## Paper: How complete is PER? (at LICS 1989)

Authors:**Robinson, E.**

### Abstract

The category of partial equivalence relations (PER) on the natural numbers has been used extensively in recent years to model various forms of higher-order type theory. It is known that PER can be viewed as a category of sets in a nonstandard model of intuitionistic Zermelo-Fraenkel set theory. The use of PER as a vehicle for modeling-type theory then arises from completeness properties of this category. The paper demonstrates these completeness properties, and shows that, constructively, some complete categories are more complete than others

### BibTeX

@InProceedings{Robinson-HowcompleteisPER, author = {Robinson, E.}, title = {How complete is PER?}, booktitle = {Proceedings of the Fourth Annual IEEE Symp. on Logic in Computer Science, {LICS} 1989}, year = 1989, editor = {Rohit Parikh}, month = {June}, pages = {106--111}, location = {Pacific Grove, CA, USA}, publisher = {IEEE Computer Society Press} }