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Abstract. We study a weakening of the notion of logical relations, called pre-
logical relations, that has many of the features that make logical relations so
useful but having further algebraic properties including composability. The ba-
sic idea is simply to require the reverse implication in the definition of logical
relations to hold only for lambda-expressible functions. Pre-logical relations are
the minimal weakening of logical relations that gives composability for exten-
sional structures and simultaneously the most liberal definition that gives the
Basic Lemma. The use of pre-logical relations in place of logical relations gives
an improved version of Mitchell’s representation independence theorem which
characterizes observational equivalence for all signatures rather than just for
first-order signatures. Pre-logical relations can be used in place of logical re-
lations to give an account of data refinement where the fact that pre-logical
relations compose explains why stepwise refinement is sound.
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1 Introduction


Logical relations are structure-preserving relations between models of typed
lambda calculus.


Definition 1.1. Let A and B be Σ-applicative structures. A logical relation R
over A and B is a family of relations {Rσ ⊆ [[σ]]A × [[σ]]B}σ∈Types(B) such that:


– Rσ→τ (f, g) iff ∀a ∈ [[σ]]A.∀b ∈ [[σ]]B.Rσ(a, b)⇒ Rτ(AppA f a,AppB g b).
– Rσ([[c]]A, [[c]]B) for every term constant c : σ in Σ.


Logical relations are used extensively in the study of typed lambda calculus and
have applications outside lambda calculus, for example to abstract interpreta-
tion [Abr90] and data refinement [Ten94]. A good reference for logical relations
is [Mit96]. An important but more difficult reference is [Sta85].


The Basic Lemma is the key to many of the applications of logical relations.
It says that any logical relation over A and B relates the interpretation of each
lambda term in A to its interpretation in B.


Lemma 1.2 (Basic Lemma). Let R be a logical relation over Henkin models
A and B. Then for all Γ -environments ηA, ηB such that RΓ (ηA, ηB) and every
term Γ �M : σ, Rσ([[Γ �M : σ]]AηA, [[Γ �M : σ]]BηB). 2


(RΓ (ηA, ηB) refers to the obvious extension of R to environments, see page 5
below.)


As structure-preserving relations, logical relations resemble familiar alge-
braic concepts like homomorphisms and congruence relations but they lack







some of the convenient properties of such concepts. In particular, the composi-
tion of two logical relations is not in general a logical relation. This calls into
question their application to data refinement at least, where one would expect
composition to provide an account of stepwise refinement.


We propose a weakening of the notion of logical relations called pre-logical
relations (Sect. 3) that has many of the features that make logical relations
so useful — in particular, the Basic Lemma still holds for pre-logical relations
(Lemma 4.1) – but having further algebraic properties including composabil-
ity (Prop. 5.5). The basic idea is simply to require the reverse implication in
the definition of logical relations to hold only for lambda-expressible functions.
Pre-logical relations turns out to be the minimal weakening of logical rela-
tions that gives composability for extensional structures (Corollary 6.2) and
simultaneously the most liberal definition that gives the Basic Lemma. The use
of pre-logical relations in place of logical relations gives an improved version
of Mitchell’s representation independence theorem (Corollaries 7.5 and 7.6 to
Theorem 7.4) which characterizes observational equivalence for all signatures
rather than just for first-order signatures. Pre-logical relations can be used in
place of logical relations in Tennent’s account of data refinement in [Ten94] and
the fact that pre-logical relations compose explains why stepwise refinement is
sound.


Many applications of logical relations follow a standard pattern where the
result comes directly from the Basic Lemma once an appropriate logical relation
has been defined. Some results in the literature follow similar lines in the sense
that a type-indexed family of relations is defined by induction on types and a
proof like that of the Basic Lemma is part of the construction, but the family
of relations defined is not logical. Examples can be found in Plotkin’s and Jung
and Tiuryn’s lambda-definability results using I-relations [Plo80] and Kripke
logical relations with varying arity [JT93] respectively, and Gandy’s proof of
strong normalization using hereditarily strict monotonic functionals [Gan80].
In each of these cases, the family of relations involved turns out to be a pre-
logical relation (Examples 3.8 and 3.9) which allows the common pattern to be
extended to these cases as well. Since pre-logical relations are more general than
logical relations and variants like I-relations, they provide a framework within
which these different classes can be compared. Here we begin by studying and
comparing their closure properties (Prop. 5.6) with special attention to closure
under composition.


The definition of pre-logical relations is not new. In [Sch87], Schoett uses
a first-order version of algebraic relations which he calls correspondences, and
he conjectures (p. 281) that for Henkin models, what we have called pre-logical
relations (formulated as in Prop. 3.3) would be closed under composition and
yield the Basic Lemma. In [Mit90], Mitchell makes the same suggestion, refer-
ring to Schoett and also crediting Abramsky and Plotkin, but as an assertion
rather than a conjecture. The idea is not developed any further. An indepen-
dent but apparently equivalent definition of pre-logical relations over cartesian
closed categories is given in [PPS98] where they are called lax logical relations.
It is shown that these compose and that the Basic Lemma holds, and an ax-
iomatic account is provided. Earlier, a closely related notion called L-relations
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was defined in [KOPTT97] and shown to compose. There appears to be no
previous work on pre-logical relations that goes beyond observing that they
compose and that the Basic Lemma holds. Another difference to [PPS98] and
[KOPTT97] is that our treatment is elementary rather than categorical, and
covers also combinatory logics.


2 Syntax and Semantics


We begin with λ→, the simply-typed lambda calculus having→ as the only type
constructor. Other type constructors will be considered in Sect. 9. We follow
the terminology in [Mit96] for the most part, with slightly different notation.


Definition 2.1. The set Types(B) of types over a set B of base types (or
type constants) is given by the grammar σ ::= b | σ → σ where b ranges over
B. A signature Σ consists of a set B of type constants and a collection C of
typed term constants c : σ.


Let Σ = 〈B,C〉 be a signature. We assume familiarity with the usual notions
of context Γ = x1:σ1, . . . , xn:σn and Σ-term M of type σ over a context Γ ,
written Γ �M : σ, with the meta-variable t reserved for lambda-free Σ-terms.
If Γ is empty then we write simply M : σ. Free variables FV (M) and capture-
avoiding substitution [N/x]M are as usual.


Definition 2.2. A Σ-applicative structure A consists of:


– a carrier set [[σ]]A for each σ ∈ Types(B);
– a function Appσ,τA : [[σ → τ ]]A → [[σ]]A → [[τ ]]A for each σ, τ ∈ Types(B);
– an element [[c]]A ∈ [[σ]]A for each constant c : σ in Σ.


We drop the subscripts and superscripts when they are determined by the con-
text, and we sometimes abbreviate Appσ,τA f x as f x. Two elements f, g ∈ [[σ →
τ ]]A are said to be extensionally equal if Appσ,τA f x = Appσ,τA g x for every
x ∈ [[σ]]A. A Σ-applicative structure is extensional when extensional equality
coincides with identity.


A Σ-combinatory algebra is a Σ-applicative structure A that has elements
Kσ,τ
A ∈ [[σ → (τ → σ)]]A and Sρ,σ,τA ∈ [[(ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ ]]A for


each ρ, σ, τ ∈ Types(B) satisfying the equations Kσ,τ
A x y = x and Sρ,σ,τA x y z =


(x z)(y z).
An extensional combinatory algebra is called a Henkin model. An applicative


structure A is a full type hierarchy when [[σ → τ ]]A = [[σ]]A → [[τ ]]A (the full
set-theoretic function space) for every σ, τ ∈ Types(B) and then it is obviously
a Henkin model.


In a combinatory algebra, we can extend the definition of lambda-free Σ-
terms by allowing them to contain S and K; we call these combinatory Σ-terms.


A Γ -environment ηA assigns elements of an applicative structure A to vari-
ables in Γ , with ηA(x) ∈ [[σ]]A for x : σ in Γ . A lambda-free Σ-term Γ � t : σ
is interpreted in a Σ-applicative structure A under a Γ -environment ηA in the
obvious way, written [[Γ � t : σ]]AηA, and this extends immediately to an inter-
pretation of combinatory Σ-terms in combinatory algebras by interpreting K
and S as KA and SA. If t is closed then we write simply [[t : σ]]A.
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There are various ways of interpreting terms containing lambda abstraction
in a combinatory algebra by “compiling” them to combinatory terms so that
outermost β holds (see Prop. 2.4 below for what we mean by “outermost β”).
In Henkin models, all these compilations yield the same result.


An axiomatic approach to interpreting lambda abstraction requires an ap-
plicative structure equipped with an interpretation function that satisfies cer-
tain minimal requirements — cf. the notion of acceptable meaning function in
[Mit96].


Definition 2.3. A lambda Σ-applicative structure consists of a Σ-applicative
structure A together with a function [[·]]A that maps any term Γ �M : σ and
Γ -environment ηA over A to an element of [[σ]]A, such that:


– [[Γ � x : σ]]AηA = ηA(x)
– [[Γ � c : σ]]AηA = [[c]]A


– [[Γ �M N : τ ]]AηA = AppA [[Γ �M : σ → τ ]]AηA [[Γ �N : σ]]AηA
– [[Γ � λx:σ.M : σ → τ ]]AηA = [[Γ � λy:σ.[y/x]M : σ → τ ]]AηA provided y 6∈


FV (M)
– [[Γ �M : σ]]AηA = [[Γ �M : σ]]Aη′A provided η′A is a Γ -environment such that
ηA(x) = η′A(x) for all x ∈ FV (M)


– [[Γ, x:σ �M : τ ]]AηA = [[Γ �M : τ ]]AηA for x 6∈ Γ
– [[Γ, x:σ �M : τ ]]A


ηA[x 7→[[Γ�N :σ]]AηA ] = [[Γ � [N/x]M : τ ]]AηA


The relationship between lambda applicative structures and combinatory alge-
bras is as follows.


Proposition 2.4. A lambda applicative structure A such that AppA[[Γ�λx:σ.M :
σ → τ ]]AηA a = [[Γ, x:σ �M : τ ]]AηA[x 7→a] amounts to a combinatory algebra, and
vice versa.


Proof. ⇐: We define [[·]]A via the standard compilation of lambda terms using
K and S to combinatory terms. ⇒: Kσ,τ


A and Sρ,σ,τA are the interpretations of
the usual lambda terms. 2


The proof of this proposition shows that the interpretation of lambda terms in
combinatory algebras via compilation to combinatory terms satisfies the axioms
in Def. 2.3 and the additional property in the proposition. Therefore when
viewing a combinatory algebra as a lambda applicative structure, this is the
interpretation function we have in mind.


3 Algebraic and Pre-logical Relations


We propose a weakening of the definition of logical relations which is closed
under composition and which has most of the attractive properties of logical
relations. First we change the two-way implication in the condition on func-
tions to a one-way implication which requires preservation of the relation under
application.


Definition 3.1. LetA and B be Σ-applicative structures. An algebraic relation
R over A and B is a family of relations {Rσ ⊆ [[σ]]A × [[σ]]B}σ∈Types(B) such
that:
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– If Rσ→τ (f, g) then ∀a ∈ [[σ]]A.∀b ∈ [[σ]]B.Rσ(a, b)⇒ Rτ (AppA f a,AppB g b).
– Rσ([[c]]A, [[c]]B) for every term constant c : σ in Σ.


In lambda applicative structures, we additionally require the relation to pre-
serve lambda abstraction in a sense that is analogous to the definition of
admissible relation in [Mit96]. First, we extend a family of relations R =
{Rσ ⊆ [[σ]]A × [[σ]]B}σ∈Types(B) to a relation on Γ -environments: RΓ (ηA, ηB)
if Rσ(ηA(x), ηB(x)) for every x:σ in Γ .


Definition 3.2. Let A and B be lambda Σ-applicative structures. A pre-logical
relation overA and B is an algebraic relation R such that given Γ -environments
ηA and ηB such that RΓ (ηA, ηB), and a term Γ, x : σ�M : τ , if Rσ(a, b) implies
Rτ ([[Γ, x : σ � M : τ ]]AηA[x 7→a], [[Γ, x : σ � M : τ ]]BηB[x 7→b]) for all a ∈ [[σ]]A and
b ∈ [[σ]]B, then Rσ→τ ([[Γ � λx:σ.M : σ → τ ]]AηA, [[Γ � λx:σ.M : σ → τ ]]BηA).


This amounts to defining pre-logical relations as simply the class of relations
that make the Basic Lemma hold, as we shall see in Lemma 4.1 below. (Indeed,
since the Basic Lemma for pre-logical relations is an equivalence rather than a
one-way implication, an alternative at this point would be to take the conclusion
of the Basic Lemma itself as the definition of pre-logical relations.)


A simpler and therefore more appealing definition is obtained if we consider
combinatory algebras, where the requirement above boils down to preservation
of S and K:


Proposition 3.3. Let A and B be Σ-combinatory algebras. An algebraic rela-
tion R over A and B is pre-logical iff R(Sρ,σ,τA , Sρ,σ,τB ) and R(Kσ,τ


A , Kσ,τ
B ) for all


ρ, σ, τ ∈ Types(B).


Proof. Directly from the definitions. 2


If we incorporate S and K into the signature Σ, then pre-logical relations are
just algebraic relations on combinatory algebras. One way of understanding the
definition of pre-logical relations is that the reverse implication in the definition
of logical relations is required to hold only for lambda-expressible functions. For
combinatory algebras these are exactly the functions that are denotable by com-
binatory terms, and thus this requirement is captured by requiring preservation
of S and K.


The use of the combinators S andK in the above proposition is in some sense
arbitrary: the same result would be achieved by taking any other combinatory
basis and changing the definition of combinatory algebra and the interpreta-
tion function accordingly. It would be straightforward to modify the definitions
to accommodate other variants of lambda calculus, for instance λI (where in
λx:σ.M , the term M is required to contain x) for which a combinatory basis is
B,C, I, S, or linear lambda calculi. For languages that include recursion, such
as PCF, one would add a Y combinator.


As usual, the binary case of algebraic resp. pre-logical relations over A,B
is derived from the unary case of algebraic resp. pre-logical predicates for the
product structure A×B. We omit the obvious definitions. The properties of pre-
logical relations carry over to pre-logical predicates. For most results about pre-
logical relations below there is a corresponding result about algebraic relations
over applicative structures. We omit these for lack of space.
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The fact that pre-logicality is strictly weaker than logicality is demonstrated
by the following examples which also provide a number of general methods for
defining pre-logical relations.


Example 3.4. Consider the signature Σ containing the type constant nat and
term constants 0 : nat and succ : nat → nat and let A be the full type hierarchy
over N where 0 and succ have their usual interpretations. The predicate


Pσ(v)⇔ v is the value of a closed Σ-term


is a pre-logical predicate over A. (This is easy to see since A is a combinatory
algebra and so the analogue of Prop. 3.3 for pre-logical predicates applies.) It
is not a logical predicate: any function f ∈ [[nat → nat ]]A, including functions
that are not lambda definable, takes values in P to values in P and so must
itself be in P . 2


Example 3.5. The identity relation on a lambda applicative structure is a pre-
logical relation but it is logical iff the structure is extensional. 2


Example 3.6. A Σ-homomorphism between lambda Σ-applicative structures
A and B is a type-indexed family of functions {hσ : [[σ]]A → [[σ]]B}σ∈Types(B)


such that for any constant c : σ in Σ, hσ([[c]]A) = [[c]]B, hτ (Appσ,τA f a) =
Appσ,τB hσ→τ (f) hσ(a) and hσ→τ ([[Γ�λx:σ.M : σ → τ ]]AηA) = [[Γ�λx:σ.M : σ →
τ ]]Bh(ηA) where h(ηA) = {x 7→ hσ(ηA(x))} for all x:σ in Γ . AnyΣ-homomorphism
is a pre-logical relation. In particular, interpretation of terms in a lambda ap-
plicative structure with respect to an environment, viewed as a relation from
the lambda applicative structure of terms, is a pre-logical relation but is not in
general a logical relation. 2


Example 3.7. Let A and B be lambda applicative structures and define Rσ ⊆
[[σ]]A × [[σ]]B by Rσ(a, b) for a ∈ [[σ]]A, b ∈ [[σ]]B iff there is a closed term M : σ
such that [[M : σ]]A = a and [[M : σ]]B = b. This is a pre-logical relation
but it is not in general a logical relation. Generalizing: the inverse of any pre-
logical relation is obviously pre-logical and according to Prop. 5.5 below the
composition of any two pre-logical relations is pre-logical. Then observe that
the above relation is just the composition of closed term interpretation in B
(which is pre-logical according to Example 3.6) and the inverse of closed term
interpretation in A. 2


Example 3.8. Plotkin’s I-relations [Plo80] give rise to pre-logical relations. The
family of relations on the full type hierarchy consisting of the tuples which are
in a given I-relation at a given world (alternatively, at all worlds) is a pre-
logical relation which is not in general a logical relation. Similarly for Jung
and Tiuryn’s Kripke logical relations with varying arity [JT93]: the family of
relations consisting of the w-tuples which are in a given Kripke logical relation
with varying arity at world w is a pre-logical relation which is not in general
a logical relation. Although both kinds of relations were originally defined over
full type hierarchies, note that it makes perfect sense to consider them over
arbitrary Henkin models. 2
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Example 3.9. Let A be an applicative structure. Given order relations Rb on
[[b]]A for each base type b, we can define the hereditarily monotonic functionals
as the equivalence classes of those elements of A which are self-related with
respect to the following inductively defined family of relations on A×A:


Rσ→τ (f, g) iff ∀a ∈ [[σ]]A.∀b ∈ [[σ]]B.Rσ(a, b)⇒ (Rτ(AppA f a,AppB g b)
∧Rτ(AppA f a,AppB f b)
∧Rτ(AppA g a,AppB g b))


(This defines simultaneously at each type both the class of functionals we are
interested in and the order relation itself.) Notice that this method defines a
pre-logical relation but not a logical relation.


Gandy’s hereditarily strict monotonic functionals [Gan80] can be defined
using the above technique with just a small modification of the clause for func-
tionals.


Rσ→τ (f, g) iff ∀a ∈ [[σ]]A.∀b ∈ [[σ]]B.
Rσ(a, b)⇒ (f 6= g ⇒ (Rτ \∆τ)(AppA f a,AppB g a)


∧(a 6= b⇒ ((Rτ \∆τ )(AppA f a,AppB f b)
∧(Rτ \∆τ)(AppA g a,AppB g b))))


Again we have only a pre-logical relation (with respect to the language of λI)
and not a logical relation. We can define the continuous functionals, as used in
models of PCF, using a similar pattern. 2


4 The Basic Lemma


We will now consider the extension of the Basic Lemma to pre-logical relations.
In contrast to Lemma 1.2, we get a two-way implication which says that the
requirements on pre-logical relations are exactly strong enough to ensure that
the Basic Lemma holds. The reverse implication fails for logical relations as
Example 3.4 shows (for logical predicates).


Lemma 4.1 (Basic Lemma for pre-logical relations). Let R = {Rσ ⊆
[[σ]]A× [[σ]]B}σ∈Types(B) be a family of relations over lambda Σ-applicative struc-
tures A and B. Then R is a pre-logical relation iff for all Γ -environments ηA, ηB
such that RΓ (ηA, ηB) and every Σ-term Γ �M : σ, Rσ([[Γ �M : σ]]AηA, [[Γ �M :
σ]]BηB).


Proof. ⇒: The proof is by induction on the structure of M . For variables, we
use the assumption that RΓ (ηA, ηB). For constants, we use the fact that pre-
logical relations are required to respect constants. For an application Γ �M N :
τ , we use the inductive hypothesis for M and N and the fact that pre-logical
relations are closed under application. As for Γ � λx:σ.M : σ → τ , by the
induction hypothesis we know that for all Γ, x:σ-environments η′A, η


′
B such that


RΓ,x:σ(η′A, η
′
B) we have Rσ([[Γ, x:σ �M : σ]]Aη′A


, [[Γ, x:σ �M : σ]]Bη′B
). If Rσ(a, b)


then applying this to η′A = ηA[x 7→ a] and η′B = ηB[x 7→ b] and taking the
condition in the definition of pre-logical relations gives the desired result.
⇐: The first condition of algebraic relations follows by taking M to be x y


and ηA = {x 7→ f, y 7→ a} ηB = {x 7→ g, y 7→ b} and the second condition
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for a term constant c follows by taking M to be c. The additional condition for
pre-logical relations holds a fortiori. 2


The “only if” direction of this result is the analogue in our setting of the general
version of the Basic Lemma in [Mit96], but where R is only required to be pre-
logical.


If one applies the Basic Lemma for pre-logical relations to Henkin models,
the “only if” part of the result is exactly the usual formulation (Lemma 1.2
above), except that R is only required to be pre-logical.


Corollary 4.2. Let R = {Rσ ⊆ [[σ]]A× [[σ]]B}σ∈Types(B) be a family of relations
over Henkin models A and B. Then R is a pre-logical relation iff for all Γ -
environments ηA, ηB such that RΓ (ηA, ηB) and every Σ-term Γ�M : σ, Rσ([[Γ�


M : σ]]AηA, [[Γ �M : σ]]BηB). 2


5 Properties of Pre-logical Relations


A logical relation on lambda applicative structures is pre-logical provided it is
admissible in the following sense.


Definition 5.1 ([Mit96]). A logical relation R on lambda applicative struc-
tures A and B is admissible if given Γ -environments ηA and ηB such that
RΓ (ηA, ηB), and terms Γ, x:σ �M,N : τ ,


∀a ∈ [[σ]]A, b ∈ [[σ]]B.Rσ(a, b)⊃ Rτ ([[Γ, x:σ�M : τ ]]AηA[x 7→a], [[Γ, x:σ�N : τ ]]BηB[x 7→b])


implies


∀a ∈ [[σ]]A, b ∈ [[σ]]B.Rσ(a, b) ⊃ Rτ(AppA [[Γ � λx:σ.M : σ → τ ]]AηA a,
AppB [[Γ � λx:σ.N : σ → τ ]]BηB b)


Proposition 5.2. Any admissible logical relation on lambda applicative struc-
tures is a pre-logical relation.


Proof. Admissibility plus the reverse implication in the definition of logical re-
lations gives the property in the definition of pre-logical relations. 2


Corollary 5.3. Any logical relation on combinatory algebras is a pre-logical
relation.


Proof. Logical relations on combinatory algebras are always admissible. 2


To understand why the composition of logical relations R over A and B
and S over B and C might not be a logical relation, it is instructive to look at
examples. When composition fails, the problem is often that the interpretation
of some function type in B has “too few values”. But even if we take logical
relations over full type hierarchies, where all possible values of function types
are present, composition can fail because the required “missing link” in B is
not a function:
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Example 5.4. Let Σ contain just two type constants, b and b′. Consider three
full type hierarchies A,B, C which interpret b and b′ as follows: [[b]]A = {∗} =
[[b′]]A; [[b]]B = {∗} and [[b′]]B = {◦, •}; [[b]]C = {◦, •} = [[b′]]C. Let R be the logical
relation over A and B induced by Rb = {〈∗, ∗〉} and Rb


′
= {〈∗, ◦〉, 〈∗, •〉} and


let S be the logical relation over B and C induced by Sb = {〈∗, ◦〉, 〈∗, •〉} and
Sb
′


= {〈◦, ◦〉, 〈•, •〉}. S ◦ R is not a logical relation because it does not relate
the identity function in [[b]]A → [[b′]]A to the identity function in [[b]]C → [[b′]]C.
The problem is that the only two functions in [[b]]B → [[b′]]B are {∗ 7→ ◦} and
{∗ 7→ •}, and S does not relate these to the identity in C. 2


Proposition 5.5. The composition S ◦ R of pre-logical relations R over A,B
and S over B, C is a pre-logical relation over A, C.


Proof. A proof from the definition is not at all straightforward, but Lemma 4.1
says that pre-logicality is equivalent to a property of relations that is obviously
closed under composition. 2


Composition of relations is definable in terms of product, intersection and
projection:


S ◦ R = π1,3(A× S ∩ R× C)


Closure of pre-logical relations under these operations is a more basic property
than closure under composition, and is not specific to binary relations. We have:


Proposition 5.6. Pre-logical relations are closed under intersection, product,
projection, restriction to a substructure, permutation and ∀. (Here, if R ⊆
A1 × · · · × An then ∀R ⊆ A2 × · · · × An is defined by (∀R)σ = {〈a2, . . . , an〉 |
∀a1 ∈ [[σ]]A1.〈a1, a2, . . . , an〉 ∈ Rσ}.) Logical relations are closed under product,
permutation and ∀ but not under intersection, projection or restriction to a
substructure. 2


Other classes of relations satisfy different closure properties. For instance, I-
relations are obviously closed under product, permutation and ∀, and it is easy
to see that they are also closed under intersection. They are not closed under
composition by Example 5.4, and since composition is definable in terms of
product, intersection and projection it follows that they are not closed under
projection. Failure of closure under restriction to a substructure follows from
decidability and undecidability results in [Loa9?].


A consequence of closure under intersection is that given a property P of
relations that is preserved under intersection, there is always a least pre-logical
relation satisfying P . We then have (see Example 3.4 above):


Proposition 5.7. The least pre-logical predicate over a given lambda Σ-applicative
structure contains exactly those elements that are the values of closed Σ-terms.


In a signature with no term constants, a logical relation may be constructed
by defining a relation R on base types and using the definition to “lift” R
inductively to higher types. The situation is different for pre-logical relations:
there are in general many pre-logical liftings of a given R, one being of course
its lifting to a logical relation (provided this gives an admissible relation). But
since the property of lifting a given R is preserved under intersection, the least
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pre-logical lifting of R is also a well-defined relation. Similarly for the least pre-
logical extension of a given family of relations, for any signature. Notice that
lifting/extending a given family of relations to a logical relation is problematic
for signatures containing higher-order constants. Further ways of defining pre-
logical relations are indicated by the examples at the end of Sect. 3.


It is easy to see that pre-logical relations are not closed under union. And
even in a signature with no term constants, the class of pre-logical relations
that lift a given relation R on base types cannot be endowed with a lattice
structure in general. But the only logical relation in this class is one of its
maximal elements under inclusion.


6 Pre-logical Relations via Composition of Logical Relations


Our weakening of the definition of logical relations may appear to be ad hoc,
but for extensional structures it turns out to be the minimal weakening that is
closed under composition. There are variants of this result for several different
classes of models. We give the version for Henkin models.


Proposition 6.1. Let A and B be Henkin models and let R be a pre-logical re-
lation over A and B. Then R factors into a composition of three logical relations
over Henkin models.


Proof sketch. We construct a Henkin model A[X ] from A by taking [[σ]]A[X]


to be the set of closed terms of type σ over a signature obtained by adding a
constant for each element of A and a set of indeterminates of each type to
Σ, quotiented by the congruence induced by the equality in A. Take normal
forms under evaluation in A up to βη-congruence as representatives of these
congruence classes. We construct B[X ] from B in the same way. We then define
a logical relation R[X ] on A[X ] and B[X ] by relating normal forms iff they are
the same modulo R. To see that R[X ] is a logical relation, suppose that we
have f ∈ [[σ → τ ]]A[X] and g ∈ [[σ → τ ]]B[X] such that whenever R[X ]σ(a, b),
we have R[X ]τ(AppA[X] f a,AppB[X] g b). Let a = b = x, an indeterminate.
We know that f x and g x are the same normal form modulo R, and hence
R[X ]σ→τ(f, g). It is easy to see that lifting the embedding on base types between
A and A[X ] to a logical relation is the embedding, and likewise for B. Finally,
we have to show that if a ∈ [[σ]]A and b ∈ [[σ]]B then Rσ(a, b) iff R[X ]σ([a], [b]).
This demonstrates that R is the composition of the embedding of A in A[X ],
R[X ], and the inverse of the embedding of B in B[X ]. 2


Corollary 6.2. The class of pre-logical relations on Henkin models is the clo-
sure under composition of the class of logical relations on such structures. 2


This gives the following lambda-definability result:


Corollary 6.3. Let A be a Henkin model and a ∈ [[σ]]A. Then 〈a, a〉 belongs to
all relations over A×A obtained by composing logical relations iff a = [[M : σ]]A


for some closed Σ-term M : σ.


Proof. By Corollary 6.2 and a binary version of Prop. 5.7. 2
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Corollary 6.2 does not hold if we restrict ourselves to considering just finite
full type hierarchies: given an element a of a finite structure, it turns out to
be co-r.e. if the pair 〈a, a〉 belongs to all binary relations which are obtainable
by closing logical relations under intersection and projection (and hence by
closure under composition), while by Prop. 5.7 and [Loa9?] it is not co-r.e. if
〈a, a〉 belongs to all binary pre-logical relations. In the case of arbitrary full
type hierarchies, the question is open: the proof of Prop. 6.1 fails if we take a
full type hierarchy in place of A[X ], and we conjecture that Corollary 6.2 does
not hold.


For non-extensional structures the notion of pre-logical relations is not the
minimal weakening that gives closure under composition. The following variant
is the minimal weakening for this case.


Definition 6.4. An algebraic relation is extensional if whenever Rσ→τ (f, g), f
is extensionally equal to f ′ and g is extensionally equal to g′, we have Rσ→τ (f ′, g′).


All pre-logical relations over extensional structures are automatically exten-
sional, and all logical relations over applicative structures (even non-extensional
ones) are automatically extensional as well.


Proposition 6.5. Let A and B be combinatory algebras and let R be an ex-
tensional pre-logical relation over A and B. Then R factors into a composition
of three logical relations.


Proof. As for Prop. 6.1 except that we need to take the extensional collapse over
A and B respectively in the construction of A[X ] and B[X ]. The fact that R is
extensional is needed to show that the embeddings are logical relations. 2


Corollary 6.6. The class of extensional pre-logical relations on combinatory
algebras is the closure under composition of the class of logical relations on such
structures. 2


These results may suggest that our definition of pre-logical relations on
non-extensional structures should be strengthened by requiring the relation
to be extensional, but this would make the reverse implication of the Basic
Lemma fail. So although the notion of extensional pre-logical relations is the
minimal weakening that gives closure under composition, these are stronger
than necessary to give the Basic Lemma.


At the end of Sect. 5, we argued that intersection, projection etc. are more
basic than composition of relations. Here are some counterparts to the above
results in those terms. First, we can regard a pre-logical predicate A over a
lambda applicative structure B as a substructure of B, written A ⊆ B. Then,
by analogy, we can call a logical predicate A over B a logical substructure of B,
written A � B.


Proposition 6.7. Suppose that A ⊆ B. Then:


1. If A is non-empty then there exist C,A′ such that A′ � B × C and A =
π1(A′).


2. There exist A′,B′ such that A � A′ � B′ � B and A = A′ ∩ B.


Proof. Let A ⊆ B.
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1. Take C = A[X ], where A[X ] is as in the proof of Prop. 6.1, and A′ =
A × A[X ]. Since A is non-empty, we have A × A[X ] � B × A[X ] and
trivially A = π1(A×A[X ]).


2. Take A′ = A[X ] and B′ = B[X ]. 2


If A ⊆ B then there exists B′ such that A �I B′ � B, where A �I B means
that A is an I-predicate over B.


It would be interesting to continue the above investigations to understand
more fully the expressive power of classes of relations generated by logical re-
lations under various operations, particularly on full type hierarchies.


7 Representation Independence and Data Refinement


Logical relations have been applied to explain the fact that the behaviour of
programs does not depend on the way that data types are represented, but only
on what can be observed about them using the operations that are provided.
“Behaviour of programs” is captured by the notion of observational equivalence.


Definition 7.1. Let A and B be lambda Σ-applicative structures and let OBS,
the observable types, be a subset of Types(B). Then A is observationally finer
than B with respect to OBS, written A ≤OBS B, if for any two closed terms
M,N : σ for σ ∈ OBS such that [[M : σ]]A = [[N : σ]]A we have [[M : σ]]B =
[[N : σ]]B.
A and B are observationally equivalent with respect to OBS, written A ≡OBS


B, if A ≤OBS B and B ≤OBS A.


It is usual to take OBS to be the “built-in” types for which equality is decidable,
for instance bool and/or nat . Then A and B are observationally equivalent iff
it is not possible to distinguish between them by performing computational
experiments. Mitchell gives the following representation independence result:


Theorem 7.2 ([Mit96]). Let Σ be a signature that includes a type constant
nat, and let A and B be Henkin models, with [[nat ]]A = [[nat ]]B = N. If there
is a logical relation R over A and B with Rnat the identity relation on natural
numbers, then A ≡{nat} B. Conversely, if A ≡{nat} B, Σ provides a closed term
for each element of N, and Σ only contains first-order functions, then there is
a logical relation R over A and B with Rnat the identity relation. 2


The following example (Exercise 8.5.6 in [Mit96]) shows that the requirement
that Σ contains only first-order functions is necessary.


Example 7.3. Let Σ have type constant nat and term constants 0, 1, 2, . . . : nat
and f : (nat → nat)→ nat . Let A be the full type hierarchy over [[nat]]A = N
with 0, 1, 2, . . . interpreted as usual and [[f ]]A(g) = 0 for all g : N → N. Let B
be like A but with [[f ]]B(g) = 0 if g is computable and [[f ]]B(g) = 1 otherwise.
Since the difference between A and B cannot be detected by evaluating terms,
A ≡{nat} B. But there is no logical relation over A and B which is the identity
relation on nat : if R is logical then Rnat→nat (g, g) for any g : N → N, and
then Rnat(AppA [[f ]]A g,AppB [[f ]]B g), which gives a contradiction if g is non-
computable. 2
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We will strengthen this result by showing that pre-logical relations charac-
terize observational equivalence for all signatures. We also generalize to arbi-
trary sets of observable types but this is much less significant. This characteriza-
tion is obtained as a corollary of the following theorem which is a strengthening
of Lemma 8.2.17 in [Mit96], again made possible by using pre-logical relations
in place of logical relations.


Theorem 7.4. Let A and B be lambda Σ-applicative structures and let OBS ⊆
Types(B). Then A ≤OBS B iff there exists a pre-logical relation over A and B
which is a partial function on OBS.


Proof. ⇐: Suppose that R is a pre-logical relation over A and B which is a
partial function on OBS and let [[M : σ]]A = [[N : σ]]A for σ ∈ OBS. Apply the
Basic Lemma to both sides and use the fact that Rσ is a partial function to get
[[M : σ]]B = [[N : σ]]B.
⇒: Take the relation defined in Example 3.7. 2


(Mitchell’s Lemma 8.2.17 is the “if” direction for Henkin models where OBS =
Types(B) but R is required to be logical rather than just pre-logical.)


Corollary 7.5. LetA and B be lambda Σ-applicative structures and let OBS ⊆
Types(B). Then A ≡OBS B iff there exists a pre-logical relation over A and B
which is a partial function on OBS in both directions. 2


Corollary 7.6. Let Σ be a signature that includes a type constant nat and let
A and B be lambda Σ-applicative structures with [[nat ]]A = [[nat ]]B = N such
that Σ provides a closed term for each element of N. There is a pre-logical
relation R over A and B with Rnat the identity relation on natural numbers iff
A ≡{nat} B. 2


Example 7.7. Revisiting Example 7.3, the pre-logical relation constructed in
Example 3.7 has the required property, and it does not relate non-computable
functions since they are not lambda definable. 2


In accounts of data refinement in terms of logical relations such as Sect. 2
of [Ten94], the fact that logical relations do not compose conflicts with the
experience that data refinements do compose in real life. Example 5.4 can be
embellished to give refinements between data structures like lists and sets for
which the logical relations underlying the refinement steps do not compose to
give a logical relation, yet the data refinements involved do compose at an
intuitive level. This failure to justify the soundness of stepwise refinement is a
serious flaw. If pre-logical relations are used in place of logical relations, then the
fact that the composition of pre-logical relations is again a pre-logical relation
(Prop. 5.5) explains why stepwise refinement is sound. This opens the way to
further development of the foundations of data refinement along the lines of
[ST88], but we leave this to a separate future paper, see Sect. 10.


8 Other Applications


There are many other applications of logical relations. Take for instance the
proof of strong normalization of λ→ in [Mit96]: one defines an admissible logical
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predicate on a lambda applicative structure of terms by lifting the predicate on
base types consisting of the strongly normalizing terms to higher types, proves
that the predicate implies strong normalization, and then applies the general
version of the Basic Lemma to give the result. The pattern for proofs of con-
fluence, completeness of leftmost reduction, etc., is the same, sometimes with
logical relations in place of logical predicates. There are also constructions that
do not involve the Basic Lemma because the relations defined are not logical re-
lations, but that include proofs following the same lines as the proof of the Basic
Lemma. Examples include Gandy’s proof that the hereditarily strict monotonic
functionals model λI terms [Gan80], Plotkin’s proof that lambda terms satisfy
any I-relation [Plo80], and Jung and Tiuryn’s proof that lambda terms sat-
isfy any Kripke logical relation with varying arity at each arity (Theorem 3 of
[JT93]).


All of these can be cast into a common mould by using pre-logical relations
rather than logical relations. If a relation or predicate on a lambda applicative
structure is logical and admissible, then it is pre-logical, and then the Basic
Lemma for pre-logical relations gives the result. Plotkin’s, Jung and Tiuryn’s,
and Gandy’s relations can be shown to be pre-logical (in Gandy’s case with
respect to λI), see Examples 3.8 and 3.9 respectively, and then the application of
the Basic Lemma for pre-logical relations gives the result in these cases as well.
In each case, however, the interesting part of the proof is not the application
of the Basic Lemma (or the argument that replaces its application in the case
of Gandy, Plotkin, and Jung and Tiuryn) but rather the construction of the
relation and the proof of its properties. The point of the analysis is not to say
that this view makes the job easier but rather to bring forward the common
pattern in all of these proofs, which is suggestive of a possible methodology for
such proofs.


Definition 8.1. A family of binary relations {Rσ ⊆ [[σ]]A × [[σ]]A}σ∈Types(B)
over a Σ-applicative structure A is a partial equivalence relation (abbreviated
PER) if it is symmetric and transitive for each type.


Proposition 8.2. Let R be a PER on a Σ-applicative structure A which is
algebraic. Define the quotient of A by R, written A/R, as follows:


– [[σ]]A/R = [[σ]]A/Rσ, i.e. the set of R-equivalence classes of objects a ∈ [[σ]]A


such that Rσ(a, a).
– Appσ,τA/R [f ]A/R [a]A/R = [Appσ,τA fa]A/R
– [[c]]A/R = [c]A/R for each constant c : σ in Σ.


Then:


1. Let A be a lambda applicative structure. Then A/R is a lambda applicative
structure iff R is pre-logical.


2. Let A be a combinatory algebra. Then A/R is a combinatory algebra iff R
is pre-logical.


3. A/R is an extensional applicative structure iff its restriction to the substruc-
ture of A consisting of the elements in Dom(R) is a logical relation. 2
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The last part of the above proposition says that one application of logical rela-
tions, that is their use in obtaining extensional structures by quotienting non-
extensional structures i.e. the so-called extensional collapse, requires a relation
that is logical (on a substructure) rather than merely pre-logical.


The above proposition allows us to prove completeness for different classes of
structures using the traditional technique of quotienting an applicative structure
of terms by a suitable relation defined by provability in a calculus. For non-
extensional structures, this is not possible using logical relations because the
relation defined by provability is pre-logical or algebraic rather than logical.


At this point one could develop a theory analogous to that of homomor-
phisms, quotients and substructures in universal algebra, but we refrain from
doing this here. One would expect analogues of the usual theorems relating
these three notions.


9 Beyond λ! and Applicative Structures


Up to now we have been working in λ→, the simplest version of typed lambda
calculus. We will now briefly indicate how other type constructors could be
treated so as to obtain corresponding results for extended languages.


As a template, we shall discuss the case of product types. The syntax of
types is extended by adding the type form σ × τ and the syntax of terms is
extended by adding pairing 〈M,N 〉 and projections π1 M and π2 M . If we
regard these as additional term constants in the signature, e.g. 〈·, ·〉 : σ → τ →
σ × τ for all σ, τ , rather than as new term forms, then the definition of pre-
logical relations remains the same: the condition on constants says that e.g.
Rσ→τ→σ×τ ([[〈·, ·〉]]A, [[〈·, ·〉]]B) and this is all that is required. For models that do
not satisfy surjective pairing, this is weaker than the corresponding condition
on logical relations, namely


– Rσ×τ (a, b) iff Rτ(π1 a, π1 b) and Rτ (π2 a, π2 b).


The treatment of sum types σ + τ is analogous.
A type constructor that has received less attention in the literature is (finite)


powerset, P(σ). For lack of space we do not propose a specific language of terms
to which one could apply the paradigm suggested above, but we claim that the
notion of pre-logical relations over full type hierarchies would be extended to
powersets by the addition of the following condition:


– RP(σ)(α, β) iff ∀a ∈ α, ∃b ∈ β.Rσ(a, b) and ∀b ∈ β, ∃a ∈ α.Rσ(a, b).


Note that this is the same pattern used in defining bisimulations. The extension
for other kinds of models remains a topic for future work.


Various other kinds of types can be considered, including inductive and co-
inductive data types, universally and existentially quantified types, and various
flavours of dependent types. We have not yet considered these in any detail, but
we are confident that for any of them, one could take any existing treatment
of logical relations and modify it by weakening the condition on functions as
above without sacrificing the Basic Lemma. We expect that this would even
yield improved results as it has above, but this is just speculation.
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A different dimension of generalization is to consider models having addi-
tional structure — e.g. Kripke applicative structures [MM91], pre-sheaf models
or cartesian closed categories — for which logical relations have been studied.
We have not yet examined the details of this generalization but it appears that a
corresponding weakening of the definition would lead to analogues of the results
above, cf. [PPS98].


10 Conclusions and Directions for Future Work


Our feeling is that by introducing the notion of pre-logical relation we have,
metaphorically and a little immodestly, removed a “blind spot” in the existing
intuition of the use and scope of logical relations and related techniques. This
is not to say that some specialists in the field have not previously contemplated
generalizations similar to ours, but they have not carried the investigation far
enough. We believe that in this paper we have exposed very clearly the fact
that in many situations the use of logical relations is unnecessarily restrictive.
Using pre-logical relations instead, we get improved statements of some results
(e.g. Theorem 7.4 and its corollaries), we encompass constructions that had
previously escaped the logical paradigm (e.g. Example 3.9), and we isolate the
necessary and sufficient hypotheses for many arguments to go through (e.g.
Lemma 4.1).


Throughout the paper we have indicated possible directions of future inves-
tigation, e.g. with respect to richer type theories. It is plausible that sharper
characterizations of representation independence will appear in many different
type contexts.


But probably the area where the most benefits will be achieved will be that
of the foundations of data refinement. Here we think that a more comprehensive
explanation of data refinement would be obtained by combining an account in
terms of pre-logical relations with the first-order algebraic treatment in [ST88]
which we would expect to extend smoothly to higher-order. Among other im-
provements, this would result in a non-symmetric refinement relation, giving a
better fit with the real-life phenomenon being modelled.


There is a vast literature on logical relations in connection with areas like
parametricity, abstract interpretation, etc. A treatment of these topics in terms
of pre-logical relations is likely to be as fruitful and illuminating as it has proved
to be for the classical example of simply-typed lambda calculus presented here.


Acknowledgements: Thanks to Samson Abramsky, Martin Hofmann, Jo Han-
nay, Yoshiki Kinoshita, John Mitchell, Peter O’Hearn, Gordon Plotkin, John
Power and Ian Stark for helpful comments.
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