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Abstract. One of the most novel features of Casl, the Common Alge-
braic Specification Language, is the provision of so-called architectural
specifications for describing the modular structure of software systems. A
brief discussion of refinement of Casl specifications provides the setting
for a presentation of the rationale behind architectural specifications.
This is followed by some details of the features provided in Casl for
architectural specifications, hints concerning their semantics, and simple
results justifying their usefulness in the development process.


1 Introduction


A common feature of present-day algebraic specification languages (see e.g.
[SW83], [EM85], [GH93], [CoFI96], [SW98]) is the provision of specification-
building operations [BG77] for building large specifications in a structured fash-
ion from smaller and simpler ones. Less usual in specification languages are
features for describing the modular structure of software systems under develop-
ment. This paper is about the facilities for this that are provided in Casl, the
new Common Algebraic Specification Language [CoFI98b] that has been devel-
oped under the auspices of the Common Framework Initiative [Mos97], [CoFI98a]
in an attempt to create a focal point for future joint work on algebraic specifica-
tions and a platform for exploitation of past and present work on methodology,
support tools, etc.


Following earlier practical experiences [FJ90], [FAC92] and foundational work
[Bid88], [ST89], [SST92], [BH93], we argue that mechanisms for structuring spec-
ifications are not the same as and cannot suffice for describing the modular
structure of software under development. Casl therefore provides a separate
kind of specifications, so-called architectural specifications, for this purpose. An
architectural specification consists of a list of unit declarations, indicating the
component modules required with specifications for each of them, together with
a unit term that describes the way in which these modules are to be combined.
Such architectural specifications are aimed at the “implementation” modular
structure of the system rather than at the “interaction” relationships between
modules in the sense of [AG97] (the latter to be considered when specifications
of “reactive” modules are introduced in a Casl extension, cf. [FL97]).
? This is a revised and expanded version of [BST99].







The aim of this paper is to present motivation, intuition and technicalities re-
lated to this concept. We provide some basic information about Casl in Sect. 2,
discuss the development of programs from specifications by stepwise refinement
in Sect. 3 and then introduce architectural specifications in Sect. 4. We stress
there how generic components arise naturally from the desire to allow separate
but related modules to be developed independently. The semantics and correct-
ness aspects of architectural specifications with the simplest ways of combining
modules are discussed in Sects. 5, 6 and 7. Further operators for combining
modules are presented in Sect. 8. The development process in the presence of
architectural specifications is briefly discussed in Sect. 9.


Architectural specifications are presented in the context of Casl. However,
the overall ideas if not all the technicalities are applicable in any specification
and development framework, as we explain in Sect. 10. We also venture there
briefly into more advanced features of architectural specification and develop-
ment, bringing in ideas of behavioural refinement.


2 CASL preliminaries


Casl is a formalism to describe Casl structures: many-sorted algebras with sub-
sorts, partial operations and predicates. Structures are classified by signatures,
which give sort names (with their subsorting relation), partial/total operation
names, and predicate names, together with profiles of operations and predicates.
For each signature Σ, the class of all Σ-structures is denoted Mod[Σ].


The basic level of Casl includes declarations to introduce components of sig-
natures and axioms to give properties of structures that are to be considered as
models of a specification. The logic used to write the axioms is essentially first-
order logic (so, with quantification and the usual logical connectives) built over
atomic formulae which include strong and existential equalities, definedness for-
mulae and predicate applications, with generation constraints added as special,
non-first-order sentences. A basic Casl specification SP amounts to a definition
of a signature Σ and a set of axioms Φ. It denotes the class [[SP ]] ⊆ Mod[Σ]
of its models, which are those Σ-structures that satisfy all the axioms in Φ:
[[SP]] = {A ∈Mod[Σ] | A |= Φ}.


Apart from basic specifications as above, Casl provides ways of building
complex specifications out of simpler ones by means of various structuring con-
structs. These include translation, hiding, union, and both free and loose forms
of extension. Generic specifications and their instantiations with pushout-style
semantics [EM85] are also provided. Structured specifications built using these
constructs can be given a compositional semantics where each specification SP
determines a signature Sig [SP ] and a class [[SP ]] ⊆Mod[Sig[SP ]] of models. We
say that SP is consistent if [[SP]] is non-empty.


2.1 Example


Here is a sequence of definitions of Casl specifications. We intersperse them with
comments to clarify the meaning of particular Casl constructs and notations.
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The example is small but it is not contrived in the sense that the way in which
the specifications build upon one another seems quite natural.


spec Monoid =
sort Thing
ops null : Thing;


o : Thing × Thing → Thing , assoc, unit null
end


This is the usual specification of a monoid with a sort of elements, a constant,
and a binary operation that is associative and has the constant as a neutral
element.


spec Num =
sort Num
ops 0 : Num ;


succ : Num → Num
end


A signature for natural numbers — a starting point for further specifications.


spec AddNum =
{ Num then op plus : Num × Num → Num


vars x , y : Num
axiom plus(x , succ(y)) = succ(plus(x , y)) }


and
{ Monoid with Thing 7→ Num, null 7→ 0 , o 7→ plus }


This enriches Num by a binary operation and then further requires that Num
with 0 and plus form a monoid. The union of specifications is employed here to
re-use a specification (Monoid) introduced earlier. Since everything is extremely
simple we could as well incorporate the requirements from Monoid directly into
the axioms for plus , but in more complex cases this could be a lot of work and
moreover, some of the conceptual structure of the specification would be lost.


spec OrdNum = Num then pred < : Num × Num
axiom ∀x : Num • 0 < succ(x)


Another extension of Num by a loosely specified binary predicate.


spec CodeNum =
AddNum and OrdNum


then op code : Num → Num
axiom ∀x : Num • 0 < code(x)


In CodeNum we put both previous extensions of Num together and then add
a unary operation on Num with another simple axiom.


spec Elem = sort Elem end
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spec PartContainer [Elem] =
generated type Cont ::= empty | add(Elem;Cont)?
pred addable : Elem × Cont
vars x , y : Elem; C : Cont
axiom def add(x ,C ) ⇔ addable(x ,C )
pred ∈ : Elem × Cont
axioms ¬ (x ∈ empty);


(x ∈ add(y ,C ) ⇔ x = y ∨ x ∈ C ) if addable(y ,C )
end


This is a generic (in Elem) specification of “partial containers”, which introduces
a datatype Cont generated by a constant empty and a partial constructor add
that adds an element to a container. An element x may be added to a container
C if and only if addable(x, C) is satisfied. But addable is left unspecified at this
stage. The usual membership predicate is provided as well.


spec PartNumCont =
PartContainer[CodeNum fit Elem 7→ Num]


We instantiate the above generic specification to CodeNum, with an appropriate
fitting of the parameter. The result contains all the operations and predicates of
CodeNum together with those added by PartContainer with the profiles of
the latter adjusted accordingly.


spec UniqueNumCont =
PartNumCont


then vars x : Num; C : Cont
axiom addable(x ,C ) ⇔ ¬ (x ∈ C ) ∧ ¬ (code(x) ∈ C )


Finally, we constrain the addability condition, requiring that a number is addable
to a container if and only if neither it nor its code are already included there.


3 Program development and refinement


The intended use of Casl, as of any such specification formalism, is to spec-
ify programs. Each Casl specification should determine a class of programs
that correctly realize the specified requirements. To fit this into the formal view
of Casl specifications, programs must be written in a programming language
having a semantics which assigns1 to each program its denotation as a Casl


structure. Then each program P determines a signature Sig[P ] and a structure
[[P ]] ∈Mod[Sig[P ]]. The denotation [[SP ]] of a specification SP is a description
of its admissible realizations: a program P is a (correct) realization of SP if
Sig[P ] = Sig [SP ] and [[P ]] ∈ [[SP ]].


1 This may be rather indirect, and in general involves a non-trivial abstraction step.
It has not yet been attempted for any real programming language.
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In an idealized view of program development, we start with an initial loose
requirements specification SP0 and refine it step by step until some easily-
realizable specification SP last is obtained:


SP0 ; SP1 ; · · ·; SP last


Stepwise refinement only makes sense if the above chain of refinements guaran-
tees that any correct realization of SP last is also a correct realization of SP0: for
any P , if [[P ]] ∈ [[SP last ]] then [[P ]] ∈ [[SP0]]. This is ensured by the definition of
refinement: for any SP and SP ′ with the same signature, we define


SP ; SP ′ ⇐⇒ [[SP ′]] ⊆ [[SP ]].


The construction of a program to realize SP last is outside the scope of Casl.
Casl provides means for building specifications only; in this sense it is not a
“wide-spectrum” language [BW82]. Furthermore, there is no construct in Casl


to explicitly express refinement between specifications. All this is a part of the
meta-level, though firmly based on the formal semantics of Casl specifications.


A more satisfactory model of refinement allows for modular decomposition
of a given development task into several tasks by refining a specification to a
sequence of specifications, each to be further refined independently. (Of course,
a development may branch more than once, giving a tree structure.)


SP ; BR



SP1 ; · · ·; SP1,last
...
SPn ; · · ·; SPn,last


Once we have realizations P1, . . . , Pn of the specifications SP1,last , . . . , SPn,last,
we should be able to put them together with no extra effort to obtain a realiza-
tion of SP . So for each such branching point we need an operation to combine
arbitrary realizations of SP1, . . . , SPn into a realization of SP . This may be
thought of as a linking procedure LINK BR attached to the branching point BR,
where for any P1, . . . , Pn realizing SP1, . . . , SPn, LINK BR(P1, . . . , Pn) realizes
SP : if [[P1]] ∈ [[SP1]], . . ., [[Pn]] ∈ [[SPn]] then [[LINKBR(P1, . . . , Pn)]] ∈ [[SP]].


Crucially, this means that whenever we want to replace a realization Pi of
a component specification SP i with a new realization P ′i (still of SP i), all we
need to do is to “re-link” it with realizations of the other component specifica-
tions, with no need to modify them in any way. LINK BR(P1, . . . , P


′
i , . . . , Pn) is


guaranteed to be a correct realization of SP , just as LINK BR(P1, . . . , Pi, . . . , Pn)
was. In other words, the only interaction between the components happens via
LINKBR, so the components may be developed entirely independently from each
other.


The nature of LINK BR depends on the nature of the programs considered.
They could be for instance just “program texts” in some programming language
like Pascal (in which case LINK BR may be a simple textual operation, say, re-
grouping the declarations and definitions provided by the component programs)
or actual pieces of compiled code (in which case LINK BR would really be linking
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in the usual sense of the word). Our preferred view is that the programming
language in use has reasonably powerful and flexible modularization facilities,
such as those in Standard ML [Pau96] or Ada [Ada94]. Then P1, . . . , Pn are
program modules (structures in Standard ML, packages in Ada) and LINK BR
is a module expression or a generic module with formal parameters for which the
actual modules P1, . . . , Pn may be substituted. Note that if we later replace a
modulePi by P ′i as above, “recompilation” of LINK BR(P1, . . . , P


′
i , . . . , Pn) might


be required but in no case will it be necessary to modify the other modules.
One might expect that BR above is just a specification-building operation


OP (or a specification construct expressible in Casl), and branching could be
viewed as “ordinary” refinement SP ; OP(SP1, . . . , SPn). Further refinement
of OP(SP1, . . . , SPn) might then consist of separate refinements for SP1, . . . , SPn


as above. Then we need at least that OP is “monotonic” with respect to inclusion
of model classes.2 Then the following “refinement rule” is sound:


SP1 ; SP ′n · · · SPn ; SP ′n
OP(SP1, . . . , SPn) ; OP(SP ′1, . . . , SP ′n)


This view is indeed possible provided that the specification-building operation
OP is constructive in the following sense: for any realizations P1, . . . , Pn of
SP1, . . . , SPn, we must be able to construct a realization LINK OP(P1, . . . , Pn)
of OP(SP1, . . . , SPn). In that case, OP(SP1, . . . , SPn) will be consistent when-
ever SP1, . . . , SPn are. However, simple examples show that some standard
specification-building operations (like the union of specifications) do not have
this property. It follows that refining SP to OP(SP1, . . . , SPn), where OP is an
arbitrary specification-building operation, does not ensure that we can provide
a realization of SP even when given realizations of SP1, . . . , SPn. (See [HN94]
for a different approach to this problem.)


Another problem with the refinement step SP ; OP(SP1, . . . , SPn) is that
it does not explicitly indicate that subsequent refinement is to proceed by in-
dependently refining each of SP1, . . . , SPn, so preserving the structure imposed
by the operation OP . The structure of the specification OP(SP1, . . . , SPn) in
no way prescribes the structure of the final program. And this is necessarily
so: while preserving this structure in the subsequent development is convenient
when it is natural to do so, refinements that break this structure must also be
allowed. Otherwise, at very early stages of the development process we would
have to fix the final structure of the resulting program: any decision about struc-
turing a specification would amount to a decision about the structure of the final
program. This is hardly practical, as the aims of structuring specifications in the
early development phases (and at the requirements engineering phase) are quite


2 The specification-building operations we use here, hence all derived specification con-
structs, are monotonic, as are most of the constructs of Casl and other specification
languages. The few exceptions — like imposing the requirement of freeness — can
be viewed as operations which add “constraints” to specifications rather than as
fully-fledged specification-building operations.
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distinct from those of structuring final programs. Simple examples are mentioned
below, cf. [FJ90].


On the other hand, at certain stages of program development we need to
fix the structure of the system under development: the design of the architec-
ture of the system is often among the most important design decisions in the
development process. In Casl, this is the role of architectural specifications, see
Sect. 4.


3.1 Example


Consider the task of realizing UniqueNumCont from Sect. 2.1. Its structure
does not provide useful guidance to the structure of its realization. For instance,
there would be obvious trouble with the use of union in AddNum: an attempt to
implement AddNum “structurally”, by providing independent realizations for
Num (with an appropriate extension by plus) and for Monoid (with appropriate
renaming), would succeed only by pure chance!


Furthermore, the last extension of PartNumCont by an axiom for addable
cannot be a directive to first realize PartNumCont and then somehow miracu-
lously ensure that the predicate addable does indeed satisfy the axiom. After all,
realizing PartNumCont means, among other things, choosing a realization for
addable. One might change this specification, so that a realization of PartNum-


Cont would be required for any choice of addable — but this would be quite
a different specification with quite a different structure. Moreover, it would not
enable the implementor to take advantage of the fact that the axiom for addable
ensures that an element need never be added to a container more than once.


We might re-structure the above specification instead by introducing some
new “constructive” compositions or exposing some existing ones. For instance:


spec UniqueContainer [CodeNum] =
PartContainer[CodeNum fit Elem 7→ Num]
then vars x : Num; C : Cont


axiom addable(x ,C ) ⇔ ¬ (x ∈ C ) ∧ ¬ (code(x) ∈ C )


spec UniqueNumCont’ = UniqueContainer[CodeNum]


Then we have that UniqueNumCont ; UniqueNumCont’ (in fact, the two
specifications are equivalent) and the instantiation in the latter specification
is “constructive”, which indicates a possible split of further development to a
part where a realization of CodeNum is developed and another part where
UniqueContainer is implemented. See Sect. 4.1 below for details.


4 Architectural specifications


The conclusion from Sect. 3 is that we need to distinguish carefully between two
kinds of structuring mechanisms needed in the specification and development
process.
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On one hand we need the standard mechanisms to structure specifications
to facilitate their construction, reading, understanding and re-use. These are
provided by the specification-building operations of Casl, disregarding whether
these operations are “constructive” or not. In general, their use should not be
viewed as fixing the shape of the development tree or as determining the mod-
ular structure of the final program. On the other hand, at a certain stage of
program development we need to design the structure of the final program, and
consider these decisions binding in the subsequent development process. Such
a design is given by refining a specification to a “constructive” combination of
specified components. The essence here is not so much the use of a constructive
specification-building operation, as rather some specific construction (linking
procedure) that builds a realization of the original specification once given real-
izations of the component specifications.


The latter structuring facility, although quite standard in modular program-
ming languages, is rarely explicitly provided in specification formalisms. In many
approaches, the structure of the specification is regarded as determining the
structure of the final program, examples like those in Sect. 3.1 notwithstanding,
see e.g. [GB80], [MA91]. Or else ad hoc informal mechanisms are used to indicate
that a certain part of the structure of a specification (given by a constructive
specification-building operation) is to remain fixed throughout the rest of the
development. We consider this unsatisfactory and likely to be confusing. There-
fore Casl provides an explicit notation whereby one specifies the components
required together with a way to combine them to build the resulting program.
Such architectural specifications (an alternative terminology is organizational
specifications [GHW82]) can be used to refine ordinary specifications, whether
structured or not, explicitly introducing branching into the development process
and structure into the final program:


SP ; BR



SP1
...
SPn


The corresponding architectural specification is written as follows:


units U1 : SP1 ;
. . .
Un : SPn


result LINK BR(U1, . . . , Un)


Notice that we provide names for program units to be implemented according to
the component specifications given, and we give a “linking procedure” LINK BR
to combine these units rather than an operation to combine their specifications.
The component specifications SP1, . . . , SPn are ordinary Casl specifications.
The “linking procedure” LINK BR(U1, ..., Un) is just a unit term that might
involve the units named U1, . . . , Un. It builds a new unit when given actual units
U1, . . . , Un that correctly realize the specifications SP1, . . . , SPn.
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Typically SP1, . . . , SPn (and so, units that realize them) will contain shared
parts, or some of them will rely on others. For instance, we might start by
implementing some simple specification SP1. Then, given an implementation U1
of SP1, build an implementation U2 of some “larger” specification SP2 using U1,
etc. The last stage is to build an implementation Un of SPn using Un−1, and the
final result is Un. The corresponding architectural specification is:


units U1 : SP1 ;
U2 : SP2 given U1 ;
. . .
Un : SPn given Un−1


result Un


Here, the “linking procedure” Un is trivial since all of the linking was done when
we used Uj−1 to build Uj for 1 < j ≤ n. Of course, this is just the simplest case.
In particular, it does not cover multiple dependencies (where a unit might use
several other units), sharing between various units in a more flexible way than
just having each unit use the previous one, or reusability (whereby a unit may
be used more than once). Still, it illustrates the idea of splitting a development
task into subtasks, clearly indicating their interfaces and the flow of information
between them. In the extreme, such a split may be done step by step, each time
splitting the work into just two parts:


SP ;


units U1 : SP1 ;
U2 : SP given U1


result U2


The task of providing a realization U1 for SP1 is independent from the task of
providing a realization U2 for SP using U1. It follows that no properties of U1
may be exploited in the development of U2 other than those explicitly ensured
by the specification SP1. This requires a realization of SP for any realization
of SP1, which is tantamount to requiring a generic realization F of SP which
takes the particular realization of SP1 as parameter. Then we obtain U2 by
simply feeding U1 to F .


Genericity here arises from the independence of the developments of U1 and
U2, rather than from the desire to build multiple realizations of SP using different
realizations of SP1. This is reflected in the fact that F is not named in the
architectural specification above. If it is desired to indicate the potential for re-
use explicitly, we may give F “first-class” status as a so-called generic unit with
a specification SP1→SP which indicates that it will realize SP when given a
realization of SP1:


units U1 : SP1 ;
F : SP1 → SP ;
U2 = F [U1 ]


result U2
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Here, U2 = F [U1 ] is a so-called unit definition.
The earlier specification is equivalent to this version with the sole exception


that F is anonymous there. This shows how to explain architectural specifica-
tions involving “given” by translation to architectural specifications involving
explicit generic units. A key insight is the use of genericity to control the flow
of information between developments of independent units, as well as for multi-
ple instantiation. Despite this, it seems useful to retain both notations as they
convey different pragmatic intuitions.


In this specification (and in all those arising from translation of specifications
involving “given”) the generic unit F is instantiated only once, but in general
it may be applied to more than one argument, as demonstrated in Sect. 8.3.


In programming languages with sufficiently powerful modularisation facil-
ities, generic units correspond to some form of generic modules (functors in
Standard ML, generic packages in Ada, etc.). This is in contrast to units (or
simply: programs) like U1, realizing ordinary structured specifications, which
correspond to “closed” modules (structures in Standard ML, non-generic pack-
ages in Ada, etc.). The components of such a closed unit are available for use
in any program that imports it. The only way to use generic units is to first
instantiate them, otherwise their components are not ready for use.


Generic unit specifications correspond to functor headings in Extended ML
[ST89] and to a restricted form of Π-specifications in [SST92], cf. Spectral
[KS91]. On the other hand, generic unit specifications and generic specifications
coincide in ACT ONE [EM85], which the above discussion argues is inappropri-
ate.


4.1 Example


Recall the specifications built in Sect. 2.1 and the further comments on them in
Sect. 3.1. We ended up there with a specification


spec UniqueNumCont’ = UniqueContainer[CodeNum]


which suggests a way of decomposing the task of implementing UniqueNumCont.
This may be turned into a design decision by refining this specification to an
architectural specification that captures the decomposition meant here:


arch spec UCNum =
units N : CodeNum;


UCN : UniqueNumCont’ given N
result UCN


Then UniqueNumCont ; UCNum (this becomes fully formal only when the
semantics of architectural specifications is given more precisely below).


We might, however, be a bit more clever in our design and require a re-
alization of containers with the specified “uniqueness” property for arbitrary
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elements equipped with the operations that allow one to express this property.
For instance:3


spec TransElem =
sort Elem
op transform : Elem → Elem


end


spec AbstractUniqueCont =
PartContainer[TransElem]
then vars x : Elem; C : Cont


axiom addable(x ,C ) ⇔ ¬ (x ∈ C ) ∧ ¬ (transform(x) ∈ C )


arch spec AbstractUCNum =
units N : CodeNum;


AUC : TransElem → AbstractUniqueCont


result AUC [N fit Elem 7→ Num , transform 7→ code ]


We still have UniqueNumCont ; AbstractUCNum.
The required generic unit AUC here is more abstract and more general than


the “anonymous” unit to build UCN as required in UCNum. AUC has to work
for arbitrary structures fitting the abstract TransElem specification; it could
be re-used in the future for arguments other than N .


The anonymous generic unit in UCNum is required to work only for struc-
tures fitting the considerably richer specification CodeNum. This might make
life easier for its implementor (the extra structure can be used in the implemen-
tation) but also makes the unit less general.


It is up to the system designer to choose whether to follow the “more general”
or “more specific” line of design and so choose between AbstractUCNum and
UCNum (or some yet different architectural specification) as a refinement for
UniqueNumCont. The key point is that an architectural specification may be
given to present an architecture for the system in a prescriptive way.


5 Semantics of unit specifications


To provide a formal framework covering the above ideas as well as more advanced
aspects of architectural specifications, we will now take a closer look at the
underlying semantics of generic units and their specifications.


Consider a unit specification of the form SP ′→SP , and let Σ′ and Σ be
the respective signatures of SP ′ and SP . In Casl, SP is implicitly viewed as
an extension of SP ′. Therefore, without loss of generality, we assume that in
each specification of the form SP ′→SP , SP extends SP ′, that is: Σ′ ⊆ Σ and
[[SP]] Σ′ ⊆ [[SP ′]].


3 The reader is kindly asked to rely on her/his intuition and the obvious analogy with
the instantiation of generic specifications to grasp the meaning of instantiation of
generic units with non-trivial fitting of arguments. Details will be given in Sect. 8.3.
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As indicated above, to realize the specification SP ′→SP , we should provide
a “program fragment” ∆P for SP \SP ′ that extends any realization P ′ of SP ′


to a realization P of SP , which we will write as ∆P (P ′). The basic semantic
property required is that for all programs P ′ such that [[P ′]] ∈ [[SP ′]], ∆P (P ′) is
a program that extends P ′ and realizes SP (semantically: [[∆P (P ′)]] Σ′ = [[P ′]]
and [[∆P (P ′)]] ∈ [[SP ]]). This amounts to requiring ∆P to determine a partial
function4 [[∆P ]]: Mod[Σ′] →? Mod[Σ] that “preserves” its argument whenever
it is defined, is defined on (at least) all structures in [[SP ′]],5 and yields a result
in [[SP ]] when applied to a structure in [[SP ′]]. Consequently:


[[SP ′→SP ]] = {F : Mod[Σ′] →? Mod[Σ] |
for all A′ ∈ Dom(F ), F (A′) Σ′ = A′,


for all A′ ∈ [[SP ′]], F (A′) is defined and F (A′) ∈ [[SP ]]}


This definition can easily be restated in a form closer to the definition of the
semantics of specifications in Sect. 2. First, we can generalize the notion of Casl


structures to generic structures as follows:


Mod[Σ′ → Σ] = {F : Mod[Σ′] →? Mod[Σ] |
for all A′ ∈ Dom(F ), F (A′) Σ′ = A′}


Then [[SP ′→SP ]] can equivalently be defined by:


[[SP ′→SP ]] = {F ∈Mod[Σ′ → Σ] |
for all A′ ∈ [[SP ′]], F (A′) is defined and F (A′) ∈ [[SP ]]}


Note that this set will be empty if there is some model of SP ′ that cannot be
extended to a model of SP ; then we say that SP ′→SP is inconsistent.


This semantic view of program fragments as partial functions naturally leads
to further generalisations. The most obvious one is to admit multi-argument
functions, providing for the possibility that the realization of some specification
might depend on realizations of more than one (sub-)specification. Specifications
of multiply-dependent units will have the form SP1 × . . .× SPn→SP . As with
singly-dependent units, we assume that SP extends each of SP1, . . . , SPn (or
equivalently, their union). Let Σ1, . . . , Σn and Σ be the respective signatures of
SP1, . . . , SPn and SP . We then have:


[[SP1 × . . .× SPn→SP ]] =
{F ∈Mod[Σ1 × . . .×Σn → Σ] |


for all 〈A1, . . . , An〉 ∈ [[SP1 × . . .× SPn]],
F (A1, . . . , An) is defined and F (A1, . . . , An) ∈ [[SP ]]}


where Mod[Σ1× . . .×Σn → Σ] and [[SP1× . . .×SPn]] are defined as explained
below.
4 As in Casl, X →? Y denotes the set of partial functions from X to Y .
5 Intuitively, ∆P (P ′) is “statically”well-formed as soon as P ′ has the right signature,


but needs to be defined only for arguments that realize SP ′.
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In general, not all tuples 〈A1, . . . , An〉 of structures A1 ∈ [[SP1]], . . . , An ∈
[[SPn]] can be extended to structures in [[SP ]]: if a symbol in SP is inherited from
one or more of SP1, . . . , SPn, then its interpretation in the resulting structure
must be the same as in each corresponding argument structure. So, if such a
symbol occurs in several arguments then it is impossible to expand a tuple of
arguments to a result unless all of the relevant arguments interpret this symbol
in the same way.


A tuple 〈A1, . . . , An〉 of structures A1 ∈ Mod[Σ1], . . . , An ∈ Mod[Σn] is
compatible if any symbol that occurs in both Σi and Σj is interpreted in the
same way in Ai and Aj, for 1 ≤ i, j ≤ n.6 Compatible tuples 〈A1, . . . , An〉
are in bijective correspondence with structures A ∈ Mod[Σ1 ∪ . . . ∪ Σn] over
the union of the signatures Σ1, . . . , Σn. Namely, each structure A ∈Mod[Σ1 ∪
. . . ∪ Σn] corresponds to the compatible tuple 〈A Σ1 , . . . , A Σn〉. On the other
hand, given a compatible tuple 〈A1, . . . , An〉, there exists a unique structure
A ∈ Mod[Σ1 ∪ . . . ∪Σn] such that A1 = A Σ1 , . . . , An = A Σn — we will call
A the amalgamation of 〈A1, . . . , An〉, and write it as A1 ⊕ . . .⊕ An. Then we
take Mod[Σ1 × . . .× Σn] to be the class of all compatible tuples of structures
from Mod[Σ1], . . . ,Mod[Σn], respectively, and use this to define the semantics
of tuples of specifications:


Mod[Σ1 × . . .×Σn] = {〈A Σ1 , . . . , A Σn〉 | A ∈Mod[Σ1 ∪ . . . ∪Σn]}
[[SP1 × . . .× SPn]] =


{〈A1, . . . , An〉 ∈Mod[Σ1 × . . .×Σn] | A1 ∈ [[SP1]], . . . , An ∈ [[SPn]]}


Given this, Mod[Σ1 × . . .×Σn → Σ] is defined as follows:


Mod[Σ1 × . . .×Σn → Σ] = {F : Mod[Σ1 × . . .×Σn] →? Mod[Σ] |
for all 〈A1, . . . , An〉 ∈ Dom(F ),
F (A1, . . . , An) Σi = Ai, for i = 1, . . . , n}


6 Sharing and well-formedness


In spite of their somewhat technical motivation, the definitions at the end of the
previous section convey important methodological concepts. Namely, we now
have a way to require that a number of units (fed to a unit dependent on them)
share some of their parts. Even though they might be developed independently,
certain parts of the argument units must be identical. In Casl, this requirement
is imposed by the use of the same names in argument signatures for symbols
which are to be shared between the argument units. An application of a generic
unit to a tuple of arguments is well-formed only if the arguments do indeed share
their commonly-named parts. In a programming language like Standard ML,


6 This is correct for signatures without subsorts (i.e., with a discrete subsort ordering).
In the presence of non-trivial subsorts, the precise conditions for compatibility must
be more carefully stated, see [CoFI99].
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this is a part of the “type discipline” and the required sharing is (type-)checked
statically.


Consider the following simple example:


spec SP0 = sort s end
spec SPa = sort s op a : s end
spec SPb = sort s op a, b : s end
spec SPc = sort s op a, c : s end
spec SPd = sort s op a, b, c, d : s axiom d = b ∨ d = c end


Then the generic unit specification SP b×SP c → SPd imposes a constraint on the
arguments for the generic unit: they are required to share a common realization
of the sort s and constant a. Consequently, given the following unit declarations:


units Ub : SPb ;
Uc : SPc;
Fd : SPb × SPc → SPd


the instantiation Fd[Ub, Uc] cannot be allowed, since there is nothing that ensures
that the units Ub and Uc do indeed share s and a. It is easy to provide units
Ub and Uc that realize SP b and SP c respectively without fulfilling this sharing
requirement. On the other hand, consider the following unit declarations:


units Ua : SPa ;
Fb : SPa → SPb;
Fc : SPa → SPc ;
Fd : SPb × SPc → SPd


The unit term Fd[Fb[Ua], Fc[Ua]] is well-formed in the context of these declara-
tions. The required sharing between the two arguments for Fd, namely between
Fb[Ua] and Fc[Ua], is ensured. In both Fb[Ua] and Fc[Ua] the sort s and constant
a come from Ua, and so must be the same. This follows simply from the fact that
generic units expand their arguments, preserving them without any modification
in the result.


The situation becomes a bit less clear if components of instantiations of
generic units are involved. For instance, consider:


units U0 : SP0 ;
Fa : SP0 → SPa


and declarations of Fb, Fc, Fd as above. Is Fd[Fb[Fa[U0]], Fc[Fa[U0]]] well-formed?
One might expect so: the sort s in the two arguments for Fd can be traced to
the same unit U0, and the constant a to the two occurrences of Fa[U0]. Here,
the sharing of s does not raise any objections (it just requires the “tracing
procedure” to search through a slightly longer chain of instantiations). But the
argument that the two occurrences of Fa[U0] share the constant a cannot be
carried too far. In general, to decide if two instantiations of Fa, say Fa[U0]
and Fa[U ′0], share the constant a , we would have to check if the two argument
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units U0 and U ′0 are identical. Clearly, this is too complicated for static analysis,
even if in trivial cases it can be seen to hold immediately, as above. Moreover,
in some programming languages with flexible modularisation facilities the new
items introduced by instantiation of generic modules are distinct for each such
instantiation. For instance, functors (generic modules) in Standard ML have such
a “generative” semantics: each time a functor is instantiated to an argument, the
new types it builds are generated anew and are kept distinct from those built by
other instantiations, even if the arguments were the same each time. A similar
phenomenon occurs with Ada generic packages.


Therefore, for safety, we assume that new symbols introduced by a generic
unit are not shared between its instantiations, even when its arguments are the
same in each case. (For programming languages with “applicative” rather than
generative modules, this treatment is sound albeit marginally more awkward
than necessary.) Auxiliary unit definitions may be used in Casl to avoid repe-
tition of unit instantiation. For instance, we can rewrite the previous example:


units U0 : SP0 ;
Fa : SP0 → SPa ;
U ′a = Fa [U0 ];
Fb : SPa → SPb;
Fc : SPa → SPc ;
Fd : SPb × SPc → SPd


In the context of the above unit declarations and definitions, Fd[Fb[U ′a], Fc[U ′a]]
is well-formed and captures the intention behind Fd[Fb[Fa[U0]], Fc[Fa[U0]] ]. An
alternative way to present this example is to make the definition of U ′a local to
the unit instantiation:


local U ′a = Fa [U0 ] within Fd [ Fb [U ′a], Fc [U ′a] ]


This is legal in the context of the previous unit declarations.
To sum up: in the context of a sequence of unit declarations and definitions,


symbols in two units share if they can be traced to a common symbol in a
non-generic unit. The “tracing procedure” can be broken down according to the
constructs available for forming unit terms. For applications of generic units to
arguments, symbols in the result are new if they do not occur in the argument
signatures. Otherwise they can be traced to the same symbols in the arguments
(and, transitively, to the symbols those can be traced to). The symbols of a
declared unit can be traced only to themselves. The symbols of a defined unit
may be traced according to the definitional term for the unit. So, for instance,
using the specifications above, consider:


units U0 : SP0 ;
Fa : SP0 → SPa ;
U ′a = Fa [U0 ];
G : SP0 × SPa → SPb


The term G [U0 ,U ′a ] is well-formed since the sort s that the two arguments are
required to share can in both cases be traced to the sort s in U0 .
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7 Semantics of unit terms


As indicated above, an architectural specification comprises a sequence of unit
declarations and unit definitions followed by a unit term which shows how the
named units can be put together to build the result. Obviously, it is not possible
to put together units in completely arbitrary ways; they must fit together prop-
erly, as in modular programming languages. Then given an environment which
maps the declared unit names to particular (possibly generic) structures, the
result term denotes a structure.


The static analysis of unit terms, with sharing analysis etc., is just the begin-
ning of checking their correctness. The most crucial step is to check that when a
unit (or tuple of units) is fed to a generic unit then the interfaces match, making
sure that the requirements imposed on the parameter(s) of the generic unit by
its specification are fulfilled by the argument (tuple). To take a simple example:


units U : SP ;
F : SP ′ → SP ′′


Can we now feed the unit U to the generic unit F ? Or in other words: is the
unit term F [U ] correct? In order for it to be well-formed, the signatures of U
and of the argument of F must coincide: Sig [SP ] = Sig [SP ′]. And if F were
multiply-dependent with symbols in common between different arguments, then
sharing would also have to be checked. But also, F is required to work only for
arguments that realize SP ′, including the requirements imposed by any axioms
SP ′ may contain. So, for F [U ] to be correct, we must make sure that what we
know about U is sufficient to establish what is required of the argument for F .
Clearly, everything we know about U is recorded in SP — no other information is
available. Even later on, when the unit U has been developed, the whole point of
its declaration here — which decomposes the development task into developing
U and F separately — is to limit the knowledge about U at this level to what
is provided by SP . So, what we know about the unit U is that it denotes a
structure in [[SP ]]. The argument of F is required to denote a structure in [[SP ′]].
Consequently, the term F [U ] is correct provided [[SP ]] ⊆ [[SP ′]].


We have used different words to describe different aspects of “good” unit
terms. Well-formedness is a static property, expected to be decidable so that it
can be checked automatically. To check whether a unit term is well-formed we
need information about the signatures of the units available (a reference to a
non-available unit is not well-formed, of course) as well as sharing information
about them (this is trivial for declared units but non-trivial for defined units). In
such a context, well-formedness of a term is determined as sketched in Sect. 6.
Correctness requires verification: it is not decidable in general. To check whether
a unit term is correct we need full semantic information about the units that
make it up, as explained below.


The last example was perhaps misleadingly simple: the argument U of F came
equipped with an explicit specification (SP) that provided all the information
that was available about U . In general, the argument may be more complex
than this, and still we have to be able to gather all the information about it that
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is available. So, for instance, what do we know about F [U ] (in the context of
the above unit declarations — of course assuming that Sig [SP ] = Sig [SP ′] and
[[SP]] ⊆ [[SP ′]])? Clearly, we know that the result realizes the specification SP ′′.
Is this all? Not quite: we also know that U , and hence the reduct of F [U ] to
Sig[SP ], realizes SP , which may carry more information than SP ′ does.


Given an environment ρ which maps unit names to particular (possibly
generic) structures, a unit term T denotes a structure [[T ]]ρ, defined inductively
as follows:


– If T is a unit name U then [[T ]]ρ = ρ(U).
– If T is an instantiation F [T1, . . . , Tn] where F is an n-ary generic unit and
T1, . . . , Tn are unit terms, then [[F [T1, . . . , Tn]]]ρ = ρ(F )([[T1]]ρ, . . . , [[Tn]]ρ).


Some unit terms will not denote. A trivial reason for this might be the application
of a generic unit to the wrong number of arguments, or to arguments with wrong
signatures, or the use of an unbound unit name. Less trivially, there might be an
attempt to apply a generic unit to a non-compatible tuple of structures. These
cases cannot arise if the term is well-formed in the sense discussed above. Finally,
a term will not denote if it involves application of a generic unit to a structure
outside its domain; this cannot happen if the term is correct.


Correctness is defined in a context γ where unit names are associated with
specifications rather than with particular structures realizing those specifica-
tions.7 We say that an environment ρ matches a context γ if they bind the same
unit names and for each unit name U in their domain, the structure ρ(U) realizes
the specification γ(U): ρ(U) ∈ [[γ(U)]].8 For any unit term T that is well-formed
in the context γ, we write [T ]γ for the class of all structures [[T ]]ρ that T denotes
in environments ρ that match γ. Intuitively, [T ]γ captures the properties of the
unit built by T using unit declarations and definitions that determine γ.


Correctness of a well-formed unit term is defined by induction on its structure
as follows:


– A unit name U is correct. (By well-formedness, U is declared in γ.) It follows
that [U ]γ = [[γ(U)]].


– An instantiation F [T1, . . . , Tn] is correct, where γ(F ) is SP1×. . .×SPn→SP ,
if T1, . . . , Tn are so and [T1]γ ⊆ [[SP1]], . . . , [Tn]γ ⊆ [[SPn]]. It follows that


[F [T1, . . . , Tn]]γ = {A ∈ [[SP ]] | A Sig[SP1] ∈ [T1]γ , . . . , A Sig[SPn] ∈ [Tn]γ}.


7 The context carries all semantic information about available units. It is convenient to
think of the information about a unit as taking the form of a unit specification, even
though the formal semantics of Casl uses slightly more complex semantic objects
here. The specifications of declared units are given directly in the declarations. For
defined units, the semantic information (together with the relevant sharing informa-
tion) is determined according to the semantics of the unit term in the definition, as
explained below.


8 Moreover, the units in ρ share the components indicated by the sharing information
in the context γ.
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This omits the use of defined units in unit terms, treated in the obvious way:
information about these units is extracted from their definitional terms and
stored in the context as well. Further constructs for unit terms are discussed in
the next section.


The above statements defining the correctness of unit terms also provide a
more direct way to compute [T ]γ, without referring to the class of all environ-
ments that match γ. This can be proved by induction on the structure of unit
terms, and can be used to directly calculate the ensured properties of T , and to
validate its correctness.


Theorem 1. Let γ be a context and let T be a unit term that is well-formed
and correct in γ. Then for any environment ρ that matches γ, [[T ]]ρ is defined
(and [[T ]]ρ ∈ [T ]γ).


This means that once we have finished the development process and so have
provided realizations of each of the units declared, a correct result term will suc-
cessfully combine these realizations to give a structure. Moreover, this structure
satisfies the properties we can calculate directly from the architectural specifi-
cation. Correctness of the result term of an architectural specification can be
checked before realizations of its component units are provided. No a posteriori
checking is necessary to ensure that independent successful developments of the
components will fit together to give a correct result.


8 Other operators


Apart from the direct use of declared units and instantiation of generic units
with actual arguments, a number of other constructs to build units are useful and
are typically provided in some form in programming languages with advanced
modularisation facilities. In some sense, none of these produces a new unit; they
are used to “customize” what we have already defined, for instance to fit it to a
required signature.


Each of these constructs, except for generic unit expressions (Sect. 8.4), re-
lates directly to one of the specification-structuring constructs in Casl. For
instance, amalgamation of units relates to union of specifications. To draw at-
tention to this relationship, the syntax is deliberately the same. Nevertheless, it
is crucial not to confuse the two levels, as was explained in Sect. 3.


8.1 Amalgamation


We need a way of putting together already developed units, to build a larger
unit that contains all of their components. The semantic counterpart of this
operation is amalgamation. Given unit terms T1, . . . , Tn, their amalgamation is
denoted by T1 and · · · and Tn. Consider the following example, where Num is
as in Sect. 2.1.
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spec Char =
sort Char
ops a, b, c : Char


end
spec NumAndChar = Num and Char


arch spec Split =
units N : Num;


C : Char


result N and C


In the above, Split describes one natural way to realize the specification Num-


AndChar, by simply realizing its two totally independent parts separately, and
then putting the two units realizing these two parts together:


NumAndChar ; Split


Just as when feeding a number of required arguments to a generic unit, when
amalgamating a number of units we must make sure that they share components
having common names. Here is another trivial example:


spec Num 23 = Num then preds divisible 2 : Num;
divisible 3 : Num


spec Num 2 = Num then pred divisible 2 : Num
spec Num 3 = Num then pred divisible 3 : Num
arch spec Split 23 =


units N : Num;
F2 : Num → Num 2;
F3 : Num → Num 3


result F2 [N ] and F3 [N ]


Given the above, Num 23 ; Split 23 . However, had we attempted:


arch spec Split? 23 =
units N2 : Num 2;


N3 : Num 3


result N2 and N3


then N2 and N3 would not be a well-formed unit term, since we have not ensured
that the realization of Num is shared between N2 and N3 .


More formally: in a context γ, given well-formed unit terms T1, . . . , Tn, their
amalgamation T1 and · · · and Tn is a well-formed unit term over the signature
that is the union of the signatures of T1, . . . , Tn, provided that each common
symbol in the signatures of Ti and Tj is shared between Ti and Tj (i.e. can be
traced in both Ti and Tj to the same symbol in a declared non-generic unit), for
1 ≤ i < j ≤ n.9 If this is the case, then for any environment ρ matching γ,


[[T1 and · · · and Tn]]ρ = [[T1]]ρ ⊕ · · · ⊕ [[Tn]]ρ
9 As mentioned in footnote 6, compatibility conditions for amalgamation must be more


carefully stated in the presence of subsorts, see [CoFI99].
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It follows that


[T1 and . . . and Tn]γ = {A1 ⊕ . . .⊕An | A1 ∈ [T1]γ , . . . , An ∈ [Tn]γ,
〈A1, . . . , An〉 is compatible}


A well-formed amalgamation T1 and · · · and Tn is correct whenever each of
T1, . . . , Tn is correct.


The sharing requirement ensures compatibility of any structures A1 ∈ [T1]γ ,
. . . , An ∈ [Tn]γ that result from the developments of units described in the
context γ. In other words: for any environment ρ that matches γ, [[T1]]ρ,. . . ,[[Tn]]ρ
are compatible.


For instance, recall the above example Split 23. In the unit term describing
the result there, once N , F2 and F3 are bound to specific structures resp. generic
structures in an environment ρ, then [[F2[N ]]]ρ and [[F3[N ]]]ρ are compatible. This
holds even though there may be structures in [F2[N ]]γ and [F3[N ]]γ respectively
that are not compatible with each other (where γ is the context determined by
the unit declarations in Split 23). But this is normal: even in [N ]γ there are
structures that are not compatible with each other, while clearly once a specific
structure is bound to N in ρ, then [[N ]]ρ is a structure that is compatible with
itself.


The amalgamation construct is in some sense redundant. Given specifications
SP1 and SP2, the specification SP1 × SP2 → {SP1 and SP2} unambiguously
specifies a generic unit which produces the amalgamation of any two (compati-
ble) arguments. So, instead of adding syntax for amalgamation, we could simply
specify the amalgamation units as needed. However, we feel that this would not
be an appropriate simplification: it might mislead the reader into thinking that
such a specification carries non-trivial implementation requirements.


8.2 Reduct and renaming


Another construct which seems necessary is that of reduct. It allows the user to
design realizations that contain some auxiliary components not to be exported
for use by clients. For example:


spec SP = sort s end
spec SPab = sort s op a, b : s end
spec SPbc = sort s op b, c : s end
arch spec SP ′ =


units S : SP ;
Fab : SP → SPab ;
Fbc : SP → SPbc


result { Fab[S ] hide a } and { Fbc[S ] reveal s, c }


In the result term of the architectural specification SP ′ we have used two forms of
reduct, which we want to provide here just as in Casl structured specifications.
The first, as used in “ Fab[S ] hide a ”, lists the symbols to be hidden. The well-
formedness conditions simply require that the hidden symbols are actually there.
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The semantics is simple as well: the reduct, as defined for Casl structures, is
taken. Tracing symbol names is trivial: the symbols remaining in the reduct are
traced as they are in the unit to which hiding is applied. The second form of
hiding (i.e. reveal) is similar but dual.


Similarly as in Casl structured specifications, we can also rename compo-
nents of units. The well-formedness conditions are a little more complicated: not
only must the renamed symbols be in the signature of the unit, but if we rename
two different symbols to the same name, they must share in the unit term to
which we apply the renaming.10 Then, each new symbol is traced to its origin in
the obvious way. The renamed unit denotes a structure over the signature that
is the target of the renaming, where the interpretation of each symbol is given
by the interpretation of its original name in the original structure. As in Casl


structured specifications, revealing and renaming may be combined.
Given well-formedness, hiding and renaming do not impose any additional


correctness conditions.


8.3 Instantiation with fitting morphisms


Hiding and renaming may be used to adjust the names of unit components to
whatever is required. For instance, consider the following specification:


spec StackNum =
sorts Num, Stack
ops 0 : Num ;


succ : Num → Num;
empty : Stack ;
push : Num × Stack → Stack ;
pop : Stack →? Stack ;
top : Stack →? Num


axioms . . .
end


A natural refinement of this is to the following architectural specification:


spec Elem = sort Elem end
spec StackElem =


sorts Elem, Stack
ops empty : Stack ;


push : Elem × Stack → Stack ;
pop : Stack →? Stack ;
top : Stack →? Elem


axioms . . .
end


10 Again, the precise conditions are a little more complex in the presence of subsorts,
see [CoFI99].
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arch spec StackOfNum =
units N : Num;


ST : Elem → StackElem


result { ST [N reveal Num 7→ Elem] with Elem 7→ Num } and N


Neutral names are used in the parameter for ST to indicate its potential re-
usability. It is easy to come up with situations in which one would instantiate
this unit in a number of different ways. But then each application to a particular
unit will involve renaming to make the names match, with another renaming
after application to recover the original names as above. Furthermore, since ST
does not depend on anything other than the sort of elements (Num), the extra
operations available in Num are absent in the result of the application. So if we
want to be able to push 0 onto the empty stack (say) in the resulting unit, we
need to put back these additional operations, as above.


Such a pattern — extracting part of a unit (N above), renaming its compo-
nents appropriately (reveal Num 7→ Elem above) to feed it as an argument to a
generic unit (ST above), and then renaming the components of the result back
(with Elem 7→ Num above) to finally combine them with the original unit (and
N above) — occurs frequently enough that it deserves a special construct. By
analogy with instantiation of generic specifications in Casl, we therefore provide
application of a generic unit to its argument via a fitting morphism. The above
example would be written as:


arch spec StackOfNum =
units N : Num;


ST : Elem → StackElem


result ST [N fit Elem 7→ Num]


The symbol map given here expands to a signature morphism in exactly the
same way as in the instantiation of generic specifications. In particular, we allow
compound identifiers, which are treated just as they are there. So we can have:


spec StackElem’ =
sorts Elem, Stack [Elem]
ops empty : Stack [Elem];


push : Elem × Stack [Elem] → Stack [Elem];
pop : Stack [Elem] →? Stack [Elem];
top : Stack [Elem] →? Elem


axioms . . .
end
arch spec TwoStacks =


units C : Char;
N : Num;
ST : Elem → StackElem’


result ST [C fit Elem 7→ Char ] and ST [N fit Elem 7→ Num]


The result unit term of TwoStacks builds a unit which includes units for
Char and Num as well as two distinct stack sorts Stack [Char ] and Stack [Num]
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together with two separate sets of operations (their names are overloaded, but
their profiles are distinct and this is used to distinguish them).


Instantiation via a fitting morphism is just an abbreviation for the expanded
form, with an explicit use of reduction, renaming and amalgamation.11 In par-
ticular, such an instantiation will not be well-formed if component names intro-
duced by the generic unit (that is, those that are not part of the parameter) also
occur in the actual parameter. Since sharing between such two occurrences of a
symbol cannot be ensured,12 the amalgamation that is implicit in the instantia-
tion cannot be well-formed. This requirement of separation between the body of
a generic specification and its actual parameters has been imposed as an extra
static condition in the case of structured specifications.


8.4 Generic unit expressions


So far we have not provided any means for building generic units. As usual, we
can simply use λ-notation. We restrict to functions on non-generic units, i.e.
higher-order generic units are not available. Here is an example:


arch spec Decompose =
units F : SP0 → SP1 ;


G : SP1 → SP
result λX : SP0 • G [F [X ]]


This builds a unit that realizes the specification SP0 → SP .
A λ-expression λX : SP • T is correct in a context γ when T is correct in


the expansion of γ by X 7→ SP (and similarly for well-formedness). Given an
environment ρ that matches γ,


[[λX : SP • T ]]ρ = {A 7→ [[T ]]ρ[X 7→A] | A ∈ [[SP ]]}


To show a simple example of the use of this construct, recall the specifica-
tions from Sects. 2.1, 3.1 and 4.1. The architectural specification UCNum con-
tained an anonymous generic unit with the specification CodeNum→ Unique-
NumCont’. In Sect. 4.1 we indicated that it may be replaced by a more general
unit AUC : TransElem → AbstractUniqueCont (from the architectural
specification AbstractUCNum). More formally, this can be captured by form-
ing the following architectural specification:


arch spec UCNbyAUC =
unit AUC : TransElem → AbstractUniqueCont


result λX : CodeNum • AUC [X fit Elem 7→ Num , transform 7→ code ]


Now, we have the following refinement (see Sect. 9 below for a discussion of
refinement between specifications of generic units):


CodeNum→ UniqueNumCont’ ; UCNbyAUC


11 When the fitting morphism is not injective, the expansion is a bit more involved
than indicated here, but the same principle applies.


12 Unless the symbol in the generic unit originates from an import of a unit that shares
with the actual parameter.
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9 Refinements of architectural specifications


Section 4 indicated how a specification may be refined to an architectural specifi-
cation. With the semantic notation introduced in subsequent sections, the related
semantic correctness condition can be expressed as follows:


SP ;


units U1 : . . .
· · ·
Un : . . .


result T


⇐⇒ [T ]γ ⊆ [[SP]]


where γ is the context built by the declarations of the units U1, . . . , Un. This
definition views the class [T ]γ (of all result units that T might denote in the
context of the unit declarations and definitions given) as the visible, “external”
meaning of the architectural specification.


What next? That is, how can architectural specifications themselves be re-
fined? Simple: by refining each of the specifications of declared units separately.
But what about specifications of generic units? These are of the form SP1 → SP2
(omitting the possibility of multi-argument generic units). Clearly, refinement
will preserve genericity, so the question is when


SP1→SP2 ; SP ′1→SP ′2


To begin with, we need the signatures to agree, that is: Sig [SP1] = Sig [SP ′1] and
Sig[SP2] = Sig [SP ′2]. Furthermore, as with specifications of closed structures,
we need that every generic unit that realizes SP ′1→SP ′2 must correctly realize
SP1→SP2. For consistent specifications SP ′1→SP ′2, this amounts to requiring
[[SP1]] ⊆ [[SP′1]] and [[SP ′2 and SP1]] ⊆ [[SP2]]. Notice that the latter condition is
slightly weaker than the more obvious [[SP ′2]] ⊆ [[SP2]] — we can take advantage
of the fact that we will only be applying the unit to arguments that realize SP1.
Hence, refinement of specifications of generic units is in fact a special case of
refinement as introduced in Sect. 3:


SP1→SP2 ; SP ′1→SP ′2 ⇐⇒ [[SP ′1→SP ′2]] ⊆ [[SP1→SP2]]


since we have modeled generic units as partial functions that are required to be
defined on the models of the argument specification, as explained in Sect. 5.


This allows for “linear” development of individual units declared in an archi-
tectural specification. To allow further decomposition, we can refine unit spec-
ifications to architectural specifications. For closed units this is covered above.
Specifications of generic units may be refined to architectural specifications as
well. The only difference is that then architectural specifications with generic
result units, as introduced in Sect. 8.4, must be used. The semantics of such a
generic result unit term defined in the context of some unit declarations yields
a class of functions, which must be included in the class of functions denoted by
the generic unit specification to be refined.
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The overall effect is that we have a development tree, rather than just a
sequence of refinement steps. This was indeed the target from the very begin-
ning. Each leaf of such a tree may be developed independently from the others,
using the full machinery of further decomposition via architectural design etc.
The development subtree beginning at any given node may be replaced by an-
other development tree without affecting the other parts as long as the new
development subtree is correct with respect to the specification at its root.


In the discussion above, it is somehow implicit that architectural specifica-
tions as such do not need to be refined. Only the specifications of the declared
units within an architectural specification are subject to further refinement, since
the architectural specification itself is merely a prescription for further separate
independent development of these units (and a description of how to combine
the resulting individual pieces into the desired result). This is quite satisfactory
from a methodological point of view, and indeed no further refinement concept
seems necessary to achieve our goals.


However, one can also argue that when the specifications of the units of a
given architectural specification are refined, a refinement of this architectural
specification is obtained by textually replacing the unit specifications by their
respective refinements. This is based on the following theorem:


Theorem 2. Let ASN be the following architectural specification:


arch spec ASN =
units · · ·


U1 : SP1 ;
· · ·
U2 : SP2 given T2 ;
· · ·
F : SPa → SP r ;
· · ·


result T


Assume that in ASN all the implicit generic specifications involved in unit spec-
ifications with imports are consistent.
Let γ be the context built by the unit declarations in ASN and assume that all
the unit terms involved (in particular, the result unit term T ) are well-formed
and correct in γ.
Let then ASN’ be the architectural specification obtained from ASN by textually
replacing (some) unit specifications by their refinements. So, given SP1 ; SP ′1,
SP2 ; SP ′2 and SPa→SPr ; SP ′a→SP ′r, we have:


arch spec ASN’ =
units · · ·


U1 : SP ′1 ;
· · ·
U2 : SP ′2 given T2 ;
· · ·
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F : SP ′a → SP ′r ;
· · ·


result T


Let γ′ be the context built by the unit declarations in ASN’. Then all the unit
terms involved (in particular, the result unit term T ) are well-formed and correct
in γ′. Moreover, [T ]γ′ ⊆ [T ]γ, i.e. ASN ; ASN’.


The above theorem shows that refinements of entire architectural specifica-
tions work as expected, provided all the implicit generic specifications involved
in unit specifications with imports are consistent. Indeed this assumption cannot
be dropped, as shown by the following counterexample (where we assume Int to
be the usual specification of integers, equipped with the predicate even specified
in the usual way):


arch spec AS =
units U : { Int then op a : Int axiom a = 1 ∨ a = 0 }


V : { op b : Int axiom b = a + 1 ∧ b even } given U
result V


arch spec AS’ =
units U : { Int then op a : Int axiom a = 1 }


V : { op b : Int axiom b = a + 1 ∧ b even } given U
result V


The architectural specification AS is inconsistent (since V cannot be built for
a unit U in which a = 0), while AS’ is consistent. Thus, even though the spec-
ification of the unit U in AS’ is a correct refinement of the specification of U
in AS, AS’ is not a semantically correct refinement of AS. It is important to
note that the problem here arises from the inconsistency of the implicit generic
specification involved in the declaration of V in AS. If V were replaced by an ex-
plicit generic specification, the consistency condition would not be required since
the only refinement of an inconsistent specification, generic or not, is another
inconsistent specification.


10 Further comments


We have discussed the issue of designing the structure of a system to be developed
from a specification. Our conclusion has been that apart from the usual mecha-
nisms for structuring requirements specifications, we need a separate mechanism
to describe the modular structure of the system to be developed. Casl provides
this in the form of architectural specifications. We presented the basic ideas be-
hind this concept, as well as the full design of architectural specifications in
Casl. The semantics of architectural specifications has been sketched as well,
but see [CoFI99] for all the details. The level of detail in the presentation was
sufficient to state a few basic facts about the semantics, as well as to argue
that properties of architectural specifications ensure that the basic goals of their
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design have been achieved. Namely, architectural specifications make it possi-
ble to describe the structure of the system to be developed by listing the units
to be built, providing their specifications and indicating the way they are to be
combined to form a more complex unit. Units here correspond to generic or non-
generic modules, and possibilities to adequately specify the former are provided.
Once such an architectural specification is given then its internal correctness can
be checked and the ensured properties of the resulting module can be calculated
(to check that the original requirements specification has been fulfilled by this
design). Moreover, further developments of the units required may proceed inde-
pendently from each without any need to check that the results are compatible,
which brings in all the benefits of modular development.


The above ideas have been presented in the specific context of Casl. How-
ever, both the overall idea and the constructs for architectural specifications are
largely independent from the details of the underlying Casl logical system. In
fact, everything here can be presented in the context of an arbitrary institu-
tion [GB92] equipped with some extra structure to handle specific presentations
of signature morphisms in reducts and renamings and to deal with the issues of
sharing between structures when they are amalgamated. Details of a notion of an
institution appropriate for the full semantics of institution-independent Casl (or
rather, its structured specification and architectural specification mechanisms)
are in [Mos98].


One issue which we have omitted above is that of behavioural implementation
[Sch87], [ST89], [NOS95], [ST97], [BH98]. The idea is that when realizing a
specification it is not really necessary to provide a model; it is sufficient to provide
a structure that is behaviourally equivalent to a model. Intuitively, two structures
are behaviourally equivalent if they cannot be distinguished by computations
involving only the predicates and operations they provide. For Casl structures
this can be formally captured by requiring that the two structures satisfy exactly
the same definedness sentences and predicate applications — a more general form
where equations between terms of some observable sorts are taken into account
may be reduced to this by introducing some extra predicate symbols. Generic
structures are behaviourally equivalent if they yield behaviourally equivalent
structures for each argument.


When using a structure that was built to realize a specification up to be-
havioural equivalence, it is very convenient to pretend that it actually is a true
model of the specification. This is sound provided all the available construc-
tions on structures (hence all the generic units that can be developed) map
behaviourally equivalent arguments to behaviourally equivalent results. More
precisely: a generic unit is stable if for any behaviourally equivalent arguments
provided for it via a fitting morphism, the overall results of instantiations of
this unit on them are behaviourally equivalent as well. It is important in this
formulation that the arguments considered may be built over a larger signature
than just the argument signature of the unit — this models the fact that the
unit may be used in richer contexts. If all units are stable, it is sufficient to check
local behavioural correctness of unit terms only: this is defined like correctness in
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Sect. 7, but allows the arguments for generic units to fit their formal requirement
specifications only up to behavioural equivalence. Then the ensured properties
[T ]γ of any well-formed and locally behaviourally correct unit term T in a con-
text γ can still be calculated exactly as in Sect. 7, as justified by the following
theorem:


Theorem 3. Let γ be a context and let T be a unit term that is well-formed
and locally behaviourally correct in γ. Then for any environment ρ that matches
γ up to behavioural equivalence, [[T ]]ρ is in [T ]γ up to behavioural equivalence.
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