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Abstract. Investigating soundness and completeness of verification calculi for
imperative programming languages is a challenging task. Incorrect results have
been published in the past. We take advantage of the computer-aided proof tool
LEGOto interactively establish soundness and completeness of both Hoare Logic
and the operation decomposition rules of the Vienna Development Method with
respect to operational semantics. We deal with parameterless recursive proce-
dures and local variables in the context of total correctness.
In this paper, we discuss in detail the role of representations for expressions,
assertions and verification calculi. To what extent is syntax relevant? One needs
to carefully select an appropriate level of detail in the formalisation in order to
achieve one’s objectives.

1 Introduction

We have taken advantage of the LEGO system (Lego 1998) to produce
machine-checked soundness and completeness proofs for Hoare Logic
and the operation decomposition rules of the Vienna Development Method
(VDM). Our imperative programming language includes (parameterless)
recursive procedures and local variables. We consider static binding and
total correctness. This is one of the largest developments in LEGO to date.
Building on a comprehensive library it additionally consists of more than
800 definitions, lemmata and theorems.

Our message to the designers and researchers of verification calculi
is that conducting computer-aided soundness and completeness proofs
is both a feasible and profitable task. Our fundamental contribution has
been to highlight the role of auxiliary variables in Hoare Logic. Usually,
assertions are interpreted aspredicates on stateswhere free variables de-
note the value of program variables in a specific state. Variables for which
no counterpart appears as a program variable in the program under con-
sideration then take on the role of auxiliary variables. They are required
to relate the value of program variables indifferentstates.
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Our view of assertions emphasises the pragmatic importance of aux-
iliary variables. We have followed a proposal by Apt & Meertens (1980)
to consider assertions asrelations on states and auxiliary variables. Fur-
thermore, we stipulate a new structural rule to adjust auxiliary variables
when strengthening preconditions and weakening postconditions. This
rule is stronger than all previously suggested structural rules, including
Hoare’s (1969) consequence rule and rules of adaptation. As a direct con-
sequence of the new treatment of auxiliary variables,

– we were able to show that Sokołowski’s (1977) calculus for recur-
sive procedures is sound and complete if one replaces Hoare’s rule
of consequence with ours. In particular, none of the other structural
rules introduced by Apt (1981) (which lead to a complete but unsound
system) are required.

– We have clarified the relationship between Hoare Logic and its vari-
ant VDM. We were able to show that, contrary to common belief,
VDM is more restrictive than Hoare Logic in that every derivation in
VDM can be naturally embedded in Hoare Logic.

Deep versus Shallow Embedding.Traditionally, one defines syntax for
expressions and relative to this setup, one characterises syntax of a pro-
gramming language and syntax of an assertion language. Then, one de-
scribes the meaning of every syntactic construct. This approach is known
asdeep embedding. Alternatively one may shortcut this process and iden-
tify the syntactic representation with its denotation. This technique is
known asshallow embedding.

Related Work. The pioneering work on machine-checked soundness
for Hoare Logic by Gordon (1989) rests entirely on shallow embedding.
Homeier (1995) extends the soundness proof to a setting with mutually
recursive procedures. His encoding is based exclusively on deep embed-
ding. Nipkow (1998) has been the first to conduct a machine-checked
completenessproof for Hoare Logic dealing with simple imperative pro-
grams in the context of partial correctness. This contains a mixture of
shallow and deep embedding. Using similar representation techniques
we have extended this work to recursive procedures and local variables.



Metatheory of Verification Calculi in LEGO 3

1.1 To What Extent Does Syntax Matter?

Before deciding on the embedding technique, one ought to clarify the
objectives of the machine-assisted development. This induces the level
of detail in which one needs to analyse involved concepts. One of the
central issues in formalising metatheory is to what extent syntax needs
to be formalised. Technically, one has a choice of deep versus shallow
embedding.

A shallow embedding cuts down the work load and is therefore, at
least for machine-checked developments, often the preferred approach.
The drawbacks of shallow embedding are that

1. one can not exploit the inductive (syntactic) structure to prove prop-
erties.

2. The representation of concrete examples is often more difficult to
comprehend.

As the main contribution of this paper, we clarify the role of deep
versus shallow embedding. In the setting of Hoare Logic, the choice of
the level of embedding has a major influence in the work involved in set-
ting up an appropriate theory of substitutions. One needs substitutions on
states, expressions and assertions. With a shallow embedding of expres-
sions and assertions, substitutions can be expressed in terms of substitut-
ing the state space.

We have investigated the metatheory of verification calculi. It wasnot
our aim to show that a proof tool such as the LEGO system is suitable to
verify concrete programs. Therefore, the second drawback was of little
concern to us. Our strategy has been to employ a shallow embedding
whenever possible.

However, one needs to pursue soundness by induction on the struc-
ture of programs whereas completeness is conducted by induction of the
derivation of correctness formulae. Hence, in light of the first drawback
of a shallow embedding, one needs to insist on a deep embedding for pro-
grams and the notion of deriving correctness formulae. The main benefit
of employing a shallow embedding for investigating the metatheory of
verification calculi are that

– we did not have to worry at all about substitutions in assertions; an
otherwise daunting prospect (Mason 1987, Homeier 1995).
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– Completeness can only be established for an assertion language which
is sufficiently expressive to denote all intermediate properties such
as invariants. Employing a deep embedding of assertions, one would
need to additionally explicitly construct syntactic representations for
all possible intermediate assertions.

1.2 Overview

The outline of this paper is as follows. We first formalise the notion of a
state space. We then sketch our embedding of expression, assertions and
imperative programs. In Sect. 7 we discuss semantics and derivability
of Hoare Logic. We motivate new rules for loops and adjusting auxil-
iary variables. We argue that in investigating soundness and complete-
ness of verification calculi, one should gloss over the syntactic details
of expressions and assertions. Formalising substitutions is irrelevant. We
will show in Sect. 6.3 that, at least for simple imperative programs, in the
soundness and completeness proof, one does not need to appeal toany
property of a substitution function.

In Sect. 7 we show that the metatheory for verification calculi dealing
with local variables is more subtle. Not only is it essential to have an ad-
equate substitution function (on the level of states), it is also necessary to
employ anextensionalnotion of equality. This requires some attention,
as type-theoretic systems such as Coq and LEGO are tailored to aninten-
sional type theory. The case of VDM is similar and not covered in this
paper.

2 The State Space –
An Example of a Dependent Type Space

The state space records the value of every program variable. LetVAR
be the type of program variables. Previous mechanisations only consider
the case of a single data type, namely natural numbers. In a type-theoretic
setting, it seems natural to investigate multiple sorts. We identify the uni-
verse of data types with the universe of all types expressible in LEGO.
The type of variables can be declared by providing a function

sort :VAR → Type .
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A stateσ for a type environment sort is a function mapping program
variablesx to values of type sort(x). The state space itself is therefore a
dependent function space:

Definition 1 (State Space).Σ def= ∏x : VAR ·sort(x)

We have implemented a substitution operation ondependentfunctions
which satisfies the specification

σ [x 7→ t] (y) =

{
t if x = y,

σ(x) otherwise.
(1)

This requires quite sophisticated type theory. See (Kleymann 1998) for
details.

3 Expressions

Boolean expressions occur in loops and conditional statements. Other
types of expressions depend on the data types expressible in the language
and occur both as subexpressions of boolean expressions and in the as-
signment statement. One may define the syntax of expressions by a BNF
grammar.

Example 1 (Syntax of Expression).Homeier & Martin (1996) define two
classes of expressions

e ::= n | x |++x | e1 + e2 | e1−e2

b ::= e1 = e2 | e1 < e2 | b1∧b2 | b1∨b2 | ¬b

We will only consider expressions without side-effects1 and do not deal
with the expression++x. The semantics can thus be easily fixed deno-
tationally and is determined by an interpretation functionI and a stateσ.
An interpretation determines the value of constants such as 0,+, ∧ and
(free) variables in expressions and logical formulae e.g.,[[x]](I (σ)) def=
I
(
σ(x)

)
. Whenever we come across a boolean expression in a loop or

a conditional statement, we are only interested in the value it evaluates
to, true or false. Similarly, in an assignment, we treat evaluation of the

1 Such a strict distinction between expressions and commands is one of the fundamental princi-
ples underlying idealised Algol (Reynolds 1982).



6 Thomas Kleymann

expression as atomic, merely a value depending on the state space. We
are not interested in syntactic properties such as whether one expression
is a subterm of another expression. Ignoring the syntax of expressions
paves the way towards a reasonable level of abstraction when investi-
gating properties of verification calculi for imperative programs without
side-effects.

Furthermore, we are only interested in the standard interpretation2

of constants. Hence, the state space alone determines the semantics. We
only consider expressions at this semantic level:

Definition 2 (Expressions – Shallow Embedding).Given an arbitrary
type T, we represent expressions by

expression(T : Type) def= Σ→ T .

Let e: expression(T) be any expression. Its evaluation depends on a con-

crete snapshot of the state spaceσ : Σ We defineeval(σ)(e) def= e(σ).

A benefit of adopting shallow embedding is that we do not have to
worry about formalising the syntax in a logical framework. Working on
the metatheory, one never encounters a concrete expression! Moreover,
substitutions are much easier to deal with at the semantic level. It can be
defined in terms of updating states:

Definition 3 (Updating Expressions – Shallow Embedding).

e[x 7→ t] (σ) def= e(σ [x 7→ t])

In a deep embedding, one would need to define an interpretation and
substitution function by induction on the structure of expressions and
provethe substitution lemma

[[e[x 7→ t]]](σ) = [[e]](σ [x 7→ t]) .

An advantage of deep embedding is that, for concrete expressions, sub-
stitutions are more palatable. Consider the syntactic substitution

(x∗y) [x 7→ 3] .
2 This not only simplifies the encoding, it also avoids the problematic issue of how to axiomatise

the class of acceptable interpretations. In particular, incompleteness results of Hoare Logic
e.g., (Clarke Jr. 1979), exploit setups withnon-standardinterpretations.
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Due to the recursive definition of updating, this should reduce to 3∗y. In
the shallow embedding, we would instead have

λσ ·
((

λσ ·σ(x)∗σ(y)︸ ︷︷ ︸
[[x∗y]]

)
(σ [x 7→ 3])

)
(2)

which (β-)reduces toλσ ·
(
σ [x 7→ 3] (x) ∗σ [x 7→ 3] (y)

)
. This is equiva-

lent to

λσ ·3∗σ(y) (3)

Unfortunately, the LEGO system offers little support for reducing (2)
to (3). In concrete examples, this leads to excessively large proof obli-
gations. Computer-aided verification becomes unfeasible3.

4 Assertions

Traditionally, assertions are considered to be simply formulae of first-
order logic, which are interpreted in the usual way, except that the value
of variables is determined by a state. Semantically, from a type-theoretic
point of view, assertions are the particular class of expressions over propo-
sitions i.e., expression(Prop). Instead of first-order logic it is convenient
to exploit the native logic of the theorem prover. This encoding has been
adopted in (Gordon 1989, Nipkow 1998).

Our novel approach to Hoare Logic has been to give a more rigorous
treatment of auxiliary variables. They are required at the level of specifi-
cation to relate the value of variables in different states as assertions may
otherwise only relate the value of program variables in asinglestate.

At the syntactic level, one would need to (formally) distinguish be-
tween program variables and auxiliary variables. One could for exam-
ple enforce that program variables have to start with a lower-case letter,
whereas auxiliary variables must start with an upper-case letter. To be
well-formed, programs may only refer to program variables.

3 In a verification of the recursive algorithm Quicksort we had not manually intervened in reduc-
ing substitutions. For the correctness proof, LEGOhad to run for more than 37 hours requiring
more than 80MB on a SUN SPARC station 20 with sufficient physical memory to avoid swap-
ping. In comparison, on the same architecture, the completeness proof for Hoare Logic dealing
with recursive procedures and local variables could be dealt with in less than 15 minutes re-
quiring less than 25MB. In both cases, we started LEGOin the empty environment.
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Semantically, program variables are, as before, interpreted according
to the state space. However, auxiliary variables are interpreted freely. Let
T be the domain of this interpretation.

Definition 4 (Assertions – Shallow Embedding).

Assertion(T : Type) def= (T×Σ)→ Prop

Example 2.Let T = {X,Y} → int. Relative to an interpretationZ : T
and a stateσ, we interpret[[0≤ y∧x = X∧y = Y]](Z,σ) = 0≤ σ(y)∧
σ(x) = Z(X)∧σ(y) = Z(Y).

Due to the shallow embedding we may update assertions analogue to
expressions by relaying the work to updating the state space. In practice
we only need to update the value of program variables but not auxiliary
variables. Letp be an assertion.

Definition 5 (Updating Assertions – Shallow Embedding).

p[x 7→ t] (Z,σ) def= p(Z,σ [x 7→ t]) .

Analogue to expressions, in a deep embedding, one would need to ad-
ditionally represent syntax for assertions, define an interpretation and a
syntactic substitution function. Then, one would need toprovethe sub-
stitution lemma

[[p[x 7→ t]]](Z,σ) = [[p]](Z,σ [x 7→ t]) .

5 Imperative Programs

A shallow embedding of a non-trivial imperative programs is problem-
atic for a strongly-types proof system such as LEGO. An imperative pro-
gramSmay not terminate. Hence, the denotation ofS is apartial func-
tions on the state space,[[S]] : Σ⇁ Σ. However, LEGO only supports total
functions. To avoid partiality, one may move to relational denotational
semantics[[S]] : (Σ×Σ)→ bool, see (Gordon 1989) for an example.

In any case, to formally prove soundness within a logical framework,
one needs to pursue induction on the structure of programs. Thus, one
has to select a deep embedding strategy for the imperative programming
language. For the purpose of this section, we consider a (very) simple
imperative programming language consisting of assignments and loops.
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Definition 6 (Syntax of Imperative Programs – Deep Embedding).
Imperative programs S: prog are defined by the BNF grammar

S::= x:= t |while b do S

where x: VAR , t : expression(sort(x)) and b: expression(bool).

We employ structural operational semantics which provides a clean
way to specify the effect of each language constructor in an arbitrary
state. It relates a program with its initial and final state.

Definition 7 (Structural Operational Semantics).The operational se-

mantics is defined as the least relation.
. - .⊆ Σ×prog×Σ

satisfying

σ
x:= t - σ [x 7→ eval(σ)(t)] (4)

σ
while b do S- σ providedeval(σ)(b) = false .

σ
S - η η

while b do S- τ

σ
while b do S- τ

providedeval(σ)(b) = true .

Intuitively, σ
S - τ denotes that the programSwhen invoked

in the stateσ will terminate in the stateτ.

6 Semantics and Derivability of Hoare Logic

Hoare Logic is a verification calculus for deriving correctness formulae
of the form{p}S{q} for assertionsp, q and programsS. We consider
total correctness. Intuitively{p} S{q} specifies that, providesS is ex-
ecuted in a state such that the preconditionp holds, it terminates in a
stateτ where the postconditionq is satisfied. One distinguishes between
the semantics of a correctness formulae|=Hoare{p} S{q} (which for-
malises the above intuition) and the notion of deriving a correctness for-
mulae`Hoare{p} S{q} (which is employed in order to verify concrete
programs). We refer the reader to (Cousot 1990) for a comprehensive
overview of Hoare Logic.
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Definition 8 (Semantics of Hoare Logic).Parametrised by an arbitrary
type T, let|=Hoare{.} . {.} ⊆ Assertion(T)×prog×Assertion(T) be a
new judgement defined in terms of the operational semantics

|=Hoare{p} S{q} def=∀Z · ∀σ · p(Z,σ)⇒∃τ ·σ S - τ∧q(Z,τ) .

Based on work of Floyd (1967), Hoare (1969) proposed a verification
calculus for partial correctness, now referred to as Hoare Logic. For ev-
ery constructor of the imperative programming language, Hoare Logic
provides a rule which allows one to decompose a program. The precon-
dition of the assignment axiom

{p[x 7→ t]} x:= t {p}

is, at least for simple imperative programs, the sole reason for having to
bother about updating assertions!

Programs mentioned in the premisses are strict subprograms of the
programs mentioned in the conclusions. Unlike the operational seman-
tics, this also holds for loops.

{p∧b}S{p}
{p} while b do S{p∧¬b} (5)

One also needs a structural rule to weaken the precondition and strengthen
the postcondition is a proof obligation.This is particularly useful when
one wants to apply the rule for loops as the precondition must remain
invariant with respect to the body of the loop.

{p1} S{q1}
{p} S{q} providedp⇒ p1 andq1⇒ q. (6)

6.1 Total Correctness

To ensure termination, the rule for loops (5) needs to be modified. We in-
troduce a termination measureu : expression(W) for some well-founded
structure(W,<) which is decreased whenever the body is executed:

∀t : W · {p∧b∧u = t}S{p∧u< t}
{p} while b do S{p∧¬b}
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A similar rule for verification calculi where postconditions may explicitly
refer to the value of program variables in the initial state e.g., VDM, has
been put forward by Manna & Pnueli (1974). Variants of this rule tailored
for W = nat (Harel 1980) orW = int (Apt & Olderog 1991) have also
been published previously. We prefer the well-founded version, because
it simplifies the completeness proof without any impact on the soundness
proof (Kleymann 1998). It is well known that in practice, it is often easier
to reason about termination using well-founded sets rather than being
restricted to natural numbers (Dershowitz & Manna 1979).

6.2 Auxiliary Variables

Furthermore, we have strengthened the rule of consequence (6) so that
one may adjust auxiliary variables when strengthening preconditions and
weakening postconditions. Letx be a list of all program variables andZ
be a list of all auxiliary variable.

{p1} S{q1}
{p}S{q}

provided∀Z · ∀x· ∃Z1 ·
(
p⇒ (p1 [Z 7→ Z1])

)
∧
(
∀x· (q1 [Z 7→ Z1])⇒ q

)
Example 3 (Auxiliary Variables).With this rule (but not Hoare’s (6)), the
two correctness formulae

{X = x} S{X = x}

and
{X = x+ 1}S{X = x+ 1} ,

where all variables denote integer values andX is an auxiliary variable
which does not occur inS, are interderivable.

The new rule of consequence plays a crucial role in deriving the Most
General Formlua (MGF), the key theorem to establish completeness for
Hoare Logic dealing with recursive procedures (Schreiber 1997, Kleymann
1998).

However, since LEGO is a constructive framework, the side-condition
is too restrictive. Instead, one needs to consider (the intuitionistically
weaker)

∀Z · ∀x· p⇒
(
∃Z1 · (p1 [Z 7→ Z1])∧

(
∀x· (q1 [Z 7→ Z1])⇒ q

))
.
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Definition 9 (Derivability of Hoare Logic – Deep Embedding).A ver-
ification calculus for Hoare Logic is defined as the least relation

`Hoare{.} . {.} ⊆ Assertion(T)×prog×Assertion(T)

indexed by an arbitrary type T such that

`Hoare
{

λ(Z,σ) · p
(
Z,σ [x 7→ eval(σ)(t)]

)}
x:= t {p} (7)

∀t : W · `Hoare{λ(Z,σ) · p(Z,σ)∧eval(σ)(b) = true∧eval(σ)(u) = t}
S

{λ(Z,τ) · p(Z,τ)∧eval(τ)(u)< t}
`Hoare{p} while b do S{λ(Z,τ) · p(Z,τ)∧eval(τ)(b) = false}

where(W,<) is well-founded.

`Hoare{p1} S{q1}
`Hoare{p}S{q}

provided∀Z · ∀σ · p(Z,σ)⇒
(
∃Z1 · p1(Z1,σ)∧

(
∀τ ·q1(Z1,τ)⇒ q(Z,τ)

))
.

(8)

6.3 Soundness

Soundness is essential. If a system is unsound, deriving a property for
a particular program within the formal system does not guarantee that
the program actually fulfils the property. Formally, one needs to show
that whenever a correctness formulae`Hoare{p}S{q} is derivable, the
proposition|=Hoare{p}S{q} holds. Soundness is best pursued by induc-
tion on the derivation of the correctness formula. For the discussion of
deep versus shallow embedding, the case of an assignment is of peculiar
interest.

Lemma 1 (Soundness of Assignment Axiom).

|=Hoare
{

λ(Z,σ) · p
(
Z,σ [x 7→ eval(σ)(t)]

)}
x:= t {p}
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Proof: Expanding the definition of|=Hoare, givenZ, σ, one needs to es-
tablish

p(Z,σ [x 7→ eval(σ)(t)])⇒∃τ ·σ x:= t - τ∧ p(Z,τ) .

The operational semantics uniquely determines the final stateτ. Appeal-
ing to the axiom (4), it suffices to show

p(Z,σ [x 7→ eval(σ)(t)])⇒ p(Z,σ [x 7→ eval(σ)(t)]) .

�
As expected, due to a shallow embedding, we only have one notion of
substitution (on the level of states). But perhaps surprisingly, soundness
holdsregardlessof the details of the actual substitution function.

If one is only interested in establish soundness (and not complete-
ness), there is no need for any deep embeddings. Induction on the struc-
ture of programs is not required. Hence, there is no need for a deep em-
bedding of imperative programs e.g., Gordon (1989) represents programs
by their relational denotational semantics.

A Shallow Embedding of Hoare Logic. Moreover, if one externalises
the induction of the soundness proof to the meta-level as opposed to the
proof tool, one can give a shallow embedding for Hoare Logic. Without
a notion of derivability as given in Definition 9, soundness can be es-
tablished by showing that axioms are valid with respect to|=Hoare and
that all rules preserve soundness. This approach has been pursued by
(Gordon 1989, Homeier 1995, Homeier & Martin 1996, Norrish 1996).

One must however be clear about the limitations of this approach. For
example, Homeier & Martin (1996) erroneously claim that the sound-
ness of a (complete) Verification Condition Generator (VCG) has been
established by appealing to the axioms and rules of an (incomplete) pre-
sentation of Hoare Logic4. But since they employ ashallowembedding
of Hoare Logic, correctness of the VCG has instead been established by
appealing to the definition ofoperationalsemantics.

4 A consequence rule is missing. Thus, one can e.g. not derive{x = 1} skip {true}.
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6.4 Completeness

In an incomplete formal system, one may only verify a strict subset of all
true formulae. A naive definition of completeness is bound to fail in the
context of verification calculi. On the one hand, if the chosen underlying
logical language is too weak, e.g., pure first-order logic together with the
boolean constantsfalseandtrue, some intermediate assertions cannot be
expressed. Hence, derivations cannot be completed. On the other hand,
if the logical language is too strong, e.g. Peano Arithmetic, it itself is
already incomplete and the verification calculus inherits incompleteness.

To avoid this problem, Cook (1978) has proposed that one investi-
gatesrelative completenessin an attempt to separate the reasoning about
programs from the reasoning about the underlying logical language. One
only considers expressive first-order logics. Furthermore, rules of the
verification calculus may be applied in a derivation if the logical side-
condition is valid rather than derivable. In particular, completeness no-
longer compares a proof-theoretic with a model-theoretic account.

In practice, achieving relative completeness of verification calculi is
highly desirable. In logic, finding valid formulae which can not be de-
rived is often somewhat esoteric. A different story has to be told for the
notion of relative completeness in verification calculi e.g., in Sokołowski’s
(1977) calculus, it is very difficult to come up with any non-contrived
correctness formula of a recursive procedure which can be derived!

In a machine-checked development, it is convenient to interpret Cook’s
proposal by employing the native (expresssive) logic of the theorem prover
to interpret assertions. A shallow embedding of assertions automatically
blurs the model and proof-theoretic aspect of assertions. As an important
aspect in the completeness proof, one needs to be able to formulate an as-
sertion which expresses the weakest precondition relative to an arbitrary
program and postcondition. With a shallow embedding, this is straight-
forward:

Definition 10 (Weakest Precondition – Shallow Embedding).

wp(S,q)(Z,σ) def= ∃τ ·σ S - τ∧q(Z,τ) .
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With a deep embedding of assertions, one would have to derive a syntac-
tic representation which denotes the weakest precondition. This is con-
siderably more challenging5.

One may prove completeness directly by induction on the structure
of S. Instead, we follow a technique developed by Gorelick (1975), which,
previously, has only been applied to the scenario of Hoare Logic dealing
with recursive procedures :

1. By induction on the structure of an arbitrary programS, one estab-
lishes that a specific correctness formula MGFHoare(S) is derivable in
the verification calculus.

2. Given the assumption|=Hoare{p}S{q}, one may derive

`Hoare{p} S{q}

by applying structural rules tòHoareMGFHoare(S). All side-conditions
which arise will be dealt with by the assumption.

In other words, instead of directly deriving

|=Hoare{p}S{q}⇒`Hoare{p} S{q} ,

one considers the stronger property`HoareMGFHoare(S) for which induc-
tion goes through more easily. In particular, the direct proof can not be
applied when one considers recursive procedures, because the induction
hypotheses are not strong enough.

The propositioǹ HoareMGFHoare(S) asserts that, provided that one
only considers input states in which the programS terminates, one may
derivea correctness formula in which the postcondition relates all in-
puts with the appropriate outputs according to the underlying opera-
tional semantics of the programming language. At the semantic level,
|=HoareMGFHoare(S) holds trivially.

Definition 11 (MGF – Shallow Embedding).

MGFHoare(S) def=
{

λ(Z,σ) ·σ S - Z

}
S{λ(Z,τ) ·Z = τ}

5 If the assertion language is Peano Arithmetic, this construction is not for the faint-hearted as
one has to work on the level of Gödel numbers (de Bakker 1980).
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Notice that the precondition is equivalent to the the weakest precondition
relative to the postconditionλ(Z,τ) ·Z = τ.

Analogue to the proof of soundness, in deriving the MGF for assign-
ment, one again encounters the phenomenon that the details of the sub-
stitution function are irrelevant.

7 Extensional Equality and Local Variables

In the previous section, we have seen that, for soundness (and complete-
ness), details of substitutions can be neglected. Catering for local ini-
tialised variablesnew x := t in S is however more demanding, because
one needs to reinstate the previous value ofx after the block. Based on an
idea by Sieber (1981), Olderog (1981) captures the semantics of blocks
by

σ [x 7→ eval(σ)(t)]
S - τ

σ
newx:= t in S- τ [x 7→ σ(x)]

. (9)

To verify programs containing blocks, we have proposed the rule

∀v· {p[x 7→ v]∧x = t [x 7→ v]} S{q[x 7→ v]}
{p} newx:= t in S{q} .

Taking into account a shallow embedding of assertions, this corresponds
formally to

∀v· `Hoare{λ(Z,σ) · p(Z,σ [x 7→ v])∧σ(x) = eval(σ [x 7→ v])(t)}
S

{q[x 7→ v]}
{p} newx:= t in S{q} (10)

It is an improvement over Apt’s (1981) version in that it deals with
initialised blocks. Furthermore, no side-conditions are required6. In the
soundness and completeness proof, we need to appeal to the following
two extensional properties of substitutions:

σ [x 7→ σ(x)] = σ (11)

σ [x 7→ t1] [x 7→ t2] = σ [x 7→ t2] (12)

We restrict our attention to the crucial step of the completeness proof:

6 Scoping of the implicitly universally quantifiedp, Sandq ensures thatv /∈ free(p,S,q).
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Lemma 2 (MGF for Blocks). Whenever one can derive

`HoareMGFHoare(S) ,

one may also establish

`HoareMGFHoare(new x:= t in S) .

Proof: Given an arbitraryv : sort(x), we apply the (stronger) rule of
consequence (8) to the hypothesis`HoareMGFHoare(S) in order to derive

`Hoare

{
λ(Z,σ) ·σ [x 7→ v]

new x:= t in S- Z∧σ(x) = eval(σ [x 7→ v])(t)
}

S
{λ(Z,τ) ·Z = τ [x 7→ v]}

(13)

From (13), the rule for blocks (10) renders the proof obligation. As a
side-condition, given statesZ andσ such that

σ [x 7→ v]
new x:= t in S- Z (14)

σ(x) = eval(σ [x 7→ v])(t) (15)

we have to find a stateτ such thatσ
S - τ andZ = τ [x 7→ v].

Inverting the derivation of (14), there must be such a stateτ which satis-
fies

σ [x 7→ v] [x 7→ eval(σ [x 7→ v])(t)]
S - τ (16)

and Z = τ [x 7→ σ [x 7→ v](x)]. Courtesy of (15), the property (16) can

be simplified toσ [x 7→ v] [x 7→ σ(x)]
S - τ. To complete the

proof, one needs to appeal to the substitution properties (11) and (12) and
replaceσ [x 7→ v] [x 7→ σ(x)] by the extensional equal functionσ. �
It follows from the specification of the update operation on states (1) that
we may derive the extensional counterparts of (11) and (12)

σ [x 7→ σ(x)](y) = σ(y)
σ [x 7→ t1] [x 7→ t2] (y) = σ [x 7→ t2] (y)

whereas (11) and (12) themselves do not hold for the standard equal-
ity concepts such as Leibniz or Martin-Löf equality, because they dis-
tinguish between intensionally distinct functions. We therefore need to
axiomatiseextensionality (Hofmann 1995).
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8 Conclusions

To prove completeness, one needs to be able to construct assertions which
express semantic properties of the programming language. On paper, one
usually simply assumes that the assertion language is sufficiently expres-
sive. Both, soundness and completeness proofs can be simplified if one
does not worry about the actual syntactic representation of assertions.

Moreover, a thorough treatment of syntax has the unpleasant side-
effect that substantial amount of formal detail is required to deal with
substitutions at the level of states, expressions and assertions. This seems
redundant as far as metatheory is concerned. Specifically, for simple im-
perative programs, the proofs of soundness and completeness can be con-
ducted irrespective of the chosen substitution function. Semantically, the
assignment axiom in Hoare Logic simply lifts substitutions pointwise
from the level of states to predicates on states.

Syntax does however matter if, instead of metatheory, one wishes to
use the axioms and rules to verify concrete programs or generate veri-
fication conditions. With a shallow embedding, assertions are functions
mapping states to propositions. Not only are they more difficult to com-
prehend than their syntactic counterpart. Without syntactic structure, the
proof tool has little guidance on how to best reduce substitutions in as-
sertions. Verifying the Quicksort algorithm based on a shallow embed-
ding, we found that the resulting proof obligations arising from the side-
condition of the rule of consequence become too large for the LEGO

system to efficiently process. Having to deal withdependenttypes, type-
checking involves expensive calculations.

One ought to clarify the objectives of employing a theorem prover.
There are twoorthogonalproblems in verifying imperative programs.

1. Establishing soundness and completeness for verification calculi is
a challenging task. Incorrect results based on doing proofs by hand
have been published in the past. The metatheory relates semantics and
derivability. Syntax of assertions is not an issue. In fact, the whole
idea of relative completeness is to factor out the issue of semantics
versus derivability of assertions.

2. Verifying concrete programs is a labour-intensive task for which
computer-aided support is vital.

We feel, a reasonable approach would be to employ a shallow embed-
ding for metatheory and a deep embedding for concrete examples. The



Metatheory of Verification Calculi in LEGO 19

calculus for verifying concrete programs caninformallybuild on the ax-
ioms and rules investigated in the meta-theoretical analysis. Relating the
two formalisations centers mostly on the issue of how expressive the as-
sertion language is. We are somewhat sceptical whether this deserves a
machine-checked proof.

But perhaps, there is an alternative. Today’s proof tools are equipped
with a powerful native logic e.g., LEGO supports intuitionistic higher-
order logic with a rich universe of data types (Luo 1994). However, this
can not be directly employed for a deep embedding because its syntax
is not inductively defined at the level of the proof system. But one could
consider to treat syntax at a more informal level. Specifically, based on
a shallow embedding, one could employ parsing and pretty-printing of
the theorem prover to convert between the internal representation and
the user interface. Moreover, one could tailor the prover’s tactics engine
to better deal with substitutions. At the code level of the theorem prover,
it is easier to implement a suitable substitution function for a particular
class of terms.
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