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1 Discussion

Let Atom be a finite set of atomic processes or atoms, Act a finite set of
actions, and TT a collection of productions of the form X 5 Y, where X,Y €
Atom and a € Act. Regarding the atoms as states of a system, we can think of
the production X 5 Y as specifying a possible evolution, or derivation of the
system from state X to Y via action a. What we have is nothing more than a
finite state automaton, familiar from formal language theory.

We can generalise this situation somewhat by allowing both the states and
the right hand sides of productions to be terms constructed from atoms using
an associative, non-commutative operator “-” that we think of as “sequential
composition.” The productions specify the derivations available to atoms, and
hence, by extension, to terms: the derivations available to a general term P =
Xq - -+« Xy are precisely those of the form

P£>X1’-Xz- coe Xn,

where X7 = X{ is a derivation of the atom Xj. (Note that X] is not in general
an atom, and may be ¢, the empty term.) The non-commutativity of the
sequential composition operator is reflected in the restriction that productions
can be applied only to the leftmost atom.
By way of example, if Atom = {X}, Act ={a, b}, and the available produc-
tions are
X4X-X and XD,

then the states reachable (by some sequence of derivations) from X are ¢, X,
X-X, X-X-X, ..., and the available action-sequences from state X to itself are
e, ab, abab, aabb, ababab, ..., i.e., all “balanced parenthesis sequences.”

In the field of concurrency theory, systems defined by sets of productions
of the form just described are known as “context-free” or “Basic Process Al-
gebra” (BPA) processes. (What we have been terming “states” are commonly
referred to as processes in concurrency theory.) In language-theoretic terms, a
BPA process is equivalent to a pushdown automaton with one state. However,
concurrency theory is distinguished from formal language theory in having a
different set of concerns: given two BPA processes P and Q we are interested
not in whether the action-sequences available to the P and Q are equal as sets
(a static notion), but in whether P and Q are “behaviourally equivalent” in a
dynamical sense.

What is the “correct” notion of behavioural equivalence for concurrent pro-
cesses? A popular and mathematically fruitful answer is the relation of bisimil-
arity: two processes are bisimilar, or bisimulation equivalent, if, roughly, they
may evolve together in such a way that whenever the first process performs a
certain action, the second process is able to respond by performing the same
action, and vice versa. (Precise definitions of this and other terms appearing
in this section will be given in Section 2.) The notion of bisimulation equival-
ence was introduced by Park [11] around 1980, and has been intensively studied
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since. Bisimilarity plays an important role in algebraic theories of concurrency,
such as that based on Milner’s CCS [9].

As we have already seen, a BPA process may have infinitely many states, so
it is by no means clear, a priori, that there is an effective procedure for deciding
whether two BPA processes P and Q are bisimilar. The first such procedure
was presented by Christensen, Hittel and Stirling [6], though no upper bound
on complexity could be offered at the time. Subsequently, Burkart, Caucal
and Steffen showed the decision problem to be “elementary,” i.e., to have time-
complexity bounded by some constant-height tower of exponentials [3].

With an eye to modelling concurrent systems, we may introduce an asso-
ciative, commutative operator “|” representing “parallel composition.” Basic
Parallel Processes (BPP) are terms constructed from atoms using just this
parallel composition operator. Derivations on atoms may be defined, as in
BPA, by a finite set of productions, and then extended to terms in the natural
way. The commutativity of the parallel composition operator expresses itself
in the ability of a process P | Q | R, say, to evolve through any of P, Q or R un-
dergoing a derivation. Bisimilarity of pairs of BPPs was shown to be decidable
by Christensen, Hirshfeld and Moller [5], but is not known to be elementary.

Is is natural to consider processes built from atoms using both sequential
and parallel composition operators. As before, derivations on atoms may be
defined by a grammar, the productions of which have atoms on the left hand
side, and arbitrary terms on the right. The derivation relation extends to terms
in the natural way, respecting the commutativity of parallel composition; so
that, for example, if U, X,Y,Z € Atom and U 5 U/, X 5 X', Y 5 Y’ and
Z % 7' are possible derivations, then (adopting the convention that “-” binds
more tightly than “[”), the process (U | X)-Y | Z has all of

u1Xx)-ylz, (UWIXY-Y|Z and (U]|X)-Y]|Z

as possible derivatives (via action a), but not (U | X) - Y’ | Z. This set-up
can be viewed as a fragment of the process algebra ACP, the Algebra of Com-
municating Processes of Bergstra and Klop [2]; we refer to this fragment as
PA. As a model for concurrent systems, PA still lacks the important element of
synchronisation (the “C” in “ACP”), but at least it represents step towards the
the kind of expressivity that would be required to describe realistic concurrent
systems.

An open problem of some years’ standing is whether bisimilarity of PA
processes is decidable and, if so, how great is its computational complexity. We
are not able to provide a complete answer to this question. However, we are
able to present a decision procedure for the subclass of “normed” PA processes.
The property of being normed applies to processes generally, independently of
how they are described (in BPA, BPP, PA, or whatever). A process P is said
to be normed if, for all P* that can be reached from P via some sequence of
derivations, there is a further sequence of derivations that reduces P* to ¢. For



processes described in BPA, BPP or PA, a sufficient condition for being normed
is that all atoms X € Atom can be reduced to ¢ via some derivation sequence.

The assumption of normedness seems innocuous; nevertheless, experience
suggests that normed processes are easier to cope with than arbitrary ones.
For both BPA and BPP, bisimilarity was shown first shown to be decidable
for normed processes: in the case of BPA by Baeten, Bergstra and Klop [1],
and in the case of BPP by Christensen, Hirshfeld and Moller [4]. Furthermore,
Hirshfeld, Jerrum and Moller have presented polynomial-time algorithms for
deciding bisimilarity for both normed BPA [7] and normed BPP [8]. The same
phenomenon now reappears in the context of PA.

At the core of the problem of deciding bisimilarity of PA processes lies the
surprising complexity of interactions that can occur between sequential and
parallel composition. In particular, there are situations in which the sequential
composition of two processes Pq-P, may be equivalent to a parallel composition
Q1 | Q2 of two other processes. A trivial example is given by Atom = {X},
Act ={a, b} and productions

X45X|X and X De,

which system is equivalent to the example using sequential composition given
earlier. But this is just the simplest case, and the equivalence P1-P> ~ Q1| Q2
in fact has an infinite set of solutions of apparently unbounded complexity.

The key to our approach is to develop a structure theory for PA that com-
pletely classifies the situations in which a sequential composition of two pro-
cesses can be bisimilar to a parallel composition. Fortunately, the infinite col-
lection of examples mentioned earlier can be covered using a small number of
patterns (applied recursively). As a consequence of the classification we obtain
a decision procedure for bisimilarity in normed PA. Unfortunately, the struc-
ture theory we develop relies crucially on unique decomposition of processes
into sequential and parallel prime components, which in turn relies of normed-
ness, so there seems little hope of a direct extension to the general (un-normed)
case.

It is a chastening thought that we have absolutely no information concerning
the complexity of deciding bisimilarity for general (un-normed) PA: the two
extremes—that bisimilarity is in the class P, or that it is undecidable—are
perfectly consistent with our current lack of knowledge.

2 Notation and Basic facts about PA

Here, we collect together many definitions that are standard in the area. Be-
cause they are numerous and routine, we shall not explicitly flag definitions as
such in this section.

Recall that Atom is a finite set of atomic processes or atoms, and Act
a finite set of actions. We let U, XY, Z stand for generic atoms, and a,b,c

Atoms, actions
and processes.
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for generic actions; other naming conventions will be introduced as and when
convenient. The set Proc of processes contains all terms in the free algebra

“w . o”

over Atom generated by the non-commutative associative operator of se-
quential composition, and the commutative associative operator “|”
lel composition.

A PA process is defined by a finite set TT of productions, each of the form

of paral-

XS5P, (1)

where X € Atom, a € Act and P € Proc. A production such as (1) specifies
a derwation available to X: atomic process X undergoes action a to become
process P. The notion of derivation may be extended to arbitrary processes
P € Proc in the natural way:

e if P %L P thenP-Q 5P -Q;
e if P %L P thenP|Q S P |Q;
¢ if Q 5Q'then P|Q 5P|Q"

(The last rule adds nothing new, but is included to emphasise the commutative
nature of parallel composition.) If P 2 Q for some action a we say that Q
is an tmmediate derivative of P. We drop the label a from the derivation
P % Q in cases where the associated action a is unimportant.

We write P ~» P*—and say that P* is a derivative of P—if there is some
sequence of processes Py, Py,..., Py such that

P=Py—> Py — > P_1— P =P

the number 1 is the length of the derivation sequence. Note that an immediate
derivative corresponds to the special case | = 1. We shall typically use P’ to de-
note an immediate derivative of P, and P* to denote a (general) derivative. The
collection of all derivations defines a structure known as a labelled transition
system: formally, this is just a labelled directed multigraph on vertex set Proc,
in which there is an edge labelled a from P to P’ precisely when P 5 P’. Note
that the finite set of productions IT may define an infinite labelled transition
system.

When writing PA processes we adopt a couple of conventions: sequential
composition binds more tightly than parallel composition, and exponentiation
is used to denote a parallel composition of several copies of a process, thus

Pk=P|...|P.
—
k copies
The norm ||P|| of a process P € Proc is the length of a shortest derivation
sequence P ~» ¢ if such a sequence exists, and oo otherwise. A process P is
said to be normed if every derivative P* of P has finite norm. Note that if all



atoms X € Act have finite norm, than all processes P € Proc will be normed.
A reduction is a derivation P -5 P’ that reduces norm, i.e., ||P’|| < ||P||; we say
that P’ is an immediate reduct of P. Note that if P % P’ is any reduction
then |[P/|| = [|P|| — 1. A (general) reduct of P is any process P* that can be
reached from P via a sequence of reductions.

Observation 2.1 If P and Q have finite norm, then |[P- Q|| =P | QJ =
P+ 11QIl-

A binary relation R on Proc is a bistmulation if the following conditions
are satisfied:

e for all P,Q,P’ € Proc and a € Act such that P R Q and P 5 P/, there
exists Q' € Proc such that Q 5 Q' and P’ R Q’; and

e forall P,Q,Q’ € Proc and a € Act such that PR Q and Q > Q, there
exists P’ € Proc such that P 5 P’ and P’ R Q’.

The property of being a bisimulation is closed under union, so there is a unique
maximal bisimulation that we shall denote by “~”. Two processes P, Q such
that P ~ Q are said to be bisimilar or bisimulation equivalent. Note that
bisimilarity is well defined for PA, being invariant under rearrangement of
terms, using associativity of sequential composition and associativity and com-
mutativity of parallel composition.

By way of example, suppose Atom = {H, K, X}, Act ={a, b, c}, and TT is the
set of productions

X 35 X3, K S X, H S K| X2
X D¢, K-S KX, HSHIX
Then
H-X~K-X|K-X, (2)

as can be verified by explicit construction of a bisimulation R containing the
pair (H-X, K-X|K-X):

R={((H|X") X (K|xi)-X|(K|Xj)-x>:1,jeN}
{{K X X (KXY XX -X) :i,j € N}
U {((KI X)X, (KXY X XY 1,5 € N}
U {{(XH X XX [ X X) 11,5 € N}
{<X1JrJ X, X' X[ X):1,j € N}
(Xt X, X"y :ie N},

o

It is a routine exercise to check that R satisfies the definition of a bisimulation.
This relatively simple example hints at the technical difficulties that lie at
the heart of the problem of deciding bisimilarity of PA processes: observe that

Bisimulation
relation,
bisimilarity (or
bisimulation
equivalence).

An example of a
pair of bisimilar
processes.
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an equation such as (2) may hold even though the Lh.s. is formally a sequential
composition and the r.h.s. a parallel composition, and even though both sides
are infinite state (i.e., the set of processes reachable from either side is infinite).

The bisimulation relation on PA processes possesses algebraic structure
which is crucial to our decision procedure.

Observation 2.2 Bisimulation equivalence is a congruence under sequential
and parallel composition. That 1s,

P.R~Q-R, R-P~R-Q and P|R~Q]|R,
for all P,Q,R satisfying P~ Q.

Note that Observation 2.2 holds even if the some of the processes involved have
infinite norm.

For normed processes the situation is even better. We say that a normed
process P is a sequential prime (respectively a parallel prime) if it is not bisim-
ilar to any process of the form Py - P (respectively Py | P2) with [|Pq]], [[P2]| > O.
The use of the term “prime” here is justified by the following facts.

Proposition 2.3 Suppose

Py Py Po~Q7-Qp---- Qm,

where the processes Py and Q; are sequential primes of finite norm. Then
n=m, and P; ~Qi, forall T<i<n.

Proof. See, for example, Hirshfeld et al. [7]. O

Proposition 2.4 Suppose

PriP2f. [ Pn~Qi[Q2]...|Qm,

where the processes Py and Qj are parallel primes of finite norm. Then
n =m, and there ezists a permutation 1 of the integers {1,2,...,n} such
that Py ~ Qniy, for all 1 <i<n.

Proof. See, for example, Christensen et al. [4]. O

(The phenomenon of unique decomposability of processes was first noted by
Milner and Moller [10].) Note that Propositions 2.3 and 2.4 require the com-
ponent processes to have finite norm. It is because we make extensive use
of unique decomposition that our decision procedure is restricted to normed
processes.

Note also that Propositions 2.3 and 2.4 imply a converse to Observation 2.2,
which allows cancellation of like components. Thus, if P,Q,R are normed and
P-R ~ Q- R, then P ~ Q. In fact, the cancelled processes do not need to
be equal, merely bisimilar. Similar cancellation rules can be formulated for
the other two cases in Observation 2.2. Cancellation fails for general (possibly
infinite norm) processes.



3 Outline of the decidability proof

The full proof of decidability is long and technically involved, so we offer in
this section a rough guide to its main features.

To motivate the approach, let us attempt to build a (non-deterministic)
decision procedure directly from the definition of bisimilarity. Given a pair or
processes (P, Q), we wish to decide whether P ~ Q. We try all derivations
P 5 P’ (note that there are finitely many) and for each one guess a match-
ing derivation Q % Q’. (By “matching” derivation we mean one for which
P’ ~ Q'.) Symmetrically, for each derivation Q > Q’ we guess a matching
derivation P % P’. Let us call the process of generating all pairs (P’, Q') de-
rived from (P, Q) an “expansion step.” If there exists a derivation P 2 P’ that
is not matched by any derivation Q = Q’ (i.e., Q is incapable of performing
action a), we say the expansion step fails; in this case, we immediately halt
and reject.

Otherwise we consider all the derived pairs of processes (P/, Q’) and apply
the expansion step to them to build a second level of derived processes, and
then a third, and so on. If P ~ Q then the nondeterministic choices can be
made so that no expansion step fails. Conversely, if P £ Q then, eventually,
some expansion step must fail, whatever nondeterministic choices are made.

The main (and only) objection to the above approach is that the derived
processes can grow without limit, so that the procedure will not in general
terminate in the case P ~ Q. We counter this objection by combining the
expansion step with a complementary simplification step that cuts in when the
norm of P and Q becomes larger than the norm of any atom. In this situation,
P and Q must either be sequential or parallel compositions. If P and Q are
of the same kind—both sequential or both parallel—the simplification step is
straightforward. For example, if P = Py-P; and Q = Q1-Q2 with |Pq]| > ||Q1ll,
then we guess a process R with norm ||R|| = [|P1]| — [|Q1]|; then we replace the
pair (P, Q) by the two smaller pairs (P1,Qq-R) and (R-P2,Q2). This is an
appropriate action, since, by unique factorisation,

P~Q < 3R[P1~Qi-RAR-P~Qy].

A similar simplification step is available when P and Q are both parallel com-
positions.

The difficult case for simplification is when (say) P is a sequential compos-
ition, and Q a parallel composition, leading to a so-called “mixed equation.”
For this case we develop a structure theory that classifies the situations when
P ~ Q. The range of possible mixed equations is remarkably rich, and it is this
fact that leads to the technical complexities of the proof. Nevertheless, the clas-
sification can be described with sufficient precision to allow the simplification
step described above to be extended to mixed equations.

An overview of the structure theory is presented in Figure 1. For the few
readers who wish to brave the full proof presented in later sections, we hope Fig-



3 OUTLINE OF THE DECIDABILITY PROOF

Mixed equation:
F-G~Py]...| Py
(choose F to have smallest
possible norm, so that F is not
a sequential composition).

7N

G4 X™ G~ X™

/

Monomorphic equation:
F-(THE-T)™ )~ (F-T),
where F is a “monomorphic FX™~ A XL A Xm | X!

atom” and T is any term (see Theorem 4.2(c

(see Theorem 5.2). / \

X-X~X|X X-XAX|X
Mixed equation with Mixed equation with
a “series parallel tail” a non-series-parallel tail:
(see Section 6). F is an atom
/ \ (see Theorem 8.6).
n=1 > 1
(TIXH - X" ~T-X™| X, Pumpable equation:
where T is any term (Ff |H) - X™~(V|]H)-X™|R
(see Lemma 6.7). where Fq is a parallel prime,

R=Ker . X™ |, . . |Ken-1.X™,
K is an “X-monomorphic term”
and H is a product
of “generalised K-primes”
(see Theorem 7.18).

Figure 1: Outline of the structure theory for mixed equations




ure 1 will provide a useful map; for the majority, Figure 1, taken in conjunction
with the referenced theorems and Section 9, will probably prove sufficient.

4 Mixed equations: preliminaries and normal form

Our procedure for deciding bisimilarity in PA relies on having a complete classi-
fication of the circumstances in which a sequential composition of two processes
can be bisimilar to a parallel composition.

Definition 4.1 A mixed equation is an equivalence of the form
FGPr -] Py, 3)

where P1,...,Pn are parallel primes, and n > 2. We say that (3) is a
minimal mixed equation ¢f ||F|| =1, in this case, F is necessarily an atom of
norm one, or unit. We reserve the letters X, Y and Z to stand for units.

QOur basic normal-form theorem for mixed equations follows after technical
lemma.

Lemma 4.1 Let T =Py | P2 | --- | Py be a decomposition of a process T
into parallel primes. If all the immediate reducts of T are bisimilar to
each other then Py ~Py~---~Py ~P, t.e.,, T~P" is a (parallel) power.
Furthermore, P has a unique immediate reduct (up to bistmulation).

Proof. Let T' be the unique immediate reduct on the Lh.s., so that T — T’
with [[T’|| < [[T||. Let P; and P; be two factors on the r.h.s., and P — P/,
P— Pj’ be two immediate reducts. By assumption,

Pyl I P{I | Pyl [ Pr~ Pyl [Pl oo | P | Py,

and, by unique decomposition, P{ | P; ~ P; | Pj’. The prime process P; is either
bisimilar to the prime P; or to a component of P/, and, since [[P/|| < |[Pill,
we must conclude the former. The final part of the lemma is again an easy
consequence of unique factorisation. O

Theorem 4.2 (a) In a minimal mized equation, all the components on the
r.h.s. are bistmilar to each other:

Y-G~P" and G~P/|PV (4)
where P’ s the unique reduct of P.

(b) Every mized equation can be reduced to a minimal mized equation,
which s unique up to bisimilarity.

Mixed equation,
minimal mixed
equation, unit.

Normal-form
theorem for
mixed equations.
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(c) If |[F]| > 1 then there is a unit X such that G ~X™, and each compon-
ent Py s bistmilar either to X or to a sequential composition of the
form A -X™ (the same m as in the decomposition of G). Thus the
normal form for mized equations with ||[F|| > 1 s

F-X™~ A - XM | A - X™ X (5)

(d) The minimal equation obtained by reducing equation (5) s
Y. X™~ XM (6)
where Y 15 a unit.

(e) Every immediate derivative of X is bisimilar either to some power
of X, or to a sequential composition B-X™ (the same m as in the
decomposition of G). In particular, tf m > max{||[X'||: X — X'}, then
every derwative of X s bisimilar to a power of X.

Proof. If |[F|| = 1 in equation (3) then F- G has a unique immediate reduct.
By Lemma 4.1, the r.h.s. of equation (3) is a power. This gives part (a) of the
lemma.

If ||F|| > 1 then reduce the r.h.s. for [|[F||— 1 steps, always selecting a com-
ponent of largest norm. No component will disappear before they are all of
norm 1, so that by the time the L.h.s. becomes Y - G, with Y a unit, the r.h.s.
is still a parallel composition. Since the only immediate reduct on the Lh.s. is
G, we conclude from Lemma 4.1 that the r.h.s. is a power:

Y.-G~Q" and G~Q'|Q™ . (7)

If an alternative derivation sequence leads to Y- G onthelhs. and a parallel
composition on the r.h.s., where Y is a unit, then, for the same reasons,

Y.-G~Q" and G~Q’|Q"".

Comparing the two expressions for G we see that Q ~ Q and n = 1, since Q
and Q are both parallel primes. But then Y ~ Y also, by unique sequential
decomposition of Q™ ~ Qﬁ. This proves (b).

If |[F|] > 1, then in reducing F to Y the final step was F* — Y, so that the
original equation evolved into

F'G~Qr1Qzl---1Qy, (8)

where we assume that the r.h.s. is fully factorised. Note that r > 2, since the
reduction was done in such a way as to preserve the parallel composition. By
part (b), any reduction on the r.h.s. of (8) that retains its parallel form leads
to minimal equation (7). Without loss of generality, we assume that Q1 — Q]
reduces (8) to the minimal equation, so that

Q1 1Qzl---1Qr~Q™
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Hence Q; ~ Q. We shall show that ||Q|| = 1. Assume to the contrary that
IQ|l > 1. Then reducing Q; in equation (8) also retains the parallel form on
the r.h.s., so that also

QrlQz2l--1Q:~QT,

which is impossible, since ||Q)|| < [|Q|| and Q is a parallel prime. Thus Q is a
unit and we denote it by X. Clearly, G ~ X™, where m = ||G|| and the original
equation (3) becomes

F-X™~Py| | Py

For each P; we may eliminate on the right all the components except P;. If
IIPi]l < m we end up with X* ~ P;, for some k < m; and if ||P;]| > m with
F* . X™ ~ P;. This proves (c), with the component X' accumulating all the
components P; with ||Pi|| < m.

Part (d) is an easy exercise: reduce each A; on the r.h.s. to ¢, and then
reduce X’s as necessary.

Finally, starting with equation (6), we analyse the possible derivatives of X.
Assume that X — X', so that X™! — X’ | X™ on the r.h.s. of (6). The Lhus.
follows with Y- X™ — Y’.X™, Hence Y'-X™ ~ X’ | X™. Now eliminate the X™
on the right to obtain either Y* - X™ ~ X’ or X* ~ X/, for some k < m. This
completes part (e), and the proof of the lemma. O

5 Monomorphic equations

The analysis of mixed equations of form (5), in which G is a power of a unit,
requires considerable work, which we leave to later sections. In this section we
analyse the complementary case, which turns out to be much more tractable.
By Theorem 4.2(c), we already know that |[F|| = 1; however, more can be said.

Definition 5.1 We say that an atom s monomorphic if Y — Y’ implies
Y ~Y or Y ~e.

Since Y is normed, |[Y|| =1, so that only units may have this property.

Observation 5.1 [t is easy to decide if an atom is monomorphic, and if
two monomorphic atoms are bisimilar. For convenience, we may modify
the productions, keeping only one atom from each equivalence class (un-
der bisimilarity) of monomorphic atoms, so that the only deriatives of a
monomorphic atom Y are Y and €.

If Y is monomorphic then, for every term T and every n > 2, the following
mixed equation holds:

Y (THY-TV ) ~(Y-T)™ (9)

Definition 5.2 An equation of the form (9), with Y a monomorphic atom,
1$ called a monomorphic equation.

Monomorphic
atom.

Monomorphic
equation.
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We shall see that this family includes all instances of mixed equations that are
not of the form (5).

Theorem 5.2 If G ts not bistmilar to the power of a unit, then the mized
equation F-G ~ Py |---| Pn must be monomorphic: F is a monomorphic
atom, Py~P ~F-T for some fited T, and G~T| (F-T)™ .

Proof. Since G is not the power of a unit, we know from Theorem 4.2(c) that
I[F]l = 1, and from Theorem 4.2(a) that the r.h.s. is a power of some parallel
prime P, ie., F- G ~ P". Moreover, P has a unique reduction P — P’, leading
to G~ P’ | P" . Assume that F —>f74 €, so that F- G — F-G. The r.has. of
the mixed equation responds with P — ﬁ, leading to

F-G~P|P .

Since this is again a mixed equation, and G is still not a power of an atom,
we again conclude that ||?H = 1, and the r.h.s. is a power with ||§|| = [|P]|.
Necessarily, P~ P, so that the r.h.s., and hence the Lh.s., remains the same, up
to bisimilarity. Thus T~ F, and F is monomorphic. Note that our analysis also
showed that if F — F then P — P, and if F — ¢ then P — P’; and since F has
no other move, P has no other move. It is therefore easy to see that P ~ F- P’.
Thus every mixed equation is either of form (5) or (9). O

As a corollary, we have a result that helps us analyse the situation when F
in equation (5) is a sequential composition. (The bulk of the structure theory
is concerned with the case of a parallel composition.)

Corollary 5.3 Consider the mized equation
(F1-F2) - X~ Ay - X™ |- | Ap - XM XY (10)

where the r.h.s. is a non-trivial (n + 1 > 2) parallel prime decomposition.
One of the following two situations obtains:

o F2-X™ ~ X™E gnd Ay -X™ ~ Bi-X™ (with appropriately chosen By ),
so equation (10) is equivalent to

F1 'Xm+k~B1 'Xm+k|"'|Bn'Xm+k|Xl;
e equation (10) is monomorphic, t.e.,
Fy- (F2- X™) ~ (A - X™)T,

where Fy is a monomorphic atom, A ~Fi-A’ (where A’ is the unique
reduct of A ), and

Fo - X™~ A X™ ] (A-X™)
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Proof. Setting G = F, - X™, equation (10) becomes
F1-G~A71 - X" [An - X™ | X\ (11)

If G is bisimilar to a power of a unit, say G ~ Y™ % where k = ||F,||, then
after some reductions, we discover that Y ~ X. Starting with F; - X™* on the
Lh.s. and eliminating all but A; - X™ on the r.h.s., we get F% - X™ ~ A; - X™.
(Note that [[Fj]| > O since A;-X™ is a parallel prime.) This deals with the first
possibility.

If G is not bisimilar to a power of a unit, then equation (11) is a mono-
morphic equation by Theorem 5.2. Necessarily, A;-X™ is the P of Theorem 5.2,
and F; the F of that theorem. O

6 Mixed equations with a series-parallel tail

If X is monomorphic then X - X ~ X | X. This equation may also arise when X
is not monomorphic, e.g., if X is defined by the transition rules

X%e XBX-X, and XSXI|X
This breeds some more mixed equations, such as
(A]X)-X>~A-X| X,

where A is any term.
Before classifying such equations, we shall present some useful alternative
formulations of the “series-parallel” property X - X~ X | X.

Definition 6.1 For any atom X, an X-term is a term built from the atom X
using the operations of sequential and parallel composition. An extended
X-term s a term that is bistmilar to an X-term.

For any term T and action a € Act, denote by 84(T) the set
54(T) = {k : there exists T’ such that T = T/ and ||T|| — ||T|| = k}. (12)

Lemma 6.1 Let T # ¢ be an eztended X-term. Then:
(a) 54(T) =084(X), for all a € Act;

(b) if all the immediate deriwatives of X are extended X-terms, then all
the immediate derivatives of T are extended X-terms.

Proof. For T an X-term, the claims are proved by structural induction. For T
an extended X-term, part (a) holds because bisimulation preserves norm, and
part (b) follows immediately from the definition of extended X-term. O

Lemma 6.2 Let X be an atom. The following are equivalent statements of
the series-parallel property:

X-term, extended
X-term.
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(i) X-X~XI[X;
(1) every deriwative of X ts an extended X-term;
(i11) two (extended) X-terms are bisimilar iff they have the same norm;
(wv) X satisfies a mized equation
F- XM~ Ay - XM Ap - XM X

(n may be 0), where m s bigger than the norm of any immediate
derwative of X.

Proof. The equivalence of (i)—(iv) follows from the sequence of entailments:
(1) = (1), (i) = (1), (ii) = (1), (i) = (iv) and (iv) = (ii).

(1) = (ii): Assume to the contrary that X ~» T, where T is the derivative
with smallest norm that is not an extended X-term. The sequence of moves
X | X~ X|T on the r.h.s. is matched on the Lh.s. by a sequence of moves
X ~ S such that S-X ~ X | T. (Note that the first X on the Lh.s. cannot
disappear.) We now eliminate X to get S’- X~ T. Since X~ S’ and [|S’|| < [[T]|
we conclude that S’ is an extended X-term. But then so is S’ - X and hence T,
a contradiction.

(i) = (iii): Observe that, by Lemma 6.1, the relation

{(T, S)[ITI=1Sll, and T and S are both extended X—terms}

is a bisimulation.

(iii) = (1): This entailment is immediate.

(iii) = (iv): This follows from the equation X™ - X™ ~ X™ | X™, which
holds for arbitrarily high m.

(iv) = (ii): This is just Theorem 4.2(e). O

Corollary 6.3 Suppose X is a series-parallel atom, so that X - X ~ X | X.
Then:

(a) if T is an eztended X-term then T~ XTI,

(b) every subterm of an extended X-term is an extended X-term.

Proof. Part (a) is a special case of the equivalence of (i) and (iii) in Lemma 6.2.
Suppose that T is a minimal counterexample to part (b). If T =Ty - T, then
by the equivalence of (i) and (iii) in Lemma 6.2,

T~X-X- X,
-
[IT|| copies
so by unique sequential decomposition,

TT~X-X---..X and Th,~X-X-----X:
_— _—

[|T1]] copies [|T2|| copies



15

STEP 1: Let A(X) be the set of all atoms occurring as subterms in deriv-
atives of X. Compute A(X) by forming the transitive closure of the
following binary relation on atoms:

{(U,U’): U’ is a subterm in an immediate derivative of U}.

STEP 2: Test, for all atoms U € A(X) and all actions a € Act, whether
Sa(U) = 8a(X), (13)

where 0, is as defined in (12); accept if equality (13) holds for all
choices of U and a, and reject otherwise.

Figure 2: A procedure for deciding X- X ~ X | X.

a contradiction to minimality. Similarly, if T = Ty | T then T ~ X"l and
hence, by unique parallel decomposition, Ty ~ XMl and T, ~ XI™I: again a
contradiction. O

In the light of Lemma 6.2 and Corollary 6.3, the series-parallel property
ought to be easy to test. This is indeed so, and Figure 2 presents a decision
procedure.

Lemma 6.4 The algorithm in Figure 2 correctly decides X - X ~ X | X.

Proof. First suppose X is series-parallel, i.e., X- X ~ X | X. For every U € A(X)
there is, by definition, some derivative T of X which contains U as a subterm.
By the equivalence of (i) and (ii) in Lemma 6.2, T is an extended X-term,
and hence, by Corollary 6.3, U ~ XYl Thus equality (13) is satisfied for all
U € A(X) and a € Act, and the procedure accepts.

Conversely, suppose that the procedure accepts, so that equality (13) holds
for all U € A(X) and a € Act. It is easy to check that the relation

{(T, XTIy T is a term such that X ~ T}

is a bisimulation. Thus X is series-parallel by the equivalence of (i) and (ii) in
Lemma 6.2. O

Definition 6.2 Let T be a term. The X-norm ||T||x of T is the length of the
shortest norm-reducing sequence T ~» S, where S is an extended X-term.
(Note that every step in the sequence is required to reduce the usual norm.)
An (immediate) X-reduction of a term T is an (immediate) deriwation T —
S that decreases both the (usual) norm and the X-norm, t.e., [|S|| < |[T]|
and [|Sllx < |[Tllx. In this case, we say that S is an (immediate) X-reduct
of T.

X-norm,
X-reduction,
X-reduct.
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Note that if T is an extended X-term then [|T||x = 0; otherwise, T has finite X-
norm |[T||x < ||T|| and there is at least one X-reduction of T. (The X-reduction
necessarily reduces both norms by 1.)

Observation 6.5 The X-norm has similar properties to the norm:
(a) of T~S then [[Tllx =ISlx;
(6) IIT [ Slix = IITlx +[ISlx;
(c) IIT-Slix = IITllx + [ISlx;
(@) [IT-Sllx =ITllx «f S s an X-term, in particular, in the equation
FeX™~ A X™ ] [ An - X™ X
we have [[Fllx = [|A1]lx + - -+ [[Anllx.

Definition 6.3 If |K|lx = 1 we say that K is an X-unit. A term T is X-
free if its decomposition into parallel primes does not contain a component
bisimilar to X, t.e., T cannot be expressed in the form T ~S | X for some S.
We reserve the letter K (possibly subscripted) to stand for an X-unit.

Note that an X-unit may have norm greater than one, and is not in general an
atom. The following lemma is a major tool in our analysis.

Lemma 6.6 Suppose X is series-parallel, i.e., X - X~ X|X.

(a) If K s an X-unit then it has a unique (up to bisimilarity) X-reduct K’;
necessarily K’ is an X-term and hence K’ ~ X/IKI=T,

(b) Suppose T ~ Py |P2|---|Pn ts a decomposition of a process T into
parallel primes. If T is X-free and has a unique X-reduction (up to
bisimilarity) then Py ~Py~-- -~ Pyp.

Proof. To see part (a), observe that all the X-reductions of K lead to an exten-
ded X-term with norm ||K|| — 1; by Corollary 6.3, all such terms are bisimilar
to XI®I=T and hence to each other.

For (b), note that each P; has positive X-norm and a (unique) X-reduct P/.
By assumption,

PII- I Pl Py~ Py | oe | PL s P,

for all i. By unique decomposition, P{ | Py ~ Py | P{, and P; is a parallel
component of P; | P;. Since |[P1]| > [[P{l| and Py and P; are prime, Py ~P;. O

The sample mixed equation that opened the section is a special case of a general
pattern.



17

Lemma 6.7 Suppose X is series-parallel. For every term T, and every i
and m:
(TIXY) - X™~T-X™ | X (14)

Proof. If S is an X-term then S-X™ ~ X™ | S, by the equivalence of (i) and (iii)
in Lemma 6.2. Hence the relation

{{((T]S)-X™,T-X™|S):S is an X-term and T is an arbitrary term}

is a bisimulation. O

7 Pumpable equations

In this section we explore the series-parallel case further. Recall that, in the
generic mixed equation (5), n stands for the number of components with pos-
itive X-norm on the r.h.s., and F denotes the first (sequential) component on
the Lh.s. Lemma 6.7 gives a potentially infinite family of mixed equations with
n = 1; as we shall see, there may be other infinite families of mixed equations
with n > 2.

Since Corollary 5.3 enables us to handle the cases where F is a sequen-
tial composition, we concentrate in this section on classifying the situations in
which F is a parallel composition. It turns out that equations of this kind—the
“pumpable equations” of the section title—have a rich and interesting struc-
ture.

Definition 7.1 Suppose X is series-parallel. A pumpable equation ts a mized
equation of the form

(Fyl-o | F) o XM~ Ao X™ e | A - XM XY (15)

where v > 2, n+1 > 2, and F; and A; are X-free for 1 < i <1 and
1<j<n.

The appropriateness of the terminology “pumpable equation” will become ap-
parent towards the end of the section. Note that the assumption that F; and
A; are X-free is harmless: by Lemma 6.7, if A; ~ /A\j | X then the factor X can
be pulled out and incorporated into the X' component. Similarly, if F; ~ fi | X
then, again by Lemma 6.7, X can be pulled out and cancelled with an X on the
right (which must exist by unique decomposition).

In retrospect, the r.h.s. of (15) is a little too general, as X cannot in fact
occur as a factor. For suppose 1 > 0; then we may apply the reduction X — ¢
to the r.h.s., which, without loss of generality, is matched by F; — F] on the
Lhs.:

(Fi | I Fe) o XM~ Ag - X e [ A XM X,

Then (parallel) composing both sides with X, and applying Lemma 6.7:
(FIX) TRz TR - X~ A X e A - XX

Pumpable
equation.
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By unique factorisation, F; ~ F; | X, contradicting X-freeness of Fy. We record
this information for future reference.

Observation 7.1 In a pumpable equation, n (the number of parallel com-
ponents with positive X-norm on the r.h.s.) is at least two, and 1 (the
number of occurrences of X as a factor) is zero.

7.1 Basic facts

With the ultimate aim of brevity in mind, we slightly extend one of our earlier
definitions.

Definition 7.2 Suppose T ts an X-free term. We say that an X-free term
S 15 an X-simplification of T, and write T —x S, tf there is an X-reduction
T T'~S|X for some i (possibly zero). An X-simplification of an equa-
tton Ty ~ T2 s a second equation S1 ~ Sy obtained by applying bistmilarity-
preserving X-simplifications Ty —x S1 and To —x Sy to the two sides. A
pumpable equation ts minimal if no X-simplification of it is a pumpable
equation. The X-valence of a term T is the number of distinct (up to
bisimulation equivalence) X-simplifications of T.

In operational terms an X-simplification of a pumpable equation may be
achieved in three steps: (i) apply X-reductions to both sides, (ii) pull any
parallel X components to the outer level using Lemma 6.7, and (iii) cancel any
parallel X components that are common to the two sides.

Lemma 7.2 The form of pumpable equations is constrained as follows.
(a) There are no pumpable equations with X-norm less than three.

(b) There are no pumpable equations with a product of X-units on the
Lh.s., te., with |[Fllx =1, forall 1<i<r.

(c) Every pumpable equation may be transformed by a series of X-simpli-
fications to a minimal pumpable equation of X-norm three. This min-
imal equation is necessarily of the form

(FIK) - X™~K2-X™ K- X™, (16)
with |[Fllx =2 and |[K|lx =1.

Proof. A pumpable equation trivially has X-norm at least two. To achieve this
value, the equation would need to have the form