inherently relies on a structure-conscious
environment; as a novelty we show how proof-by-pointing may easily be integrated
into an interface without a structure editor. We discuss in detail the use of nested
selectable text regions for user interaction, the modifications necessary to the proof-
engine output, and the algorithm for interpreting selections as proof commands, with
particular reference to a concrete implementation using XEmacs and LEGO.

1 Introduction

The issue of man-machine interaction for proof assistants has been recognised for a while.
Many teams interested in proof system development have put significant efforts into the
development of a specific man-machine interface. In some cases, communication through
a graphical user-interface is the intended usage (see for instance the systems Nuprl [6],
Alf [10], IPE [14], Jape [4]). In some other cases, a graphical user-interface is adjoined to
a system which also provides a plain tty user-interface, based on parsing commands and
printing out results (see for instance TkHOL [15] that uses the graphical toolkit Tcl/Tk
[11] and CtCoq [1] and cHOL [16] that use a communication kit based on the programming
environment generator Centaur [17]).

A sensible approach can also be to program a specific environment using a program-
mable text editor like Emacs [5]. Even though the programming environment can still
be described as a graphical environment, since the editor can handle multiple fonts and
colors, popup and pulldown menus, and mouse interaction, it is also fair to indicate that
environments built this way are also adapted to work on plain terminals, as long as these
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terminals are able to handle cursors. When considering Emacs-based environments, a wide
range of elaboration can be achieved. Simple environments can provide help for keyword
highlighting, command sending, and session recording, especially since the Emacs libraries
provide a nice set of modules adapted for these tasks. Other environments can provide
more specific features, with special windows for various kinds of data, menus that evolve
with the state of the proof system, and so on. Systems like PVS [12] or IMPS [7] advertise
especially their Emacs environment. An original case is Boomborg-PC [8], which is de-
veloped entirely in Emacs to present the task of system proving as the direct editing of
proof terms in type theory.

One important issue in the development of these proof environments is the importance
of structure editing versus text editing. Structure editing puts the emphasis on the tree
structure of logical formulas and commands. It makes it possible to provide more elaborate
notations and to give more help to the editor, in the form of menus which indicate the
constructs that are allowed in the current context. On the other hand, structure editing
puts constraints on the editing process, which some users may find unwieldy.

The paper [2] introduces a man-machine interaction technique called proof-by-pointing,
which makes it possible to perform entire proofs in propositional logic using only the mouse
to convey the intentions of the human user in a very efficient way. The intuitive idea of this
technique is that the proof system displays the goals in a graphical window, and the user
can guide the proof process by simply indicating the sub-expressions of these goals that are
important. The proof system then executes commands that bring these sub-expressions to
“the foreground” and applies trivial reasoning figures. The authors of [2] insist that the
technique relies on a need for the editing component to be aware of the structure of logical
formulas and they explain that their use of an environment based on structure editing
makes this constraint easy to cope with.

This paper completes the work on proof-by-pointing by showing how the constraint
of structure awareness can be handled without a structure editor. The proof assistant
passes structure information along with the text of data to the editor, which converts
the structure information into extents. These extents make it very easy to interpret the
user’s mouse interactions to produce path information, which is interpreted by a proof-by-
pointing command generator. The structure of the command generator itself also deserves
study and we demonstrate its simplicity and extensibility.

We document the extension of a user interface for the LEGO proof assistant [9] with
proof-by-pointing. The interface is implemented inside the XEmacs text editor [18]. We
use examples of code and output from LEGO to illustrate our work, but we describe the
work with extents in terms of an abstract datatype which could easily be implemented in
other graphical environments.

The plan of this paper is organised as follows. Section 2 presents the overall organisation
of the proof-by-pointing facility, the components it involves, and the way they interact.
Section 3 details three aspects of these components: the pretty-printing mechanism used
to pass extra information to the text editor, the extents mechanism used in the text-editor
to interpret mouse interactions, and the command generator. Section 4 contains concluding
remarks.
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2 User-Interface Organisation

From the user’s point of view, adding proof-by-pointing to the proof environment implies
a change in the aspect of this environment and a change in how to use it. In this section,
we will first describe the main changes brought to the interface organisation and to the
way it is intended to be used. Then we give a broad picture of the various components
that make this organisation possible and how they interact.

2.1 Modification to the Work Environment

We will first describe succinctly what we understand as the initial situation, then we will
show how this is modified by our work.

2.1.1 Traditional Situation.

As a starting point, we consider working with a text editor that manipulates several in-
dependent textual objects, named buffers. One of the textual documents handles the
communication with an external process, this buffer will be named a shell buffer. In our
experiment of course, this shell-buffer will handle the communication between the text
editor and the proof engine. This shell-buffer is organised so that it is possible to insert
text in this buffer, send text from this buffer to the external process, and record the output
of the process in this buffer. In this approach, the shell-buffer contains both the user input
and the external process output.

A more elaborate organisation makes it easier to keep track of the commands sent to
the engine. This organisation uses an extra buffer, which we shall call the script buffer,
intended to record only the commands sent by the user to the proof engine. The normal
behaviour is that the user edits the commands in this buffer and, with control keys or
menus, sends them to the external process. Internally, the relevant text fragment is still
copied to the shell-buffer and the output still appears there, so that the user can keep an
eye on this buffer to see the computed data or check that things are going well.

In practice, there may be as many script buffers as the user wants, as data moves only
from script buffers to the shell-buffer. On the other hand, it is sensible to have only one
shell-buffer, which may be created only when processing the first text fragment.

2.1.2 Adding the Proof-by-Pointing Feature.

The main modification brought about by proof-by-pointing is that some of the output
from the logical engine is used to produce commands at the mere click of the mouse.
This output is displayed in an extra buffer, which is opened if needed and updated every
time the logical engine produces relevant data. The relevant data consists of the lists
of assumptions and obligations produced when one works with LEGO to perform goal-
directed proof. The special buffer created to receive this data contains a buffer we will
refer to as the goals buffer. A meaningful click of the mouse in this buffer causes a new
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command to be inserted in a script buffer and to be executed by the logical engine. In
return, this command changes the data displayed in the goals buffer and the whole system
gets ready for a new interaction. Complete goal-directed proofs can be done using only
mouse interaction. As in other implementations of proof-by-pointing, mouse interaction
can also be interleaved with bouts of manual editing performed directly in the script buffer.

2.2 Architecture

The implementation of proof-by-pointing in an environment based on a programmable text
editor requires close interaction between the logical engine and the editor. This interaction
revolves around several components communicating through procedure calls or streams of
characters and reacting to events provoked by user interaction. Some of the components
were already in the proof engine and the text editor before starting our experiment and
we only adapted them to our purposes. Other components were created specifically for the
needs of this experiment. In this section we will review these components and the data
structures they communicate to each other.

2.2.1 Static View.

Figure 1 can be used to understand the broad organisation of our proof-by-pointing tool.
The horizontal dashed line in the middle represents the border between two processes, so
arrows crossing this line represent communication in text form. The other arrows between
the rectangular boxes represent function or procedure calls.

On the text editor side (Emacs side), the boxes represent buffers, and the arrows
represent data movement from one buffer to the other. The data is not always plain text:
it can also be text enriched with extents, regions that make it easy to make the text
mouse-sensitive and to attach annotations to locations in the text. In our experiment,
these extents have been provided for free by the XEmacs editor. We describe their use
later in section 3.2.

On the proof checker side (LEGO side), the boxes represent modules of the checker’s
implementation. The data structures communicated from one module to the other can vary
in form: in particular, the communication between the logical engine, the formatter and
the proof-by-pointing command generator uses a representation of logical formulas that is
provided by the type checker’s implementation and that did not need any modification for
our experiment.

When designing this organisation, there was a choice of whether to implement the
proof-by-pointing command generator in the text editor or on the proof checker’s side. As
seen in section 3.3, the choice of implementing it on the proof checker’s side makes good
use of the ML language and its pattern matching facility to provide easy extensibility. On
the other hand, it complicates the communication between the proof checker and the text
editor.
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Figure 1: Main architecture of the user-interface
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2.2.2 Dynamics

To fully understand the organisation of this experiment, it is also necessary to have a
temporal view of its operation, to understand the characteristics of each data type involved,
and to understand the conversions that occur in each box. We will give an overview of
these conversions by following a complete cycle of the permanent dialog between the two
processes.

The typical interaction scenario starts with the user inputting a command in the script
buffer of the text editor and requesting that this command be executed by the proof
checker, either by choosing an option in a menu or by typing a specific key sequence. The
command goes through the shell-buffer to the proof checker’s parser, which converts it
into a procedure call for the logical engine (note that no modification of the logical engine
was necessary for our experiment). In return, the logical engine produces some output.
The interesting case for this paper is when the logical engine’s output is a new list of
assumptions and obligations.

Printing Goals. The logical engine’s output goes through the formatter and the pretty
printer of the proof checker. These two components are regular components of the LEGO
proof checker. In the regular implementation of the proof checker, the pretty printer
is a close implementation of the pretty printing algorithm given in [13], and the data
type used between these two components is similar to the block datatype described there.
The formatter simply produces a block structure which the pretty printer converts into
text, taking care of line breaking and indenting in a way that makes the structure easy
to comprehend. For our experiment, these two components have to be modified. The
block data structure is augmented with a new constructor that makes it possible to print
annotations. Annotations are text fragments that will be printed by the pretty printer, but
whose size will not be taken into account for line breaking and indentation. The intuitive
purpose of these annotations is to transfer local information to an external tool, knowing
that this local information will be used but not shown to the user. The pretty printer
always computes the width of the elements it prints. It is modified to take annotations
into account: an annotation is simply treated as a string whose width is zero, but it is
always printed. Of course, formatted text containing annotations does not look formatted
at all, but it is the receiving tool’s job to restore the text’s initial elegance by removing
the annotations!.

The formatter is also modified to produce pertinent annotations, which will make it
possible for the text editor to render the structure of the logical formulas. In a nutshell,
annotations are inserted at the beginning and at the end of each sub-expression of the
goals. These annotations contain path information that indicates the exact location of the
sub-expressions in the goal structure. Later in this paper, we devote a section to this
enhancement of the pretty-printer (see section 3.1).

L Clearly, one could use such annotations for many purposes, like indicating font or colour changes, thus
producing a simple form of rich text format.
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Last, it is also important to note that the goals are printed between brackets. Before
starting to print the goals, the proof checker prints a special keyword used solely for this
purpose (an opening bracket in some sense). After printing the goals, it also prints another
special keyword (the corresponding closing bracket). These brackets will be used to trigger
specific actions on the text editor side.

Receiving and Displaying Goals. On the text editor side, the annotated text is re-
ceived in the shell-buffer. The text editor is organised in such a manner that we can specify
that a given procedure will be called every time some data comes in from the proof checker
(in XEmacs the procedure only needs to be declared as a hook). For the purpose of our
experiment, we specify a procedure that will look for the special keywords used as brackets
around goals.

When the closing bracket of a pair is recognised, the string the pair delimits is processed
to take the annotations into account, remove these annotations, and produce a new kind
of text, enriched with extents. The pertinent aspects of these extents, provided for free
by the XEmacs text editor, are described in section 3.2. The text with extents is then
transferred to the goals buffer where it is displayed to the user.

Reacting to User Input. Computation stops there, the next relevant event will come
from the user. Most often the event will be generated using one of the other user interface
mechanisms, but if the user chooses to proceed using proof-by-pointing, he or she clicks
on some expression in the goal buffer. The text editor automatically computes the extent
that contains this expression. This extent contains a property which is the path referring
to the expression. This path is given in textual form as a sequence of integer numbers. A
textual command is constructed with this path and sent directly to the proof checker, via
the shell-buffer.

Processing Paths. On the proof checker side, the path information is processed by a
specific module, the proof-by-pointing command generator. This module also needs the
structured representation of the goal under scrutiny. With these two pieces of information,
the proof-by-pointing processor generates plain proof commands for the proof checker in
a recursive fashion, using a table of formula patterns and paths. This command generator
is described more carefully in section 3.3. The generated commands are just regrouped in
a text fragment that is bracketed with special keywords and sent back to the text editor.

Recording and Executing the Commands. On the text editor side, the same pro-
cedure that scans the proof checker’s output for bracketed goals is also used to scan for
the commands generated by the proof-by-pointing processor. These commands are directly
inserted in the script buffer and re-sent automatically to the proof checker, which processes
them and may produce new goals. The cycle can restart.

Notice that the Proof-by-Pointing tool acts merely as a command generator. Alternat-
ively, one could choose to record the direct Proof-by-Pointing request in the script buffer
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and transparently execute the generated low-level command sequence. Our design decision
results in more elaborate communication. However, novice users may find it helpful to
inspect the output of the command generator. Furthermore, the generated command can
later be edited by the user, for instance to adapt generated names to the specific case, or
to replace some commands by more efficient ones. This manual post-processing of proof by
pointing generated commands could be made easier in a variant where the generated com-
mands are only inserted in the script buffer, but not sent back automatically to the proof
checker. This opportunity for manual post-processing would also allow for the command
generator to produce incomplete commands.

3 Components

3.1 Producing Annotated Text — Explicit Annotations

Output from the proof system is annotated by the pretty-printer to make information
about the internal structure of terms available to the user interface component. Each sub-
expression in a goal or hypothesis is prefixed with a sequence of integers that represents
the path in the abstract syntax tree at which this subterm is rooted. For example, the
command

Goal {A,B: Prop} (f (A /\B)) -> (f A /\ f B);
causes LEGO to generate the fully annotated? response:

[ Start of Goals |
&?0 : [I{[11[1 11A],[1 2IB1]1:[2|Propl }[31[3 2 1]1([3 2 1 1If] [3
2121 ([3212121lA1[321211]|A]
3212122BDH1)
103 11—]1[3 2 2I([8322
22 1|A] [32222]|[3
[ End of Goals |

2132221 1/f] [3222121]A]] [3
22221|f] 3222221|BI1HI]]

There are three different kinds of annotations above: The outermost pair of markers,
“[ Start of Goals |” and “[ End of Goals |”, bracket the section of output to be
processed for proof-by-pointing. The “&” marks the term as a goal or an hypothesis. And
within the term itself are the structure annotations. Each annotated subterm has the
following format:
[ annotation | term ]
The fragment term may itself contain annotated subterms. So the output here represents
the syntax tree on the following page, in which some example paths have been marked.

2The annotations used in practice are selected to be efficiently parsable, and have been replaced here
by more readable characters
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Note that not all of the nodes in the above tree are annotated in the pretty-printer output
— for example, the proof system internally represents a function application as a pair
consisting of the function and a list of arguments, but such lists of arguments are never
annotated — here the argument list of /\ is itself a subterm rooted at the path 3 2 1 2
1 2, which is not present among the annotations. In general, annotations are omitted for
subterms that are “mute” with respect to the proof-by-pointing algorithm.

This representation is very flexible: for example the proof engine does not distinguish
between infix and prefix operators, conversion being performed by the pretty-printer and
parser. Annotating each subterm fully is a simple way to ensure that information about
the internal structure of terms is preserved even though there maybe discrepancies between
the term structure and its textual representation. In our example, the operator /\ with
the path 3 2 1 2 1 1 appears between its first argument with path 3 2 1 2 1 2 1 and
its second argument with path 3 2 1 2 1 2 2. However, full annotation is very verbose.
In order to decrease the volume of data which is generated and parsed, each annotation
is preceded by the length of the prefix it shares with its predecessor. Further, spaces
are omitted in annotations and the integers which make up the path components are
represented by the corresponding ASCII characters, making the assumption that path
annotations only contain integers smaller than 256. For example, the above annotation is
reduced to:

[ Start of Goals |

&?0 : [0l{[01][11]A],[12IB1]:[02|Propl}[03|[121]([31|f] [321](
[5211A] [61IA] [622|1B1)1)]1[11|—]1[122]([321|[511f] [621]A]] [31]
Al [322][511f] [5211B1]1)11]
[ End of Goals |

Although on this small example the value of these optimisations is not wholly convincing,
the syntax trees output by the proof checker are typically highly unbalanced, thus with
large expressions we achieve significant reductions in output size.



3 COMPONENTS 10

3.1.1 Encoding Annotations

Since the pretty-printing algorithm itself consists of a recursive traversal of the syntax tree,
adding path annotations requires only that we keep track of the current path, augmenting
it at each recursive call and printing it as a prefix to each subterm of interest. For example,
the code

fun format_infix name al a2 =
let val sym = infix_sym name
val argl = format al
val arg2 = format a2
in argl @ [string sym] @ arg2
end

becomes
fun format_infix path name al a2 =

let val sym = infix_sym name
val argl = path_wrap (1::2::path) (format (1::2::path) al)

val arg2 = path_wrap (2::2::path) (format (2::2::path) a2)
in argl @ (path_wrap (1::path) [string sym]) @ arg?2
end
where

path_wrap: int list -> block list -> block list

inserts in front of its second parameter an annotation containing the string representation
of its first parameter, which is just the path stored in reverse as a list. Path compression
occurs only when the annotations are printed out and makes no assumptions about the
order of annotations; thus none of the flexibility of fully annotating terms is lost.

3.2 Extents: Annotated Text Intervals

Annotations will be decoded to produce extents. In this section, we describe these extents,
the decoding process, and their use to produce proof-by-pointing actions.

Intuitively, an extent is a text interval which is decorated with properties. It is possible
to view extents as an abstract data type ® with the following primitives®:

3XEmacs provides such a datatype for free, but a concrete implementation with overlays in FSF Emacs
or similar mechanisms in systems such as Tcl/Tk would be straightforward
4we use the syntax of ML modules, even though XEmacs does not use such modules.
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signature EXTENT =

sig
type extent
val make_extent : int — int — buffer — extent
val set_extent_property : extent — property — value — extent
val extent_property : extent — property — value
val extent_at : int — buffer — property — extent
end

The constructor make extent f ¢ b generates an extent associated with the buffer b
and the text interval given by the start position f and the end position ¢. The method
set_extent_property e k v adds a property to the extent e, associating the value v to the
property key k. extent_property e k retrieves the value associated to the property k for
the extent e. Thus, the following equality is true:

extent_property (set_extent propertye kv) k=wv .

Example 3.1 (set_extent_property) Assume that the extent e ranges over a full term.
We wish to record the nature of a term in the property '‘pbp-top-element:

e set_extent property e 'pbp-top-element [H,id] records that the extent e’s associ-
ated text interval corresponds to the assumption id

e set_extent property e ‘pbp-top-element [G,?7] records that the extent e’s asso-
ciated text interval corresponds to the proof obligation identified by the existential
variable 77.

Finally, extent_at p b k extracts the smallest extent containing the position p in buffer b
and having a property for the key & (in our case, if two extents overlap, then one is included
in the other).

XEmacs provides many other capabilities around this concept of extent, but for the
purpose of this paper the ones described above are enough. Still, for the user, pointing
at a particular position should leave no doubt which subterm corresponds to the position
of the mouse, and an ergonomic implementation should foster this link. In our XEmacs
implementation, we were able to exploit additional support for the extents property mouse-
face. It records a font and colour used to highlight the extent when the mouse moves over
it, thus making the logical formula’s structure strikingly apparent.

3.2.1 Decoding Annotations

When an annotated string representing the proof state is output by the proof-checker, it
is parsed by the interface to create the extents for selection by the user. Because we have
chosen XEmacs as the setting for our interface and the XEmacs Lisp interpreter is not
particularly fast, parsing can be an expensive operation. In view of this, and the fact that
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the user may choose some other input method, we do minimal work before presenting the
user with output, leaving the rest until a selection has actually been made.

First, the input string is stripped of annotations to obtain the output string, which is
inserted into a clean selection buffer. For each annotation in the input string there is some
corresponding point in the output string, specifically the point after all the non-annotation
characters which occur in the input string before this annotation. We will call the position
of an annotation in the input string its input position, and the corresponding position in
the output string its output position.

A second pass is made over the input string to produce two kinds of extents. The first
kind carries a property pbp-top-element and is intended to receive the whole text of an
assumption or a goal. The property value indicates whether it is a goal or an hypothesis,
and the hypothesis name or goal number. The second kind of extent carries a property
pbp-element and is intended to receive the text of any subterm. The value of this property
is the point in the input string at which the annotation of the extent starts. The two kinds
of extents are distinguished by the property name.

e Ampersand characters “&” are used to distinguish the beginning of goals or assump-
tion. The character & has been chosen because it is known to never appear in the
regular output. When encountering this character, two cases may arise.

1. If this is the first & encountered, its output position is recorded, together with
whether it represents the start of a goal (recognised by a question mark followed
by a number) or an hypothesis (recognised by an identifier), and the goal number
or hypothesis name.

2. If an ampersand has been encountered previously, an extent is constructed with
the previously recorded position as start position and the current output pos-
ition as end position, and decorated with a property pbp-top-element and the
recorded type and name. The new position, type, and number or name are
recorded.

e if a [ is encountered, the input and output positions are placed on a stack. The text
is then skipped until a | is found.

e if a ] is encountered, the top input and output positions are popped off the stack.
The popped output position is used together with the current output position to
construct an extent, which is then decorated with the property pbp-element and the
popped input position.

e When encountering the closing bracket “[ End of Goals |”, an extent is construc-
ted with the output position recorded at the last ampersand, and decorated with
a property pbp-top-element and the type and goal number or name that were also
recorded.

The input string is retained as part of the state of the selection buffer. Notice that for any
extent with the property pbp-element, the input position of the beginning of its annotation
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is sufficient to reconstruct its entire path: because of path compression this not quite trivial,
but it is straightforward.

3.2.2 Decoding user input

When the user points at a sub-expression in the goals buffer, a procedure is automatically
called to interpret this gesture. This procedure uses the primitive extent_at to find the
two extents e, and e, with properties top-pbp-element and pbp-element corresponding
to this position. Depending on whether the type of e, is goal or hypothesis, the goal
buffer sends to the shell-buffer a pbphyp command or a pbp command. In both cases,
the command receives as arguments the goal number or hypothesis name and the path
computed using the pbp-element property of egs,. This command is then automatically
forwarded to the proof engine.

3.3 Converting Paths into Command Sequences

The proof-by-pointing command generator uses a representation of the goal or assumption
under scrutiny and the path given by the mouse interaction to produce a list of regular
commands. It uses a surprisingly simple core function named pbp, an extensible collection
of rules, which are themselves ML functions, and two wrapper functions, which decode the
command received from the text editor and translate it into calls to the core function.
In this section we describe successively the core function, the rules, and the wrapping
functions.

3.3.1 The Infrastructure
The heart of the engine is the function pbp, with the following type:

pbp: string option — prCnstr — int list — string list

The first argument, an optional string, indicates the name of the hypothesis in which
the algorithm is working. If this name is absent, then the algorithm is working in a goal®.
The second argument is the term structure of the statement of the goal or premise on
which the algorithm is working. The third argument is the path received from the text
editor.

The algorithm works by successively trying all the rules found in a mutable repository,
PBP_RULES. Each rule is represented by a function (f in the code below). When a rule
succeeds, it returns a list of strings, representing the generated commands. Note that the
function pbp itself is passed as an argument to each rule, so that the recursive nature of the
proof-by-pointing algorithm is implemented by the possibility that rules call this function
recursively on a subterm. In this respect, the proof-by-pointing algorithm is implemented
using a continuation passing style.

5In this presentation we assume that the proof process automatically focuses on a specific goal
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fun pbp (h:string option) (t:prCnstr) (p:int list) =
let fun try_all_rules rl =
case rl of ((_,f)::tl) =>
(case (f h t p pbp) of SOME(command_list) => command_list
| NONE => (try_all_rules tl))
| 0 =>1]
in
try_all_rules (!PBP_RULES)
end;

The property of PBP_RULES to be a mutable reference cell is not essential in the pbp
core function. However, it makes it easy to add new proof-by-pointing rules dynamically.
Actually, the elements of the PBP_RULES list are not only functions, but pairs of a string
and a function. The string is used as a rule name, and makes it possible to remove proof-
by-pointing rules by referring to their name. The names compensate for the fact that the
rule values cannot be inspected, because they are plain ML functional values.

3.3.2 Implementing Proof-by-pointing Rules
To construct pbp rules, we need the proof engine to provide the following primitives:

signature PBPINPUT =

sig
val mkNameLoc : string — string
val initNameLoc : unit — unit
val getCurrentGoal : unit — int % prCnstr
val getAssumption : string — prCnstr
end
The name generator mkNameLoc returns a fresh identifier such that mkNameLocs = s

provided s is already fresh. The context of local identifiers i.e., those introduced by
mkNameLoc, can be initialised by initNameLoc. The function getCurrentGoal returns
the current goal’s tag and type. Finally, getAssumptions retrieves the type of the as-
sumption s.

Proof-by-pointing rules have approximately the same type as the core function, except
that they have an extra argument, which they use as a continuation, and their returned
value is optional. Thus, their type is exactly the following one.

(* hypothesis *) string option —

(* subterm *x) prCnstr —

(*x path x) int list —

(* continuation *) (string option — prCnstr — int list —
string list)

(* command *) — string list option
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The structure of proof-by-pointing rules is practically always the same. They must
perform the following operations:

1. Check that the formula and the path correspond to a case where this function should
apply. In case of failure, return NONE.

2. Determine the sub-formula and the sub-path needed for a recursive call of the proof-
by-pointing algorithm.

3. Compute the command corresponding to this rule.

4. Call the pbp function, with the right hypothesis name (when necessary), the sub-
formula and the sub-path.

5. Return the concatenation of the command computed at step 3 and the result of the
recursive call.

Steps 1 and 2 are easily performed thanks to the pattern matching facilities of ML.
Of course there may be no recursive call. For instance the following rule describes a
sensible behaviour for the empty path:

Example 3.2 (Axiom) We wish to discharge the sequent A,I"' = A whenever the goal A
has been selected.

fun pbp_catch_empty_path NONE _ [] _
| pbp_catch_empty_path _

SOME ["Try Assumption"]
NONE

Restricting the specification to the empty path guarantees that the complete goal has been
selected and not merely a subterm. The second line of this function ensures that the rule
fails cleanly if the pattern is not adapted.

When there is a recursive call, the rule must be designed so that the arguments are
coherent: the sub-path should be valid in the subterm. This is usually easy to check, under
the assumption that the path and term given as arguments are already coherent. Also, to
ensure termination, either the sub-path or the subterm should be a proper sub-component
of the corresponding initial value. These design issues have been taken care of in the
following example:

Example 3.3 (Introduction of Conjunction) We wish to implement the rule

r'-A I'+[B]
I'AAB]

Notice that the LEGO system supports a corresponding refinement by

Refinepair Next 41

I'-AAB I'HA (T'k B)

I'FB (I'FA)

A rule using this refinement is implemented as follows:
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fun pbp_andr2 NONE (PrApp (PrRef "and",[_,(B,_)]))
(2::2::path_tail) continuation
= SOME (["Refine pair", "Next +1"] @
(continuation NONE B path_tail))
| pbp_andr2 _ _ _ _ = NONE

The prCnstr constructor PrApp expects a list of arguments, each tagged with display
switches. Those switches are redundant for the purpose of implementing Pbp rules. This
use of a datatype initially intended for other purposes makes the rules a bit less readable.

In some cases, new hypotheses may be generated and the recursive call may be per-
formed on one of these new hypotheses. It is then necessary to create a new name, use
this name in the generated command, and pass this name on to the recursive call.

Example 3.4 (Elimination of Implication) Consider the rule

A= BTHFA [BJ]A=BT+C

A=[B|TFC

Let H be a proof of A = B available in the context A. Using LEGO, the above refinement
can be accomplished by

impE H intros+1b
MPEARA (AR B () 2RHOST

AFC B,AFC (AFA)

where b with type B is a fresh identifier generated by mkNameLoc:

fun pbp_impr2 (SOME H) (PrBind([], (Pi,_), _, B))
(2::2::path_tail) continuation
= let val b = mkNameLoc "b"
in SOME (["impE " ~ H,"intros +1 " ~ b] @
continuation (SOME b) B path_tail)
end
| pbp_impr2 _ _ _ _ = NONE

The very simple nature of this organisation could also allow point-and-shoot extensions
as described in [3].

Example 3.5 (Point-and-Rewrite) Consider the rule
a="bTFC[b/a
=bI'HC

where the complete term a has been selected and not merely a subterm. Let eq be a proof
of a = b. LEGO supports a corresponding refinement by Qrepleq. This leads us to the
following implementation:

fun pbp_repl (SOME eq) (PrApp (PrRef "Eq",_)) [2,1] _
= SOME ["Qrepl "“eq]
| pbp_repl _ _ _ _ = NONE;
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3.3.3 Wrapping functions

Both pbphyptop and pbptop are wrappers of the core function pbp. They use the primitive
initNameLoc to initialise the local namespace. In addition, pbphyptopid [ invokes pbp with
(SOMEid), the type of id, computed with the primitive getAssumption, and /. Similarly,
pbptop ¢ [ invokes pbp with NONE, the type of the goal g, computed with the primitive
getCurrentGoal, and /.

4 Conclusion

This paper shows that the proof-by-pointing facility can be integrated into an Emacs-
based environment at very low cost. The developments needed in the proof engine are the
modification of the pretty-printer and formatter and the implementation of the proof-by-
pointing command generator. The developments needed in the Emacs text editor are the
decoder that will interpret structure information, and hook functions that will update the
goal buffer’s contents and interpret mouse interaction. For a prototype implementation,
the whole work was done in one week during the stay of one of the authors at Edinburgh
in the fall of 1996. This is the main strength of the work described here: proof-by-pointing
can smoothly be integrated into a wide variety of proof environments.

This work also shows a potential weakness. If proof-by-pointing rules are represented
solely by ML functions, it is not possible to view these rules and to edit them. Ideally
the rule system would be defined in an extensible format and implemented with a generic
engine, an approach which has been taken in CtCoq [1]. The omission of such a facility
weakens our claim of easy extensibility: as the system stands, it can easily be extended
but the person willing to do so had better be an ML programmer and make only a few
mistakes. Debugging faulty proof-by-pointing rules still remains an unsupported task.

Two questions linger. First, how easy would it be to implement this in a framework
where the proof engine uses a pretty printer that is itself extensible? Solving this question
would make it easier to implement this facility for systems that tend to have a “logical
framework” approach like Coq or Isabelle. Secondly, would it be easy to implement this
in a text editor which lacks extents? The answer seems to be that it would: rather than
relying on a concrete implementation on the text editor side, extents could be administered
by maintaining a table of intervals and properties in the proof engine. In this case the text-
editor would only need to send back the character position of the mouse selection, instead
of a path at every mouse interaction in the goals buffer. The disadvantage of this approach
would be that the information provided by highlighting selectable extents as the mouse
moves over the selection buffer would no longer be available to the user. In any case, our
experiment shows that a structure editor is not a necessary part of an interface which
supports proof-by-pointing.

The notion of extents has proved its power and it is also interesting to understand how
they can help with other issues of proof environments. For instance [3] introduces a notion
of script management. We have already started to experiment with implementation of
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similar facilities where extents are used to manage the basic elements of scripts: individual
commands.
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